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Abstract. Creating and editing the shape and color of 3D objects require
tremendous human effort and expertise. Compared to direct manipulation
in 3D interfaces, 2D interactions such as sketches and scribbles are usually
much more natural and intuitive for the users. In this paper, we propose
a generic multi-modal generative model that couples the 2D modalities
and implicit 3D representations through shared latent spaces. With the
proposed model, versatile 3D generation and manipulation are enabled
by simply propagating the editing from a specific 2D controlling modality
through the latent spaces. For example, editing the 3D shape by drawing
a sketch, re-colorizing the 3D surface via painting color scribbles on the
2D rendering, or generating 3D shapes of a certain category given one or
a few reference images. Unlike prior works, our model does not require
re-training or fine-tuning per editing task and is also conceptually simple,
easy to implement, robust to input domain shifts, and flexible to diverse
reconstruction on partial 2D inputs. We evaluate our framework on two
representative 2D modalities of grayscale line sketches and rendered
color images, and demonstrate that our method enables various shape
manipulation and generation tasks with these 2D modalities.

1 Introduction

With the growth in 3D acquisition and visualization technology, there is an
increasing need of tools for 3D content creation and editing tasks such as de-
forming the shape of an object, changing the color of a part, or inserting or
removing a component. The graphics and vision community has proposed a
number of tools for these tasks [46,13,2,41]. Yet, manipulating 3D still requires
tremendous human labor and expertise, prohibiting wide-scale adoption by non-
professionals. Compared to the traditional 3D user interfaces, 2D interactions on
view-dependent image planes can be a more intuitive way to edit the shape. This
has motivated the community to leverage advances in shape representations using
deep networks [40,37,9,50] for 3D shape manipulation with 2D controls, such
as mesh reconstruction from sketches [20] and color editing with scribbles [36].

* This work was mainly done while the first author was an intern at Snap Inc. Code
and data are available at https://people.cs.umass.edu/~zezhoucheng/edit3d/
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Fig. 1. We propose a multi-modal generative model that bridges multiple 2D (e.g.,
sketch, color views) and 3D modalities via shared latent spaces (left). Versatile 3D
shape generation and manipulation tasks can be tackled via simple latent optimization
method (right).

However, most prior works on 2D-to-3D shape manipulation are tailored to a
particular editing task and interaction format, which makes generalization to new
editing tasks or controls challenging, or even infeasible. This is important because
there is often no single interaction that fits every use case — the preferred 2D
user control depends on the editing goals, scenarios, devices, or targeted users.

Motivated by this, we propose a 2D-to-3D framework that not only works
on a single control modality but also enjoys the flexibility of handling various
types of 2D interactions without the need for changing the architecture or even
re-training (Fig. 1 left). Our framework bridges various 2D interaction modalities
and the target 3D shape through a uniform editing propagation mechanism. The
key is to construct a shared latent representation across generative models of
each of the 2D and 3D modalities. The shared latent representation enforces that
an arbitrary latent code corresponds to a 3D model that is consistent with every
modality, in terms of both shape and color. With our model, any editing can be
achieved by an objective that aims to match the corresponding editing modality
and backpropagating the error to estimate the latent code. Moreover, different
editing operations and modalities can be combined and interleaved leading to a
versatile tool for editing the shape (Fig. 1 right). The approach can be extended
to a new user control by simply adding a generator for the corresponding modality
in the framework.

We evaluate our framework on two representative 2D modalities, i.e., grayscale
line sketches, and rendered color images. We provide extensive quantitative and
qualitative results in shape and color editing with sketches and scribbles, as well
as single-view, few-shot, or even partial-view cross-modal shape generation. The
proposed method is conceptually simple, easy to implement, robust to input
domain shifts, and generalizable to new modalities with no special requirement
on the network architecture.

2 Related Work

Multi-Modal Generative Models. There has been much work on learning a
joint distribution of multiple modalities p(xq, . .., @, ) where each modality x; rep-
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Table 1. Comparisons to cross-modal 3D editing and generation works.

Methods Mamnipulation Generation
Shape  Color  Single view  Partial view  Few shot
Sketch2Mesh [20] X X X
DualSDF [22] X X X X
EditNeRF [36] X X X
Ours

resents one representation (e.g., images, text) of underlying signals. Multi-modal
VAEs [52,56,57,49,29] learn a joint distribution pg (o, ..., &, | 2) conditioned on
common latent variables z € Z. Without the assumption of paired multi-modal
data, multi-modal GANs [33,10,17] learn the joint distribution by sharing a
latent space and model parameters across modalities. These multi-modal gen-
erative models have enabled versatile applications such as cross-modal image
translation [10,33] and domain adaptation [33]. Similar to these works, we build
a multi-modal generative model that bridges multiple modalities via a shared
latent space. However, we generate and edit 3D shapes with sparse 2D inputs
(e.g., scribbles, sketches) and build a 2D-3D generative model based on variational
auto-decoders (VADs) [60,22]. Prior work [60] has shown that VADs excel at
generative modeling from incomplete data. In this work, we demonstrate that the
multi-modal VADs (MM-VADs) are ideally suited for the task of 3D generation
and manipulation from sparse 2D inputs (e.g., color scribble or partial inputs).

Shape and Appearance Reconstruction. Extensive works have explored
the problem of 3D reconstruction from different modalities, such as RGB im-
ages [27,11], videos [59], sketches [26,20,64,63], or even text [8]. This problem has
also been explored under diverse representations [11,15,35,54,14,40,9,37,50,58]
and different levels of supervision [11,15,27,16,59]. Despite the diverse settings of
this problem, the encoder-decoder network, which maps the source modalities
to 3D shape directly in a feed-forward manner, remains the most popular 3D
reconstruction model [11,54,27,40]. However, such feed-forward networks are not
robust to input domain shift (e.g., incomplete data). In this work, we demonstrate
that the proposed MM-VADs perform more robustly and could provide multiple
3D reconstructions that fit the given input (e.g., partial 2D views).

Shape and Appearance Manipulation. Numerous interactive tools have
been developed for image editing [31,62,44,32,18,30] and 3D shape manipula-
tions [46,13,2,41]. More recently, generative modeling of natural images [17,51]
has became a “Swiss knife” for image editing problems [65,48,47,19,1,4,5,39,45].
Similar to these works, we build a multi-modal generative model that is able to
tackle versatile 3D shape generation and editing tasks with 2D inputs. Novel
interactive tools have also been proposed recently to edit implicit 3D repre-
sentations [40,38]. For example, DualSDF [22] edits the SDFs [40] via shape
primitives (e.g., spheres). Sketch2Mesh [20] reconstructs shapes from sketch with
an encoder-decoder network and refines 3D shapes via differentiable rendering.
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EditNeRF[36] edits the radiance field [38] by fine-tuning the network weights
based on user’s scribbles.

Tab. 5 summarizes the commons and differences between our work and recent
efforts [22,20,36] on 3D manipulation and generation. Similar to Sketch2Mesh [20],
we edit and reconstruct 3D shape from 2D sketch. However, we tackle this problem
via a novel multi-modal generative model that performs more robust to input
domain shift (e.g., partial input, sparse color scribble). Furthermore, the shape
and color edits can be combined and interleaved with our model; Like EditNeRF,
we edit the appearance of 3D shapes via 2D color scribbles. However, we conduct
the 3D editing via a simple latent optimization, instead of finetuning the network
weights per edit; Akin to DualSDF [22], we build a generative model for 3D
manipulation, yet we generate and edit shapes from 2D modalities which is more
intuitive to edit the shape than using 3D primitives. Moreover, our generative
model can be adapted to generate 3D shapes of a certain category (e.g., armchairs)
given a few 2D examples, namely, few-shot cross-modal shape generation.

3 Method

We describe the Variational Auto-Decoders (VADs) [60] in § 3.1, introduce the
proposed VAD-based multi-modal generative model (dubbed MM-VADs) in § 3.2,
and illustrate the application of MM-VADs in cross-modal 3D shape generation
and manipulation tasks in § 3.3.

3.1 Background: Variational Auto-Decoder

Given observation variables & ~ p(z) and latent variables z ~ p(z), a variational
auto-decoder (VAD) approximates the data distribution p(x) via a parametric
family of distributions pg(x | 2) with parameters 6. Similar to variational auto-
encoders (VAEs) [29], VADs are trained by maximizing the marginal distribution
p(x) = [po(x | z)p(z)dz. In practice this integral is expensive or intractable, so
the model parameters 0 are learned instead by maximizing the Evidence Lower
Bound (ELBO):

V(6,0 | x) = — KL(q(2 | ®) || p(2)) + Eq, (2]a) [ log pa(z | 2)], (1)

where KL(- || -) is the Kullback-Leibler divergence that encourages the posterior
distribution to follow the latent prior p(z), and g4(2 | &) is an approximation of
the posterior p(z | ). In VAEs, g4(2 | ) is parametrized by a neural network
and ¢ are the parameters of the encoder. In VADs, ¢ are instead learnable similar
to the parameters 6 in the decoder py(x | z). For example, the multivariate
Gaussian approximate posterior for a data instance x; is defined as:

q6(z | ®i) = N(2; pi, X)), (2)

where ¢ = {u;, X;}. The reparametrization trick is applied in order to back-
propagate the gradients to the mean p; and variance 3; in VADs. In comparison,
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VAEs back-propagate the gradients through the mean p; and variance X; to
learn the parameters of the encoder. At inference time, the parameters ¢ of the
approximate posterior distribution can be estimated by maximizing the ELBO
in Eqn. 1 while the parameters 6 of the decoder are frozen:

6" = argmax V(6 | 0,). (3)

Despite the similarity between VAEs and VADs; prior works [60] demonstrate
that VADs perform approximate posterior inference more robustly on incomplete
data and input domain shifts than VAEs.

3.2 Multi-Modal Variational Auto-Decoder

We consider two modalities «,w and an i.i.d. dataset with paired instances
(X, W) = {(xo,wp), ..., (&N, wy)}. We target at learning a joint distribution
of both modalities p(x, w). Like VADs [60], the multi-modal VADs (MM-VADs)
are trained by maximizing the ELBO:

V(6,0 |z, w) = —KL(g4(z | z,w) || p(2)) + Eq, (2]z,w) [ log po(z, w | 2)], W
4
where z is the latent variable shared by the two modalities  and w, pg(x, w |
z) =py, (x| 2)pg, (w | z) under the assumption that the two modalities z and w
are independent conditioned on the latent variable z (i.e., & 1L w | z). In practice,
po, (x| 2) or pp, (w | z) can be parameterized by different networks for the two
modalities  and w respectively. The parameters ¢ of the approximate posterior
distribution ¢4(z | &, w) are learnable parameters where ¢ = {p, ¥'} under the
assumption of multivariate Gaussian posterior distribution. At inference time,
the parameters ¢ are estimated via maximizing the ELBO with frozen decoder
parameters 6:
o = arg;nax V(g |0, x;,w;). (5)

When one of the modalities is missing during inference, the inputs of the
missing modalities are simply set to zero. This is the case when we want to
infer one modality from the other (e.g., 3D reconstruction from 2D sketch). This
framework can be trivially extended to learn a joint distribution of more than
two modalities.

3.3 Learning a Joint 2D-3D Prior with MM-VADs

Here we introduce the application of MM-VADs in cross-modal 3D shape gen-
eration and manipulation. Specifically, we learn a joint distribution of 2D and
3D modalities with MM-VADs. Once trained, MM-VADs can be applied to
versatile shape generation and editing tasks via a simple posterior inference (or
latent optimization). We explore three representative modalities, including 3D
shape with colorful surface, 2D sketch in grayscale, and 2D rendered image in
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RGB color, donated as C, S, R respectively. Given a dataset {(C;, S;, R;)}, we
target at learning a joint distribution of the three modalities p(C, S, R). Fig. 2
presents the overview of the MM-VADs framework. We provide more details in
the following sections.

Joint Latent Space. The MM-VADs share a common latent space Z across
different modalities (Eqn. 4). Targeting at editing 3D shape and surface color
independently, we further disentangle the shared latent space into the shape and
color subspaces, denoted as Z; and Z. respectively. Therefore, each latent code
z = 2zs @ z., where z; € Z;, z. € Z., and @ denotes the concatenation operator.
3D Colorful Shape. Targeting at generating and editing 3D shapes and their
appearance, we use the 3D colorful shape as one of our modalities. Among
various representations of 3D shapes (e.g., voxel, mesh, point clouds), the implicit
representations [40,37,50] model 3D shapes as isosurfaces of functions and are
capable of capturing high-level details. We adopt the DeepSDF [40] to regress the
signed distance functions (SDFs) from point samples directly using a MLP-based
3D shape network F,(zs @ p), whose input is a shape latent code z; € Z, and
3D coordinates p € R3. We predict the surface color with another feed-forward
3D color network Fp(z.® z¥), whose input is a color latent code z, € Z. and the
intermediate features from the k-th layer of 3D shape network F,. The generator
of the 3D modality G€ is the combination of the 3D shape and color network:

QC(ZS@Zc@p):{]:a(ZS @P)w]:ﬂ(zc@zf)}' (6)

Both networks are trained using the same set of spatial points. The objective
function £C for G€ is the £, loss defined between the prediction and the ground-
truth SDF values and surface colors on the sampled points.

2D Sketch. The 2D sketch depicts the 3D structures and provides a natural
way for the user to manipulate the 3D shapes. For the purpose of generalization,
we adopt a simple and standard fully convolutional network [42] as our sketch
generator G5(z, @ v) with the shape code z, € Z, and the viewpoint v as
input. The objective function £5 is defined as a cross-entropy loss between the
reconstructed and ground-truth sketches.

2D Rendering. The 2D color rendering reflects a view-dependent appearance of
the 3D surface. Drawing 2D scribbles on the renderings provides an efficient and
straightforward interactive tool for the user to edit the 3D surface color. Similar to
the 2D sketch modality, we use the standard fully convolutional architecture [42]
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as our 2D rendering generator G¥*(z, @ z. ® v), which takes the concatenation of
the shape code z5 € Z, the color code z, € Z. and the viewpoint v. We adopt
Laplacian-£; loss [3] to train GF:

J
a0 v, R) = 1 S A UGH s 00) - VR, ()

where z; is the concatenation of the shape and color codes for the target image
R;, N is the total number of pixels in the image R;, J is the total number of
levels of the Laplacian pyramid (e.g., 3 by default), and L7 () is the j-th level in
the pyramid of image 2 [6]. This loss encourages sharper output [3] compared to
the standard £; or MSE loss.

Summary. The proposed MM-VAD framework for learning the joint distribution

of the three modalities can be learned with the following objective:
V(6.0 C. 8. B) = ~KL(s(z| C,S. R) || () .
+ Eg,(z10,5,r) [ 10gpe(C, S, R | 2)],

where the first term regularizes the posterior distribution to a latent prior (e.g.,
N(0,1)), and the second term can be factorized into three components under
the assumption that modalities are independent conditioned on the shared latent
variable z:

Eg,(zic,s.r) [108ps(C, S, R | 2)] = B, 210y [logpe(C | 2)]
+ Eqy(z10) [logpo(S | 2)]
+ Eq, (210 [ log pa(R | 2)]
=L°+ L%+ LR

9)

where each term corresponds to the reconstruction loss per modality as described
above. Notice that the 3D shape modality C' contains all the information in the
latent variable z, therefore g4(z | C, S, R) = q4(z | C).

3.4 Cross-Modal Shape Manipulation with MM-VADs

Given an initial latent code zo that corresponds to the initial 3D shape G€(z¢) and
any 2D control GM(z() of the 2D modality M € {S, R}, the shape manipulation
is conducted by optimizing within the latent space to get the updated code 2
such that G(£)™ matches the 2D edits eM:

2z = arg min £edit(QM (2), eM) + Lreg(2), (10)

where Legit could be any loss (e.g., £1 loss) that encourages the 2D modalities
G(2)M to match the 2D edits eM, and L,c4(z) encourages the latent code to
stay in the latent prior of MM-VADs. We apply the regularization loss proposed
in DualSDF [22]:

Lreg = ymax(| z]|3, 8), (11)
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where v and 8 controls the strength of the regularization loss. The latent opti-
mization is closely related to the posterior inference (Eqn. 5) of MM-VADs.

MM-VADs allows free-form edits e™. For example, the edits e™ could be
local modifications on the sketch or sparse color scribbles on 2D renderings. This
makes the MM-VADs ideally suited for the interactive 3D manipulation tasks.
In comparison, the encoder-decoder networks [20] are not robust to the input
domain shift (e.g., incomplete data [60]) and require re-training per type of user
interactions (e.g., sketch, color scribble).

3.5 Cross-Modal Shape Generation with MM-VADs

Single-View Reconstruction. Given a single input ™ of the 2D modality
M € {C, R}, the task of single-view cross-modal shape generation is to recon-
struct the corresponding 3D shape satisfying the 2D constraint. Without the
need of training one model per pair of 2D and 3D modalities [20,53] or designing
differentiable renderers [34] for each 2D modalities [20], like shape manipulation
(§3.4), this task can be tackled via the latent optimization:

Zz = arg min £recon(gM(z), :cM) + Liog(2), (12)

Partial-View Reconstruction. The MM-VADs are flexible to reconstruct
3D shapes from partially visible inputs. More interestingly, when the input
is ambiguous, it provides diverse 3D reconstructions by performing the latent
optimization with different initialization of the latent code z. This property has
practical applications. For example, the MM-VAD could provide multiple 3D
shape suggestions interactively while the user is drawing sketches.

Few-Shot Generation. Given a few 2D images spanning a subspace in the 3D
distribution that represents a certain semantic attribute (e.g., armchairs, red
chairs), the task of few-shot shape generation is to learn a 3D shape generative
model that conceptually aligns with the provided 2D images. Given our pre-
trained MM-VAD, we tackle this task by steering the latent space with adversarial
loss, borrowing the idea from MineGAN [55]. Specifically, we learn a mapping
function h,(z) that maps the prior distribution of the latent space z ~ p(z)
(i.e., N(0,1I)) to a new distribution such that samples from the 2D generators
GM(h,(2)) aligns the target data distribution & ~ p(x) depicted by the provided
2D images. We apply the WGAN-GP loss [21] with frozen generators to learn
the mapping function h,(2):

min mgx Emwﬁ(m) [D(il!)] - ]EZNp(z) [D(gM(hw(Z)))]7 (13)

w

where both the mapping function h,, and the discriminator D are trained from
scratch.

4 Experiments

This section provides qualitative and quantitative results of the proposed MM-
VADs in versatile tasks of 3D shape manipulation (§ 4.1) and generation (§ 4.2).
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Fig. 3. Editing shape via sketch. The proposed method enables fine-grained editing
of shape geometry, e.g., removing the engine of an airplane or reshaping the back of a
chair. Interestingly, new engines often appears at the tail of airplane after removing
the engines on the wing. This is because airplanes without any engines rarely exist in
the domain of our generative model. The edited local regions are highlighted in red
bounding boxes.

Dataset. We conduct evaluations and comparisons mainly on 3D ShapeNet
dataset [7]. For 3D shapes, We follow DeepSDF [40] to sample 3D points and
their signed distances to the object surface. The points that are far from the
surface (i.e., with the absolute distance higher than a threshold) are assigned with
a pre-defined background color (e.g., white) while points surrounding the surface
are assigned with the color of the nearest surface point. For 2D sketches, we use
suggestive contours [12] to generate the synthetic sketches. For 2D renderings,
we randomize the surface color of 3D shapes per semantic part. We use ShapeNet
chairs and airplanes with the same training and test splits as DeepSDF [40].
Implementation Details. We use an 8-layer MLP as the 3D shape network
which outputs SDF and a 3-layer MLP as the 3D color network which predicts
RGB. We concatenate the features from the 6-th hidden layer of the 3D shape
network with the color code as the input to the 3D color network. We train our
MM-VADs using Adam [28]. We present more implementation details in the
Appendix.

Baselines. We use the following state-of-the-arts as our baselines:

— Encoder-Decoder Networks [20]. This model is trained per task of 3D
generation from 2D modalities (sketches or RGB images). We do not use the
differentiable rendering proposed in [20] which requires auxiliary information
(e.g., segmentation mask, depth) and is applicable to MM-VADs.

— EditNeRF [36]. This model edits 3D neural radiance field (including shape
and color) by updating the neural network weights based on the user’s
scribbles. We make comparisons with the pre-trained EditNeRF models.

4.1 Cross-modal Shape Manipulation

Sketch-Based Shape Manipulation. The proposed MM-VADs allow users to
edit the fine geometric structures via 2D sketches, as described in § 3.4. We provide
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Table 2. Editing shape via sketch. We report the Chamfer distance (CD) between
the manually edited shapes and our editing results (lower is better).

Airplane Chair
— engine + engine — curve + curve
Initial shape 0.096 0.123 0.066 0.085
Edited shape 0.059 0.134 0.054 0.124

Sketch

Primitive

YR W Y
- A3

Init. Edit1 Edit2 Edit3

3D Shape

3D Shape

Fig. 4. Comparison with DualSDF. Left: DualSDF [22] edits 3D shapes via 3D
primitives. Editing different primitives on the same part may lead to dramatically
different editing results (2nd - 4th columns). Right: our sketch-based interactions is
more intuitive for the user.

users with an interactive interface where users can edit the initial sketch by adding
or removing a certain part or even deforming a contour line. Fig. 3 presents some
qualitative results of sketch-based shape manipulation. Interestingly, we find that
our manipulation is semantics-aware. For example, removing the airplane engines
on the wings will automatically add new engines to the tail. Such shape priors
are absent in non-generative models (e.g., EditNeRF [30]).

It is challenging to quantitatively evaluate the sketch-based shape editing
due to the lack of ground-truth paired 3D shapes before and after editing. For
this reason, prior works [20] report the quantitative results of 3D reconstruction
from sketches as a proxy. We follow prior works and report the same quantitative
evaluations in Sec. 4.2. Furthermore, we manually edit the 3D shapes presented
in Fig. 3 such that their sketches align with the human edits. Tab. 2 reports
the Chamfer distance (CD) between the manually edited shapes and our editing
results. We see that CD improves when removing a part, but adding parts
unfortunately increases the CD as it induces more changes to the overall shape.
This is often desirable, but the CD metric does not reflect that.

Fig. 4 provides a comparison with DualSDF [22]. A fair comparison is not
possible, as DualSDF edits shapes via 3D primitives instead of 2D views. We find
that DualSDF requires users to select right primitives to achieve certain edits
(e.g., adding a curve to the chair back). In comparison, our sketch-based shape
editing is more intuitive.

Scribble-Based Color Manipulation. MM-VADs allow users to edit the ap-
pearance of 3D shapes via color scribbles. Fig. 5 shows that MM-VADs propagate
the sparse color scribbles into desired regions (e.g., from the left wing of the
airplanes to the right, from the left leg of chairs to the right). We provide more
color editing results with diverse color scribbles in the appendix. As a quantitative
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Fig. 5. Editing shape via color scribble. (a) presents the initial 2D and 3D view
of the object. (b) shows the 2D color scribbles and 3D color editing results.
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Fig. 6. Comparison with EditNeRF. Our model (bottom) achieves comparable
editing performance with EditNeRF [36] (top). We provide three color edits on 2D
views (odd columns), each followed by the 3D editing result (even columns).

[36]

Ours

evaluation ,we select 10 shapes per category (including airplanes and chairs)
and edit the surface color to make it visually similar to reference shapes with
same geometry yet different surface color. The editing quality is measured by
the similarity between the renderings of the edited 3D shapes and the reference
shapes. Tab. 3 reports the PSNR and LPIPS [61] metrics of the evaluation. The
surface color of 3D shapes is much closer to the reference after editing, compared
to the initial shapes, suggesting the effectiveness of our MM-VAD model in editing
color via scribbles.

A similar task has recently been explored in EditNeRF [36]. However, an
apple-to-apple comparison with EditNeRF is not possible due to the intrinsically
different 3D representations (NeRF [38] vs SDFs [40]). Moreover, the proposed
MM-VADs are generative models while EditNeRF is non-generative; The MM-
VADs bridge 2D and 3D via shared latent spaces while EditNeRF relies on
differentiable rendering. We present more detailed comparisons in the appendix.
We provide qualitative comparisons with EditNeRF on chairs with similar struc-
tures using their pre-trained models. Fig. 6 shows that the color editing from
MM-VADs is on par with EditNeRF. The MM-VADs achieve the editing via
simple latent optimization (Eqn. 12), while EditNeRF requires updating the
network weights per instance and fails to generate meaningful color editing results
via optimizing the color code alone. Furthermore, MM-VADs take 0.06 seconds
per edit and 6.78 seconds to render our 3D shapes into 256 x 256 RGB images,
while EditNeRF takes over a minute per edit including rendering.
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Table 3. Quantitative results of editing 3D via 2D scribbles. We edit the
surface color of 3D shape based on reference shapes, and report the similarity between
the editing results and the target (bottom row). As a reference, we also report the
metrics before editing (top row).

. Airplane Chair
Methods  ponp+ LPIPS|  PSNRT  LPIPS |
Initial 19.84 0.23 16.20 0.33
Edited 26.41 0.13 22.08 0.20

== Encoder Decoder
== Ours

I % 1 % 1 -\%A i ng
AL L
A asee b h

Ratio of occlusion (%) Input Ours (two runs) Enc-Dec  Input Ours (two runs)  Enc-Dec

‘3(

Chamfer Distance (x103)

™ gk

(a) Robustness to domain shift (b) 3D reconstruction with full or partial 2D inputs

Fig. 7. (a) Robustness to domain shift. We report the Chamfer distance (lower
is better) between 3D reconstructions and the groundtruth under different ratios of
image occlusion. (b) 3D reconstruction with full or partial 2D inputs. When
the full views are available, our model produces consistent 3D reconstruction in different
trials. When only partial views are given, our model produces multiple different 3D
reconstructions. In comparison, the encoder-decoder networks [20] trained on full-view
sketches are not robust to the domain shift induced by occlusion and unable to provide
multiple 3D shapes given partial views. Notice that the predictions of surface color is
not available in the encoder-decoder networks from the prior work [20].

4.2 Cross-Modal Shape Generation

Single-View and Partial-View Shape Reconstruction. Fig. 7 compares the
performance of our model and the encoder-decoder networks [20] under different
occlusion ratios in the lower part of the objects in 2D views. The proposed model
only has a slight performance drop as the occluded parts increase (Fig. 7a),
mainly because of the ambiguity of 3D reconstruction given partial views. In
fact, our reconstructions results fit the partial views quite well. Even though our
model performs slightly worse than the encoder-decoder networks on full-view
inputs, the proposed model is more robust to the input domain shift. This is
because compared to task-specific training, our model achieves a better trade-off
between reconstruction accuracy and domain generalization. More interestingly,
our model can achieve diverse and reasonable 3D reconstruction by sampling
different initialization for latent optimization (Fig. 7b).

Few-Shot Shape Generation. The proposed method is able to adapt the
pre-trained multi-modal generative model with as few as 10 training samples of
a specific 2D modality. Fig. 8 presents some of the few-shot cross-modal shape



Cross-Modal 3D Shape Generation and Manipulation 13

EOLOGSOE hbhh Bk
LEBLBERS hhhh Shhs
L OSSR Lhkh RALKE
!V/ (a;pl;lzlals;%plesﬁ @ :)':rrr:%rsﬁ l’]ﬂ (§gdei1lrs "Tf w (d)Pinkirs#

Fig. 8. Few-shot cross-modal shape generation. (a) presents random 3D samples
from our model before the adaptation. Given a few 2D exemplars of a certain category
(e.g., armchair), our model can be adapted to generate corresponding 3D shapes (b-d).

Table 4. Quantitative results of few-shot cross-modal shape generation. We
report Frechet Inception Distance (FID) (lower is better) and classification error (Cls.
Err) (lower is better). We effectively adapt the pretrained multi-modal VAD model
using a few 2D images to a desired 3D shape generator. As a reference, we report the
metrics before the few-shot adaptation (top row).

Stage Metrics Arm Side Red Avg.
Init FID | 138.1 95.2 93.7 109.0

' Cls.Err. | 0.79 0.64 0.82 0.75
Adapt. FID | 130.4 92.4 93.0 105.3

Cls.Err. | 0.01 0.10 0.00 0.04

generation results. To quantitatively evaluate the few-shot shape generation
performance, we render the 3D shapes into 2D RGB images and report the
Frechet Inception Distance (FID) scores [24] between the rendered images and
the ground-truth samples. Since the FID score is not sensitive to the semantic
difference between two image sets, we also report the classification error on the
random samples from the model before and after the adaptation. Specifically,
we train a binary image classifier to identify the target image categories (e.g.,
armchairs vs. other chairs), and we run the trained classifier on the 2D renderings
of the 3D samples before and after the adaptation. As presented in Tab. 4,
our pre-trained generative model can be effectively adapted to a certain shape
subspace given as few as 10 2D examples. This capability allows us to agilely
adapt our generative model to a subspace defined by a few unlabelled samples,
so that users can easily narrow down the target shape during the manipulation
by providing a few samples of a common attribute, such as a specific category,
style, or color. We are unaware of any prior works that can tackle this task in
the literature. The 2D examples used to adapt the pre-trained generative model
are provided in our appendix.

Shape and Color Transfer. Transferring shape and color across different 3D
instances can be achieved by simply swapping the latent codes. Fig. 9 shows that
the shape and color are well disentangled in the proposed generative model. The
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Fig. 9. Shape and color transfer. The Fig. 10. Our model enables consecu-
reference 3D shapes (top row) provide the tive 3D reconstruction and manipula-
shape codes or color codes for each source tion given a hand-drawn sketch.
instances (first column).

transfer results also are semantically meaningful, i.e., the color is only transferred
across the same semantic parts (e.g., seats for the chair, wings for the airplane)
even though the geometry of the source and target instances are quite different.

4.3 Case Study on Real Images

The workflow of 3D designers usually starts by drawing a 2D sketch to portray
the coarse 3D geometry and then colorizes the sketch to depict the 3D appearance.
These 2D arts are used as a reference to build 3D objects. Undoubtedly this
procedure requires extensive human efforts and expertise. Such tasks can be
automated with our MM-VADs. As shown in Fig. 10, we first reconstruct the 3D
shape from a hand-drawn sketch. We then assign a surface color by randomly
sampling a color code from the latent space of the MM-VADs, which can be easily
edited by drawing color scribbles on the surface. Our model does not require any
re-training on each of these steps and provides a tool to conduct shape generation
and color editing consecutively. Such a task is infeasible with the existing works
that train an encoder-decoder network to predict 3D shape from sketch [20].

5 Discussion

We propose a multi-modal generative model which bridges multiple 2D and 3D
modalities through a shared latent space. One limitation of the proposed method
is that we are only able to provide editing results in the prior distribution of our
generative model (see appendix for more details). Despite this limitation, our
model has enabled versatile cross-modal 3D generation and manipulation tasks
without the need of re-training per task and demonstrates strong robustness to
input domain shift.

Acknowledgements. Subhransu Maji acknowledges support from NSF grants
#1749833 and #1908669. Our experiments were partially performed on the
University of Massachusetts GPU cluster funded by the Mass. Technology Col-
laborative.
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Appendix

A Implementation Details

The implementation details of 3D shape and color networks are included in the
main text. Here we provide additional implementation details.

— Joint latent space. The shape and color latent codes are both of dimension
128 throughout our experiments. We observe that lower-dimensional latent
codes (e.g., 32) lead to worse shape reconstruction.

— 2D sketch and renderings. The image resolution of all 2D modalities is
set to 128 x 128. We use the generator architecture from DCGAN [42] for all
2D modalities.

— Few-shot shape generation. We use the discriminator from DCGAN [42].
The mapping function h,,(z) in the MineGAN framework [55] is a two-layer
MLP with batch normalization [25] and a ReLU activation function.

— Latent optimization. In the task of shape and appearance manipulation, we
conduct the latent optimization for 5 steps starting from a known initial latent
code that corresponds to the initial 2D and 3D instances. The hyperparameter
~v and § in Eqn.11 is 0.02 and 0.5 respectively by default. For the single-view
shape generation tasks, we run multiple trials of latent optimization from
different randomly sampled latent codes. The optimized code with minimal
reconstruction loss is used as the final result. We observe that such multi-trial
optimization significantly stabilizes the performance of 3D reconstruction
(see Sec. B for more details).

B Ablation study

The latent optimization is crucial to the performance of our shape reconstruction
and manipulation tasks. In this section, we provide ablation studies on the regu-
larization loss (Eqn. 10 in the main text) and the multi-trial latent optimization
method (as described in Sec. A).

Regularization Loss. We apply the same regularization loss as DualSDF [22], i.e.,
Lyeq = ymax(||z||3, 3), where two hyperparameters v and 3 control the strength
of the regularization. The regularization term Lrrg(z) effectively constrains the
optimization of the latent code z in the prior distribution of the pretrained MM-
VADs. Without such regularization, we find that the single-view 3D reconstruction
fails in most cases. Fig. 11 provides one example.

Multi-trial latent optimization for 3D reconstruction. Similar to other generative
models (e.g., GANs), the latent optimization with the proposed MM-VADs
is a highly non-convex problem and prone to local minimal. To relieve this
issue, we conduct the latent optimization for multiple rounds with different
initial latent codes. We use the latent codes with minimal reconstruction loss in
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Fig.11. The effect of Lrec. Without the regularization term, our model fails to
reconstruct 3D shapes from a sketch image.

multiple trials as the final results of the latent optimization. We find this simple
strategy significantly stabilizes our model in the 3D reconstruction task. For
example, the mean Chamfer distance decreases from 5.50 to 1.73 in the task of
3D reconstruction from single-view sketch on ShapeNet airplanes and from 9.10
to 4.70 on ShapeNet chairs. In 3D shape manipulation, the latent optimization
starts from a known latent code corresponding to the target shape to be edited,
and we only run the latent optimization once.

C Baselines

Here we present more details about the baselines used in our experiments.

— Encoder-Decoder Networks [20,43]. This model is originally designed for
predicting 3D shapes from sketches, followed by a shape refinement step
based on differentiable rendering. We re-purpose this model to reconstruct
3D shapes from RGB images by simply modifying the input channels in the
first convolutional layer. We use the official implementations with default
hyperparameter settings .

— EditNeRF [36] edits a conditional radiance field representation of 3D scenes
with sparse scribbles as input. The shape and color of 3D objects are edited by
updating the neural network weights. We make qualitative comparisons with
the EditNeRF using their pre-trained models®. Our model shares many simi-
larities with EditNeRF (e.g., network architecture, scribble-based interaction).
However, the proposed model is significantly different from EditNeRF in
terms of shape representation (SDFs [40] vs NeRF [38]), shape manipulation
method (latent optimization vs network fine-tuning), and the way to bridge
the 3D and 2D modalities (shared latent spaces vs differentiable rendering).
Tab. 5 provides detailed comparisons between EditNeRF and our model.

3 https://github.com/cvlab-epfl/MeshSDF
4 https://github.com/stevliu/editnerf
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Table 5. Comparisons with EditNeRF [36]. T The shape reconstruction and ma-
nipulation can be combined and interleaved with the proposed model. This enables us
to edit novel instances (Fig. 10 in the main manuscript provides an example). ¥ The
time cost of rendering a 256 x 256 image is included in the editing time

\ EditNeRF [36] Ours

Latent codes Separate shape and color codes
Network | A common network shared by all training instances
Task | Shape/color manipulation with sparse scribbles

Instance-specific sub-networks X
Generative model X
3D recon. from sketch or RGB X
Editing novel instances ' X
Shape representation NeRF [38] SDF's [40]

Bridge of 2D /3D modalities | Differentiable rendering Shared latent spaces
Editing method | Update network weights Latent optimization
Estimated editing time ¥ 60s 7s

D More Experimental details

D.1 Training and Testing Dataset

We train the proposed multi-modal variational auto-decoders (MM-VADs) on the
ShapeNet dataset [7]. The training and testing split is the same as DeepSDF [40]
and DualSDF [22]. We use the same pre-trained MM-VADs throughout our
experiments. For airplanes, there are 1780 shapes for training and 456 shapes
for testing. For chairs, there are 3281 training shapes and 833 testing instances.
For 3D shape manipulation, we present the results on known shapes (i.e., shapes
from training data), similar to EditNeRF [36] and DualSDF [22].

D.2 3D reconstruction from Sketch or RGB modalities.

Table 6 presents quantitative evaluations of the 3D reconstruction from sketch and
RGB inputs under different occlusion ratios, corresponding to the curves in Fig. 7
in the main manuscript. We report results on both vertically and horizontally
occluded inputs. Since 3D shapes and their 2D views are generally symmetric
horizontally, the proposed model has almost no performance drop when masking
out the right-half regions of the inputs. In comparison, the encoder-decoder
networks [20] that is trained on full-view inputs suffers from the input domain
shift induced by the occlusion.

D.3 Few-shot 3D Generation

Fig. 12 presents the 2D examples used in our few-shot shape generation ex-
periments. For each category (e.g., armchair), we randomly sample 10 images
from our training data. We then adapt a pre-trained MM-VAD using these 2D
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Table 6. Quantitative results of single-view reconstruction. We report the
average Chamfer Distance (30,000 points) multiplied by 10® between the reconstructed
3D shapes and the groundtruth (lower is better). The performance of the proposed
model is slightly worse than the encoder-decoder networks [20] trained on the full-view
inputs. However, MM-VADs perform more robustly to the input domain shift (e.g.,
only partial view of input is available). The first column presents the occlusion rate in
the input, where “Full” means no occlusion in the input, “1/2-horizontal” the left half
of the input is visible, and “3/4-vertical” the top 3/4 region of the object is available.
Superscripts in the last row denote the performance drop under the input domain shift
(lower is better). This table corresponds to Fig. 7 in the main text

. Airplane Chair

View Model " qretch  RGB  Sketch RGB V&

Full Enc-Dec 1.45  1.21 4.24  3.45  2.59

Ours 173 1.40 596 470  3.44
1/2-horizontal Enc-Dec 3.30 6.18 16.34 7.61 8.367°77
-horizonta. Ours 1.79 1.38 6.07 5.00 3.5610-12
3/4-vertical Enc-Dec 2.33 1.94 13.10 6.99 6.09"7°
Tvertiea Ours 2.07  1.55 6.91  5.64  4.0470%
/2 vertical Enc-Dec 3.97  3.56 2431 1013 10.4977%°
Tvertiea Ours 2.39 1.89 8.01 7.06 4.87TH43
|/ A-vertical Enc-Dec 428 477 2764 977 11.617902
“vertiea Ours 3.32  2.63 8.27 819  5.60"%1°

examples based on the MineGAN framework [55]. We further collect 200 images
per category from our training data for training binary classifiers and calculating
FID scores. The classifiers are fine-tuned from a ResNet18 [23] pre-trained on
ImageNet.

E Limitations

3D reconstruction from 2D modalities. The proposed model fails to reconstruct
fine structures of 3D shapes from sketches or RGB views, for example, the holes on
the back of chairs (Fig. 13a, b, g, h), fine textures on the seat of chairs (Fig. 13e),
or the wheelbase of desk chairs (Fig. 13c, ). The capability of modeling fine
structures is mainly determined by the 3D shape representation (i.e., SDFs [40]),
training samples of SDF's, and the capacity of the proposed generative model. This
issue can be potentially relieved by sampling more 3D training points surrounding
the surface or increasing the capacity of the proposed model (e.g., enlarging the
dimension of the latent space, increasing the depth of 3D shape networks)

3D manipulation with 2D color scribble. Similar to GAN-based image manip-
ulation models [65,19,5,39], we are only able to provide editing results within
the prior distribution of a pre-trained MM-VAD. For example, in the task of
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Fig. 12. 2D examples for few-shot shape generation. Each row presents the 10
2D examples used to adapt a pre-trained MM-VADs to generate armchairs, side chairs,
and pink chairs respectively.
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Fig. 13. Limitations of 3D reconstruction from 2D modalities. The proposed
model fails to generate fine structures of 3D shapes from sketches (a-d) or RGB
renderings (e-h). The red bounding boxes highlight the object parts where our model
fails to reconstruct the 3D structures.

editing shape with color scribbles, if there are multiple scribbles of different
colors on the same part of a shape (e.g., the seat of a chair), our model either
edits the shape based on one of the scribbles or generates a surface color that is
completely different from all scribbles, as shown in Fig. 14. We notice that the
editing results of EditNeRF [36] are similar to ours based on their released demo®.
Our model may produce unexpected color editing results, for example, the edited
3D surface color may not match the 2D color scribbles provided by the user
(Fig. 14d), probably due to bad initialization of the latent code or suboptimal
hyperparameter settings. The multi-trial latent optimization described in Sec. B
may relieve this issue.

3D manipulation via 2D sketch. In this task, the major issue is that editing one
part of a shape usually leads to changes in other parts. For example, removing
the engines on the wing of airplanes results in new engines on the tail in many
cases, as shown in Fig. 3 in the main text. Fig. 15 in this section provides more
examples. This is mainly because editing shapes via latent optimization can
only produce new shapes in the prior distribution of the generative model. It
is potentially useful to add more constraints upon the latent optimization, e.g.,

® https://github.com/stevliu/editnerf
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Fig. 14. Limitations of editing shape via color scribble. We are only able to
provide color editing results in the prior distribution of the generative model. For
example, if there are two scribbles of different color on the same part of a chair, our
model either propagates one of the scribbles (e.g., first two columns in (c)) or generates
a surface color that are different from both scribbles (e.g., last column in (c)). As a
reference, we provide the editing results with single scribble in (b). Our model also
produces 3D color editing results that do not match with the 2D input scribbles, as
shown in (d).

enforcing the output of the 2D sketch generator to be as similar as possible to
the original sketch. However, our preliminary experiments show that the latent
optimization with such constraint typically under-fits the edited parts of the
sketch and fails to achieve desired edits in 3D shape. In addition, the proposed
model fails to add more complicated structures into the shape, for example,
adding holes onto the back of chairs (Fig. 15¢). We will investigate these issues
further in our future work.

Add holes
m
_ W

Remove engines

<l E\;;V‘\ = | :ig,\

Remove curve

Add engines
)

NS >__ .
- ——

Add curve Add holes

(c)

Fig. 15. Limitations of editing shape via sketch. (a-b) Editing one part via sketch
leads to changes in other parts which are not edited in the sketch. The parts where
our model fails to maintain are annotated in red bounding boxes. (c¢) The proposed
method fails to add fine structures onto the shape via sketch (e.g., adding holds onto
the back of chairs).

Few-shot shape generation. We are unable to adapt a pre-trained MM-VAD to
generate shapes of fine-grained categories (e.g., single-engine airplanes) using a
few 2D RGB images. We also fail to adapt a pre-trained MM-VAD using a few
2D sketches. We hypothesize that this is because the discriminator is trained from
scratch and unable to learn discriminative representations among fine-grained
categories or sparse inputs (e.g., sketches) with limited 2D examples. These issues
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may be relieved by initializing the discriminator with a pre-trained classifier. We
leave this in our future work.

F Diverse color scribbles.

Fig. 16 shows more 3D color editing results with diverse color scribbles. Our
method is robust to color scribbles of different shapes/amounts/positions.

=R EEE =
e~

2D

AT
T
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Fig. 16. Diverse color scribbles. The first column presents the initial 2D and 3D
modalities. The following columns present the color editing results with diverse scribbles.
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