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Abstract
State-of-the-art techniques for enhancing robust-
ness of deep networks mostly rely on end-to-end
training with suitable data augmentation. In this
paper, we propose a complementary approach
aimed at enhancing the “signal-to-noise ratio” at
intermediate network layers, loosely motivated by
the classical communication-theoretic model of
signaling in Gaussian noise. We seek to learn neu-
ronal weights which are “matched” to the layer
inputs by supplementing end-to-end costs with
a tilted exponential (TEXP) objective function
which depends on the activations at the layer out-
puts. We show that TEXP learning can be in-
terpreted as maximum likelihood estimation of
“matched filters” under a Gaussian model for “data
noise.” TEXP inference is accomplished by re-
placing batch norm by a tilted softmax enforcing
competition across neurons, which can be inter-
preted as computation of posterior probabilities
for the signaling hypotheses represented by each
neuron. We show, by experimentation on stan-
dard image datasets, that TEXP learning and in-
ference enhances robustness against noise, other
common corruptions and mild adversarial pertur-
bations, without requiring data augmentation. Fur-
ther gains in robustness against this array of distor-
tions can be obtained by appropriately combining
TEXP with adversarial training.

1. Introduction
Standard end-to-end training of deep neural networks is
well known to lack robustness against a variety of distor-
tions, including noise, distribution shifts (Hendrycks & Di-
etterich, 2018; Dodge & Karam, 2017), and adversarial at-
tacks (Szegedy et al., 2014; Goodfellow et al., 2015; Carlini
& Wagner, 2017). In order to improve models’ robustness,
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one of the fundamental building blocks is to perform data
augmentation. For example, adversarial training (Madry
et al., 2018), which augments the training data with gen-
erated adversarial examples (corresponding to the current
realization of the network parameters), is one of the most
effective adversarial defenses against adversarial attacks.
In addition, different types of data augmentation have also
been shown to effectively improve robustness against natu-
ral corruptions (Cubuk et al., 2019; Hendrycks et al., 2020;
Qin et al., 2023).

In this paper, we propose and explore a strategy for en-
hancing robustness based on detection and estimation the-
oretic concepts (motivated by their success in fields such
as wireless communication systems), in a manner that is
complementary to end-to-end training, with or without data
augmentation. In communication theory, the receiver tries
to match the incoming signal against a number of possible
signal template, each corresponding to a different message.
For signaling in Gaussian noise, correlating against these
signal templates, often called matched filters, maximizes the
signal-to-noise ratio, and the posterior probability of each
possible transmitted signal is obtained by feeding suitably
scaled matched filter outputs to a softmax. Our proposed
approach here is to apply these ideas in enhancing “signal-
to-noise ratio” at intermediate layers of a neural network, so
that the outputs are more resilient to “data noise.” Unlike
in communication systems, we do not have a known set of
messages and corresponding transmitted symbols. Rather,
we seek to learn neuronal weights at a given layer which
are well matched to the set of incoming input patterns, so
that for each strong input, a fraction of neurons fire strongly.
We accomplish this here by adding layer-wise costs based
on tilted exponentials, which we show in Section 3 can be
interpreted as maximum likelihood estimation of “matched
filter” signal templates under Gaussian noise. For inference,
we replace batch norm by a tilted softmax, again motivated
by our interpretation of neurons as providing competing sig-
nal templates. Our framework allows us to vary the amount
of “data noise” we expect during training (smaller if we
are training with clean data) and during inference (bigger if
we wish to be robust against out of distribution noise). We
term a layer designed in this fashion as a tilted exponential
(TEXP) layer.

We report here on promising preliminary results for CIFAR-
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10 (Krizhevsky et al., 2009) obtained by replacing the first
layer of a VGG-16 (Simonyan & Zisserman, 2014) network
by a TEXP layer. We obtain increased robustness against
noise, other common corruptions and mild adversarial per-
turbations without requiring data augmentation. Additional
performance gains are obtained by supplementing TEXP
adaptation with adversarial training.

2. Related Work
Disparity between the data observed during training and test-
ing phases is a common phenomenon, highlighting the sig-
nificance of robustness in generalizing to out-of-distribution
(OOD) samples. To address this challenge, various method-
ologies such as in (Schneider et al., 2020; Calian et al.,
2021; Kireev et al., 2022) have been proposed for com-
bating common corruptions, with many employing OOD
data augmentations (Zhang et al., 2017; Cubuk et al., 2019;
Hendrycks et al., 2020). Among the state-of-the-art methods
is AugMix by (Hendrycks et al., 2020), which enriches the
training images by incorporating a composition of randomly
sampled augmentations, to generate a diverse set of aug-
mented images. A consistency loss function supplements
the training, which enables smoother DNN responses. Con-
sistency regularizers have shown to be promising in several
other works as well (Tack et al., 2022; Huang et al., 2022).

A complementary set of works demonstrate that adversarial
training leads to better robustness against some corruptions.
(Gilmer et al., 2019) show connections between robustness
to adversarial perturbations and distributions shifts, in par-
ticular, due to Gaussian noise. Their findings indicate that in
order to enhance an alternate concept of adversarial robust-
ness, it is necessary to reduce error rate under high levels of
additive noise. Towards making this connection more con-
crete, (Yi et al., 2021) measure shifts between distributions
using the Wasserstein distance and analytically prove that
an adversarially trained model generalizes well on OOD
data. Furthermore, they show that using pre-trained robust
models and fine-tuning leads to better generalization on
OOD downstream tasks. However, finding techniques that
work well for various different kinds of OOD corruptions,
particularly without heavy data augmentation, remains chal-
lenging. (Yin et al., 2019) find that adversarial training and
Gaussian noise augmentation improve robustness against
certain corruptions like other types of noise and blurs while
degrading the performance under low frequency corruptions
like fog and contrast. They argue that a diverse set of aug-
mentations may be required to combat such trade-offs. Our
TEXP method shows promise in achieving broad spectrum
robustness without data augmentations.

Our approach of adding layer-wise costs is motivated by
recent work (Cekic et al., 2022), which argues that target-
ing sparse, strong activations at intermediate DNN layers

can increase robustness. This is accomplished in (Cekic
et al., 2022) by using Hebbian/anti-Hebbian (HaH) training
at the layers, in which neurons which are more active for an
input are promoted towards the input (“fire together, wire
together”), while neurons which are less active are demoted
away from the input, and by using divisive normalization
(enabling smaller outputs to be attenuated by larger out-
puts) instead of batch norm for inference. In contrast to the
neuroscientific motivation in HaH (Cekic et al., 2022), our
tilted TEXP training and inference approach is derived from
communication-theoretic foundations. While our approach
also biases in favor of larger activations, our framework
leads to smoother objective functions, and our best schemes
substantially outperform the benchmarks in (Cekic et al.,
2022).

Prior work on tilted exponentials demonstrates that adding
TEXP costs to the end-to-end objective function can provide
fairness and robustness benefits in a multitude of machine
learning problems (Li et al., 2021; 2023). In fact, exponen-
tial tilting is well-known in statistics for rejection sampling,
rare-event simulation, saddle-point approximation (Butler,
2007), and importance sampling (Siegmund, 1976). It is
also at the heart of Chernoff bounds (Dembo & Zeitouni,
2009), as well as analyzing atypical events in information
theory (Beirami et al., 2018). Exponential tilting has also
appeared as a smoothing method to maximum in optimiza-
tion literature (Kort & Bertsekas, 1972; Pee & Royset, 2011;
Liu & Theodorou, 2019).

To the best of our knowledge, this is the first work to show
the benefits of TEXP costs at intermediate layers of a neural
network. Unlike prior work on exponential tilting, which is
motivated by connections to Chernoff bounds, large devia-
tions and typicality, our proposal of layer-wise TEXP costs
is motivated by maximum likelihood estimation of signal
templates.

3. Learning Signal Templates via TEXP
We provide here a communication-theoretic motivation for
training and inference in a TEXP layer, and then describe
how to incorporate these insights into a neural network
architecture in the next section.

A classical model in communication theory is to model the
received signal as one of M possible transmitted signals,
corrupted by white Gaussian noise. Our TEXP model arises
from fitting this model to the input x to a neural model.

Modeling x as the observation in an M -ary hy-
pothesis testing problem, under hypothesis {Hi}i∈[M ],
([M ] := {1, . . . ,M}), we have

Hi : x = si + n (1)

where {si}i∈[M ] are the possible signals, and n is white
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Gaussian noise with variance σ2 per dimension. While such
a model is not expected to be accurate for the layer input in
a neural model, fitting it to data provides an approach for
learning neural weights such that, for each input, it is likely
that there is a subset of neurons well matched to it. The
parameter σ2 may be viewed as “data noise,” acknowledging
that the input x may not fit any of the templates we learn.

TEXP Training. We wish to learn the signal templates
θ = {si}i∈[M ] from data, for a given TEXP layer. The
likelihood function conditioned on θ and Hi is given by

Lθ(x|Hi) = exp

(
1

σ2
(⟨x, si⟩ − ||si||2/2)

)
, (2)

for i ∈ [M ]. This likelihood function is the Radon-Nikodym
derivative of the conditional distribution of Hi with respect
to that of a “noise only” dummy hypothesis x = n.
Assuming that all signal templates have equal energy, we
can drop the ||si||2/2 terms from (2) to obtain the simplified
expression, for all i ∈ [M ] :

Lθ(x|Hi) = exp

(
1

σ2
⟨x, si⟩

)
. (3)

Averaging over these conditional likelihoods (3), the likeli-
hood of x is now obtained as a sum of tilted exponentials:

Lθ(x) =
1

M

M∑
i=1

exp

(
1

σ2
⟨x, si⟩

)
=

1

M

M∑
i=1

exp (tai) ,

(4)
where t = 1

σ2 > 0 is the tilt parameter and ai = ⟨x, si⟩
is the activation for the ith neuron. The corresponding log
likelihood is the tilted exponential objective function:

Tθ(x) = logLθ(x) = log
1

M

M∑
i=1

exp (tai) . (5)

Maximization of the objective function (5), added across
training data points, over θ provides a maximum likelihood
estimate of the signal templates.

The gradient of this objective function is given by

∇θTθ = t

M∑
i=1

etai∑M
j=1 e

taj

∇θai = t

M∑
i=1

Softmaxi(ta)∇θai,

(6)
where a = {ai}i∈[M ] and Softmaxi(·) is the ith index of
the softmax output. Since larger activations are weighted
more via the tilted softmax, gradient ascent corresponds to
increasing larger activations further: since the signal tem-
plates are normalized, this requires aligning the templates
yielding larger activations more closely with the input.

Additional competition among the signal templates seeking
to fit an input can be created by imposing a balance con-
straint in which the mean of the signal templates is set to

zero. That is, we replace si by si − s̄, for i ∈ [M ], where
s̄ = (1/M)

∑M
i=1 si. Analogous to (5), this corresponds to

the balanced tilted exponential objective function

T bal
θ (x) = log

1

M

M∑
i=1

exp (t(ai − ā)) ,

where ā = (1/M)
∑M

i=1 ai is the mean activation of all
neurons. The corresponding gradient is given by

∇θT
bal
θ = t

M∑
i=1

(Softmaxi(ta)− 1/M)∇θai. (7)

Now, in addition to trying to make large activations larger,
we wish to make small activations (i.e., such that tilted
softmax is smaller than 1/M ) smaller.

TEXP Inference. Once we have estimates of the signal
templates {si}, inference based on a data point x consists
of computing the posterior probability of each hypothesis.
For hypothesis Hi, this posterior probability is given by

pi(x) =
Lθ(x|Hi)P (Hi)∑M

j=1 Lθ(x|Hj)P (Hj)
=

exp
(

1
σ2 ⟨x, si⟩

)∑M
j=1 exp

(
1
σ2 ⟨x, sj⟩

) .
(8)

Setting t = 1
σ2 , the M -dimensional output corresponding

to x is obtained via the softmax as, for i ∈ [M ] :

pi(x) = Softmaxi(ta). (9)

The value of σ2 used during inference using (8) may be
different from that for training as in (5). In particular, we
may use a smaller value of σ2 (higher t) during training,
where we might be learning from clean data, or from data
that we have perturbed in a controlled manner. On the other
hand, during inference, we may use a higher value of σ2

(lower t) in order to accommodate data noise due to a variety
of distortions that were not present during training. Note
that TEXP inference (8) is unaffected by whether or not the
signal templates are balanced, since balancing corresponds
to subtracting the same constant from each activation.

4. TEXP as a Neural Network Layer
We now translate these ideas to layer-wise training in a CNN.
Our approach is to modify the standard convolution layers of
a baseline CNN by replacing conventional ReLU and batch
normalization layers by a tilted softmax layer, analogous to
computing posterior probabilities in TEXP inference. Each
TEXP layer also contributes its own TEXP objective to the
training cost, supplementing a standard end-to-end cost.

Similarly to (Cekic et al., 2022), we implicitly normalize
the convolution filter weights to unit ℓ2 norm, in order to
enforce fair competition across the signal templates repre-
sented by each filter. Given a filter wk at a TEXP layer
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Figure 1. The illustration of a TEXP layer.

with K convolution filters, and a patch of input x(l) at the
spatial location l, the corresponding output of the kth filter
at location l is computed as a tensor inner product as follows

yk(l) =
⟨x(l),wk⟩
||wk||2

. (10)

For example, for CIFAR-10 images fed to a VGG-16 model,
the first convolution block consists of K = 64 filters, each a
3×3 kernel with stride and padding of 1. Thus, we have L =
32× 32 = 1024 spatial locations and corresponding input
patches, where l ∈ [L] in (10). Let us index the convolution
layer outputs, across all filters and spacial locations, by
yi, i ∈ [M ]. For this example, we apply TEXP with M =
32× 32× 64.

Post the convolution, we pass the convolution outputs
through a Tilted Softmax (TS) to obtain:

pi = Softmaxi(tinfy),

where y = {yi, i = 1, 2, . . . ,M}, tinf is the tilt parameter
and M is total number of scalar outputs of the TS layer
across all filters and spatial locations. We reindex the post
softmax outputs pi by filter k and spatial location l as pk(l),
and use these notations interchangeably.

Further, borrowing another idea from (Cekic et al., 2022), a
filter-specific adaptive thresholding is performed to obtain
the TEXP layer outputs:

ok(l) =

{
pk(l) if pk(l) ≥ τk
0 otherwise

(11)

where outputs at all locations, arising due to filter k, are
subjected to the filter-specific threshold τk. The thresholds
are set such that for every image, the thresholding block
permits only a certain fraction of the activations, while
nullifying the rest. For instance, we set τk adaptively such
that 20% of the outputs are activated for each image, and
each filter.

TEXP objective Each TEXP layer l is associated with
its own TEXP objective Tl which is combined with the

end-to-end discriminative training cost as follows:

J = Je2e −
∑
l∈T

αlTl, (12)

where Je2e is the end-to-end cost function (taken to be a
standard discriminative cost in our evaluations here), T
indexes the set of TEXP layers, Tl is the TEXP objective for
layer l ∈ T and αl > 0 are hyperparameters that determine
the relative importance of the TEXP objective compared to
the end-to-end cost.

Dropping the subscript l for simplicity of exposition, the
TEXP objective for a given layer in T is given by

T =
1

t
log

(
1

M

M∑
i=1

exp(tai)

)
(13)

and that for the balanced TEXP objective is given by

Tbal =
1

t
log

(
1

M

M∑
i=1

exp(t(ai − ā))

)

where ai = ReLU(yi) are the convolution outputs across
all filters and spatial locations in the layer l, passed through
a ReLU function, M denotes the number of such scalar
outputs, t denotes the tilt parameter for the tilted objective,
and ā = (1/M)

∑M
i=1 ai denotes the mean of all the post-

ReLU activations in the layer. Note that the tinf in the
tilted softmax inference is smaller than the tilt t used during
training in (13). All TEXP layers could potentially have
different tilts in the layer objective and softmax, and layer
weights αl.

5. Experimental Evaluation
The primary focus in our experiments is on the CIFAR-10
standard and corruption datasets with the VGG-16 model as
the baseline architecture, where we show significant gains
in robustness from tuning a single TEXP layer. We also
show gains in robustness from applying TEXP to 6 layers
of ResNet; we have not fine-tuned hyperparameters here,
and provide these results only to illustrate the applicability
of our approach to a variety of architectures and to multiple
layers.

Benchmarks. We obtain two baseline VGG-16 models
(with implicit weight normalization), one with standard
training, which is not expected to be robust, and one with
PGD-based adversarial training (Madry et al., 2018) with
ℓ∞ perturbations of budget ϵ = 2/255, which is expected
to be robust against a number of other perturbations as
well (Yi et al., 2021). The HaH model in (Cekic et al., 2022)
is a benchmark for robustness which, like our approach,
supplements training with layer-wise costs (the model they
report on modifies 6 layers).
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Model Clean Noise Avg/Min/Max Avg/Min/Max Autoattack ℓ2 Autoattack ℓ∞
σ = 0.1 corruptions severity level: 5 adv, ϵ = 0.25 adv, ϵ = 2/255

VGG-16 Std 92.5 24.8 72.7/47.6/90.6 55.2/22.3/87.4 13.6 10.3
VGG-16 Adv 88.3 80.0 79.6/52.8/86.1 70.9/20.4/85.0 72.1 72.2

HaH 87.4 61.7 76.6/58.5/86.2 67.2/46.3/83.2 25.8 19.9
TEXP-1 88.3 68.4 79.6/69.7/88.1 71.8/48.3/87.7 39.4 27.6

TEXP-1 Adv 87.3 82.7 82.9/74.8/86.4 78.2/49.1/84.7 70.8 65.8
TEXP-1 BAL Adv 89.0 81.1 84.1/78.6/88.2 79.2/56.9/86.2 75.1 70.7

Table 1. Enhanced robustness to corruptions under VGG-16 based TEXP models on CIFAR-10 clean and corruptions datasets

Corruptions → Noise Weather Blur Digital

Models ↓ Gauss. Shot Speck. Imp. Snow Frost Fog Brig. Spat. Defoc. Gauss. Glass Motion Zoom Cont. Elas. Pixel. JPEG Satur.

VGG-16 Std 24.6 32.9 39.9 22.1 73.9 61.8 64.7 87.4 68.1 49.6 39.3 48.0 60.7 61.0 22.3 75.6 56.3 77.7 82.2
VGG-16 Adv 80.1 81.1 79.7 62.6 75.1 74.1 32.5 77.9 78.0 72.2 67.8 77.1 69.6 75.9 20.4 79.0 83.0 85.0 76.8

HaH 61.7 61.7 59.2 46.3 73.8 72.3 62.8 83.2 76.7 64.3 58.4 53.2 65.1 68.9 76.0 74.0 60.5 79.3 79.6
TEXP-1 68.4 70.8 68.7 48.3 75.8 77.0 61.0 84.6 73.5 69.0 63.8 64.2 66.9 72.8 87.7 74.5 74.8 81.6 80.4

TEXP-1 Adv 82.7 82.7 81.9 73.9 76.6 81.5 49.1 81.2 80.4 76.9 74.4 77.7 75.3 79.2 84.0 79.3 83.9 84.7 81.1
TEXP-1 BAL Adv 81.2 81.5 80.8 69.9 80.1 83.0 56.9 84.2 82.6 77.0 74.2 77.8 76.4 79.7 86.2 81.3 83.7 85.4 83.0

Table 2. Robustness to common corruptions of the highest severity level in the CIFAR-10-C dataset

Our models. We modify only the first layer of the VGG-
16 to a TEXP layer. The hyperparameters are set as follows:
training tilt t = 1, inference tilt tinf = 0.1, layer weight
α = 0.0001. We utilize the TEXP objective (13) for training.
The parameters were chosen based on a coarse grid search
for tilts and layer weight. Note that the tilt in the training
objective is larger than that in the softmax layer. We also re-
port on promising results combining TEXP with adversarial
training, with ℓ∞ perturbations of budget ϵ = 2/255, using
both the standard and balanced TEXP objectives (termed
TEXP-1 Adv and TEXP-1 BAL Adv respectively). For
simplicity, all hyperparameters for TEXP across our three
models are set to those for the basic TEXP model (better
performance may be obtained by further fine-tuning). As
we shall see, the balanced TEXP objective combined with
adversarial training provides the best results, but we note
that it also requires more careful optimization: setting large
layer weight α in the initial stages of training may degrade
performance, since filters are initialized randomly and a
strong demotion of weak mismatches may not be desirable
at an early stage.

Training. The end-to-end discriminative cost is taken to
be the cross-entropy loss. We employ the ADAM opti-
mizer (Kingma & Ba, 2014) with a multi-step learning rate,
beginning with 0.001, and decreasing by a factor of 10 at
epochs 60 and 80. We train all models for 100 epochs.

Evaluation metrics. We evaluate over 19 different com-
mon corruptions on the CIFAR-10-C (Hendrycks & Diet-
terich, 2018) dataset. We report the average, minimum
and maximum over all the corruptions, for both the entire
dataset comprising of 5 different severity levels, and also
on specifically the corruptions of the highest severity. We

also separately report on the corrupted data formed by the
addition of Gaussian noise with standard deviation σ = 0.1,
since the motivation for our approach spans from estima-
tion under Gaussian noise. In addition, we find that our
approach provides robustness to mild adversarial perturba-
tions (ϵ = 0.25 for ℓ2 and ϵ = 2/255 for ℓ∞ respectively).
In this adversarial evaluation, we use AutoAttack (Croce
& Hein, 2020), suggested by RobustBench (Croce et al.,
2020), which is parameter-free and consists of a suite of
different attacks (in particular, we employ the APGD-CE
and APGD-T attacks).
Improvement in robustness against corruptions. Ta-
ble 1 lists the test accuracies of the benchmark and TEXP
models under different data distortions. TEXP-1 (a sin-
gle TEXP layer, no data augmentation) provides gains in
robustness to noise and other out-of-distribution (OOD) cor-
ruptions (both at the highest severity level and all levels)
in comparison to standard VGG and HaH models. In com-
parison with adversarial training alone, TEXP-1 provides
better OOD robustness against the worst corruption (i.e.,
the minimum accuracy among all corruptions). Compared
to baseline VGG, TEXP-1 improves robustness to noise
from 24.8% to 68.4%, OOD robustness averaged over all
different types of corruptions from 55.2% to 71.8% for the
highest severity level. It also provided increased robustness
to mild adversarial perturbations.

TEXP (both the standard and balanced objectives) combined
with adversarial training provides even more powerful en-
hancements in OOD robustness, outperforming both the
HaH and the adversarial training benchmarks, both in terms
of average over all kinds of corruptions and the minimum
or worst-case among the different corruptions. Compared
to adversarial training alone, the TEXP-1 BAL Adv im-
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Model Clean Noise Avg/Min/Max Avg/Min/Max Autoattack ℓ2 Autoattack ℓ∞
σ = 0.1 corruptions severity level: 5 adv, ϵ = 0.25 adv, ϵ = 2/255

ResNet-20 Std 90.0 21.5 66.8/38.8/87.6 49.5/21/83.9 0.6 0.2
ResNet-20 Adv 85.7 72.7 76.7/49.8/83.7 67.8/21.5/83 69.8 69.5

TEXP-6 ResNet-20 85.7 69.1 77.7/69.4/83.9 70.4/53.3/81.3 34.7 21.6
TEXP-6 ResNet-20 Adv 84.0 76.2 78.7/69.2/82.7 73.4/43.2/81.3 67.2 62.1

Table 3. Enhanced robustness to common corruptions under ResNet-20 based TEXP models on CIFAR-10 clean and corruptions datasets

proved OOD robustness from 79.6% to 84.1% (min accu-
racy from 52.8% to 78.6%) for all levels and from 70.9% to
79.2% (min accuracy from 20.4% to 56.9%) for the highest
severity. It also provides comparable adversarial robustness
against mild adversarial attacks.

Table 2 reports the robustness of the models to each of the 19
common corruptions separately for the highest severity level
of 5, and shows that TEXP models are superior in obtaining
robustness across the board. While vanilla adversarial train-
ing helps in robustness to noise, it deteriorates performance
against corruptions like contrast, fog and brightness (Yin
et al., 2019; Kireev et al., 2021; Machiraju et al., 2022). The
TEXP based models remedy this remarkably for contrast,
and alleviate this effect for fog and brightness.

Applicability to different architectures and deeper lay-
ers. We illustrate the broader applicability of TEXP via
the ResNet-20 (He et al., 2016) model. This comprises a
3× 3 convolution layer followed by 3 blocks, each contain-
ing 3 residual units. We modify the first 6 layers to TEXP
layers by replacing the batch norm and leaky ReLU by tilted
softmax and thresholding. The results, shown in Table 3,
demonstrate improved OOD robustness despite minimal
effort in hyperparameter tuning: the parameters used are
t = 5.0, tinf = 0.1, and α = 0.001 for all the 6 layers, in
both standard and adversarial TEXP models. We expect that
more fine-grained adjustments of tilts for individual layers
will further enhance performance, but these preliminary re-
sults do illustrate the potential gains from applying TEXP
to multiple layers.

6. Conclusion
We have presented promising preliminary results indicating
that the robustness of neural models can be enhanced by ar-
chitectural modifications inspired by communication theory,
supplementing end-to-end training with layer-wise TEXP
objective functions, and replacing ReLU and batch norm
by softmax and thresholding in the inference path. In order
to compare with the benchmarks on layer-wise training set
in (Cekic et al., 2022), we have focused on the VGG archi-
tecture with the CIFAR-10 dataset. We have demonstrated
that even a single TEXP layer significantly improves OOD
robustness against common corruptions without requiring
data augmentation. Adversarial training with small pertur-

bation budgets is also known to improve OOD robustness.
We show that TEXP performance (without augmentation)
against common corruptions is superior to that of adver-
sarial training, while TEXP appropriately combined with
adversarial training yields strong performance across the
board against common corruptions.

As a quick check on the applicability of TEXP to differ-
ent architectures and multiple layers, we also provide pre-
liminary results on ResNet which show gains in robust-
ness. We plan to build on these promising results in sev-
eral directions, including more extensive experimentation
for different datasets and architectures, development of
communication-theoretically motivated guidelines for tun-
ing of TEXP hyperparameters, and further exploration of
combining TEXP with adversarial training and other simple
augmentation techniques. Finally, while we have focused
here on broad spectrum robustness, showing performance
gains against common corruptions and mild adversarial at-
tacks, an interesting direction for future work is to adapt our
communication-theoretic approach for robustness against
strong adversarial attacks.

7. Broader Impact and Limitations
Traditionally, robustness has been improved through the ap-
plication of data augmentations and optimization of end-to-
end costs. Our approach takes a different route by focusing
on gaining more control over intermediate layer outputs and
aligns with the broader goal of making deep networks more
transparent. Furthermore, our method has the potential to
work well with other data augmentation techniques, thereby
expanding its applicability to various tasks.

A limitation of our work in the current form is that we are yet
to develop concrete guidance on setting the tilt parameters,
which is useful to optimize performance of our approach for
different architectures. Furthermore, optimizing layer-wise
costs for very large dimensional data is computationally
intensive. In future, we will focus on maximizing the ef-
fectiveness of our approach across different datasets and
models, to ascertain the generalizability of our approach.
Nonetheless, our findings underscore the value of layer-wise
tilted exponentials in enhancing robustness to OOD corrup-
tions, which is important in many practical machine learning
tasks where test samples in the real-world are often different
from the curated training data.
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