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Abstract

We consider the problem of minimum cost cover of adaptive-submodular functions, and provide a 4(lnQ+1)-
approximation algorithm, where Q is the goal value. This bound is nearly the best possible as the problem
does not admit any approximation ratio better than lnQ (unless P = NP ). Our result is the first
O(lnQ)-approximation algorithm for this problem. Previously, O(lnQ)-approximation algorithms were only
known assuming either independent items or unit-cost items. Furthermore, our result easily extends to the
setting where one wants to simultaneously cover multiple adaptive-submodular functions: we obtain the first
approximation algorithm for this generalization.

1 Introduction

Adaptive stochastic optimization, where an algorithm makes sequential decisions while (partially) observing
uncertainty, arises in numerous applications such as active learning [23], sensor placement [6] and viral marketing
[13]. Often, these applications involve an underlying submodular function, and the framework of adaptive-
submodularity (introduced by [9]) has been widely used to solve these problems. In this paper, we study a basic
problem in this context: covering an adaptive-submodular function at the minimum expected cost. Our main
result is an O(lnQ)-approximation algorithm, where Q represents the maximal value of the adaptive-submodular
function.

In some applications, such as sensor placement (or stochastic set cover [20]), the uncertainty just involves an
independent random variable associated with each decision. However, there are also a number of applications where
the random variables associated with different decisions are correlated. The adaptive-submodularity framework
that we consider is also applicable in certain applications involving correlations.

As a motivating example, consider the viral marketing problem, where we are given a social network and
target Q, and the goal is to influence at least Q users to adopt a new product. A user can be influenced in two
ways (i) directly because the user is offered a promotion, or (ii) indirectly because some friend of the user was
influenced and the friend influenced this user. We incur a cost only in case (i), which accounts for the promotional
offer. A widely-used model for influence behavior is the independent cascade model [10]. Here, each arc (u, v) has
a value puv ∈ [0, 1] that represents the probability that user u will influence user v (if u is already influenced). A
solution is a sequential process that in each step, selects one user w to influence directly, after which we get to
observe which of w’s friends were influenced (indirectly), and which of their friends were influenced, and so on.
So, the solution can utilize these partial observations to make decisions adaptively. Such an adaptive solution can
be represented by a decision tree; however, it may require exponential space to store explicitly. We will analyze
simple solutions that can be implemented in polynomial time (and space), but our performance guarantees are
relative to an optimal solution that can be very complex. Also, note that the random observations associated with
different decisions (in the viral marketing problem) are highly correlated: the set of nodes that get (indirectly)
influenced by any node w depends on the entire network (not just w).

1.1 Problem Definition
Random items. Let E be a finite set of n items. Each item e ∈ E corresponds to a random variable Φe ∈ Ω,

where Ω is the outcome space (for a single item). We use Φ = ⟨Φe : e ∈ E⟩ to denote the vector of all random
variables (r.v.s). The r.v.s may be arbitrarily correlated across items. We use upper-case letters to represent r.v.s
and the corresponding lower-case letters to represent realizations of the r.v.s. Thus, for any item e, ϕe ∈ Ω is the
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realization of Φe; and ϕ = ⟨ϕe : e ∈ E⟩ denotes the realization of Φ. Equivalently, we can represent the realization
ϕ as a subset {(e, ϕe) : e ∈ E} ⊆ E × Ω of item-outcome pairs.

A partial realization ψ ⊆ E × Ω refers to the realizations of any subset of items; dom(ψ) ⊆ E denotes the
items whose realizations are represented in ψ, and ψ(e) denotes the realization of any item e ∈ dom(ψ). Note
that a partial realization contains at most one pair of the form (e, ∗) for any item e ∈ E. The (full) realization ϕ
corresponds to a partial realization with dom(ϕ) = E. For two partial realizations ψ,ψ′ ⊆ E × Ω, we say that ψ
is a subrealization of ψ′ (denoted ψ ≼ ψ′) if ψ ⊆ ψ′; in other words, dom(ψ) ⊆ dom(ψ′) and ψ(e) = ψ′(e) for all
e ∈ dom(ψ).1 Two partial realizations ψ,ψ′ ⊆ E × Ω are said to be disjoint if there is no full realization ϕ with
ψ ≼ ϕ and ψ′ ≼ ϕ; in other words, there is some item e ∈ dom(ψ) ∩ dom(ψ′) such that the realization of Φe is
different under ψ and ψ′.

We assume that there is a prior probability distribution p(ϕ) = Pr[Φ = ϕ] over realizations ϕ. Moreover, for
any partial realization ψ, we assume that we can compute the posterior distribution p(ϕ|ψ) = Pr(Φ = ϕ|ψ ≼ Φ).

Utility function. In addition to the random items (described above), there is a utility function f : 2E×Ω →
R≥0 that assigns a value to any partial realization. We will assume that this function is monotone, i.e., having
more realizations can not reduce the value. Formally,

Definition 1.1. (Monotonicity) A function f : 2E×Ω → R≥0 is monotone if

f(ψ) ≤ f(ψ′) for all partial realizations ψ ≼ ψ′.

We also assume that the function f can always achieve its maximal value, i.e.,

Definition 1.2. (Coverable) Let Q be the maximal value of function f . Then, function f is said to be
coverable if this value Q can be achieved under every (full) realization, i.e.,

f(ϕ) = Q for all realizations ϕ of Φ.

Furthermore, we will assume that the function f along with the probability distribution p(·) satisfies a
submodularity-like property. Before formalizing this, we need the following definition.

Definition 1.3. (Marginal benefit) The conditional expected marginal benefit of an item e ∈ E conditioned
on observing the partial realization ψ is:

∆(e|ψ) := E [f(ψ ∪ (e,Φe))− f(ψ) |ψ ≼ Φ] =
∑
ω∈Ω

Pr[Φe = ω|ψ ≼ Φ] · (f(ψ ∪ (e, ω))− f(ψ)) .

We will assume that function f and distribution p(·) jointly satisfy the adaptive-submodularity property,
defined as follows.

Definition 1.4. (Adaptive submodularity) A function f : 2E×Ω → R≥0 is adaptive submodular w.r.t.

distribution p(ϕ) if for all partial realizations ψ ≼ ψ
′
, and all items e ∈ E \ dom(ψ

′
), we have

∆(e|ψ) ≥ ∆(e|ψ
′
).

In other words, this property ensures that the marginal benefit of an item never increases as we condition on
more realizations.

Given any function f satisfying Definitions 1.1, 1.2 and 1.4, we can pre-process f by subtracting f(∅), to get
an equivalent function (that maintains these properties), and has a smaller Q value.

Min-cost adaptive-submodular cover (ASC). In this problem, each item e ∈ E has a positive cost ce.
The goal is to select items (and observe their realizations) sequentially until the observed realizations have function
value Q. The objective is to minimize the expected cost of selected items.

Due to the stochastic nature of the problem, the solution concept here is much more complex than in the
deterministic setting (where we just select a static subset). In particular, a solution corresponds to a “policy”
that maps observed realizations to the next selection decision. The observed realization at any point corresponds

1We use the notation ψ ≼ ψ′ instead of ψ ⊆ ψ′ in order to be consistent with prior works.
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to a partial realization (namely, the realizations of the items selected so far). Formally, a policy is a mapping
π : 2E×Ω → E, which specifies the next item π(ψ) to select when the observed realizations are ψ.2 The policy π
terminates at the first point when f(ψ) = Q, where ψ ⊆ E ×Ω denotes the observed realizations so far. The cost
of policy π, denoted cexp(π), is the expected cost of all selected items until π terminates.

At any point in policy π, we refer to the cumulative cost incurred so far as the time. If J1, J2, · · · Jk denotes
the (random) sequence of items selected by π then for each i ∈ {1, 2, · · · k}, we view item Ji as being selected

during the time interval [
∑i−1
h=1 c(Jh) ,

∑i
h=1 c(Jh)) and the realization of Ji is only observed at time

∑i
h=1 c(Jh).

For any time t ≥ 0, we use Ψ(π, t) ⊆ E ×Ω to denote the (random) realizations that have been observed by time
t in policy π. We note that Ψ(π, t) only contains the realizations of items that have been completely selected by
time t. Note that the policy terminates at the earliest time t where f(Ψ(π, t)) = Q.

Given any policy π, we define its cost k truncation by running π and stopping it just before the cost of selected
items exceeds k. That is, we stop the policy as late as possible while ensuring that the cost of selected items
never exceeds k (for any realization).

Remark: Our definition of the utility function f is slightly more restrictive than the original definition [9].
In particular, the utility function in [9] is of the form g : 2E ×ΩE → R≥0, where the function value g(dom(ψ),Φ)
for any partial realization ψ is still random and can depend on the outcomes of unobserved items, i.e., those in
E \ dom(ψ). Nevertheless, our formulation (ASC) still captures most applications of the formulation studied in
[9]. See Section 3 for details.

1.2 Adaptive Greedy Policy Algorithm 1 describes a natural greedy policy for min-cost adaptive-submodular
cover, which has also been studied in prior works [8, 14, 17].

Algorithm 1 Adaptive Greedy Policy π.

1: selected items A← ∅, observed realizations ψ ← ∅
2: while f(ψ) < Q do

3: e∗ = argmaxe∈E\A
∆(e|ψ)
ce

4: add e∗ to the selected items, i.e., A← A ∪ {e∗}
5: select e∗ and observe Φe∗
6: update ψ ← ψ ∪ {(e∗,Φe∗)}

Remark: Note that the policy π remains the same if we replace the greedy choice by

(1.1) e∗ = argmax
e∈E\A

∆(e|ψ)
ce · (Q− f(ψ))

.

This is because the additional term Q − f(ψ) is the same for each item e ∈ E \ A (note that at any particular
step, ψ is a fixed partial realization). We will make use of this alternative greedy criterion in our analysis.

1.3 Our Contributions Our main result is the following.

Theorem 1.1. Consider any instance of minimum cost adaptive-submodular cover, where the utility function
f : 2E×Ω → R≥0 is monotone, coverable and adaptive-submodular w.r.t. the probability distribution p(·). Suppose
that there is some value η > 0 such that f(ψ) > Q − η implies f(ψ) = Q for all partial realizations ψ ⊆ E × Ω.
Then, the cost of the greedy policy is

cexp(π) ≤ 4 · (1 + ln(Q/η)) · cexp(σ),

where σ denotes the optimal policy.

This is an asymptotic improvement over the (1 + ln(Q/η))2-approximation bound from [8] and the
(1 + ln(nQcmax

η ))-approximation bound from [14]; the maximum item cost cmax can even be exponentially larger

2Policies and utility functions are not necessarily well-defined over all subsets 2E×Ω, but only over partial realizations; recall that
a partial realization is of the form {(e, ϕe) : e ∈ S} where ϕ is some full-realization and S ⊆ E.
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than Q. Our bound is the best possible (up to the constant factor of 4) because the set cover problem is a special
case [15].

As a consequence, we obtain the first O(lnQ)-approximation algorithm for the viral marketing application
mentioned earlier. We also obtain an improved bound for the optimal decision tree problem with uniform priors.
See Section 3 for details.

Our proof technique is very different from prior works [8, 14, 17]. We proceed by relating the non-completion
probabilities in the optimal policy (at any time t) to that in the greedy policy (at a scaled time α · t). This
suffices to bound the ASC objective because the expected cost of any policy is the integral of the non-completion
probabilities over all times. In order to establish this relation, we consider the total value of the greedy criterion
over a suitable time interval (called a “phase”) and prove lower and upper bounds on this quantity. This high-level
analysis has been used earlier for a number of stochastic covering problems, including the independent special
case of ASC [24]. A key simplification/improvement is that, unlike prior work, we do not rely on non-completion
probabilities at only power-of-two time points. We also make use of a stronger upper bound that combines
multiple phases.

Moreover, our algorithm and analysis extend in a straightforward manner, to the setting with multiple
adaptive-submodular functions, where the objective is the expected sum of “cover times” of the functions. We
obtain the same approximation ratio even for this more general problem. Previous techniques [8, 14] do not seem
to extend to this setting. In fact, the multiple ASC problem (with Q = η = 1) generalizes the min-sum set cover
problem [25], which is NP-hard to approximate better than factor 4. So, our constant factor of 4 seems to be the
best possible for this generalization.

1.4 Related Work Adaptive submodularity was introduced by [9], where they considered both the maximum-
coverage and the minimum-cost-cover problems. They showed that the greedy policy is a (1 − 1

e ) approximation
for maximum coverage, where the goal is to maximize the expected value of an adaptive-submodular function
subject to a cardinality constraint. They also claimed that the greedy policy is a (1+ ln(Q/η)) approximation for
min-cost cover of an adaptive-submodular function. However, this result had an error [12], and a corrected proof
[8] only provides a double-logarithmic (1+ ln(Q/η))2 approximation. Recently, [14] obtained a single-logarithmic
approximation bound of (1 + ln(nQcmax

η )). However, this bound depends additionally on the number of items n

and their maximum cost cmax. Our result shows that the greedy policy is indeed an O(ln(Q/η)) approximation.
As noted earlier, our definition of ASC is simpler and slightly more restrictive than the original one in [9], although
most applications of adaptive-submodularity do satisfy our definition.

The special case of adaptive-submodularity where the random variables are independent across items, has
also been studied extensively. For the maximum-coverage version, [1] obtained a (1− 1

e )-approximation algorithm
via a “non adaptive” policy (that fixes a subset of items to select upfront). Subsequent work [5, 7, 19] obtained
constant factor approximation algorithms for a variety of constraints (beyond just cardinality). The minimum-cost
cover problem (called stochastic submodular cover) was studied in [2, 17, 18, 22, 24]. In particular, an O(ln(Q/η))
approximation algorithm follows from [24], and recently [17] proved that the greedy policy has a (1 + ln(Q/η))
approximation guarantee. The latter guarantee is the best possible, even up to the constant factor: this also
matches the best approximation ratio for the deterministic submodular cover problem [16].

The stochastic submodular cover problem with multiple submodular functions was studied in [24], for which
an O(ln(Q/η)) approximation algorithm was obtained. The analysis in this paper is similar, at a high level, to
the analysis in [24]. However, we handle a more general setting (where items may be correlated), and we obtain
a much better constant factor.

A different (scenario based) model for correlations in adaptive submodular cover was studied in [11, 21]. Here,
the utility function f is just required to be submodular (not adaptive-submodular), but the algorithm requires
an explicit description of the probability distribution p(·). In particular, [11] obtained a greedy-style policy with
approximation ratio O(ln(mQ/η)) where m is the support-size of distribution p(·), and Q and η are as before.
Our proof technique (using non-completion probabilities at all times) can also be combined with [11] to improve
the constant factor in their approximation ratio.

2 Proof of the Main Result

Let L := 1 + ln(Q/η) and β > 1 be some constant value (fixed later). Our analysis is based on relating the “non
completion” probabilities at different times in the greedy policy π and the optimal policy σ. We first define these
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quantities formally.

Definition 2.1. (Non-completion probabilities) For any time t ≥ 0, let

o(t) := Pr[σ does not terminate by time t] = Pr[f(Ψ(σ, t)) < Q].

Similarly, for any t ≥ 0, let

a(t) := Pr[π does not terminate by time βL · t] = Pr[f(Ψ(π, βLt)) < Q].

See Figure 1 for an example of function o(t). Notice that the function a(t) corresponding to the greedy policy
is defined w.r.t. scaled times βL · t rather than t.

0 1 2 3 4 5 6 7 8 9 10
0

1

time t

o(
t)

Figure 1: Graph of a simple o(·) function.

Clearly, o(t) and a(t) are non-increasing functions of t. Moreover, o(0) = a(0) = 1 and there exists some time
t0 such that o(t) = a(t) = 0 for all t ≥ t0. We can also express the expected policy costs as follows:

cexp(σ) =

∫ ∞

0

Pr[σ does not terminate by time t]dt =

∫ ∞

0

o(t)dt.

cexp(π) =

∫ ∞

0

Pr[π does not terminate by time y]dy =

∫ ∞

0

a(
y

βL
)dy = βL ·

∫ ∞

0

a(t)dt.

We approximate the cost of π by considering only the “integral” time points {βLi : i ∈ Z≥0}. Define
A :=

∑
i≥0 a(i) to be the sum of non-completion probabilities at these time points.

(2.2) cexp(π) = βL

∫ ∞

0

a(t)dt ≤ βL
∑
i≥0

a(i) = βL ·A,

where the inequality uses the fact that a(·) is non-increasing.
Our analysis of π relies on tracking the “greedy criterion value” defined in (1.1). The following definition

formalizes this.

Definition 2.2. (Greedy score) For t ≥ 0 and any partial realization ψ at time t, define

score(t, ψ) :=

{
∆(e|ψ)

ce[Q−f(ψ)] ,
where e is the item being selected in π at time t

when ψ was observed just before selecting e.

0, if no item is being selected in π at time t when ψ was observed.

Note that conditioned on ψ, the item e being selected in π at time t is deterministic.

The expression for score above is exactly the greedy criterion in (1.1). Moreover, the score may increase and
decrease over time: see Figure 2 for an example.

In order to reduce notation, for any time t, we use Ψt := Ψ(π, t) to denote the (random) partial realization
observed by the greedy policy π at time t; recall that this only includes items that have been completely selected
by time t.
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Definition 2.3. (Gain of a phase) For any integer i ≥ 0, the time interval [βLi, βL(i+ 1)) is called phase i.
For any phase i ≥ 0, its gain is the expected total score accumulated during phase i,

Gi :=

∫ Lβ(i+1)

Lβi

E [score(t,Ψt)] dt,

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1
area= ∆(e1|ψ1)

Q−f(ψ1)

G1 =
∫ 2Lβ

Lβ
score(t, ψ)dt

with Lβ = 4

c(e1) c(e2) c(e3) c(e4)

time t

sc
or
e(
t,
ψ
)

Figure 2: Graph of a simple score(t, ψ) for illustration. e1, e2, ... are greedy selections and ψi is the partial
realization just before selecting ei.

The key part of the analysis lies in upper and lower bounding the gains in all the phases.

Lemma 2.1. For any i ≥ 0, the total gain after phase i is∑
j≥i

Gj ≤ L · a(i).

Proof. We start by re-expressing the score and gain in terms of the full realization. For any time t ≥ 0 and full
realization ϕ, let

S(t, ϕ) :=

{
f(ψ∪(e,ϕe))−f(ψ)

ce[Q−f(ψ)] , where e is the item being selected in π at time t under ϕ,
and ψ ≼ ϕ is the partial realization just before selecting e.

0, if no item is being selected in π at time t under ϕ.

Then, for any t ≥ 0 and any partial realization ψ at time t,

score(t, ψ) = EΦ[S(t,Φ)|ψ ≼ Φ].

This uses the definition of ∆(e|ψ) and the fact that conditioned on ψ, the item e (being selected at time t)
is fixed. Hence, for any phase k ≥ 0, its gain

Gk =

∫ Lβ(k+1)

Lβk

E [score(t,Ψt)] dt =

∫ Lβ(k+1)

Lβk

EΨt
[EΦ[S(t,Φ)|Ψt ≼ Φ]] dt =

∫ Lβ(k+1)

Lβk

E [S(t,Φ)] dt.

Now, fix phase i ≥ 0 and any (full) realization ϕ.
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Case 1: suppose that π under ϕ terminates before (≤) time Lβi. Then, S(t, ϕ) = 0 for all t > Lβi, and so:

∑
j≥i

Gj(ϕ) =
∑
j≥i

∫ Lβ(j+1)

Lβj

S(t, ϕ)dt = 0

Case 2: suppose that π under ϕ terminates after (>) time Lβi.

∑
j≥i

Gj(ϕ) =
∑
j≥i

∫ Lβ(j+1)

Lβj

S(t, ϕ)dt =

∫ ∞

Lβi

S(t, ϕ)dt ≤
∫ ∞

0

S(t, ϕ)dt ≤ L,

where the last inequality uses Lemma A.1 (proved in Appendix A).

Note that case 2 above happens exactly with probability a(i). So,

∑
j≥i

Gj = EΦ

∑
j≥i

Gj(Φ) | case 2 occurs under Φ

 · Pr[case 2 occurs] ≤ L · a(i),

which completes the proof.

Lemma 2.2. For any i ≥ 0 and time t ∈ [Lβi, Lβ(i+ 1)),

E[score(t,Ψt)] ≥
a(i+ 1)− o(i+ 1)

i+ 1
.

Hence, Gi ≥ βL ·
(
a(i+1)−o(i+1)

i+1

)
for each phase i ≥ 0.

Proof. Note that the first statement in the lemma immediately implies the second statement. Indeed,

Gi =

∫ Lβ(i+1)

Lβi

E[score(t,Ψt)]dt ≥ βL ·
(
a(i+ 1)− o(i+ 1)

i+ 1

)
.

We now prove the first statement. Henceforth, fix phase i ≥ 0 and time t ∈ [Lβi, Lβ(i+ 1)).
Truncated optimal policy Let σ denote the cost i+ 1 truncation of policy σ. Note that the total cost of

selected items in σ is always at most i + 1. However, σ may not fully cover the utility function f (so it is not
a feasible policy for min-cost adaptive submodular cover). We define the following random quantities associated
with policy σ:

Ik := set of first k items selected by σ, for k = 0, 1, · · · .
I∞ := set of all items selected by the end of σ.

Pk := {(e,Φe) : e ∈ Ik}, i.e. partial realization of the first k items selected by σ, for k = 0, 1, · · · .
P∞ := {(e,Φe) : e ∈ I∞}, i.e. partial realization observed by the end of σ.

Note that σ covers f exactly when f(P∞) = Q. Moreover, by definition of the function o(·), we have
Pr[σ covers f ] = 1− o(i+ 1).

Conditioning on partial realizations in greedy Let ψ be any partial realization corresponding to Ψt

with f(ψ) < Q. In other words, (i) ψ is the partial realization observed at time t in some execution of policy π,
and (ii) the policy has not terminated (under realization ψ) by time t. Let R(π, t) denote the collection of such
partial realizations. Note that the partial realizations in R(π, t) are mutually disjoint, and the total probability
of these partial realizations equals the probability that π does not terminate by time t. We will show that:

(2.3) Pr[ψ ≼ Φ] · score(t, ψ) ≥ 1

i+ 1
· Pr[(ψ ≼ Φ) ∧ (σ covers f)], ∀ψ ∈ R(π, t).

We first complete the proof of the lemma assuming (2.3).
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E[score(t,Ψt)] ≥
∑

ψ∈R(π,t)

p(ψ) · score(t, ψ) =
∑

ψ∈R(π,t)

Pr[ψ ≼ Φ] · score(t, ψ)

≥ 1

i+ 1

∑
ψ∈R(π,t)

Pr[(ψ ≼ Φ) ∧ (σ covers f)](2.4)

=
1

i+ 1
Pr [(π doesn’t terminate by time t) ∧ (σ covers f)](2.5)

≥ 1

i+ 1
(Pr[π doesn’t terminate by time t] − Pr[σ does not cover f ])(2.6)

=
1

i+ 1
·
(
a

(
t

Lβ

)
− o(i+ 1)

)
(2.7)

≥ a(i+ 1)− o(i+ 1)

i+ 1
.(2.8)

Inequality (2.4) is by (2.3). The equality in (2.5) uses the definition of R(π, t). Inequality (2.6) is by a union
bound. Equation (2.7) is by definition of the functions a(·) and o(·). Finally, (2.8) uses t < βL(i + 1) and that
a(·) is non-increasing.

Proof of (2.3) Henceforth, fix any partial realization ψ ∈ R(π, t). Our proof relies on the following quantity:

Z := EΦ

[
1(ψ ≼ Φ) · f(ψ ∪ P∞)− f(ψ)

Q− f(ψ)

]
(2.9)

In other words, this is the expected increase in policy σ’s function value (relative to the “remaining” target
Q− f(ψ)) when restricted to (full) realizations Φ that agree with partial realization ψ.

For any partial realization ψ′ such that ψ ≼ ψ′ and item e ̸∈ dom(ψ′), let Xe,ψ,ψ′ denote the indicator r.v.
that policy σ selects item e at some point when its observed realizations are precisely (ψ′ \ ψ) ∪ χ where χ ⊆ ψ.
That is, Xe,ψ,ψ′ = 1 if policy σ selects e at a point where (i) all items in dom(ψ′ \ ψ) have been selected and
their realization is ψ′ \ ψ, (ii) no item in E \ dom(ψ′) has been selected, and (iii) if any item in dom(ψ) has been
selected then its realization agrees with ψ. Note that conditioned on ψ′ ≼ Φ, Xe,ψ,ψ′ is a deterministic value:
the realizations of items dom(ψ′) are fixed by ψ′ and if any item in E \ dom(ψ′) is selected then Xe,ψ,ψ′ = 0
irrespective of its realization.

We can write Z as a sum of increments as follows:

Z =
1

Q− f(ψ)
EΦ

1(ψ ≼ Φ) ·
∑
k≥1

[f(ψ ∪ Pk)− f(ψ ∪ Pk−1)]


=

1

Q− f(ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

EΦ [1(ψ′ ≼ Φ) ·Xe,ψ,ψ′ · [f(ψ′ ∪ (e,Φe))− f(ψ′)]]

=
1

Q− f(ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] · EΦ[f(ψ
′ ∪ (e,Φe))− f(ψ′) | (ψ′ ≼ Φ) ∧ (Xe,ψ,ψ′ = 1)]

=
1

Q− f(ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] · EΦ[f(ψ
′ ∪ (e,Φe))− f(ψ′) |ψ′ ≼ Φ]

(2.10)

=
1

Q− f(ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] ·∆(e|ψ′)
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≤ 1

Q− f(ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] ·∆(e|ψ)(2.11)

=
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] · ce ·
∆(e|ψ)

ce(Q− f(ψ))

≤
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1] · ce · score(t, ψ)(2.12)

= score(t, ψ)
∑

ψ′:ψ≼ψ′

∑
e/∈dom(ψ′)

ce · Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1]

= score(t, ψ) ·
∑

e∈E\dom(ψ)

ce ·
∑

ψ′:ψ≼ψ′

dom(ψ′) ̸∋e

Pr[ψ′ ≼ Φ ∧Xe,ψ,ψ′ = 1]

= score(t, ψ) ·
∑

e∈E\dom(ψ)

ce · Pr[ψ ≼ Φ ∧ e ∈ I∞](2.13)

≤ score(t, ψ) · EΦ

[
1(ψ ≼ Φ) ·

∑
e∈I∞

ce

]
≤ score(t, ψ) · (i+ 1) · EΦ[1(ψ ≼ Φ)] = score(t, ψ) · (i+ 1) · Pr[ψ ≼ Φ].(2.14)

The equality (2.10) uses the fact that Xe,ψ,ψ′ is deterministic when conditioned on ψ′ ≼ Φ. Inequality (2.11)
is by adaptive submodularity. (2.12) is by the greedy selection criterion. The inequality in (2.14) uses the fact
that the total cost of σ’s selections is always bounded above by i + 1. Equation (2.13) uses the definition of I∞
(all selected items in σ) and the following identity:∑

ψ′:ψ≼ψ′

dom(ψ′) ̸∋e

1(ψ′ ≼ Φ) ·Xe,ψ,ψ′ = 1(ψ ≼ Φ ∧ e ∈ I∞), ∀e ∈ E \ dom(ψ).

To see this, condition on any full realization ϕ. If ψ ̸≼ ϕ then both the left-hand-side (LHS) and right-hand-
side (RHS) are 0. If ψ ≼ ϕ and e is not selected by σ under ϕ, then again LHS = RHS = 0. If ψ ≼ ϕ and
e is selected by σ under ϕ, then RHS = 1 and LHS is the sum of Xe,ψ,ψ′ over ψ′ such that ψ ≼ ψ′ ≼ ϕ and
e ̸∈ dom(ψ′). In this case, Xe,ψ,ψ′ = 1 for exactly one such partial realization ψ′, namely ψ′ = ψ ∪ κ where κ ≼ ϕ
is the partial realization immediately before e is selected. So, LHS = RHS in all cases.

Note that whenever σ covers f , we have f(P∞) = Q. Combined with the monotone property of f , we have
f(ψ ∪ P∞) = Q whenever σ covers f . So, we have:

Z ≥ Pr[(ψ ≼ Φ) ∧ (σ covers f)].

Combining the above inequality with (2.14) finishes the proof of (2.3).

Completing the proof of Theorem 1.1 Using Lemma 2.1 and Lemma 2.2, we get:

(2.15) a(i)L ≥
∑
j≥i

Gj ≥ Lβ
∑
j≥i

a(j + 1)− o(j + 1)

j + 1
, ∀i ≥ 0

Recall that A =
∑
i≥0 a(i). Similarly, define O :=

∑
i≥0 o(i).

Using (2.15) and adding over all i ≥ 0,

1

β
A =

1

β

∑
i≥0

a(i) ≥
∑
i≥0

∑
j≥i

a(j + 1)− o(j + 1)

j + 1
=

∑
j≥0

(a(j + 1)− o(j + 1)) = A−O.

The last equality uses a(0) = 1 = o(0). It now follows that A ≤ β
β−1O.
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Using o(0) = 1 and the non-increasing property of o(·), we know that

O − 1 =
∑
i≥0

o(i+ 1) ≤ cexp(σ) =
∫ ∞

0

o(t)dt ≤
∑
i≥0

o(i) = O

Finally, combined with (2.2), we have

cexp(π) ≤ LβA ≤
Lβ2

β − 1
O ≤ Lβ2

β − 1
(cexp(σ) + 1).

In order to optimize the constant factor, we set β = 2, which implies:

(2.16) cexp(π) ≤ 4L · (cexp(σ) + 1)

We now show that the extra +1 term can be eliminated by a scaling argument: this would complete the proof
of Theorem 1.1. Let b ≥ 1 be some parameter, and consider the ASC instance with scaled costs b · ce. Notice that
the greedy policy remains the same, and its objective just scales up by b. Similarly, the optimal cost also scales
up by b. So, using (2.16) on the scaled ASC instance, we get:

b · cexp(π) ≤ 4L · (b · cexp(σ) + 1) =⇒ cexp(π) ≤ 4L · (cexp(σ) +
1

b
).

Thus, by taking b to be arbitrarily large, we obtain cexp(π) ≤ 4L · cexp(σ).

3 Applications

Here, we provide some concrete applications of our framework. These applications were already discussed in [8],
but as noted in Section 1.1, the function definition in ASC is slightly more restrictive than the framework in [8].

Stochastic Submodular Cover. In this problem, there are n stochastic items (for example, corresponding
to sensors). Each item e can be in one of many “states”, and this state is observed only after selecting item e. E.g.,
the state of a sensor indicates the extent to which it is working. The states of different items are independent.
There is a utility function f̂ : 2E×Ω → R≥0, where E is the set of items and Ω the set of states. It is assumed

that f̂ is monotone and submodular. For e.g., f̂ quantifies the information gained from a set of sensors having
arbitrary states. Each item e is also associated with a cost ce. Given a quota Q, the goal is to select items
sequentially to achieve utility at least Q, at the minimum expected cost. We assume that the quota Q can always
be achieved by selecting adequately many items, i.e., f̂({(e, ϕe) : e ∈ E}) ≥ Q for all possible states {ϕe ∈ Ω}e∈E
for the items. This is a special case of ASC, where the items E and states (outcomes) Ω remain the same. We

define a new utility function f(ψ) = min
{
f̂(ψ), Q

}
for all ψ ⊆ E × Ω. Note that Q is the maximal value of

function f and this value is achieved under every possible (full) realization. Moreover, f is also monotone and
submodular. Clearly, the monotonicity property (Definition 1.1) holds. The adaptive-submodularity property
also holds because the items are independent. Indeed, for any partial realizations ψ ≼ ψ′ and e ∈ E \ dom(ψ′),

∆(e|ψ) =
∑
ω∈Ω

Pr[Φe = ω|ψ ≼ Φ] · (f(ψ ∪ (e, ω))− f(ψ))

=
∑
ω∈Ω

Pr[Φe = ω] · (f(ψ ∪ (e, ω))− f(ψ))

≥
∑
ω∈Ω

Pr[Φe = ω] · (f(ψ′ ∪ (e, ω))− f(ψ′))

=
∑
ω∈Ω

Pr[Φe = ω|ψ′ ≼ Φ] · (f(ψ′ ∪ (e, ω))− f(ψ′)) = ∆(e|ψ′).

In particular, when f̂ is integer-valued, Theorem 1.1 implies a 4(1 + lnQ)-approximation algorithm. We
note that [17] obtained a (1 + lnQ)-approximation ratio, using a different analysis. The latter bound is the best
possible, including the constant factor, as the problem generalizes set cover. Our analysis is simpler and also
extends to the more general adaptive submodular setting.
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Adaptive Viral Marketing. This problem is defined on a directed graph G = (V,A) representing a social
network [10]. Each node v ∈ V represents a user. Each arc (u, v) ∈ A is associated with a random variable
Xuv ∈ {0, 1}. The r.v. Xuv = 1 if u will influence v (assuming u itself is influenced); we also say that arc (u, v) is
active in this case. The r.v.s Xuv are independent, and we are given the means E[Xuv] = puv for all (u, v) ∈ A.
When a node u is activated/influenced, all arcs (u, v) out of u are observed and if Xuv = 1 then v is also activated.
This process then continues on u’s neighbors to their neighbors and so on, until no new node is activated. We
consider the “full feedback” model, where after activating a node w, we observe the Xuv r.v.s on all arcs (u, v)
such that u is reachable from w via a path of active arcs. Further, each node v has a cost cv corresponding to
activating node v directly, e.g. by providing some promotional offer. Note that there is no cost incurred on v if
it is activated (indirectly) due to a neighbor u with Xuv = 1. Given a quota Q, the goal is to activate at least Q
nodes at the minimum expected cost.

To model this as ASC, the items E = V are all nodes in G. We add self-loops Ao = {(v, v) : v ∈ V } that
represent whether a node is activated directly. So, the new set of arcs is A′ = A ∪ Ao. The outcome Φw of any
node w ∈ V is represented by a function ϕw : A′ → {0, 1, ?} where ϕw((w,w)) = 1, ϕw((v, v)) = 0 for all v ∈ V \w,
and for any (u, v) ∈ A:

• ϕw(u, v) = 1 if there is a w − u path of active arcs and Xuv = 1 (i.e., (u, v) is active).

• ϕw(u, v) = 0 if there is a w − u path of active arcs and Xuv = 0 (i.e., (u, v) is not active).

• ϕw(u, v) =? if there is no w − u path of active arcs (so, the status of (u, v) is unknown).

Let Ω denote the collection of all such functions: this represents the outcome space. Note that Φw depends on
the entire network (and not just node w). So, the r.v.s {Φw}w∈V may be highly correlated. Observe that Φw is
exactly the feedback obtained when node w is activated directly (by incurring cost cw) at any point in a policy.
Define function f̄ : 2E×Ω → R≥0 as:

(3.17) f̄(ψ) =
∑
v∈V

min

 ∑
u:(u,v)∈A′

|{w ∈ dom(ψ) : ψw(u, v) = 1}| , 1

 .

f̄ is a sum of set-coverage functions, which is monotone and submodular. Then, utility function f : 2E×Ω → R≥0

is f(ψ) = min{f̄(ψ), Q}. Function f is clearly monotone (Definition 1.1). The adaptive-submodularity property
also holds: see Theorem 19 in [8].

Hence, Theorem 1.1 implies a 4(1 + lnQ)-approximation algorithm for adaptive viral marketing. This is an
improvement over previous approximation ratios of (1 + lnQ)2 [8] and (1 + ln(nQcmax)) [14], where n = |V | and
cmax is the maximum cost.

Optimal Decision Tree (uniform prior). In this problem, there are m hypotheses H and n binary tests
E. Each test e ∈ E costs ce, and has a positive outcome on some subset Te ⊆ H of hypotheses (its outcome is
negative on the other hypotheses).3 An unknown hypothesis h∗ is drawn from H uniformly at random. The goal
is to identify h∗ by sequentially performing tests, at minimum expected cost. This is a special case of ASC, where
the items correspond to tests E and the outcome space Ω = {+,−}. The outcome Φe for any item e is the test
outcome under the (unknown) hypothesis h∗. For any test e ∈ E, define subsets Se,+ = H \ Te and Se,− = Te,
corresponding to the hypotheses that can be eliminated when we observe a positive or negative outcome on e.
The utility function is

f(ψ) =
1

|H|
·
∣∣ ⋃
e∈dom(ψ)

Se,ψe

∣∣.
The quota Q = 1− 1

|H| . Achieving value Q means that |H|−1 hypotheses have been eliminated, which implies that

h∗ is identified. The function f is again monotone and submodular. The monotonicity property (Definition 1.1)
clearly holds. Moreover, using the fact that h∗ has a uniform distribution, it is known that f is adaptive-
submodular: see Lemma 23 in [8].

3Our results also extend to the case of multiway tests with non-binary outcomes.
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So, Theorem 1.1 implies a 4(1 + ln(|H| − 1))-approximation algorithm for this problem; we use Q as above
and η = 1

|H| . The previous-best bounds for this problem were (1 + ln(|H| − 1))2 [8], 12 · ln |H| [3] and

(1 + ln(n|H|cmax)) [14].
We note that [8] also obtained a

(
ln 1

pmin

)2

-approximation for the optimal decision tree problem with arbitrary

priors (where the distribution of h∗ is not uniform); here pmin ≤ 1
|H| is the minimum probability of any hypothesis.

This uses a different utility function that falls outside our ASC framework (as our definition of function f is more
restrictive). Moreover, there are other approaches [4, 11] that provide a better O(ln |H|)-approximation bound
even for the problem with arbitrary priors.

4 Adaptive Submodular Cover with Multiple Functions

Here, we extend ASC to the setting of covering multiple adaptive-submodular functions. In the multiple adaptive-
submodular cover (MASC) problem, there is a set E of items and outcome space Ω as before. Each item e ∈ E
has a cost ce; we will view this cost as the item’s processing time. Now, there are k different utility functions
fr : 2

E×Ω → R≥0 for r ∈ [k]. We assume that each of these functions satisfies the monotonicity, coverability and
adaptive-submodularity properties. We also assume, without loss of generality (by scaling), that the maximal
value of each function {fr}kr=1 is Q. As for the basic ASC problem, a solution to MASC corresponds to a policy
π : 2E×Ω → E, that maps partial realizations to the next item to select. Given any policy π, the cover time of
function fr is defined as:

Covr(π) := the earliest time t such that fr(Ψ(π, t)) = Q.

Recall that Ψ(π, t) ⊆ E × Ω is the partial realization that has been observed by time t in policy π. Clearly,
the cover time is a random quantity. The objective in MASC is to minimize the expected total cover time of all
functions, i.e.,

∑k
r=1 E[Covr(π)]. Note that MASC reduces to ASC when there is k = 1 function.

Remark: One might also consider an alternative multiple-function formulation where we are interested in
the expected maximum cover time of the functions (rather than total). This formulation can be directly solved

as an instance of ASC where we use the single adaptive-submodular function g =
∑k
r=1 fr with maximal value

Q′ = kQ.
We extend the greedy policy for ASC to MASC, as described in Algorithm 2. For each r ∈ [k] and item e ∈ E,

we use ∆r(e|ψ) to denote the marginal benefit of e under function fr. Notice that the greedy selection criterion
here involves a sum of terms corresponding to each un-covered function. A similar greedy rule was used earlier
in the (deterministic) submodular function ranking problem [26] and in the independent special case of MASC in
[24].

Algorithm 2 Adaptive Greedy Policy π̃ for MASC.

1: selected items A← ∅, observed realizations ψ ← ∅
2: while there exists function fr with fr(ψ) < Q do
3: select item

e∗ = argmax
e∈E\A

1

ce
·

∑
r∈[k]:fr(ψ)<Q

∆r(e|ψ)
Q− fr(ψ)

,

and observe Φe∗
4: add e∗ to the selected items, i.e., A← A ∪ {e∗}
5: update ψ ← ψ ∪ {(e∗,Φe∗)}

Theorem 4.1. Consider any instance of adaptive-submodular cover with k utility functions, where each function
fr : 2E×Ω → R≥0 is monotone, coverable and adaptive-submodular w.r.t. the same probability distribution p(·).
Suppose that there is some value η > 0 such that fr(ψ) > Q − η implies fr(ψ) = Q for all partial realizations
ψ ⊆ E × Ω and r ∈ [k]. Then, the cost of the greedy policy is

ctotal(π̃) ≤ 4 · (1 + ln(Q/η)) · ctotal(σ̃),

where σ̃ denotes the optimal policy.
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The proof of Theorem 4.1 is a straightforward extension of Theorem 1.1. We use the same notations and
definitions if not mentioned explicitly.

Definition 4.1. (MASC non-completion probabilities) For any time t ≥ 0 and r ∈ [k], let

õr(t) : = Pr[σ̃ does not cover fr by time t] = Pr[Covr(σ̃) > t] = Pr [fr(Ψ(σ̃, t)) < Q] .

ãr(t) : = Pr[π̃ does not cover fr by time βL · t] = Pr[Covr(π̃) > βL · t] = Pr [fr(Ψ(π̃, βLt)) < Q] .

Also, define for any t ≥ 0, õ(t) :=
∑k
r=1 or(t) and ã(t) :=

∑k
r=1 ar(t).

The two functions õ(·) and ã(·) share the same properties with o(·) and a(·) respectively, except that
õ(0) = ã(0) = k. We can express the expected total cover times of policies as follows:

ctotal(σ̃) =

∫ ∞

0

õ(t)dt =
∑
r∈[k]

∫ ∞

0

or(t)dt.

ctotal(π̃) =

∫ ∞

0

ã(
y

βL
)dy = βL ·

∫ ∞

0

ã(t)dt = βL ·
∑
r∈[k]

∫ ∞

0

ar(t)dt.

Definition 4.2. (MASC greedy score) For any t ≥ 0 and partial realization ψ at time t, define

s̃core(t, ψ) :=
1

ce

∑
r∈[k]:fr(ψ)<Q

∆r(e|ψ)
Q− fr(ψ)

where e is the item being selected in π̃ at time t
when ψ was observed just before selecting e ,

and s̃core(t, ψ) := 0 if no item is being selected in π̃ at time t when ψ was observed.

Definition 4.3. (MASC gain in a phase) For any phase i ≥ 0, its gain is the expected total score accumulated
during phase i,

G̃i :=

∫ Lβ(i+1)

Lβi

E
[
s̃core(t,Ψt)

]
dt

The next two lemmas lower and upper bound the gains.

Lemma 4.1. For any i ≥ 0, the total gain after phase i is∑
j≥i

G̃j ≤
∑
r∈[k]

L · ãr(i) = L · ã(i).

To prove Lemma 4.1, we just apply Lemma 2.1 to each fr and sum the results.

Lemma 4.2. For any i ≥ 0 and time t ∈ [Lβi, Lβ(i+ 1)),

E[s̃core(t,Ψt)] ≥
∑
r∈[k]

ãr(i+ 1)− õr(i+ 1)

i+ 1
=
ã(i+ 1)− õ(i+ 1)

i+ 1
.

Hence, G̃i ≥ βL ·
(
ã(i+1)−õ(i+1)

i+1

)
for each phase i ≥ 0.

To prove Lemma 4.2, we replicate all the steps in Lemma 2.2, except that we redefine Z to be

Z̃ := EΦ

1(ψ ≼ Φ) ·
∑

r∈[k]:fr(ψ)<Q

fr(ψ ∪ P∞)− fr(ψ)
Q− fr(ψ)

 ,
which takes all k functions into account. Here, ψ is any partial realization observed at time t. We then obtain:

s̃core(t, ψ) · (i+ 1) · Pr[ψ ≼ Φ] ≥ Z̃ ≥
∑

r∈[k]:fr(ψ)<Q

Pr[(ψ ≼ Φ) ∧ (σ covers fr)].
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Let R(π̃, t) denote all the possible partial realizations observed at time t in policy π̃. Then, we get

E[s̃core(t,Ψt)] =
∑

ψ∈R(π̃,t)

Pr[ψ ≼ Φ] · s̃core(t, ψ)

≥ 1

i+ 1

∑
ψ∈R(π̃,t)

∑
r∈[k]:fr(ψ)<Q

Pr[(ψ ≼ Φ) ∧ (σ covers fr)]

=
1

i+ 1

∑
r∈[k]

Pr [(π̃ doesn’t cover fr by time t) ∧ (σ covers fr)]

≥ 1

i+ 1

∑
r∈[k]

(Pr[π̃ doesn’t cover fr by time t]− Pr[σ doesn’t cover fr])

=
1

i+ 1

∑
r∈[k]

(
ãr

(
t

Lβ

)
− or(i+ 1)

)
≥ ã(i+ 1)− õ(i+ 1)

i+ 1
.

Finally, we combine Lemma 4.1 and Lemma 4.2, as in Theorem 1.1, to obtain:

ctotal(π̃) ≤
Lβ2

β − 1
(ctotal(σ̃) + k).

Note that the +k term comes from
∑
i≥0 õ(i) − õ(0) ≤

∑
i≥0 õ(i + 1) ≤

∫∞
0
õ(t)dt and õ(0) = k. Following

the same argument as in the single-function case, the extra +k term can be removed. Setting β = 2, we obtain
Theorem 4.1.

We now list some applications of the MASC result.

• When items are deterministic, MASC reduces to the deterministic submodular ranking problem, for which
an O(ln(Q/η)) was obtained in [26]. We note that the result in [26] was only for unit costs, whereas our
result holds for arbitrary costs. This problem generalizes the min-sum set cover problem, which is NP-hard
to approximate better than factor 4 [25]. For min-sum set cover, the paramters Q = η = 1: so Theorem
4.1 implies a tight 4-approximation algorithm for it. This also suggests that the leading constant of 4 in our
approximation ratio is best possible for MASC.

• When the outcomes are independent across items, MASC reduces to stochastic submodular cover with
multiple functions, which was studied in [24]. We obtain an 4 · (1 + ln(Q/η)) approximation ratio that
improves the bound of 56 · (1 + ln(Q/η)) in [24] by a constant factor. Although [24] did not try to optimize
the constant factor, their approach seems unlikely to provide such a small constant factor.

• Consider the following generalization of adaptive viral marketing. Instead of a single quota on the number of
influenced nodes, there are k different quotas Q1 ≤ Q2 ≤ · · ·Qk. Now, we want a policy such that the average
expected cost for achieving these quotas is minimized. Recall the function f̄ defined in (3.17) for the single-
quota problem. Then, corresponding to the different quotas, define functions fr(ψ) =

1
Qr
·min{f̄(ψ), Qr}

for each r ∈ [k]. Each of these functions is monotone, adaptive-submodular and has maximal value Q = 1.
The parameter η = 1/Qk, so we obtain a 4(1 + lnQk)-approximation algorithm.
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A Missing Proofs

Below, we upper bound the total score for a single realization ϕ. A similar fact and proof was used previously in
[17, 24, 26].

Lemma A.1. For any (full) realization ϕ,∫ ∞

0

S(t, ϕ)dt ≤ L = ln(Q/η) + 1

Proof. Under ϕ, let e1, e2, ..., ek be the sequence of items selected by π, let ψi be the partial realization just before
selecting ei, and define fi := f(ψi). Note that 0 ≤ f1 ≤ f2 ≤ ... ≤ fk+1 = Q by monotonicity and the assumption
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that f is always covered by π. Moreover, we have fk ≤ Q − η by the definition of η: otherwise we would have
fk = Q and π would terminate before selecting ek.

Define a function g : [0,∞)→ R by

(A.1) g(x) :=

{
1

Q−fi , over [fi, fi+1) for i = 1, 2, ..., k − 1,

0, otherwise.

0 1 2 3 4 5 6 7 8 9 10
0

g(x) = 1
Q−x

x

g
(x
)

Figure 3: Example of g(x), where k = 5, Q = 10, η = 1 and f1 = 0, f2 = 2, f3 = 3.5, f4 = 7, f5 = 8.5.

Note that g(x) ≤ 1
Q−x for all 0 ≤ x ≤ Q− η. So,

∫ ∞

0

S(t, ϕ)dt =

k∑
i=1

fi+1 − fi
Q− fi

≤
k−1∑
i=1

fi+1 − fi
Q− fi

+ 1 =

∫ ∞

0

g(x)dx+ 1 ≤
∫ Q−η

0

1

Q− x
dx+ 1 = L
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