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Abstract

A critical obstacle preventing NeRF models from being
deployed broadly in the wild is their reliance on accurate
camera poses. Consequently, there is growing interest in
extending NeRF models to jointly optimize camera poses
and scene representation, which offers an alternative to off-
the-shelf SfM pipelines which have well-understood failure
modes. Existing approaches for unposed NeRF operate un-
der limiting assumptions, such as a prior pose distribution
or coarse pose initialization, making them less effective in a
general setting. In this work, we propose a novel approach,
LU-NeRE that jointly estimates camera poses and neural
radiance fields with relaxed assumptions on pose configu-
ration. Our approach operates in a local-to-global man-
ner, where we first optimize over local subsets of the data,
dubbed “mini-scenes.” LU-NeRF estimates local pose and
geometry for this challenging few-shot task. The mini-scene
poses are brought into a global reference frame through a
robust pose synchronization step, where a final global op-
timization of pose and scene can be performed. We show
our LU-NeRF pipeline outperforms prior attempts at un-
posed NeRF without making restrictive assumptions on the
pose prior. This allows us to operate in the general SE(3)
pose setting, unlike the baselines. Our results also indi-
cate our model can be complementary to feature-based SfM
pipelines as it compares favorably to COLMAP on low-
texture and low-resolution images.

1. Introduction

NeRF [34] was introduced as a powerful method to
tackle the problem of learning neural scene representations
and photorealistic view synthesis, and subsequent research
has focused on addressing its limitations to extend its ap-
plicability to a wider range of use cases (see [54, 59] for
surveys). One of the few remaining hurdles for view syn-
thesis in the wild is the need for accurate localization. As
images captured in the wild have unknown poses, these ap-
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proaches often use structure-from-motion (SfM) [48, 40] to
determine the camera poses. There is often no recourse
when SfM fails (see Fig. 7 for an example), and in fact,
even small inaccuracies in camera pose estimation can have
a dramatic impact on photorealism.

Few prior attempts have been made to reduce the reliance
on SfM by integrating pose estimation directly within the
NeRF framework. However, the problem is severely un-
derconstrained (see Fig. 1) and current approaches make
additional assumptions to make the problem tractable.
For example, NeRf—— [50] focuses on pose estimation
in forward-facing configurations, BARF [29] initialization
must be close to the true poses, and GNeRF [32] assumes a
2D camera model (upright cameras on a hemisphere).

We propose an approach for jointly estimating the cam-
era pose and scene representation from images from a single
scene while allowing for a more general camera configura-
tion than previously possible. Conceptually, our approach
is organized in a local-to-global learning framework using
NeRFs. In the local processing stage we partition the scene
into overlapping subsets, each containing only a few images
(we call these subsets mini-scenes). Knowing images in a
mini-scene are mostly nearby is what makes the joint esti-
mation of pose and scene better conditioned than perform-
ing the same task globally. In the global stage, the over-
lapping mini-scenes are registered in a common reference
frame through pose synchronization, followed by jointly re-
fining all poses and learning the global scene representation.

This organization into mini-scenes requires learning
from a few local unposed images. Although methods exist
for few-shot novel view synthesis [60, 27, 38, 20, 12, 11],
and separately for optimizing unknown poses [29, 32, 56],
the combined setting presents new challenges. Our model
must reconcile the ambiguities prevalent in the local un-
posed setting — in particular the mirror symmetry ambigu-
ity [39], where two distinct 3D scenes and camera configu-
rations produce similar images under affine projection.

We introduce a Local Unposed NeRF (LU-NeRF) model
to address these challenges in a principled way. The infor-
mation from the LU-NeRFs (estimated poses, confidences,
and mirror symmetry analysis) is used to register all cam-



BARF
Pose error: 25.05° (R), 0.54 (T)
Note: initial pose error 43° (R), 0.71 (T)

GNeRF
Pose error: 8.77° (R), 0.53 (T)

Note: 2D cameras, elevation range (-90°, 90°)

LU-NeRF+Sync (ours)
Pose error: 0.09° (R), 0.00 (T)

Note: Unconstrained LU-NeRF, full SO(3) averaging Novel views synthesized from our model.

Figure 1. Jointly optimizing camera poses and scene representation over a full scene is difficult and underconstrained. This example is the
Lego scene with 100 images from the Blender dataset. Left: When provided noisy observations of the true camera locations, BARF [29]

cannot converge to the correct poses. Middle: GNeRF [

] assumes a 2D camera representation (azimuth, elevation) which is accurate

for the Blender dataset which has that exact configuration (upright cameras on a sphere). However, GNeRF also requires an accurate
prior distribution on poses for sampling. The Lego images live on one hemisphere, but when GNeRF’s prior distribution is the full sphere
it also fails to localize the images accurately. Right: Our full model, LU-NeRF+Sync, is able to recover poses almost perfectly in this
particular example. By taking a local-to-global approach, we avoid having strong assumptions about camera representation or pose priors.

Following [29,

] pose errors for each method are reported after optimal global alignment of estimated poses to ground truth poses. To

put the translation errors in context, the Blender cameras are on a sphere of radius 4.03.

eras in a common reference frame through pose synchro-
nization [19, 42, 23], after which we refine the poses and
optimize the neural scene representations using all images.
In summary, our key contributions are:
* A local-to-global pipeline that learns both the camera
poses in a general configuration and a neural scene rep-
resentation from only an unposed image set.

* LU-NeRF, a novel model for few-shot local unposed
NeRF. LU-NeRF is tailored to the unique challenges
we have identified in this setting, such as reconciling
mirror-symmetric configurations.

Each phase along our local-to-global process is designed
with robustness in mind, and the consequence is that our
pipeline can be successful even when the initial mini-scenes
contain frequent outliers (see Sec 4 for a discussion on
different mini-scene construction techniques). The perfor-
mance of our method surpasses prior works that jointly op-
timize camera poses and scene representation, while also
being flexible enough to operate in the general SE(3) pose
setting unlike prior techniques. Our experiments indicate
that our pipeline is complementary to the feature-based SfM
pipelines used to initialize NeRF models, and is more reli-
able in low-texture or low-resolution settings.

2. Related work

Structure from motion (SfM). Jointly recovering 3D
scenes and estimating camera poses from multiple views
of a scene is the classic problem in Computer Vision [24].
Numerous techniques have been proposed for SfM [40, 48]
with unordered image collections and visual-SLAM for se-
quential data [53, 37]. These techniques are largely built
upon local features [31, 44, 21, 51] and require accurate
detection and matching across images. The success of
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these techniques has led to their widespread adoption, and
existing deep-learning approaches for scene representation
and novel view synthesis are designed with the implicit as-
sumption that the SfM techniques provide accurate poses
in the wild. For example, NeRF [34] and its many suc-
cessors (e.g. [4, 5, 360]) utilize poses estimated offline with
COLMAP [48, 30]. However, COLMAP can fail on tex-
tureless regions and low-resolution images.

The local-to-global framework proposed in this work
is inspired by the “divide-and-conquer” SfM and SLAM
methods [7, 64,22, 14, 18, 63, 17].

Neural scene representation with unknown poses.
BARF [29] and GAREF [15] jointly optimize neural scene
and camera poses, but require good initialization (e.g.
within 15° of the groundtruth). NeRF—— [56], X-
NeRF [41], SiNeRF [58], and SaNeRF [13] only work
on forward-facing scenes; SAMURALI [9] aims to han-
dle coarsely specified poses (octant on a sphere) using a
pose multiplexing strategy during training; GNeRF [32] and
VMREF [61] are closest to our problem setting. They do
not require accurate initialization and work on 360° scenes.
However, they make strong assumptions about the pose dis-
tribution, assuming 2DoF and a limited elevation range.
Performance degrades when the constraints are relaxed.

Approaches that combine visual SLAM with neural
scene representations [65, 50, 43] typically rely on RGB-D
streams and are exclusively designed for video sequences.
The use of depth data significantly simplifies both scene and
pose estimation processes. There are several parallel efforts
to ours in this field. For instance, NoPe-NeRF [&] trains
a NeRF without depending on pose priors; however, it re-
lies on monocular depth priors. In a manner akin to our
approach, LocalRF [33] progressively refines camera poses



(A) LU-NeRF input

(C) Pose averaging to register learned mini-scene

(D) Final refinement
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LU-NeRF learned poses will not be in
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Final output is camera poses for all
images and a learned scene
representation.

Figure 2. Proposed method. (A) shows the ground truth locations of each image (we show this only for visualization). Edge colors show
the grouping within mini-scenes. We create a mini-scene for each image, though here only three mini-scenes are highlighted; the ones
centered at image 2 (red edges), image 5 (green edges), and image 7 (blue edges). Depending on the strategy used to create mini-scenes,
the grouped images can contain outlier images far from the others. (B) LU-NeRF takes unposed images from a single mini-scene and
optimizes poses without any constraints on the pose representation. (C) The reference frame and scene scale learned by LU-NeRF is
unique to each mini-scene. This, plus estimation errors, means the relative poses between images in overlapping mini-scenes will not
perfectly agree. To register the cameras in a common reference frame, we utilize pose synchronization which seeks a globally optimal
positioning of all cameras from noisy relative pose measurements — this is possible since we have multiple relative pose estimations for
many pairs of images. (D) Lastly, we jointly refine the synchronized camera poses and learn a scene representation.

and radiance fields within local scenes. Despite this similar-
ity, it presumes monocular depth and optical flow as super-
vision, and its application is limited to ordered image col-
lections; MELON [28] optimizes NeRF with unposed im-
ages using equivalence class estimation, yet it is limited to
SO(3); RUST [45] and FlowCam [49] learn a generalizable
neural scene representation from unposed videos.

In summary, prior work on neural scene representa-
tion with unknown poses assumes either small perturba-
tions [29, 15, 56, 58], a narrow distribution of camera
poses [32, 61], or depth priors [8, 33]. To the best of our
knowledge, we are the first to address the problem of neu-
ral rendering with unconstrained unknown poses for both
ordered and unordered image collections.

Few-shot scene estimation. Learning scene representa-
tions from a few images has been studied in [60, 20,

, 11, 27, 38]. PixelNeRF [60] uses deep CNN fea-
tures to construct NeRFs from few or even a single image.
MVSNeRF [1 1] leverages cost-volumes typically applied in
multi-view stereo for the same task, while DS-NeRF [20]
assumes depth supervision is available to enable training
with fewer views. Our approach to handle the few-shot case
relies on a standard neural field optimization with strong
regularization, similar to RegNeRF [38].

Unsupervised pose estimation. There are a number of
techniques that can learn to predict object pose from cat-
egorized image collections without explicit pose supervi-

sion. Multiple views of the same object instance are used
in [55, 25] to predict the shape and pose while training is
self-supervised through shape rendering. RotationNet [26]
uses multiple views of an object instance to predict both
poses and class labels but is limited to a small set of dis-
crete uniformly spaced camera viewpoints. The multi-view
input is relaxed in [35, 57] which operates on single image
collections for a single category. UNICORN [35] learns a
disentangled representation that includes pose and utilizes
cross-instance consistency at training, while an assumption
about object symmetry guides the training in [57].

3. Methodology

An illustration of our approach is shown in Figure 2.
At the core of our method is the idea of breaking up a
large scene into mini-scenes to overcome the non-convexity
of global pose optimization without accurate initialization.
When the camera poses in the mini-scene are close to one
another, we are able to initialize the optimization with all
poses close to the identity and optimize for relative poses.
In Sec. 4, we describe how we construct mini-scenes, and
below we describe the process of local shape estimation fol-
lowed by global synchronization.

3.1. Local pose estimation

The local pose estimation step takes in mini-scenes of
typically three to five images and returns the relative poses
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between the images. The model, denoted LU-NeRF-1, is a
small NeRF [34] that jointly optimizes the camera poses as
extra parameters as in BARF [29]. In contrast with BARF,
in this stage, we are only interested in a rough pose esti-
mation that will be improved upon later, so we aim for a
lightweight model with faster convergence by using small
MLPs and eliminating positional encoding and view depen-
dency. As we only need to recover relative poses, without
loss of generality, we freeze one of the poses at identity and
optimize all the others.

Few-shot radiance field optimization is notoriously dif-
ficult and requires strong regularization [38]. Besides the
photometric /5 loss proposed in NeRF, we found that adding
a loss term for the total variation of the predicted depths
over small patches is crucial for the convergence of both
camera pose and scene representation:

T2 D (dolris) —do(risan) + (do(ris) —do(ricn))’

recRi,j=1

where R is a set of ray samples, dg(r) is the depth rendering
function for a ray r, 6 are the model parameters and camera
poses, K is the patch size, and (¢, 7) is the pixel index.

3.2. Mirror-symmetry ambiguity

The ambiguities and degeneracies encountered when es-
timating 3D structure have been extensively studied [52, 6,

]. One particularly relevant failure mode of SfM is distant
small objects, where the perspective effects are small and
can be approximated by an affine transform, and one can-
not differentiate between reflections of the object around
planes parallel to the image plane [39]. When enforc-
ing multi-view consistency, this effect, known as mirror-
symmetry ambiguity, can result in two different configura-
tions of structure and motion that cannot be told apart (see
Fig. 3). We notice, perhaps for the first time, that neural
radiance fields with unknown poses can degenerate in the
same way.

One potential solution to this problem would be to keep
the two possible solutions and drop one of them when new
observations arrive. This is not applicable to our case since
at this stage the only information available is the few images
of the mini-scene.

To mitigate the issue, we introduce a second stage for
the training, denoted LU-NeRF-2. We take the estimated
poses in world-to-camera frame {R;} from LU-NeRF-I,
and the reflected cameras { R, R;}, where R, is a rotation
around the optical axis. Note that this is different than post-
multiplying by R, which would correspond to a global ro-
tation that wouldn’t change the relative poses that we are
interested in at this stage. We then train two new models,
with the scene representation started from scratch and poses
initialized as the original and reflected sets, and resolve the
ambiguity by picking the one with the smallest photometric
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training loss. The rationale is that while the issue is caused
by LU-NeRF-1 ignoring small perspective distortions, the
distortions can be captured on the second round of train-
ing, which is easier since one of the initial sets of poses is
expected to be reasonable.

[Py S, I

Figure 3. Mirror symmetry ambiguity. Under affine projection,
a 3D scene (Sp) and its reflection (S7) across a plane (R) will
produce the same image viewed from affine camera C'. The con-
sequence of this is that two distinct 3D scenes and camera poses
will produce similar images. In this illustration, scene S viewed
from camera Py will produce the same image as the reflected scene
S1 viewed from P;. While this relationship is exact in the affine
model, we observe that the mini-scene configuration with respect
to the scene structure is often well-approximated as affine and
training can converge to the near-symmetric solutions. Our LU-
NeRF model is explicitly designed to anticipate this failure mode.
This illustration is inspired by a similar diagram in [39].

3.3. Local to global pose estimation

After training LU-NeRF-2, we have sets of relative poses
for each mini-scene in some local frame. The problem of
finding a global alignment given a set of noisy relative poses
is known as pose synchronization or pose averaging. It is
formalized as optimizing the set of N global poses {P;}
given relative pose observations R;;,

argmin d(P;j, PjP;"),
PESE(3)N

)

for some metric d: SE(3) x SE(3) — R. The problem
is challenging due to non-convexity and is an active sub-
ject of research [3, 42, 19]. We use the Shonan rotation
method [19] to estimate the camera rotations, followed by a
least-squares optimization of the translations.

Global pose and scene refinement. After pose averag-
ing, the global pose estimates are expected to be good
enough such that any method that requires cameras initial-
ized close to the ground truth should work (e.g. BARF [29],
GARF [15]). We apply BARF [29] at this step, which re-
sults in both accurate poses and a scene representation ac-
curate enough for realistic novel view synthesis. We refer
to the full pipeline as LU-NeRF+Sync.



Chair Hotdog Lego Mic Drums Ship
rot  trans rot  trans rot  trans rot  trans rot  trans rot  trans
COLMAP 0.12 0.01 1.24  0.04 229 0.10 837 0.18 591 0.28 0.17  0.01
+BARF 0.14  0.01 1.20 0.01 1.88 0.09 373 0.15 871 0.54 0.15 0.01
VMREF 120° 485 028 - - 2.16 0.16 1.39  0.07 1.28 0.08 16.89 0.71
GNeRF 90° 0.36  0.02 235  0.12 043  0.02 1.87  0.03 020 0.01 372 0.18
GNeRF 120° 460 0.16 17.19 0.74 4.00 0.20 244 0.08 251 0.11 31.56  1.38
GNeRF 150° 16.10 0.76 23.53 092 4.17 0.36 3.65 026 501 0.18 - -
GNeRF 180° (2DOF) 24.46 1.22 36.74 1.46 877 053 1296 0.66 9.01 049 - -
Ours (3DOF) 2.64 0.09 024 0.01 0.09 0.00 6.68 0.10 12.39  0.23 - -

Table 1. Camera pose estimation on unordered image collection. GNeRF [32] and VMRF [61] constrain the elevation range, where the
maximum elevation is always 90°. For example, GNeRF 120° only samples elevations in [—30°, 90°]. The 180° variations don’t constrain
elevation and are closest to our method, but they are still limited to 2 degrees of freedom for assuming upright cameras. Bold numbers
indicate superior performance between the bottom two rows, which are the fairest comparison among NeRF-based methods, although our
method is still solving a harder 3DOF problem versus 2DOF of GNeRF. We outperform GNeRF in all but one scene in this comparison.
COLMAP [48] results in its best possible scenario are shown for reference (higher resolution images and assuming optimal graph to set
unregistered poses to the closest registered pose). COLMAP+BARF runs a BARF refinement on top of these initial results, and even in
this best-case scenario, our method still outperforms it in some scenes, which shows that LU-NeRF can complement COLMAP and work
in scenes COLMAP fails. Our model fails on the Ship scene due to outliers in the connected graph; GNeRF with fewer constraints also
fails on it. We provide a detailed error analysis on the Drums scene in the supplementary material.

Pose error: 0.36° (R), 0.02 (T)
GNeRF with elevation range (0,90)

Pose error: 4.60° (R), 0.16 (T)
GNeRF with elevation range (-30,90)

Pose error: 24.46° (R), 1.22(T)
GNeRF with elevation range (-60,90)

Pose error: 2.64° (R), 0.09 (T)
Ours: unconstrained LU-NeRF

Figure 4. Camera pose estimation on unordered image collections. The performance of GNeRF drops dramatically when the pose prior
is expanded beyond the true distribution. In comparison, our method does not rely on any prior knowledge of pose distribution.

4. Experiments Building graphs from unordered image collections. We
evaluate two simple ways of building graphs from un-
ordered image collections. The first is to use deep features
from a self-supervised model trained on large image collec-
tions. We use the off-the-shelf DINO model [10, 2] to ex-
tract image features and build the graph based on the cosine

distance between these features. The second is to simply

Our method as described in Sec. 3 starts from a set of
mini-scenes that covers the input scene. We evaluate differ-
ent approaches to constructing mini-scenes, each with dif-
ferent assumptions on the input.

The most strict assumption is that we have an optimal

graph connecting each image to its nearest neighbors in
camera pose space. While this seems unfeasible in prac-
tice, some real-life settings approximate this, for example,
when images are deliberately captured in a pattern such as
a grid, or if they are captured with camera arrays.

In a less constrained version of the problem, we assume
an ordered image collection, where the images form a se-
quence, from where a line graph is trivially built. This is a
mild assumption that is satisfied by video data, as well as
the common setting of a camera physically moving around
a scene sequentially capturing images.

In the most challenging setting, we assume nothing about
the scene and only take an unordered image collection.

use the ¢; distance in pixel space against slightly shifted and
rotated versions of the images. Neither of these approaches
is ideal. The deep features are typically coarse and too gen-
eral, failing to detect specific subtle changes on the scene.
The ¢; distance has the opposite issue, where small changes
can result in large distances. We provide a detailed analysis
in the supplementary material. Exploring other methods for
finding a proxy metric for the relative pose in image space
is a direction for future work.

Datasets. We compare with existing published results on
the synthetic-NeRF dataset [34]. We use the training split of
the original dataset as our unordered image collection which
consists of 100 unordered images per 3D scene. We use the
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Chair Drums Lego Mic
PSNR1 SSIMt1 LPIPS | PSNR1 SSIMt LPIPS | PSNR{ SSIM{ LPIPS | PSNR{ SSIM{ LPIPS |
GNeRF 90° 31.30 0.95 0.08 24.30 0.90 0.13 28.52 0.91 0.09 31.07 0.96 0.06
GNeRF 120° 25.01 0.89 0.15 20.63 0.86 0.20 22.95 0.85 0.16 23.68 0.93 0.11
GNeRF 150° 22.18 0.88 0.20 19.05 0.83 0.27 21.39 0.84 0.18 23.22 0.92 0.13
VMREF 120° 26.05 0.90 0.14 23.07 0.89 0.16 25.23 0.89 0.12 27.63 0.95 0.08
VMREF 150° 24.53 0.90 0.17 21.25 0.87 0.21 23.51 0.86 0.14 24.39 0.94 0.10
GNeRF 180° (2DOF)  21.27 0.87 0.23 18.08 0.81 0.33 18.22 0.82 0.24 17.22 0.86 0.32
VMREF 180° (2DOF) 23.18 0.89 0.16 20.01 0.84 0.29 21.59 0.83 0.18 20.29 0.90 0.22
Ours (3DOF) 30.57 0.95 0.05 23.53 0.89 0.12 28.29 0.92 0.06 22.58 0.91 0.08

Table 2. Novel view synthesis on unordered collections. Our method outperforms the baselines on most scenes while being more general

for considering arbitrary rotations with 3 degrees-of-freedom. Here we quote the baseline results from VMRF [

1, where hotdog is not

available. We provided the results on all scenes (including hotdog) using the public source code of GNeRF in the supplementary material.
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GNeRF 180° (2DoF)  Ours (3DoF) Groundtruth

Figure 5. Novel view synthesis on unordered image collections.
GNeRF makes assumptions on the elevation range, where the
maximum elevation is always 90°. For instance, GNeRF 150°
only samples elevations in [-60°, 90°]. The 180° variations don’t
constrain elevation and are closest to our method, but they are still
limited to 2 degrees of freedom for assuming upright cameras. The
performance of GNeRF drops as prior poses are less constrained.
Please zoom into the figure to see the details in the renderings.

Image size Chair Hotdog Lego Mic Drums Ship
400x400 100 88 100 15 74 45
800800 100 98 100 80 84 100

Table 3. Number of images registered by COLMAP on Blender.

first 8 images from the validation set as our test set for the
novel view synthesis task, following prior works [32, 61]
To evaluate on image sequences, where the order of im-
ages is known, we further render a Blender ordered image
collection with 100 images along a spiral path per scene.
The images are resized to 400 x 400 in our experiments.
We also evaluate on real images from the object-centric
videos in Objectron [1]. The dataset provides ground truth
poses computed using AR solutions at 30fps, and we con-

struct a wider-baseline dataset by subsampling every 15th
frame and selecting videos with limited texture (Fig. 7).
Evaluation metrics. We evaluate the tasks of camera pose
estimation and novel view synthesis. For camera pose esti-
mation, we report the camera rotation and translation error
using Procrustes analysis as in BARF [29]. For novel view
synthesis, we report the PSNR, SSIM, and LPIPS [62].
Baseline methods. We compare with GNeRF [32],
VMREF [61], and COLMAP [48] throughout our experi-
ments. GNeRF samples camera poses from a predefined
prior pose distribution and trains a GAN-based neural ren-
dering model to build the correspondence between the sam-
pled camera poses and 2D renderings. The method provides
accurate pose estimation under proper prior pose distribu-
tion. However, its performance degrades significantly when
the prior pose distribution doesn’t match the groundtruth.
VMREF attempts to relieve the reliance of GNeRF on the
prior pose distribution but still inherits its limitations. In
our experiments, we evaluate with the default pose pri-
ors of GNeRF on the NeRF-synthetic dataset, i.e., azimuth
€ [0°,360°] and elevation € [0°,90°], and also on less
constrained cases. COLMAP works reliably in texture-rich
scenes but may fail dramatically on texture-less surfaces.
Implementation details. We use a compact network for
LU-NeRF to speed up the training and minimize the mem-
ory cost. Specifically, we use a 4-layer MLP without po-
sitional encoding and conditioning on the view directions.
We stop the training early when the change of camera poses
on mini-scenes is under a predefined threshold. To resolve
the mirror symmetry ambiguity (Sec. 3.2), we train two ad-
ditional LU-NeRFs for a fixed number of training iterations
(50k by default). The weight of the depth regularization is
10 times larger than the photometric £ loss throughout our
experiments. More details are in the supplementary mate-
rial.

4.1. Unordered Image Collections

Camera pose estimation. Tab. 1 compares our method to
GNeRF, VMREF, and COLMAP in the camera pose estima-
tion task. GNeRF achieves high pose estimation accuracy



Chair Drums Lego Materials Mean
rot trans rot trans rot trans rot trans rot trans
GNeRF 90° 11.6 049 8.03 0.29 7.89  0.19 6.80  0.12 8.91 0.30
GNeRF 180° 27.7 1.17 130 6.23 123 431 309 1.40 949 327
Ours 3DOF) 0.72  0.03 0.07 0.08 1.96 0.00 0.31  0.00 0.76  0.03

Table 4. Pose estimation on the Blender ordered image collec-
tions. We report rotation errors in degrees and translation at the in-
put scene scale. Our method can be more easily applied to ordered
image collections since the graph-building step becomes trivial. In
this case, we outperform GNeRF even when it is aided by known
and constrained pose distributions.

Chair Drums
PSNR T SSIM?T LPIPS | PSNR1 SSIM{1 LPIPS |
GNeRF 90° 27.22 0.93 0.17 20.88 0.84 0.29
GNeRF 180° (2DOF)  23.50 091 0.26 11.01 0.81 0.56
Ours (3DOF) 33.94 0.98 0.03 25.29 0.91 0.08
Lego Materials
PSNRT SSIM?T LPIPS | PSNR1 SSIM{ LPIPS |
GNeRF 90° 22.83 0.83 0.25 22.58 0.85 0.20
GNeRF 180° (2DOF) 9.78 0.78 0.53 9.48 0.65 0.50
Ours (3DOF) 15.90 0.72 0.20 29.73 0.96 0.03

Table 5. Novel view synthesis on Blender ordered image collec-
tions. The relative improvement of our method with respect to
GNeRF is larger with an ordered image collection, since we avoid
the difficult step of building the initial graph.
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Pose error: 6.8° (R), 0.12 (T)
GNeRF with elevation range (0,90)

Pose error: 30.9° (R), 1.4 (T)
GNeRF with elevation range (-90,90)

Pose error: 0.31° (R), 0 (T)
Ours: unconstrained LU-NeRF

Figure 6. Pose estimation on the Blender Materials ordered im-
age collection.

when the elevation angles are uniformly sampled from a 90°
interval; however, its performance drops significantly when
the range of elevation is enlarged. Our method outperforms
GNeRF in most scenes when the prior pose distribution is
unknown, since we do not require any prior knowledge of
the camera poses. Fig. 4 provides the visualization of the
estimated camera poses from GNeRF under different prior
pose distributions and our method.

Tab. 3 shows the number of images COLMAP registers
out of 100 in each scene. COLMAP is sensitive to image
resolution, and its performance drops significantly on low-
resolution images. For instance, COLMAP only registers
15 images out of 100 on the Mic scene when the image
size is 400 x 400. Our method provides accurate pose es-
timation for all cameras given 400 x 400 images. Tab. 1
also reports how COLMAP performs in the pose estimation
task on the Blender scenes. We use the most favorable set-
tings for COLMAP — 800 x 800 images and set the poses
of unregistered cameras to the poses of the nearest regis-
tered camera, assuming the optimal graph is known, while
our method makes no such assumption. Nevertheless, our

Bike Chair Cup Laptop Shoe Book

Rotation:
COLMAP - 17.2 - - 14.1 -
COLMAP-SPSG 129 28.3 - - 8.3 -
COLMAP-LoFTR 1.1 6.7 6.3 9.5 145 834
Ours 15.6 2.6 6.1 17.8 8.8 3.2

Translation:
COLMAP - 0.04 - - 0.03 -
COLMAP-SPSG 1.71  0.12 - - 0.04 -
COLMAP-LoFTR 0.10 0.07 0.03 0.34 0.14  0.67
Ours 0.13  0.03 0.11 0.16 0.20  0.03
Table 6. Comparison with COLMAP on Objectron [1]. We re-
port rotation (°) and translation errors on select scenes from Ob-
jectron that are challenging to COLMAP. “~ denotes failure to
estimate any camera poses. COLMAP-SPSG is an improved
version [46] with SuperPoint [21] and SuperGLUE [47] as de-
scriptor and matcher, respectively. COLMAP-LoFTR improves
COLMAP with LoFTR [51], a detector-free feature matcher.
Translation errors are in the scale of the ground truth scene.

model achieves better performance than COLMAP in some
scenes, even when a BARF refinement is applied to initial
COLMAP results. This shows that LU-NeRF complements
COLMAP by working in scenes where COLMAP fails.
Novel view synthesis. Fig. 5 and Tab. 2 show our results in
the task of novel view synthesis on unordered image collec-
tions. The results are consistent with the quantitative pose
evaluation — our model outperforms both VMRF and GN-
eRF when no priors on pose distribution are assumed.

4.2. Ordered Image Collections
4.3. Blender

Tab. 4, Tab. 5, and Fig. 6 summarize the results on the
Blender ordered image collection. Our method outperforms
GNeRF with both constrained and unconstrained pose dis-
tributions even though the elevation of the cameras in this
dataset is constrained. Our method utilizes the image order
to build a connected graph and does not make any assump-
tions about the camera distribution. Results in Tab. 5 show
that the view synthesis results are in sync with the pose esti-
mation results. GNeRF degrades significantly under uncon-
strained pose priors, while our method outperforms GNeRF
consistently across different scenes.

4.4. Objectron

We further compare with COLMAP on real images from
the Objectron dataset. COLMAP can be improved with
modern feature extraction and matching algorithms [46]
such as SuperPoint [21] and SuperGLUE [47] (denoted
COLMAP-SPSG), or LoFTR [51] (denoted COLMAP-
LoFTR), but these still struggle in scenes with little or re-
peated texture. Tab. 6 and Fig. 7 show our results without
BARF refinement on difficult scenes from Objectron.
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Figure 7. Camera pose estimation on textureless scenes.
COLMAP fails to register any cameras in these Objectron scenes.
Ground truth cameras are in purple, our predictions in blue.

24.39 dB, 27.18° 25.10dB, 3.43°
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27.49 dB, 18.37° 27.73 dB, 0.37°

19.09 dB, 16.89°

IR YEXY

19.66 dB, 1.33°

(LAY ERY

19.98 dB, 20.81° 21.74 dB, 0.42°

Ambiguity Chair Hotdog Lego Mic Drums

w/oresolution 39.14 1389 048 1079 11.35
w/ resolution  4.24 0.23 0.07 0.84 0.05
Table 7. Mirror symmetry ambiguity. The mean rotation error
in degrees for our pipeline (starting with the optimal graph), with

and without the proposed strategy to resolve the ambiguity.

4.5. Analysis

This section provides additional analysis of our ap-

proach. All the experiments discussed below were con-
ducted on the unordered image collection. See the supple-
mentary material for an extended discussion.
Mirror symmetry ambiguity. Tab. 7 shows the perfor-
mance of our full method with and without the proposed so-
lution to the mirror-symmetry ambiguity (Sec. 3.2). Resolv-
ing the ambiguity improves performance consistently, con-
firming the importance of this component to our pipeline.
For closer inspection, we present qualitative results for
LU-NeRF with and without ambiguity resolution for select
mini-scenes in Fig. 8. Fig. 8 presents a visual comparison
between LU-NeRF with and without the proposed solution
to the mirror-symmetry ambiguity. Without the ambiguity
resolution, the predicted depths are reflected across a plane
parallel to the image plane (having the effect of inverted dis-
parity maps), and the poses are reflected across the center
camera of a mini-scene. Our LU-NeRF-2 rectifies the pre-
dicted geometry and local camera poses, which effectively
resolves the ambiguity.

5. Discussion

In this work, we propose to estimate the neural scene
representation and camera poses jointly from an unposed

AR

2432 dB, 2.57°

23.00 dB, 21.06°

w/o ambiguity resolution

w/ambiguity resolution

Figure 8. Mirror symmetry ambiguity. For specific mini-scenes,
we present renderings, disparity maps, PSNRs between the ren-
derings and the groundtruth, and relative rotation errors (lower is
better) for LU-NeRF with and without the proposed solution to
the mirror-symmetry ambiguity. Brightness is inversely related to
depth in the disparity map. The groundtruth depth maps are not
available with the dataset.

image collection through a process of synchronizing lo-
cal unposed NeRFs. Unlike prior works, our method does
not rely on a proper prior pose distribution and is flexi-
ble enough to operate in general SE(3) pose settings. Our
framework works reliably in low-texture or low-resolution
images and thus complements the feature-based SfM algo-
rithms. Our pipeline also naturally exploits sequential im-
age data, which is easy to acquire in practice.

One limitation of our method is the computational cost,
which can be relieved by recent advances in neural render-
ing [54]. Another limitation is the difficulty in building
graphs for unordered scenes, which is a promising direction
for future work.
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