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Abstract—Modeling spreading processes over complex net-
works has been receiving increasing attention. For example, bond
percolation models considering population heterogeneity have
been used to derive insights into disease spread and misinforma-
tion control. However, most works on spreading processes with
population heterogeneity only concentrate on single-layer contact
networks. To study how the course of a spreading process changes
due to multiple layers of contact networks (e.g., neighborhood vs.
schools or Twitter vs. Facebook) while considering population
heterogeneity from a principled, mathematical lens, we propose
the Multi-layer Mask model based on SIR dynamics. We derive
analytical expressions for three fundamental epidemiological
quantities: the probability of emergence, the epidemic threshold,
and the expected epidemic size. Analytical results are shown
to be in near-perfect agreement with the numerical results
obtained through extensive simulations. These results reveal the
impact of the structure of the multi-layer contact network,
viral transmission dynamics, and population heterogeneity on
the final state of the spreading process. Thus, they might help
develop mitigation and control strategies for disease spread and
information diffusion.

Index Terms—Network Epidemics, Population Heterogeneity,
Multi-layer Networks, Bond Percolation, Branching process

I. INTRODUCTION

Studies on spreading processes over complex networks have
captured increasing attention over the years due to recent
pandemics (e.g., COVID-19, SARS) and increasing concerns
on misinformation spread [1]. Mathematical models over com-
plex networks have been widely studied to understand the
spreading dynamics of a pathogen or a piece of informa-
tion [2]–[4]. Especially, susceptible-infectious-recovered (SIR)
compartmental model received significant interest due to its
ability to represent the propagation of both pathogens and
information [5]–[7], and its steady-state analysis being closely
tied with the bond-percolation over networks [7], [8].

More recently, there has been interest on studying the
SIR spreading process with increasing complexity of the
underlying contact network (e.g., clustered networks [9]–[11]
and multi-layer networks [6], [12]) and the heterogeneity of
the population. For example, Tian et al. [13] investigated a
SIR model with population heterogeneity that manifest from
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different types of masks that the individuals in the population
might be wearing. More broadly, population heterogeneity can
be relevant in the spread of a pathogen due to differences of
age, gender, socio-economic status, and access to healthcare
and other resources [14]–[16] in the population. Similarly,
population heterogeneity can play an important role in in-
formation diffusion, where individuals might have different
habits of accepting and transmitting information based on their
personalities or fact-checking behaviors [1], [17]. Allard et al.
[5] also studied the SIR model with population heterogeneity
and showed that their steady-state can be analyzed through a
semi-directed bond percolation model.

This paper is motivated by the fact that most studies on
spreading processes with population heterogeneity consider
single-layer networks, including [13] - [14]. However, most
real-world spreading processes take place over multi-layer
networks. In viral spreading, different layers might represent
viral spreading paths in different environments, e.g., commu-
nity, school, and workplace, etc, each with different rate of
viral transmissibility [18]. Similarly, (mis)information tends
to spread over multiple social media platforms, each with
different rates and dynamics of propagation. Studies [19], [20]
have explored the impact of layer interactions over multi-
layer networks on spreading processes. To our best knowledge,
however, there has only been two prior efforts [5], [21] on
studying the SIR model while incorporating both popula-
tion heterogeneity and the multi-layer nature of the contact
network. Bongiorno and Zino [21] proposed a model that
incorporates both population heterogeneity and a multi-layer
contact network, but they do not provide mathematical analysis
for the three epidemic quantities and instead rely on simulation
results. The work by Allard et al. [5] consider multi-type
networks with arbitrary joint degree distribution. However,
their work does not provide a detailed analysis on the impact of
multi-layer network structures and the associated multi-layer
transmission dynamics on the final spreading results.

Inspired by these, we propose the multi-layer mask model
that jointly considers population heterogeneity and multi-layer
contact networks. For illustrative purposes, we present the
work under the community-school viral transmission context,
where the first layer represents the community contact net-
work, the second layer represents the school contact network.



Population heterogeneity results from different types of masks
(with different efficiencies) that individuals are wearing. We
also reserve one mask-type to represent individuals who do
not wear any mask.

Our main contribution is the analytical solution of the multi-
layer mask model for three key epidemiological quantities,
namely the probability of emergence (PE), epidemic threshold,
and expected epidemic size (ES). The emergence of epidemics
represents situations where the spreading process leads to a
positive fraction of the population being infected in the limit
of the number of nodes going to infinity. Put differently,
epidemics refer to large-scale spreading events such as viral
pandemics or information memes. Our analytical solutions
disentangle the impact of multiple factors, including the degree
distribution of different layers of the contact network, inward
and outward efficiencies of the masks involved, and the
proportion of the population wearing different types of masks,
on these three quantities of interest. Extensive simulations val-
idate our analytical results with near-perfect match. Utilizing
our results, we also identify epidemic boundaries that reveal
the conditions on the parameters involved under which PE and
ES are zero, meaning that epidemics will not take place with
probability one. We believe that these results can help better
understand the interplay between different factors affecting
the spreading dynamics, including mask-wearing behavior and
contact rate across different layers.

II. MODEL

We generate our contact network model, consisting of two
layers, as follows. Consider a population of size n with
individuals labeled as N = {1, . . . , n}. Within the multi-layer
network, each node corresponds to an individual in N , and
an edge is drawn between two nodes if they have a chance
to transmit the virus/information to each other. Let C stand
for the first contact layer, e.g., representing the community
contacts of individuals, defined on the node set N . Let S
denote the second layer, e.g., representing the school contact
network, with the assumption that each node in N is a member
of S with probability α ∈ (0, 1], independently from other
nodes. Formally, we let

P [i ∈ NS ] = α, i = 1, . . . , n (1)

where NS denotes the set of individuals who also participate
the school layer. Edges belonging to network C (resp., S)
are noted as type-c (resp. type-s) edges, representing viral
transmission paths via community (resp., school) contacts.

In line with prior literature on stochastic epidemic models,
we generate the contact networks C and S by the configuration
model [22], [23]. In other words, the topology of the networks
C and S are generated randomly from their degree distributions
{pck} and {psk}, respectively, where k = 0, 1, . . .. Here, pck
(resp. psk) gives the probability that an arbitrary node on
network C (resp. S) has degree k, i.e., it is connected to
k other nodes via an undirected type-c (resp. type-s) edge.
To model viral transmission among individuals through both
layers, we introduce the multi-layer network H formed by

taking the disjoint union of C and S, i.e., H = C
∐

S. In
this setting, the colored degree of a node i is represented
by an integer vector di =

[
kic, k

i
s

]
, where kic (resp., kis)

stands for its number of community edges (resp. school edges).
Assuming the independence of {pck} and {psk}, the colored
degree distribution pd is given by

pd = (αpcks
+ (1− α)1 [ks = 0]) · pskc

, d = (kc, ks) , (2)

where the term (1−α)1 [ks = 0] accounts for the case where
the node is not a member of the school layer S, and its number
of type-s edges is automatically zero.

In their seminal work [7], Newman studied the SIR
(susceptible-infectious-recovered) model over a contact net-
work generated by the configuration model. Newman’s model
captures complex viral transmission and recovery mechanisms
via the transmissibility parameter T which gives the probabil-
ity that an infected node will transmit the virus/information to
each of their neighbors (independently from each other). Many
authors have incorporated various node-level heterogeneity
based on Newman’s model [5], [6], [13], [15], [24]–[27],
among which mask model [13], [15] presents direct model-
ing of population heterogeneity via the inward and outward
efficiency of different types of masks that individuals might
be wearing. In the mask model, the transmission probability
from a type-i individual to a type-j individual is given by

T[i, j] = (1− ϵout,i) (1− ϵin,j)T ; 1 ≤ i, j ≤ M

where ϵout,i is the outward efficiency of a type-i mask, ϵin,j is
the inward efficiency of a type-j mask, M is the total number
of mask types, and T is the baseline transmissibility of the
virus without any masks. We have ϵout,i, ϵin,j ∈ [0, 1], ∀i, j ∈
[1,M ], and T is a M ×M transmissibility matrix. It was also
assumed that the mask distribution is given by {m1, ...,mM}
where mi represents the fraction of individuals who wear mask
of type-i. For notational convenience, we shall say that an
individual is of type-i if they wear a type-i mask (1 ≤ i ≤ M ).

In this work, we introduce the multi-layer mask model
to extend the mask model to multi-layer networks. To this
end, we assume that the transmissibility, i.e., the probability
that an infected individual passes on the infection to their
direct contacts, depends on both the type of masks they
are wearing and the type of the link connecting them. We
let Tc and Ts denote the baseline transmissibility of the
virus/information on type-c and type-s links, respectively. For
example, the difference in the baseline transmissibility across
two layers can result from nodes having a different rate of
being in close-enough contact in the school layer versus the
community layer. Compared to the mask model, instead of
a single M × M transmissibility matrix, we now have two
transmissibility matrices Tc and Ts, each of size M×M , for
layer C and S, respectively. More specifically, we have

Tc[i, j] = (1− ϵout,i) (1− ϵin,j)Tc, 1 ≤ i, j ≤ M

each edge in S can transmit the pathogen with probability

Ts[i, j] = (1− ϵout,i) (1− ϵin,j)Ts, 1 ≤ i, j ≤ M



where Tc[i, j] gives the probability that, if infectious, a node
of type-i transmits the virus/information to a node of type-j
given that they are connected by a type-c link.

III. ANALYTICAL RESULTS

A. Probability of Emergence and Epidemic Threshold

Consider random graphs C(n, {pck}) and S(n;α, {psk}) as
introduced in Section II. In order to study the viral transmis-
sion in the multi-layer network H = C

∐
S, we consider a

branching process that starts by giving the pathogen to an arbi-
trary node and then recursively discovers the set of nodes that
are reached and infected by exploring its neighbors. As already
mentioned, we assume that a type-i infected node transmits
the pathogen to a type-j susceptible neighbor with probability
Tc[i, j] = Tc(1− ϵi,out)(1− ϵj,in) if the link connecting them
is type-c (or, with probability Ts[i, j] = Ts(1−ϵi,out)(1−ϵj,in
if the link between them is type-s), independently from all the
other neighbors.

We derive the survival probability of the aforementioned
branching process is through a mean-field analysis utilizing
the method of generating functions [7], [23]. Namely, for
1 ≤ i ≤ M , let hc,i(x) (resp. hs,i(x)) denote the generating
function for “the finite number of nodes reached and infected
by following a randomly selected type-c (resp. type-s) edge
coming from a type-i infected node.” Put differently, we have
hc,i(x) =

∑∞
m=0 vmxm, where vm denotes the “probability

that an arbitrary type-c edge coming from a type-i infected
node leads to a component of size m.” Similarly, let Hi(x)
denote the generating function for “the finite number of nodes
reached and infected by following a randomly selected type-i
infected node.”

We now derive hc,i(x) and hs,i(x), for each i = 1, . . . ,M
recursively. We find that for each i = 1, . . . ,M , the following
self-consistency equations hold:

hc,i(x) =

M∑
j=1

mj

(
1−Tc[i, j] (3)

+Tc[i, j]x
∑
d

pdkc
⟨kc⟩

hc,j(x)
kc−1

hs,j(x)
ks

)

hs,i(x) =
M∑
j=1

mj

(
1−Ts[i, j] (4)

+Ts[i, j]x
∑
d

pdks
⟨ks⟩

hc,j(x)
kchs,j(x)

ks−1

)
We explain each term appearing in (3) in turn. Consider a
type-i node, say node v, that is infected and consider a type-
c edge incident on it. We first condition on the type of the
node on the other end of this edge, i.e., we condition on
the type of the mask that the neighbor node, say node u,
is wearing. Since the mask assignment is done before the
spreading process and independently for all the nodes, the
neighbor node u is type-j with probability mj . Conditioned
on u being type-j, it will turn infected (through its edge with
v) with probability Tc[i, j]. If the transmission fails, which
happens with probability 1 − Tc[i, j], then node v will have

no offspring through its edge to u which explains the first part
of (3). If the transmission is successful, which has probability
Tc[i, j], the number of nodes reached and infected by node v
will increase by one, and this is captured by the multiplicative
term x in the second half of (3). In addition to this, the total
size of this branch will also include all subsequent nodes that
might be infected by u, which gives rise to the term∑

d

pdkc
⟨kc⟩

hc,j(x)
kc−1hs,j(x)

ks .

This term is explained as follows. We first condition on the
colored degree of node u, i.e., its number of edges in layer-
C and layer-S, respectively. The term pdkc/⟨kc⟩ gives the
normalized probability that an edge of type-c is attached to
a node at the other end with colored degree d = (kc, ks) [7].
Given its colored degree d = (kc, ks) and the fact that node u
is reached via a type-c edge, it can infect other nodes via its
remaining kc−1 links of type-c and ks links of type-s. Given
that the number of nodes reached and infected by each of its
type-c (resp. type-s) links will in turn by generated by hc,j(x)

(resp. hs,j(x)), we obtain the term hc,j(x)
kc−1

hs,j(x)
ks to

describe the total number of nodes reached and infected by
node u by using the powers property of generating functions
[23]. This completes the derivation of (3). The validity of (4)
can be seen in a very similar way and is omitted here for
brevity.

Utilizing equations (3) and (4), we now derive the the
generating function Hi(x) for the entire size of the branching
process. For each i = 1, . . . ,M , we have

Hi(x) = x
∑
d

pdhc,i(x)
kchs,i(x)

ks (5)

Here, the factor x corresponds to the initial node selected
arbitrarily and infected. The selected node has colored degree
d = (kc, ks) with probability pd. The number of nodes it
reaches and infects by each of its kc (resp. ks) links of type-
c (resp. type-s) is generated through hc,i(x) (resp. hs,i(x)).
Summing over all the possible colored degrees, we obtain
equation (5).

With equations (3)-(5) in hand, the generating function
Hi(x) can be computed in the following manner. Given any
x, we can solve for the recursive relations (3)-(4) to obtain
hc,1(x), ..., hc,M (x) and hs,1(x), ..., hs,M (x), which in turn
will yield H1(x), ...,HM (x) in light of (5). We are interested
in cases where the number of nodes reached and infected by
the initial node is infinite, which represents the cases where
a randomly chosen infected node triggers an epidemic. The
conservation of probability property of generating functions
indicates that there exists a trivial fixed point hc,i(1) =
hs,i(1) = 1 (yielding Hi(1) = 1) when the number of nodes
reached and infected is always finite. In other words, the
underlying branching process is in the sub-critical regime, and
all infected components have finite size. However, the fixed
point hc,i(1) = hs,i(1) = 1 may not be a stable solution to
the recursion (3) to (5). We can check the stability of this
fixed point by the linearization of recursion (3) to (5) around



hc,i(1) = hs,i(1) = 1. This yields the Jacobian matrix J with
the form

J =

[
Jcc Jcs

Jsc Jss

]
2M×2M

(6)

where

Jcc(i, j) =
∂hc,i(1)

∂hc,j(1)
; Jcs(i, j) =

∂hc,i(1)

∂hs,j(1)

Jss(i, j) =
∂hs,i(1)

∂hs,j(1)
; Jsc(i, j) =

∂hs,i(1)

∂hc,j(1)

(7)

If all eigenvalues of J are less than one in absolute value,
i.e., if the spectral radius ρ(J) of J satisfies ρ(J) ≤ 1, then
the solution hc,i(1) = hs,i(1) = 1 is stable and Hi(1) = 1
becomes the physical solution. In this case, the fraction of
nodes that are infected will tend to zero as as the number of
nodes n goes to infinity. In contrast, if ρ(J) > 1, the trivial
fixed point is not stable, which indicates that the branching
process is in the supercritical regime; i.e., there is a positive
probability that the branching process will lead to an infinite
component. In this case, the fraction nodes that are infected
will be strictly greater than zero as as the number of nodes n
goes to infinity.

In fact, when ρ(J) > 1, a nontrivial fixed point exists and
becomes the attractor of the recursions (3) to (5), leading
to a solution with hc,i(1), hs,i(1) < 1 which in turn yields
Hi(1) < 1. In that case, 1−Hi(1) gives the probability that the
spreading process initiated by a seed node of type-i yields an
epidemic. Namely, with R denoting the final fraction of nodes
that are infected in the limit of n going to infinity, the proba-
bility of epidemic emergence PE (with a random initiator) is
given by PE = P[R > 0] =

∑M
i=1 mi(1−Hi(1)). Finally, we

conclude that the epidemic threshold, i.e., the boundary that
separates the parameter regions where P[R > 0] = 0 from
those that yield P[R > 0] > 0 is given by ρ(J) = 1.

B. Epidemic Size

In this section, we compute the expected size of epidemics
when they take place, i.e., E[R | R > 0]. We will also compute
the fraction of infected nodes in each type. Our approach is
similar that used in [2], [3], [15], [25]. Since the multi-layer
network H is locally tree-like as the network size approaches
infinity [28], we can consider it as a tree-structure, where there
is a single node of type-i at the top level (referred to as the
root). We label the levels of the tree from ℓ = 0 at the bottom
to the top ℓ = ∞. Without loss of generality, we assume
that the spreading event starts at the bottom of the tree and
proceeds toward the top. In other words, we assume that a
node at level ℓ can only be infected by one of its neighbors in
level ℓ− 1. Let qic,ℓ (respectively, qis,ℓ) denote the probability
of a type-i node at level ℓ who is connected to its parent at
level ℓ+ 1 through a type-c (respectively, type-s) edge is not
infected. Our ultimate goal is to compute qi∞ which represents
the probability that the root node, which is of type-i, is not
infected. Given that the root node is arbitrary, qi∞ also gives the
expected fraction of type-i nodes that will be infected during
the spreading process. Put differently, we have E[Ri | R >
0] = 1 − qi∞ with Ri denoting the final fraction of nodes of

type-i that are infected in the spreading process; we also have
R =

∑M
i=1 miRi.

With these definitions in mind, we now derive qic,ℓ and qis,ℓ
in a recursive manner. For each i = 1, . . . ,M , we find that

qic,ℓ+1 =
∑

d=(kc,ks)

pdkc
⟨kc⟩

fi(qc,ℓ, qs,ℓ, kc − 1, ks) (8)

qis,ℓ+1 =
∑

d=(kc,ks)

pdks
⟨ks⟩

fi(qc,ℓ, qs,ℓ, kc, ks − 1) (9)

where qc,ℓ = [q1c,ℓ, q
2
c,ℓ, ..., q

M
c,ℓ], qs,ℓ = [q1s,ℓ, q

2
s,ℓ, ..., q

M
s,ℓ], and

fi(qc,ℓ, qs,ℓ, kc, ks) is given by

fi(qc,ℓ, qs,ℓ, kc, ks) =

 M∑
j=1

mj(1−Tc[j, i] + qjc,ℓTc[j, i])

kc

·

 M∑
j=1

mj(1−Ts[j, i] + qjs,ℓTs[j, i])

ks

(10)

In order to see why (8) holds, let u be a type-i node at
level ℓ+1 who is connected to its unique parent at level ℓ+2
with an edge of type-c. As already mentioned, qic,ℓ+1 gives the
probability that u is not infected. As before, we first condition
on the colored degree of u being d = (kc, ks) which has
probability pdkc

⟨kc⟩ . Under the assumption that nodes can only
be infected by neighbors in the layers below, node u can be
infected through either one of kc − 1 edges of type-c and ks
edges of type-s in layer ℓ (given that one of its type-c edges
is used to connect it to the parent node in layer ℓ + 2). We
establish (8) by noting that fi(qc,ℓ, qs,ℓ, kc, ks) represents the
probability that a type-i node with kc edges of type-c and ks
edges of type-s with nodes in layer ℓ is not infected. Equation
(9) can be seen to hold in a similar way.

We now explain why (10) holds. First, for a node with
kc edges of type-c and ks edges of type-s in layer ℓ to
be not infected, it should not receive the pathogen from
any of these neighbors. Given the independence of infection
events, we see that fi(qc,ℓ, qs,ℓ, kc, ks) should be of the
form fi(qc,ℓ)

kcfi(qs,ℓ)
ks with fi(qc,ℓ) (respectively, fi(qs,ℓ))

defined as the probability that a type-i node with only one
edge of type-c (respectively, type-s) with nodes in layer ℓ is
not infected. In order to compute fi(qc,ℓ), we condition on the
type of the node that is connected in layer ℓ, which is type-
j with probability mj . Then, we note that for a type-i node
in layer ℓ + 1 to be infected by a type-j neighbor in layer ℓ
that it is connected via a type-c link if both of the following
events hold: the node in layer ℓ is infected, which happens
with probability (1 − qjc,ℓ), and the pathogen is transmitted
from the node in layer ℓ to its parent in layer ℓ + 1, which
happens with probability Tc[j, i]. Collecting, we see that the
probability of a type-i node in layer ℓ+1 to be not infected by
a type-j neighbor in layer ℓ that it is connected via a type-c
is given by

1− (1− qjc,ℓ)Tc[j, i] = 1−Tc[j, i] + qjc,ℓTc[j, i]



Proceeding similarly for fi(qs,ℓ), we establish (10).
We are now in a position to compute qi∞ for each i =

1, . . . ,M . First, solving (8)-(9) in the limit of ℓ → ∞ we
compute qc,∞ and qs,∞. Using these, we then get

qi∞ =
∑

d=(kc,ks)

pdfi(qc,∞, qs,∞, kc, ks) (11)

by conditioning on the colored degree of the root node. Finally,
we have E[Ri | R > 0] = 1− qi∞ and the expected epidemic
size is given by ES = E[R | R > 0] =

∑M
i=1 mi(1− qi∞).

IV. NUMERICAL RESULTS

We next present simulation results with an eye towards
validating our analytical results (which are exact in the limit
of number of nodes n goes to infinity) in the finite node
regime. In doing so, we also aim to shed light on how various
parameters used in the model affect the spreading process,
e.g., in terms of probability and expected size of epidemics.
Throughout, we fix the number of nodes as n = 106. For each
parameter setting, we run 10,000 independent experiments and
report the average of these independent runs. The networks C
and S are generated according to the configuration model with
Poisson degree distributions with mean degrees ⟨kc⟩ and ⟨ks⟩,
respectively. The fraction of nodes that participate in network
layer S is denoted by α. The baseline transmissibilities are
denoted by Tc and Ts for networks C and S, respectively. We
assume there are two types of nodes in the population, type-
1 and type-2; e.g., these can represent individuals wearing a
surgical mask (type-1) and a cloth mask (type-2). The vector
m = [m1,m2] represents the node type distribution in the
population, with m1 and m2 denoting fractions of type-1
and type-2 individuals, respectively. The inward efficiencies
of the two types of masks are represented by the vector
ϵin = [ϵin,1, ϵin,2], and outward efficiencies are given by
ϵout = [ϵout,1, ϵout,2].
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Fig. 1. Probability of emergence (left) and the expected epidemic size (right)
with varying mean degrees ⟨kc⟩ and ⟨ks⟩, when m = [0.4, 0.6], α = 0.6,
ϵout = [0.8, 0.5], ϵin = [0.7, 0.5], Tc = 0.6 and Ts = 0.5. Simulation
results (marked as sim in the legend) show near-perfect agreement with our
theoretical results (marked as th in the legend). For data points near the
epidemic threshold (i.e., points where PE and ES transition from being zero
to positive) we increased the network size to n = 107.

In the first set of experiments, we investigate how the
probability of emergence (PE) and expected epidemic size
given emergence (ES) change as we vary the mean degrees
⟨kc⟩ and ⟨ks⟩. The results are reported in Figure 1 and
show that the simulation results match the analytical solutions
with near-perfect accuracy. This confirms the usefulness of
our results in the finite node regime. These results can also

help understand the impact of strategies that reduce the mean
degrees of contact networks, such as social distancing and
quarantines, in mitigating the spread of a virus.

In the second set of experiments, we explore how PE and ES
change with varying baseline transmissibilities Tc and Ts. The
results are reported in Figure 2 and as before our analytical
results are seen to match the simulations very well. These
results can also be helpful in understanding the increased
risk of epidemics in cases where high-transmissibility virus
variants may emerge over time, e.g., the Delta variant for
COVID-19.
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Fig. 2. Probability of emergence (left) and the expected epidemic size (right)
with varying Tc and Ts, when ⟨kc⟩ = 6, ⟨ks⟩ = 8, α = 0.6, m = [0.4, 0.6],
ϵout = [0.8, 0.5], and ϵin = [0.7, 0.5].

Next, we present in Figure 3 the boundary of Tc−Ts plane
(Figure 3(a)) and Tc − α plane (Figure 3(b)) that identify the
epidemic threshold ρ(J) = 1. In this experiment, we assume
two types of nodes: mask and no mask. m1 is the fraction of
mask-wearers and m2 = 1 − m1 is the fraction of no-mask
nodes. In Figure 3(a), for each α, the curves separate the areas
where epidemics can take place (north-east of the curves) from
the areas where they can not (south-west of the curves). It is
observed that with the same Tc, increasing α decreases the
minimum Ts that is needed for epidemics to happen. Figure
3(b) presents the boundary of Tc−α plane separating ρ(J) =
1. We set Ts = 0.9Tc. Similarly, in Figure 3(b) for each m1,
the curves separate the areas where epidemics can take place
(north-east of the curves) from the areas where they can not
(south-west of the curves). We can see that with the same m1,
increasing Tc (correspondingly Ts) decreases the minimum α
that is needed for epidemics to happen. This shows that α and
the baseline transmissibilities both contribute to facilitating the
transmission, and they compensate for each other. On the other
hand, if locate same Tc, an increase of m1 lifts up the epidemic
boundary, i.e., having more masks increases the minimum α
required for the epidemic.

We now focus on analyzing a scenario where different
regions have different school participation rates and pop-
ulation mask distributions. We assume surgical and cloth
mask wearers are in the population, with mask distribution
m = [m1,m2]. Figure 4 shows the PE and ES varying α
and m1 (m2 = 1−m1 correspondingly) from 0.1 to 0.9 with
intervals 0.1. Figure 4 shows the epidemic boundary defined
by m − α and the trend of PE and ES when exceeding the
boundary. This shows how these quantities depend on the
corresponding variables and allows analyzing cases where the
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Fig. 3. Epidemic boundary defined by Tc and Ts (a), and defined by Tc and
α (b). ⟨kc⟩ = 6 and ⟨ks⟩ = 8, ϵin = [0.7, 0] and ϵout = [0.8, 0]. For (a)
Tc = 0.6 , Ts = 0.5, m = [0.8, 0.2], and for (b) Ts = 0.9Tc. The north and
east of each curve specify the region for which epidemics are possible, while
the south and west parts of each curve stand for the region where epidemics can
not occur.

epidemic already exists. We can see that α monotonically
increases PE and ES. The separation by the m1−α boundary
indicates that if a proper mask-wearing distribution is in place,
it might be possible to find a safe condition (i.e., PE and ES
are zeros) where the population bears no risk of an epidemic
with a corresponding school participation rate.
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Fig. 4. Probability of the emergence (left), the expected epidemic size
given emergence (right). ⟨kc⟩ = 6 and ⟨ks⟩ = 8, ϵout = [0.8, 0.5],
ϵin = [0.7, 0.5], Tc = 0.6 and Ts = 0.5.

V. CONCLUSION

In this paper, we have studied spreading processes on
multi-layer networks with population heterogeneity. In the
model, the heterogeneous viral transmission probability be-
tween nodes depends both on the node types and the link type
that connects both nodes. We provide theoretical solutions of
three fundamental quantities describing such spreading pro-
cesses: the probability of emergence, the epidemic threshold,
and the expected epidemic size. We validate our analytical
results by comparing them against agent-based simulations,
showing near-perfect matches. Analytical results demonstrate
how the spreading processes are impacted by the network
structure, viral transmission dynamics, and mask distribution.
Epidemic boundaries define safe conditions where the popu-
lation bears no risk of an epidemic when trading off differ-
ent factors. For future work, we can further consider layer-
dependent population heterogeneity, networks with different
structural properties (e.g., clustering and assortativity), and
more complicated transmission dynamics such as mutation.
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[28] B. Söderberg, “Properties of random graphs with hidden color,” Phys.
Rev. E, vol. 68, no. 2 Pt 2, 2003.


