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Many modern algorithms for inverse problems and data assimilation rely on ensemble Kalman updates to
blend prior predictions with observed data. Ensemble Kalman methods often perform well with a small
ensemble size, which is essential in applications where generating each particle is costly. This paper
develops a non-asymptotic analysis of ensemble Kalman updates, which rigorously explains why a small
ensemble size suffices if the prior covariance has moderate effective dimension due to fast spectrum decay
or approximate sparsity. We present our theory in a unified framework, comparing several implementations
of ensemble Kalman updates that use perturbed observations, square root filtering and localization. As part
of our analysis, we develop new dimension-free covariance estimation bounds for approximately sparse
matrices that may be of independent interest.
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1. Introduction

Many algorithms for inverse problems and data assimilation rely on ensemble Kalman updates to blend
prior predictions with observed data. The main motivation behind ensemble Kalman methods is that they
often perform well with a small ensemble size N, which is essential in applications where generating each
particle is costly. However, theoretical studies have primarily focused on large ensemble asymptotics,
that is, on the limit N — oo. While these mean-field results are mathematically interesting and have
led to significant practical improvements, they fail to explain the empirical success of ensemble Kalman
methods when deployed with a small ensemble size. The aim of this paper is to develop a non-asymptotic
analysis of ensemble Kalman updates that rigorously explains why, and under what circumstances,
a small ensemble size may suffice. To that end, we establish non-asymptotic error bounds in terms
of suitable notions of effective dimension of the prior covariance model that account for spectrum
decay (which may represent smoothness of a prior random field) and approximate sparsity (which may
represent spatial decay of correlations). Our work complements mean-field analyses of ensemble Kalman
updates and identifies scenarios where mean-field behavior holds with moderate N.

In addition to demystifying the practical success of ensemble Kalman methods with a small ensemble
size, our non-asymptotic perspective allows us to tell apart, on accuracy grounds, implementations of
ensemble Kalman updates that use perturbed observations (POs) and square root (SR) filtering. These
implementations become equivalent in the large N limit, and therefore their differences in accuracy
cannot be captured by asymptotic results. Furthermore, our non-asymptotic perspective provides new
understanding on the importance of localization, a procedure widely used by practitioners that involves
tapering or ‘localizing’ empirical covariance estimates to avoid spurious correlations.

Rather than providing a complete, definite analysis of any particular ensemble Kalman method, our
goal is to bring to bear a new set of tools from high-dimensional probability and statistics to the study of
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these algorithms. In particular, our work builds on and contributes to the theory of high-dimensional
covariance estimation, which we believe is fundamental to the understanding of ensemble Kalman
methods. To make the presentation accessible to a wide audience, we assume no background knowledge
on covariance estimation or on ensemble Kalman methods.

1.1 Problem description

Consider the inverse problem of recovering u € R? from data y € R¥, corrupted by noise 1, where

y=6@ +n, (1.1)

G : R? — Rk is the forward model, and n ~ IP’,] = N(0, I') is the observation error with positive-definite
covariance matrix I". An ensemble Kalman update takes as input a prior ensemble {un}n]\’:1 and observed
data y, and returns as output an updated ensemble {vn}ﬁl\/:1 that blends together the information in the
prior ensemble and in the data. Two main types of problems will be investigated: posterior approximation
and sequential optimization. In the former, ensemble Kalman updates are used to approximate a posterior
distribution in a Bayesian linear setting; in the latter, they are used within optimization algorithms for
nonlinear inverse problems:

1.1.1  Posterior approximation If the forward model is linear, i.e. G(#) = Au for some matrix A €
Rk*d and A is ill-conditioned or d >> k, naive inversion of the data by means of the (generalized) inverse
of A results in an amplification of small observation error 7 into large error in the reconstruction of u. In
such situations, regularization is needed to stabilize the solution. To this end, one may adopt a Bayesian
approach and place a Gaussian prior on the unknown u ~ P, = N (m, C) with positive-definite C; the
prior distribution then acts as a probabilistic regularizer. The Bayesian solution to the inverse problem
(1.1) is a full characterization of the posterior distribution P, . that is, the distribution of u given y. A

uly?
standard calculation shows that IE”M|V =N(u, X), with

uw=m+CATACAT + I~y — Am),
1.2)
X=C-CATACAT + N)'AC,

which require the storage of d x d matrices and consequently are difficult to compute explicitly
when the state dimension d is large. A posterior-approximation ensemble Kalman update transforms
a prior ensemble {u,}_, drawn from P, into an updated ensemble {v,}_, whose sample mean and
sample covariance approximate the mean and covariance of ;. Ensemble Kalman updates enjoy a
low computational and memory cost when the ensemble size N is smaller than the state dimension d.
In Section 2, we establish non-asymptotic error bounds that ensure that if N is larger than a suitably
defined effective dimension, then the sample mean and sample covariance of the updated ensemble
approximate well the true posterior mean and covariance in (1.2). We refer to methods that are capable of
approximating well the posterior P, in a linear-Gaussian setting as posterior-approximation algorithms.

1.1.2  Sequential optimization ~When faced with a general nonlinear model G, exact characterization
of the posterior can be challenging. One may then opt for an optimization framework and solve the
inverse problem (1.1) by minimizing a user-chosen objective function. Starting from a prior ensemble
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{u,}_, drawn from a measure PP, that encodes prior beliefs about u, an ensemble Kalman update returns
an updated ensemble {vn}ﬁ,\': | Whose sample mean approximates the desired minimizer. The process can
be iterated by taking the updated ensemble to be the prior ensemble of a new ensemble Kalman update.
Under suitable conditions on G, and after a sufficient number of such updates, all particles in the ensemble
collapse into the minimizer of the objective. Ensemble Kalman optimization algorithms are derivative-
free methods, and are therefore particularly useful when derivatives of the model G are unavailable or
expensive to compute. As for posterior-approximation algorithms, implementing each update has low
computational and memory cost when the ensemble size N is small. In Section 3, we will establish non-
asymptotic error bounds that ensure that if NV is larger than a suitably defined effective dimension, then
each particle update u,, — v,, 1 < n < N, approximates well an idealized mean-field update computed
with an infinite number of particles; this suggests that the evolution of particles along an ensemble-based
sequential optimizer is close to an idealized mean-field evolution. We refer to methods that solve the
inverse problem (1.1) by minimization of an objective function as sequential-optimization algorithms.

1.2 Summary of contributions and outline

e Section 2 is concerned with posterior-approximation algorithms. The main results, Theorems 2.3
and 2.5, give non-asymptotic bounds on the estimation of the posterior mean and covariance in
terms of a standard notion of effective dimension that accounts for spectrum decay in the prior
covariance model. Our analysis explains the statistical advantage of SR updates over PO ones. We
also discuss the deterioration of our bounds in small noise limits where the prior and the posterior
become mutually singular.

e Section 3 is concerned with sequential-optimization algorithms. The main results, Theorems 3.5
and 3.7, give non-asymptotic bounds on the approximation of mean-field particle updates using
ensemble Kalman updates with and without localization. Our analysis explains the advantage of
localized updates if the prior covariance satisfies a soft-sparsity condition. For the study of localized
updates, we show in Theorems 3.1 and 3.3 new dimension-free covariance estimation bounds in
terms of a new notion of effective dimension that simultaneously accounts for spectrum decay and
approximate sparsity in the prior covariance model.

e Section 4 concludes with a summary of our work and several research directions that stem from our
non-asymptotic analysis of ensemble Kalman updates. We also discuss the potential and limitations
of localization in posterior-approximation algorithms.

* The proofs of all our results are deferred to three appendices.

1.3 Related work

Ensemble Kalman methods—overviewed in [21,33,53,50,81,83]—first appeared as filtering algorithms
in the data assimilation literature [15,31,34,47,48]. The goal of data assimilation is to estimate a time-
evolving state as new observations become available [3,62,66,71,79,83,85]. Ensemble Kalman filters
(EnKFs) solve an inverse problem of the form (1.1) every time a new observation is acquired. In that
filtering context, (1.1) encodes the relationship between the state u and observation y at a given time ¢,
and the prior on u is specified by propagating a probabilistic estimate of the state at time # — 1 through
the dynamical system that governs the state evolution. To approximate this prior, EnKFs propagate an
ensemble of N particles through the dynamics, and subsequently update this prior forecast ensemble
into an updated analysis ensemble that assimilates the new observation. Thus, an ensemble Kalman
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update is performed every time a new observation is acquired. The goal is that the sample mean and
sample covariance of the updated ensemble approximate well the mean and covariance of the filtering
distribution, that is, the conditional distribution of the state at time ¢ given all observations up to time ¢.
While only giving provably accurate posterior approximation in linear settings [30], EnKFs are among
the most popular methods for high-dimensional nonlinear filtering, in particular in numerical weather
forecasting. In such applications the state dimension can be very large, but the effective dimension of
the filter update is often much lower due to smoothness of the state and decay of correlations in space.
Moreover, in practice, the analysis step can be constrained to the subspace determined by the expanding
directions of the dynamics [98].

The papers [41,69,80] introduced ensemble Kalman methods for inverse problems in petroleum
engineering and the geophysical sciences. Application-agnostic ensemble Kalman methods for inverse
problems were developed in [51,52], inspired by classical regularization schemes [43]. Since then, a
wide range of sequential-optimization algorithms for inverse problems have been proposed that differ
in the objective function they seek to minimize and in how ensemble Kalman updates are implemented.
We refer to Subsection 2.1 for further background and to [21] for a review.

Ensemble Kalman methods for inverse problems and data assimilation have been studied extensively
from a large N asymptotic point of view; (see e.g. [10,24,26,27,30,37,45,59,63,65,70,73]). A comple-
mentary line of work [40,44,54,95,96] has focused on challenges faced by ensemble Kalman methods,
including loss of stability and catastrophic filter divergence. Two overarching themes that underlie large
N asymptotic analyses are to ensure consistency and to derive equations for the mean-field evolution
of the ensemble. Related to this second theme, several works (e.g. [12,13,21,42,86,97]) set the analysis
in a continuous time limit; the idea is to view Kalman updates as occurring over an artificial discrete-
time variable, and then take the time between updates to be infinitesimally small to formally derive
differential equations for the evolution of the ensemble or its density. Large N asymptotics and continuous
time limits have resulted in new theoretical insights and practical advancements. However, an important
caveat of these results is that they cannot tell apart implementations of ensemble Kalman methods that
become equivalent in large N or continuous time asymptotic regimes. Moreover, several papers (e.g.
[5,6,55,72,86]) have noted that large N asymptotic analyses fail to explain empirical results that report
good performance with a moderately sized ensemble in problems with high state dimension; for instance,
d ~ 10° and N ~ 10? in operational numerical weather prediction. Finally, the note [76] shows subtle
but important differences in the evolution of interacting particle systems with finite ensemble size when
compared to their mean-field counterparts [37].

In this paper we adopt a non-asymptotic viewpoint to establish sufficient conditions on the ensemble
size for posterior-approximation and sequential-optimization algorithms. Empirical evidence in [77]
suggests that there is a sample size N* above which ensemble Kalman methods are effective. The seminal
work [36] conducts insightful explicit calculations that motivate our more general theory. Following
the analysis of ensemble Kalman methods in [36] and the study of importance sampling and particle
filters in [1,82,84,9,88,4,87,25,89], we focus on analyzing a single ensemble Kalman update rather than
on investigating the propagation of error across multiple updates. While in practice ensemble Kalman
methods for posterior approximation in data assimilation and for sequential optimization in inverse prob-
lems often perform many updates, focusing on a single update enables us to clearly demonstrate the tight
connection between the sample complexity of ensemble updates and the effective dimension of the prior;
additionally, for some posterior-approximation algorithms, our theory generalizes in a straightforward
way to multi-step implementations, as we shall demonstrate in Section 2. More importantly, the focus on
a single update allows us to tell apart, on accuracy grounds, POs and SR implementations of ensemble
Kalman updates, as well as implementations with and without localization. Similar considerations
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motivate the study of sufficient sample size for importance sampling in [1,22,75,82,84,88], where
the focus on a single update facilitates establishing clear comparisons between standard and optimal
proposals, and identifying meaningful notions of dimension to characterize necessary and sufficient
conditions on the required sample size. Our work builds on and develops tools from high-dimensional
probability and statistics [7,16,17,23,68,102,103]. In particular, we bring to bear thresholded [7,16] and
masked covariance estimators [23,68] to the understanding of localization in ensemble Kalman methods.
In so doing, we establish new dimension-free covariance and cross-covariance estimation bounds under
approximate sparsity—see Theorems 3.1 and 3.3.

1.4 Notation

Given two positive sequences {a,,} and {b,,}, the relation a,, < b, denotes that a,, < cb, for some constant

¢ > 0.If the constant ¢ depends on some quantity 7, then we write a S, b. If both g, < b, and b, < q,
hold simultaneously, then we write a, < b,. Throughout, we denote positive universal constants by
¢, ¢y, ¢y, C3,Cy, and the value of a universal constant may differ from line to line. For a vector v € RY,
Ivilh = an=1 [v,|P. For a matrix A € R"", the operator norm is given by [|A|| = supj,,=1 [1Avll,. Si
denotes the set of d x d symmetric positive-semidefinite matrices, and S i . denotes the set of d x d
symmetric positive-definite matrices. A" denotes the pseudo-inverse of A. 1  denotes the N-dimensional
vector vector of ones, 0, denotes the d-dimensional vector of zeroes, and O, is the d x k matrix of
zeroes. 1 denotes the indicator of the set B. = denotes a definition. o denotes the matrix Hadamard or
Schur (elementwise) product. Given a non-decreasing, non-zero convex function i : [0, co] — [0, 00]
with ¥ (0) = 0, the Orlicz norm of a real random variable X is ||X||¢ =inf{r > 0: E[y (¢~ 1X)] < 1}.
In particular, for the choice v, = ¢’ — 1 for p > 1, real random variables that satisfy || X Iy, < oo
are referred to as sub-Gaussian. A random vector X is sub-Gaussian if ||v " X]|| v, < 00 for any v such that

[Ivll, = 1. For a differentiable function g : R? — RK, Dg € R4*k denotes the Jacobian of g.
All the methods we study have the same starting point of a prior ensemble

iid.
U, ... uy ~ N(m,C),

and observed data y generated according to (1.1), which are to be used in generating an updated ensemble
{vn}ilvzl. We denote the prior sample means by

m

1Y S
ﬁ ;Mn, g= ]T/ ;g(un),

and the prior sample covariances by

N N
c N—l_ 1 ;(un —m)(u, —m), crr = ]ﬁ Zl(g(un) —0)Gu,) -0,
B "~ (1.3)

_ 1 ZN _ -
n=1
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6 O. AL-GHATTAS AND D. SANZ-ALONSO

The population versions will be denoted by

" = E[(Gw,) — EIGw,)]) (Gw,) ~Elg@,)) |, € =E[(w, —m)(Gw,) — Elga,))"].

2. Ensemble Kalman updates: posterior approximation algorithms

In posterior-approximation algorithms we consider the inverse problem (1.1) with a linear forward model,
ie.

y=Au+n, n~NQ@O,TI). 2.1

In order to establish comparisons between different posterior-approximation algorithms, as well as to
streamline our analysis, we follow the exposition in [59] and introduce three operators that are central
to the theory: the Kalman gain operator %, the mean-update operator .# , and the covariance-update
operator %, defined, respectively, by

H 8 RK A (CAT) =#(C)=CATACAT + )7, 2.2)
MR xS SR, M (m,C Ay, T) = M (m,C) =m+ H(C;A, ) (y — Am), (2.3)
¢ .81 -8, (A T)=%(C) = (I-H(CA DA)C. (2.4)

The pointwise continuity and boundedness of all three operators was established in [59], and we
summarize these results in Lemmas A.4, A.5 and A.6. We note that the Kalman update (1.2) can be
rewritten succinctly as

w =AM (m,C),

2.5)
2 =%(0).

2.1  Ensemble algorithms for posterior approximation

We study two main classes of posterior-approximation algorithms based on PO and SR ensemble Kalman
updates. In both implementations, the updated ensemble has sample mean & and sample covariance 5]
that are, by design, consistent estimators of the posterior mean w and covariance X' in (2.5). Although
PO and SR updates are asymptotically equivalent, differences between the two algorithms do exist in
finite ensembles, and this difference is captured in our non-asymptotic analysis in Subsection 2.3.

2.1.1 Perturbed Observation update 'The PO update, introduced in [31], transforms each particle of
the prior ensemble according to

v, =u, + %(6)@ — Au, — 17”)

= M, 0)—H©On, 0, T NOI, 1<n<N.

The form of the update is similar to the Kalman mean update (2.5) albeit with the n-th ensemble
member being assigned a PO y — 7,,. Consequently, denoting the sample mean of the perturbations by
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7=N"1 22\1:1 1, the updated ensemble has the sample mean

N
-~ 1 —~ -~ _
i ﬁ;%=%mo—%©m

and sample covariance

N
~ 1 ~ T
Y=y ;:1,(% =) (v, — )

P _ S (2.6)
= (I - #(©A)C(I— 2 (©OA) +#OF#T(©)

— (I = A (©A)C" T (C) — # ()T (1 - AT T (),

where
- 1 &
F=g=7 2.0 =i, = and "= om0 >, =)0, =)
n=1 n=1

To facilitate comparison with the Kalman update in (2.5), we rewrite the PO update as follows:

L= .4, C) — (O,
R R . 2.7)
X =% +0,

where the offset term 5, obtained as the difference between (2.6) and ‘5(6‘), is given by

O=xOT —1NHT©C)— (I — #©OA)C"#T(C)— H#OC"T(I-ATH (). (28)

The offset term O was introduced in [36, Proposition 4]. The addition of perturbations serves the purpose
of correcting the sample covariance, in the sense that without perturbations the sample covariance is an
inconsistent estimator of X'. To see the consistency of the PO covariance estimator S in (2.7), note that
from Lemma A.6 the map % is continuous, and so the continuous mapping theorem together with the

fact that C is consistent for C imply that ‘5(6) 2 % (C) = X. Further, the offset 0 converges in

probability to zero, which can be shown using that rr , Cul 20 ixx and the continuity of JZ°
established in Lemma A 4.

2.1.2  Square Root Update The PO update relies crucially on the added perturbations to maintain
consistency and, as noted, for example, in [11,32,93], is asymptotically equivalent to the exact posterior
update (1.2). However, for a finite ensemble of size N, the addition of random perturbations introduces an
extra source of error into the ensemble Kalman update. The SR update, introduced in [32] and surveyed
in [61,93], is a deterministic alternative to the PO update. It updates the prior ensemble in a manner
that ensures that £ = %'(C). This is achieved by first identifying a map g : RN — RN gych that
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8 O. AL-GHATTAS AND D. SANZ-ALONSO
= g(ﬁ), where

C= f)ﬁ‘r’ and <5(’6\‘) = ﬁﬁT,

with both factorizations guaranteed to exist since C,¢ (C) € Sd Consistency of ¥ can then be ensured
by choosing g to satisfy g(P) g(P)T = %(C) with this being referred to as the consistency condition in
[61]. There are infinitely many such g, each of which lead to a variant of the SR update. Here we describe
two of the most popular variants in the literature as outlined in [93]: the Ensemble Transform Kalman
update [11] and the Ensemble Adjustment Kalman update [2] with respective transformations g P) =
PT and g A (P) = BP, for matrices T and B. Both gr and g4 are therefore linear maps, with g post-
multiplying P, which implies a transformation on the N-dimensional space spanned by the ensemble,
and g, pre-multiplying P, so that the transformation is applied to the d-dimensional state-space instead.
In both approaches we identify the relevant matrix by first writing

On' =¢C) =PI —-vD 'vhHp',

where V = (Aﬁ)T andD=V'V4+T.

1. Ensemble Transform Kalman update: taking T = PFU for any F satisfying FFT =1 —vD~'vT
and arbitrary orthogonal U satisfies the consistency condition. One approach for finding such a
matrix F is by rewriting

I—-VD W = +P AT '"AP) ' = Ed + A2+ A)'V2ET = FFT,
where the first equality follows by the Sherman—Morrison formula, and EAET is the eigenvalue

decomposition of PTAT ' ~'AP. In summary, we have g;(P) = PE(I + A)~'/2U

—1/2 e can write

2. Ensemble Adjustment Kalman update: Introducing M = VI
PU— VD 'WHPT =PU+MMT) P,
Noting that P has full column rank, we may then define B = ﬁ(l +MM T~/ 2(ﬁT)T, and so
ga(P) =BP =P +MM" ) 2P P=PU +MM")"1/2

Once a choice of g has been made, and an estimate > has been computed, the updated ensemble has
first two moments given by

(2.9)
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NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN UPDATES 9

Frequently, only [z, Y are of concern to the practitioner, but it is still possible to back-out the individual
members of the updated ensemble as they may be of interest. It is clear that one choice for P is

1

P=—v[uy =, ,uy — 1],
— [ « ]
in which case it holds that P1 y =04, and so
v, =+N—1[d],+ .#@@,C), 1<n<N, (2.10)

where [ﬁ ],, denotes the n-th column of .

In Subsection 2.3, we establish error bounds for the approximation of the posterior mean and
covariance (u, X) in (1.2) by (i, f) as estimated using the PO and SR updates in (2.7) and (2.9).
It is clear from (2.9) that as long as the choice of g is valid, in the sense that the resulting S is
consistent, then the specific choice of g is irrelevant to the accuracy of a single SR update. We therefore
make no assumptions in our subsequent analysis of the SR algorithm beyond that of g satisfying the
consistency condition. Note that, when compared to the SR update in (2.9), the PO update in (2.7)
contains additional stochastic terms that will, as our bounds indicate, hinder the estimation of (u, X'). As
noted in the literature, for example in [93], the PO update increases the probability of underestimating
the analysis error covariance. While our presentation and analysis of PO and SR updates is carried out in
the linear-Gaussian setting, both updates are frequently utilized in nonlinear and non-Gaussian settings,
with empirical evidence suggesting that the PO updates can outperform SR updates [64,67]. In fact,
the consistency argument outlined above is only valid in the linear case G(#) = Au, and the statistical
advantage of SR implementations in linear settings may not translate into the nonlinear case.

2.2 Dimension-free covariance estimation

We define the effective dimension [103] of a matrix Q € Si by

Tr(Q)
(Tl

r(Q) = 2.11)

The effective dimension quantifies the number of directions where Q has significant spectral content [99].
The monographs [99,102] refer to r,(Q) as the intrinsic dimension, while [57] uses the term effective
rank. This terminology is motivated by the observation that 1 < r,(Q) < rank(Q) < d and that r,(Q) is
insensitive to changes in the scale of Q, see [99]. In situations where the eigenvalues of O decay rapidly,
r,(Q) is a better measure of dimension than the state dimension d. The following result [57, Theorem 9]
gives a non-asymptotic sufficient sample size requirement for accurate covariance estimation in terms
of the effective dimension of the covariance matrix. We recall that the sample covariance estimator Cis
defined in (1.3).

ProprosiTION 2.1. (Covariance Estimation with Sample Covariance—Unstructured Case) Letu,, . .., uy
be d-dimensional i.i.d. sub-Gaussian random vectors with E[u;] = m and var[u;] = C. Then, for all
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10 O. AL-GHATTAS AND D. SANZ-ALONSO

t > 1, it holds with probability at least 1 — ce™ that
-~ C C t t
ic—cr<ien(y2Ly 29, Jr, L)
N N N N

REMARK 2.2. (Effective Dimension and Smoothness) Proposition 2.1 motivates defining r,(C) =
Tr(C) /|| C| to be the effective dimension of a d-dimensional sub-Gaussian random vector u with var[u] =
C. As in the definition for matrices, r,(C) quantifies the number of directions where the distribution of u
has significant spread. Proposition 2.1 and our results in Subsection 2.3 may be extended to sub-Gaussian
random variables defined in an infinite-dimensional separable Hilbert space, say H = L*(0, 1). It is then
illustrative to note that any Gaussian measure N (m, C) in H satisfies that Tr(C) < 00; in other words, all
Gaussian measures have finite effective dimension. In this context, r,(C) is related to the rate of decay
of the eigenvalues of C, and hence to the almost sure Sobolev regularity of functions # drawn from the
Gaussian measure N (m, C) on H = L%(0, 1), see e.g. [14, 91]. In computational inverse problems and
data assimilation, u is often a d-dimensional vector that represents a fine discretization of a Gaussian
random field; then, r,(C) quantifies the smoothness of the undiscretized field.

2.3 Main results: posterior approximation with finite ensemble

In this subsection, we state finite ensemble approximation results for the posterior mean and covariance
with PO and SR ensemble updates. To highlight some key insights, including the dependence of the
bounds on the effective dimension of C and the differences between PO and SR updates, we opt to
present expectation bounds in Theorems 2.3 and 2.5 that are less notationally cumbersome than the
stronger exponential tail bounds in Theorems A.8 and A.9 in Appendix A.3. Throughout this section,
the data y are treated as a fixed quantity.

THEOREM 2.3. (Posterior Mean Approximation with Finite Ensemble—Expectation Bound) Consider
the PO and SR ensemble Kalman updates given by (2.7) and (2.9), respectively, leading to an estimate
1 of the posterior mean u defined in (1.2). Set ¢ = 1 for the PO update and ¢ = O for the SR update.
Then, for any p > 1,

N rn(C)  (r(C)\"? 1 (L) 1y(C) [ry(I)
[Enu—un’;]””spcl(,ﬂTv(%) )+¢>c2(,/ LV R ) @12)

where ¢; = ¢ (|CII, JAIL 1T, lly — Amllp) and ¢, = ¢, (IICII, AL 11T~

Importantly, the bound (2.12) does not depend on the dimension d of the state-space, and the only
dependence on C is through its operator norm and the effective dimension r,(C). The term multiplied
by ¢ in the PO update accounts for the additional error incurred by the presence of the offset term (2.8)
in the PO update (2.7). The following remark discusses another important consequence of Theorem 2.3:
the stable performance of ensemble Kalman updates in small noise regimes when compared with other
sampling algorithms.

REMARK 2.4. (Dependence of Constants on Model Parameters) The proof of Theorem 2.3 in Appendix
A provides an explicit definition of c¢; and ¢, up to constants, i.e. it describes how these quantities rely
on their arguments, and Theorem A.8 establishes a high probability bound on ||& — |, . In particular, it
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NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN UPDATES 11

is important to note that the constants c¢; and ¢, in Theorem 2.3 deteriorate in the small noise limit where
the observation noise goes to zero, and ¢, deteriorates with r,(1"). In the small noise limit, the posterior
and prior distribution become mutually singular, and it is hence expected for ensemble updates to be
unstable. To illustrate this intuition in a concrete setting, assume that I" = y I for a positive constant y,
and, for simplicity, that N > r,(C) as well as ||C|| = ||A|| = |ly — Am||, = 1. Then, the expression for
c; established in Theorem 2.3 implies that for the SR update, for any errore > O and p > 1,

r(0)
~ g2y

= B[z - ul5]"" 5, e

Similarly, the expressions for ¢; and ¢, imply that for the PO update,

C k
”2()v_:>E

p1l/p
NZ iV oy (172 — 5] <, e

g2y

where we recall that k denotes the dimension of the data y. The papers [1, 84] show the need to increase
the sample size along small noise limits in importance sampling when target and proposal are given,
respectively, by posterior and prior. While our bounds here only give sufficient rather than necessary
conditions on the ensemble size, it is noteworthy that, for fixed k, the scaling of N as y — 0 shown
here is independent of k. In contrast, necessary sample size conditions for importance sampling show a
polynomial dependence on k, see [84].

THEOREM 2.5. (Posterior Covariance Approximation with Finite Ensemble—Expectation Bound) Con-
sider the PO and SR ensemble Kalman updates given by (2.7) and (2.9), respectively, leading to an
estimate ¥ of the posterior covariance X' defined in (1.2). Set ¢ = 1 for the PO update and ¢ = 0 for
the SR update. Then, for any p > 1,

2
[EIZ - 21°]" 5, ¢ (\/ 2y (—rzfvc)) )+ $6.

where

3 2
oo 62( /rZJ(VC) . (rzl(VC)) v( /rzj(vr) y r2](vr))(1 y (rZZ(VC)) ))

where ¢; = ¢ (IICIL, Al 17~ and ¢, = e, (ICI, IAIL 1T I 1D

As in Theorem 2.3, the bound in Theorem 2.5 does not depend on the dimension d of the state-space,
and the dependence on C is through the operator norm and the effective dimension r,(C).

REMARK 2.6. (Dependence of Constants on Model Parameters) The proof of Theorem 2.5 in Appendix A
provides an explicit definition of ¢; and ¢, up to constants and Theorem A.9 establishes a high probability
bound on || > II. As discussed in Remark 2.4, these bounds may be used to establish sufficient
ensemble size requirements in small noise limits and other singular limits of practical importance.

y20z Arenuer g1 uo Jasn meT - saleiqi] obeoIy) Jo AlsieAlun Aq 6681 ./STOPEEI/L/S | /a|oNJe/Ielewl/wod dno olwapese//:sd)y Wol) papeojuMo(]



12 O. AL-GHATTAS AND D. SANZ-ALONSO

REMARK 2.7. (Comparison to the Literature) The results in this section complement many of the existing
analyses of ensemble Kalman updates in the literature. In one direction, our Theorems 2.3 and 2.5 can
be viewed in the context of [36, Section 3.4], which claims that for finite ensembles the SR filter is
always more efficient than the PO filter, since the latter introduces additional variability through noisy
perturbations of the data. Our results quantify this additional variability both in probability and in
expectation. In [72], the authors put forward a non-asymptotic analysis of a multi-step EnKF augmented
by a spectral projection step in which the Kalman gain matrix is projected onto the linear span of its
leading eigenvalues exceeding a threshold level. They refer to the dimension d,,,, of this subspace as the
effective dimension and provide guarantees on the performance of the algorithm so long as the ensemble
size scales with d,;,.. In contrast, our one-step analysis does not require any augmentation of standard
implementations (see e.g. [36]) of the ensemble update. They also employ (forecast) covariance inflation,
which is a de-biasing technique standard in the literature; see, for example, [36, Section 5], which our
results do not require. In another direction, our results can be directly compared with [59, Theorem 6.1],

which states that for iteration ¢ of the SR EnKF and for any p > 1,

1/p i -~ 1/p Jt
[E12© - 115 sc(jﬁ) and  [EIZ0 - £0)7] S N CRES

where 2 and £© are the sample mean and covariance of the updated (analysis) ensemble at iteration ¢,
and 1V and ¥ are the corresponding Kalman Filter posterior mean and covariance, respectively. The
term c(p, ¢) that arises in both of their bounds denotes a constant that depends only on p, the iteration
index ¢, and the norms of the non-random inputs of the algorithm, but do not depend on dimension or
ensemble size. Importantly, they do not distinguish between settings with different effective dimensions
as our bounds do. In Appendix A.4, we provide an explicit outline of the multi-step algorithm considered
in their paper along with definitions of all quantities described here. As previously noted, our bounds
cover the PO setting, whereas (2.13) is specific to the SR setting. In Appendix A.4, we also establish (see
Corollary A.12) a simple extension of Theorems 2.3 and 2.5 to the multi-step SR setting, which shows
that for any p > 1, iteration ¢, and assuming for simplicity that N 2> r, (X ©), then

1/p ry (2O

A P — _

ENp® —uO15 7 <, 2 x (MO AP, | 2D 1y — ACm Oy i,
p N

- 1/p r(2O) - -
[EIZ0 - 2007 5, 25— x el 1A 1 12D .

Our bounds therefore refine those in [59] as they explicitly capture the dependence on the state dimension
through the effective dimension of the initial distribution, rz(E(O)). It follows then that in the case of the
SR EnKgF, it suffices to use an ensemble on the order of the effective dimension of X© multiplied
by constants depending on the operator norms of the forward model matrices {||A(l)||}§:1, analysis
covariance matrices {|| X @ | };zl, inverse of the noise covariance, || I"~!|| and £,-norm of the model errors
{Iy® — AOm® ll5}i—;- We note that extensions to the multi-step setting for other variants of the EnKF
that do not use SR updates may not follow as easily. In this direction, the recent work [39] studies a
multi-step EnKF with PO updates, which incorporates an additional resampling step.

(2.14)
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NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN UPDATES 13

3. Ensemble Kalman updates: sequential optimization algorithms

In the optimization approach, the solution to the inverse problem (1.1) is found by minimizing an
objective function. As discussed in [21], an entire suite of ensemble algorithms have been derived that
differ in the choice of objective function and optimization scheme. In this subsection we introduce the
Ensemble Kalman Inversion (EKI) algorithm [52] and a new localized implementation of EKI, which
we call localized EKI (LEKI) following [97]. Both EKI and LEKI use an ensemble approximation of a
Levenberg—Marquardt (LM) optimization scheme to minimize a data-misfit objective

1
Jw) = 12 (= )1, (3.1)

which promotes fitting the data y. Before deriving EKI in Subsection 3.1.1 and LEKI in Subsection 3.1.2,
we give some background that will help us interpret both methods as ensemble-based implementations
of classical gradient-based LM schemes. The finite ensemble approximation of an idealized mean-field
EKI update using EKI and LEKI updates will be studied in Subsection 3.3.

Recall that classical iterative optimization algorithms choose an initialization #®) and set

u ) — @ 4 w(t), t=0,1,..., (3.2)

until a pre-specified convergence criterion is met. Here, w® is some favorable direction determined
by the optimization algorithm at iteration 7, given the current estimate ). In the case that the inverse
problem is ill-posed, directly minimizing (3.1) leads to a solution that over-fits the data. Then, implicit
regularization can be achieved through the optimization scheme used to obtain the update w®. Under the
assumption that r(u) = y — G(u) is differentiable, LM algorithm chooses w® by solving the constrained
minimization problem

. i . _ 2
minJ"(w) subjectto  [[CTV w5 <5,
w

where

. 1 2
Jin () = EuDr(u(”)w + r@™)|3,

and Dr denotes the Jacobian of r. The LM algorithm belongs to the class of trust region optimization
methods, and it chooses each increment to minimize a linearized objective, J%‘“, but with the added
constraint that the minimizer belongs to the ball {||C~!/2w|” < d,}, in which we trust that the objective
may be replaced by its linearization. Equivalently, w can be viewed as the unconstrained minimizer of

a regularized objective,

. . 1 _ 2
mM}nJ}J(w), JY(w) = Jlinw) + 5 I€ 2015, (3.3)
1

where o, > 0 acts as a Lagrange multiplier.
We are interested in ensemble sequential-optimization algorithms, which instead of updating a single
estimate 1 —as in (3.2)—propagate an ensemble of estimates. Ensemble-based optimization schemes
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14 O. AL-GHATTAS AND D. SANZ-ALONSO

often rely on statistical linearization to avoid the computation of derivatives. Underpinning this idea
[21,56,100] is the argument that if G (1) = Au were linear, then C*7 = CAT, leading to the approximation
in the general nonlinear case

DG(u,) ~ (C"")TC" = G. (3.4)

This approximation motivates the derivative-free label often attached to ensemble-based algorithms [58],
and we note that they may be employed whenever computing DG (u) is expensive or when G is not
differentiable. For the remainder, our analysis focuses on a single step of EKI and LEKI, and so we drop
the iteration index ¢ from our notation; we will use instead our previous terminology of prior ensemble
and updated ensemble. Finally, similar to our presentation of posterior-approximation algorithms, our
exposition is simplified by introducing the nonlinear gain-update operator 2,

P RK S SE S RIK (PP = P(CHP,CPPY) = CHP(CPP + )7 (3.5)

which is shown to be both pointwise continuous and bounded in Lemma A.7.

3.1 Ensemble algorithms for sequential optimization

3.1.1 EKI update In the EKI, each particle in the prior ensemble is updated according to the LM
algorithm, so that

Un=un+wn’ ISHSN,
where w, is the minimizer of a linearized and regularized data-misfit objective

. 1 2 I~ 2
J};“(w>=§||r 1/Z(y—nn—gmn)—Gw)||2+£||c Vlae 1, ~N©, ). (3.6)

Following [52], we henceforth set « = 1, but note that our main results can be readily extended to any
o > 0. Note that each ensemble member solves the optimization (3.6) with a POperturbed observation
y — 1n,,, similar in spirit to the PO update of Subsection 2.1.1. The minimizer of (3.6) (with o = 1) is
given by

w, =CG (GCGT + I~ (y—n, — G(u,)).

Substituting CGT = C*, and approximating

GCG' = GC" = (C*)TCtcw ~ CPp

leads to the EKI update

U, = U, + PCP,CPP)(y — Gu,) —1,), 1<n<N. (3.7)
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NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN UPDATES 15

In the linear forward-model setting, 9(6 up Crp Y= (E‘), and (3.7) takes on a form identical to the
PO update in (2.7). We further define the mean-field EKI update

Ul = u, + P(CP,CP)(y - Gu,) —1,), 1<n<N, (3.8)

which is the update that would be performed if one had access to the population quantities C*” and C?? or,
equivalently, to an infinite ensemble. We will analyze the approximation of the update (3.7) to the mean-
field update (3.8) in Subsection 3.3. The study of mean-field ensemble Kalman methods of the form (3.8)
was proposed in [45] and is overviewed in [19]. While mean-field algorithms are not useful for practical
implementation, they facilitate a transparent mathematical analysis that can provide understanding on
the performance of practical ensemble approximations. Desirable properties of mean-field algorithms
include convergence to the desired target in a continuous-time limit [20], a gradient flow structure [37]
or the ability to approximate derivative-based optimization algorithms [21]. The transfer of theoretical
insights from mean-field algorithms to particle-based algorithms tacitly presupposes, however, that the
ensemble is large enough for ensemble-based updates to approximate well idealized mean-field updates.
In this direction, [27] establishes a O(N~'/?) rate for an approximation of a mean-field evolution
equation in terms of the ensemble size N. Our first main result of this section, Theorem 3.5, will show
that the mean-field update (3.8) can be well approximated with the EKI update (3.7) with a number
of particles of the order of the effective dimension of the problem, which is defined as for posterior-
approximation algorithms.

3.1.2 LEKI update In practice, ensemble-based algorithms are often implemented with N < d,
that is, with an ensemble that is much smaller than the state dimension. In this setting, the update is
augmented with an additional localization procedure applied to C in the case of linear forward model,
and to both CP? and C* in the case of a nonlinear forward model. In either case, localization is seen
as an approach to deal both with the extreme rank deficiency and the sampling error that arise from
using an ensemble that is significantly smaller than the dimension of the state and/or the dimension
of the observation; see, for example, [35,49,50]. Localization is also useful when the state u, or the
transformed state G(u), has elements E(i) and E(j) that represent the values of a variable of interest
at physical locations that are a known distance d(i,j) apart: correlations may decay quickly with the
physical distance of the variables and localization may help to remove spurious correlations in the sample
covariance estimator. In ensemble Kalman methods, localization has most commonly been carried out
via the Schur (elementwise) product of the estimator and a positive-semidefinite matrix M of equal
dimension. In the vast majority of cases, the elements of M are taken to be M,-j = k(d(i,j)/b), where

k is a locally supported correlation function—usually the Gaspari Cohn 5M-order compact piecewise
polynomial [38]—and b > 0 is a length-scale parameter chosen by the practitioner. Since « tapers off
to zero as its argument becomes larger, i.e. when the underlying variables are further apart, the Schur-
product operation zeroes out the corresponding elements of the estimator, and the rate at which this
tapering occurs is controlled by the size of the length-scale. The LEKI, recently studied in [97], replaces
both C” and C* with their localized counterparts, M, o C”” and M, o C*’, where M, and M, are
localization matrices of appropriate dimension. Two important issues have, in our opinion, hindered
the rigorous study of localized ensemble algorithms, and we highlight these next before moving on to
introduce our localization framework:

1. Optimality: The justification outlined above for localization in the ensemble Kalman literature
has been largely heuristic, and relying on these arguments alone one cannot hope to define
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16 O. AL-GHATTAS AND D. SANZ-ALONSO

a localization procedure that is demonstrably optimal. Notably, the widespread usage of the
Gaspari-Cohn correlation function is not rooted in any sense of optimality. Generally, focusing
solely on a band of entries near the diagonal is a sub-optimal approach to covariance estimation,
as noted in the high-dimensional covariance estimation literature; see, for example, [8,23,68].
Moreover, even in cases where focusing on elements near the diagonal is justified, for example
by assuming that the underlying target is a banded matrix, the bandwidth » > 0 must be chosen
carefully as a function of the ensemble size, problem dimension, and dependence structure [7].
This type of analysis has, to the best of our knowledge, not been carried out for the Gaspari—
Cohn localization scheme. An important message in the covariance estimation literature is that
localization—regardless of how it is employed—can only be optimal if the target of estimation
itself is sparse, and such sparsity assumptions must be made explicit in order to facilitate a rigorous
mathematical analysis of the procedure. The difficulty of optimal localization in ensemble updates
has also been highlighted in [36], where the authors derive an optimal localization matrix M under
the unrealistic assumption that C is a diagonal matrix.

2. Schur-Product Approximations: In the literature on ensemble Kalman methods, a consensus has
not been reached on how best to apply localization in practice. The issue here can be sufficiently
described by deferring to the linear forward-model setting, i.e. G(u) = Au, in which the Kalman
gain is a central quantity. As mentioned for example in [49], in a localized update, the Kalman
gain operator should in theory be applied to M o C, i.e. one should study the quantity

H(MoC)=MoOAT(AMoO)AT + 1),

although their experimental results are based on the more computationally convenient approxi-
mation

H(MoC)~ (Mo (CAT)) (Mo (ACAT) + 1), (3.9)

which, as they mention, is a reasonable approximation in the case that A is diagonal. Subse-
quently, much of the literature on localization in ensemble Kalman updates has adopted this or
similar approximations, as discussed in greater depth in [78, Section 3.3]. In general, however,
approximations made on the Schur product are difficult to justify without strong assumptions on
the forward model G.

With these issues in mind, we opt to study an alternative, data-driven approach to localization often
employed in the high-dimensional covariance estimation literature [7,17,18], where it is referred to as
thresholding. We ground our analysis in the assumption that the target of estimation belongs to the
following soft sparsity matrix class:

dy
Uy, a,(@-Ry) = IB e RN*% . ?i?,fz B < R,,], (3.10)
=dr 4

where ¢ € [0,1) and Rq > 0, and write %,(q, Rq) in the case d; = d, = d. In the special case
q = 0, matrices in %, 4,(0,R;) possess rows that have no more than R, non-zero entries—a special
case of which are banded matrices—which is the classical hard-sparsity constraint. In contrast, for
q € (0, 1), the class %dl PACE Rq) contains matrices with rows belonging to the £ q ball of radius RZ. This
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includes matrices with rows that contain possibly many non-zero entries so long as their magnitudes
decay sufficiently rapidly, and so is often referred to as a soft-sparsity constraint. Importantly, the class
,(q, R,) is sufficiently rich to capture the motivating intuition that correlations decay with physical
distance in a rigorous manner that avoids the optimality issues mentioned above. Structured covariance
matrices, such as those belonging to % 4 (q, R,) are optimally estimated using localized versions
of their sample covariances. To this end, we study the localized matrix estimator B, = L, (B),
where £, (u) = uly, >, 18 a localization operator with localization radius py, and which is applied
elementwise to its argument B. In Section 3, we detail how the localization radius p, can be chosen
optimally in terms of the parameters of the inverse problem (1.1) and the ensemble size N.

Throughout our analysis, we refrain from using approximations such as the one outlined in (3.9);
that is, our analysis of localization replaces all non-localized quantities in the original update (3.7) with
their localized counterparts. We introduce the LEKI update:

vl =u, + 2CL CP Y (y—Gw,) —1,). 1<n<N, (3.11)

PN,1° T PN2

where py ; and py, are two, potentially different localization radii. As in the non-localized case, in
Subsection 3.3 we provide finite sample bounds on the deviation of the LEKI update from the mean-
field update of (3.8), and describe in detail how the additional structure imposed on C*” and CPP
leads to improved bounds relative to the non-localized setting. Our second main result of this section,
Theorem 3.7, will be based on new covariance estimation bounds that may be of independent interest,
and on a suitable notion of effective dimension that we introduce in Subsection 3.2. Our theory explains
the improved sample complexity that can be achieved by simultaneously exploiting spectral decay and
sparsity of the covariance model.

An important issue that warrants discussion is that of positive-semidefiniteness of the estimator
EPN when the target B is a square covariance matrix. In the case of the Schur-product estimator, any
localization matrix M derived from a valid correlation function « is guaranteed to be positive-semidefinite
by definition [38], and so by the Schur-product Theorem [46, Theorem 7.5.3] the estimator M o Bis

positive-semidefinite as well. In contrast, the localization operator £, thresholds the sample covariance
B elementwise and does not in general preserve positive-semidefiniteness. As discussed in [18,29],
EPN is positive-semidefinite with high probability, but in practice one may opt to use an augmented
estimator that guarantees positive-semidefiniteness. We describe this estimator here for completeness:

= d 2 T . .. =y . .
let B, = Z/’=1 Avjv; be the eigen-decomposition of B, , so that A;,v; are the jth eigenvalue and

LA
eigenvector of B, . Consider then the positive-part estimator B;FN = 24:1 O v Aj)vjvj.T. Clearly then,

j
B;N is positive-semidefinite, and furthermore it achieves the same rate as B, since

1B}, — Bl < B}, —B,, |l + 1B, — Bl < max A; = X+ IB,, — Bl <2||B,, — B
-

where ; is the jth eigenvalue of B. In light of this fact, we abuse notation slightly and assume that B,
is positive-semidefinite throughout this work.

3.2 Dimension-free covariance estimation under soft sparsity

For the covariance estimation problem under (approximate) sparsity, there are estimators that signifi-
cantly improve upon the sample covariance. In particular, [103, Chapter 6.5] notes that for sub-Gaussian
data the operator-norm covariance estimation error depends logarithmically on the state dimension d
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18 O. AL-GHATTAS AND D. SANZ-ALONSO

for localized estimators, while the error depends linearly on d for the sample covariance. If no sparse
structure is assumed, the effective dimension r, defined in (2.11) characterizes the error of the sample
covariance estimator, as described in Proposition 2.1. We introduce an analogous notion of effective
dimension that is more suitable than r, in the sparse covariance estimation problem, termed the max-log
effective dimension and which, for Q € S¢, is given by

max;_, Q) log(j + 1)

ro(Q) = 0
M

s

where Q1) = Q) = ... = Q) is the decreasing rearrangement of the diagonal entries of Q. To the
best of our knowledge, this notion of dimension has not been previously considered in the literature,
and, as will be shown, refines the rate of covariance estimation under sparsity by incorporating intrinsic
properties of the underlying matrix, albeit differently to (2.11). In particular, . (Q) is small whenever Q
exhibits a decay of the ordered elements Q;), Q(y), - . . thatis faster than log(j+ 1). We use the subscript
oo to highlight that the quantity r_ is related to the dimension-free sub-Gaussian maxima result of
Lemma B.6. Similarly, we use the subscript 2 to draw the connection between r, and the sub-Gaussian
2-norm concentration of Theorem A.l. Importantly, bounds based on r_, will be dimension-free, in
the sense that they exhibit no dependence on the state dimension d. The next result is our analog of
Proposition 2.1 for estimation under sparsity using the localized sample covariance estimator. Recall
that C(; denotes the largest element on the diagonal of C, /C\‘pN =L oy (Z‘) denotes the localized sample
covariance matrix and %, (q, Rq) is the sparse matrix class defined in (3.10). All proofs in this subsection
have been deferred to Appendix B.1.

THEOREM 3.1. (Covariance Estimation with Localization—Soft Sparsity Assumption) Let u,, . .., uy be
d-dimensional i.i.d. sub-Gaussian random vectors with E[u;] = m and var[u;] = C. Further, assume
that C € %,(q, Rq) for some g € [0, 1) and Rq > 0. For any 7 > 1, set

r . (C) tr(C) t t
pN*%( N VOOTV\/;VN)

and let 6/)1\/ =L on (6pN) be the localized sample covariance estimator. There exists a constant ¢ > 0

such that, with probability at least 1 — ce™,

-~

1—q
IC,, — Cll S R oy .

REMARK 3.2. (Max-Log Effective Dimension) The proof of Theorem 3.1 can be found in Section B.1
and, up to the choice of py;, follows an identical approach to the standard proof for localized covariance
estimators in the literature, for example [103, Theorem 6.27]. The result depends crucially on the order
of the maximum elementwise distance between the sample and true covariance matrices, ||6 — Cll max
which is where our analysis differs from the exiting literature. Our proof utilizes techniques in [57]
combined with the dimension-free sub-Gaussian maxima bound of Lemma B.6 to obtain a bound in
terms of r. In the worst case, for example when C = cl; for some constant ¢ > 0 so that the ordered
diagonal elements of C exhibit no decay, we recover exactly the standard logarithmic dependence on the
state dimension. In particular, when N > r_(C)(= log d), Theorem 3.1 matches the result for recovering
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C in operator norm in the sub-Gaussian setting over the class %,(q, Rq), as shown in [7, Theorem 1].
If the ordered variances exhibit sufficiently fast decay, our upper bound is significantly better. (Recall
that in many applications d ~ 10° and N ~ 102, and so the logarithmic dependence on d may play
a significant role in determining a sufficient ensemble size.) Importantly, many of the results in the
structured covariance estimation literature rely similarly on the maximum elementwise norm, and so our
results can be utilized to achieve refined bounds on the estimation error of the localized estimator under
structural assumptions on C that differ from the soft-sparsity assumption considered in this work.

A result analogous to Theorem 3.1 holds for cross-covariance estimation under sparsity. For a formal
statement we refer to Theorem B.11 whose proof is based on a deep generic chaining bound for product
empirical processes [74, Theorem 1.12]. Here we present a cross-covariance estimation result that is
specific to the LEKI setting in that it relies on a smoothness assumption on the forward model.

THEOREM 3.3. (Cross-Covariance Estimation with Localization—Soft Sparsity Assumption) Let
uy,...,uy be d-dimensional i.i.d. sub-Gaussian random vectors with E[u;] = m and var[u;] = C.
Let G : R? — R* be a Lipschitz continuous forward model and assume that C* € Uq (g, R,,) and
crt e Ui a(qr,R,,) where g1, g, € [0,1) and R, , R, are positive constants. For any 7 > 1, set

qr’
t (1 ro(©) [r(CPP)
on = €y v EDI 5V 5 ) (Vi@ v Vs @) v/ o J =)
and let 65{,’ =L, (C*P) be the localized sample cross-covariance estimator. There exist positive

universal constants ¢, ¢, such that, with probability at least 1 — cle_”2’ s

= 1- 1-
up __ ~up q1 q2
IC = C™I S Ryyoy ™V Ry

REMARK 3.4. (Sparsity of the Cross-Covariance) To the best of our knowledge, estimation of the cross-
covariance matrix under structural assumptions has not been a point of focus in the literature. Indeed,
one may implicitly estimate the cross-covariance by applying Theorem 3.1 to the full covariance matrix

c cw
ol el 4

of the sub-Gaussian vector [u',Gw)"]", and extracting a bound on ||C/'f,‘f,7 — C"P||. This approach
however requires one to place sparsity assumptions on the full covariance matrix, making the result
potentially less useful in practice. That is, one may wish to make structural assumptions on C*? and CPP
without imposing any restrictions on C, which our result allows for.

3.3 Main results: approximation of mean-field particle updates with finite ensemble size

In this subsection, we state finite ensemble approximation results for EKI and LEKI updates. The main
results, Theorems 3.5 and 3.7, showcase the dependence on the effective dimension of C and CPP for
EKI and on the max-log dimension of these matrices for LEKI. For both algorithms, we study the
update of a generic particle u, and the analysis is carried out conditional on both u, and the noise
perturbation 7,,.
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20 0. AL-GHATTAS AND D. SANZ-ALONSO

THEOREM 3.5. (Approximation of Mean-Field EKI with EKI—Operator-Norm Bound) Let y be gen-
erated according to (1.1) with Lipschitz forward model G : R? — R*. Let v, and v} be the EKI and
mean-field EKI updates defined in (3.7) and (3.8), respectively. Then, for any ¢ > 1, there exists universal
positive constants ¢, ¢, such that, with probability at least 1 — cle_CZt ,

C C crr crp t
lv, —vylly < ¢ C—zv,/rz( VR )v,/rz( UVEL1 )v\/jvi :
N N N N N N N

where ¢; = ¢;(ly = G(w,) — nylly, [T L ICILICIL ICPP) and for u ~ N(@m,C), ¢, =
eyl llys llmlly, 1G ). IEIG ()])-

REMARK 3.6. (Dependence of Constants on Model Parameters) The proof of Theorem 3.5 in Appendix
B.2 gives an explicit expression for the dependence of c on its arguments. These bounds may be used
to establish the sufficient ensemble size to ensure that the EKI update approximates well the mean-field
EKI update in the unstructured covariance setting.

THEOREM 3.7. (Approximation of Mean-Field EKI with LEKI—Operator-Norm Bound) Let y be
generated according to (1.1) with Lipschitz forward model G : R? — RK. Assume that C*% ¢
Uyp(q,,R,), CP € %d(qz,R ) and CPP € % (q3,R,,) for g, 45,45 € [0, 1), and positive constants
qu’qu’ . Let v and v be the LEKI and mean-field EKI updates outlined in (3.11) and (3.8)
respectlvely For any ¢ > 1, set

C crw
PN1 = Pya < jv_l +(Cqpy v Cﬁ’;)((liv % /%) (\/roo(C) % \/roo(CpP)) % \/rool\(/ )\/rOO(N )),
and
( [r ) \/7 (CPP))
PN3 = o (1) ’

where ¢; = ¢,y lloos 1Ml so: 1G.t,) oo IEIG@)]llg) and ¢ = ¢, (1G 1, oo, IEIG )] o0). with
u ~ N(m,C). There exist positive universal constants c3, ¢, such that, with probability at least 1 —
C3€_C4t,

0 * l—qi q2 1—q3
”Un — U, ”2 < Cs(RqIPNJ \% qupNZ Vv Rq3,ON,3 ),

where cs = ¢s(Ily — G(w,) = n,llp 1T, 1CH2).

REMARK 3.8. (Dependence of Constants on Model Parameters) The proof of Theorem 3.7 in Appendix
B.2 gives an explicit expression for the dependence of ¢ on its arguments. As discussed in Remark
3.6, these bounds may be used to establish the sufficient ensemble size to ensure that the LEKI update
approximates well the mean-field EKI update in the structured covariance setting.
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REMARK 3.9. (On the Soft-Sparsity Assumptions) Importantly, Theorem 3.7 makes no assumptions on
the covariance matrix C, and so can be used even in cases where C is dense, but the covariances C*P,
CP* and CPP can be reasonably assumed to be sparse. In the case that sparsity assumptions on C are
appropriate, then an interesting question is: what (explicit) assumptions on G ensure sparsity of C*P,
CP* and CPP? We provide here two simple arguments that may provide some insight. Throughout,
C1,Cy,Cy,Cy, C5 are arbitrary positive constants independent of both state and observation dimensions
dand k,and g € [0, 1):

1. Suppose C € %,(q.c,) and E[DG]" € U, x(q, c;). Then there exists c3 such that C* €
%d,k (g, c3). We provide a formal statement of this result in Lemma B.14. Similarly, if E[DG] €
U.4(q> cy), then there exists c5 such that CP" € % ,(q,cs). The assumptions on the expected
Jacobian E[DG] can be understood as the requirements that, in expectation:

a. Any coordinate function gj of G depends on its input u only through a subset of u whose size
does not grow with k nor d.

b. Any state coordinate u; of u is acted on only by a subset of the coordinate-functions of G whose
size does not grow with k nor d.

For example, a Jacobian that is banded in expectation would satisfy these two properties.

2. Suppose C € %, (g,c;). Then there exists ¢, such that C?? € %, (q,c,) whenever G(u) = Au
is a linear map with A € % (¢, c3) and AT € Uy 1(q,cy), 1. whenever A has both rows and
columns that are sparse. This condition holds, for example, for banded A. We provide a formal
statement of this result in Lemma B.16.

The two arguments above indicate that if G acts on local subsets of u, which holds for instance for
convolution or moving average operators, then one can expect the sparsity of C to carry on to C*?, CP*,
and CPP.

REMARK 3.10. (Comparison to the Literature) Although the focus of this subsection is the LEKI, it is
useful to compare our Theorems 3.5 and 3.7 to existing results for the performance of ensemble based
algorithms with localization. In this regard, our results are closest to those of [94], which shows that an
ensemble that scales with the logarithm of the state dimension times a localization radius suffices for
good performance of the localized EnKF (LEnKF). They study performance over multiple time steps
and linear dynamics under a stability assumption which enforces control over the model matrices as
well as a sparse (¢ = 0) structure of the underlying true covariance matrices. They consider domain
localization whereas we study covariance localization. In contrast to our results, [94] employs covariance
localization and utilizes a Schur-product localization scheme in which elements whose indices are
beyond a certain bandwidth are set to zero, whereas we study localization via thresholding (recall our
discussion comparing these two approaches in Subsection 3.1.2). Consequently, our required localization
radius is in terms of the max-log effective dimension whereas theirs is in terms of the bandwidth of
the underlying covariance matrix. Our results are dimension-free in that they do not rely on the state
dimension d, and so as noted in Remark 3.2, our bounds can have significantly better than logarithmic
dependence on dimension. Our setting also differs from [94] in that our dynamics are allowed to be
nonlinear, and our prior ensemble can be sub-Gaussian as opposed to Gaussian. Related to this point
is that the analysis in [94] does not account for noise introduced from adding perturbations to the
ensemble update, which is justified by a law of large numbers argument; however in the non-asymptotic
and nonlinear settings, it is likely that one must account for this noise especially when considering the
covariance between the current ensemble and the perturbation noise at a given iteration of the algorithm.
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We view it as an important avenue to extend the results of this subsection to a multi-step analysis, and
a particularly important question is whether dimension-free control of the LEnKF can be rigorously
shown utilizing a combination of our results and those of [94]. The LEKI has also been recently studied
in [97] under a nonlinear, multi-step setting. The authors study convergence of the iterates to a global
minimizer and the rate of collapse of the ensemble. They argue that localization is a remedy for the
‘subspace property’ of the EKI, which refers to the fact that ensembles at any given iteration live in the
linear subspace spanned by the initial ensemble, which cannot capture the true state if N < d. Their
analysis differs from ours in that they study the continuous-time setting whereas we analyze discrete
time updates as implemented in practice. Further, while they discuss that the size of the ensemble may
be much smaller than the state dimension, as well as illustrate this with simulations, they do not provide
an explicit characterization of the sufficient ensemble size. Our results also show that the LEKI is close
to the mean field version of the problem, which is not considered in their set-up. An interesting open
question is whether the results of this section can be used in conjunction with results in [97] to provide
a sufficient ensemble size for LEKI over multiple iterations.

4. Conclusions, discussion and future directions

This paper has introduced a non-asymptotic approach to the study of ensemble Kalman methods. Our
theory explains why these algorithms may be accurate provided that the ensemble size is larger than a
suitable notion of effective dimension, which may be dramatically smaller than the state dimension due
to spectrum decay and/or approximate sparsity. Our non-asymptotic results in Section 2 tell apart PO and
SR updates for posterior approximation, and our results in Section 3 demonstrate the potential advantage
of using localization in sequential-optimization algorithms.
As discussed in Subsection 3.1.2, localization is also often used in posterior-approximation algo-
rithms. For instance, one may define a localized PO update by
f = ///im, CpN)/\_ H(C, )0, @
X=%(C,)+0

PN’

where O oy 18 defined replacing Cwith C oy i (2.8). Similarly, one may define a localized SR update by

M@, C,).

i

T =%(C,).

“4.2)

It is then natural to ask if localized PO and SR updates can yield better approximation of the posterior
mean and covariance than those without localization in Theorems 2.3 and 2.5. The answer for the
posterior mean seems to be negative.

To see why, consider for intuition that we are given a random sample X, ..., Xy from a normal
distribution with mean X and covariance XX with the objective to estimate xX. Standard results, see e.g.
[60, Example 1.14], show that the sample mean X is minimax optimal for £,-loss regardless of whether
or not X% is known. In other words, the minimax rate of estimating 4% can be achieved without making
use of information regarding 2. It follows then that placing assumptions on X% can lead to impressive
improvements in the covariance estimation problem (as shown in Section 3) but cannot be expected to
affect the mean estimation problem. Similarly, in our inverse problem setting, sparsity assumptions on
the prior covariance C cannot be expected to translate into a better bound on ||IZ — ||,: this quantity
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is a function of both the covariance deviation ||6PN — C|| and the prior mean deviation ||m — m||, and
since the latter is unaffected it dominates the overall bound, yielding an error bound of the same order
as that in Theorem 2.3. As discussed in Remark 2.7, a potential avenue for future investigation is to
utilize techniques introduced in this manuscript to study alternative localization schemes in the posterior
approximation setting, such as domain localization considered in [94]. In short, covariance localization
as defined in (4.2) does not lead to improved bounds for the posterior-approximation problem.

Similar issues to those arising in the estimation of the posterior mean affect the analysis of the
localized offset O oy and we therefore do not expect improvement on the bound in Theorem 2.5 for
covariance estimation with the localized PO update. We note, however, that for localized SR it is possible
to derive an analog to the high probability version of Theorem 2.5 (see Theorem A.9) with an improved
error bound, which we present in Theorem C.2.

Our discussion here should not be taken to imply that localization in posterior-approximation
algorithms is not useful; it is plausible that localization in one step of the algorithm can lead to improved
bounds in later steps, and we leave this multi-step analysis of localized posterior approximation ensemble
updates as an important line for future work. A related phenomenon is known to occur in sequential
Monte Carlo, where a proposal density that may be optimal for one step of the filter may not be optimal
over multiple steps [1]. Another interesting direction for future study is the non-asymptotic analysis
of ensemble Kalman methods for likelihood approximations in state-space models [24]. Finally, we
envision that the non-asymptotic approach set forth here may be adopted to design and analyze new
multi-step methods for posterior-approximation and sequential-optimization in inverse problems and
data assimilation.
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Appendix

We provide proofs of all theorems in the main body. We will use the following result extensively and

summarise it here for brevity. Given events E|, . . ., E; that each occur with probability at least 1 — ce™,

t
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where t > 1 and ¢ > 0 is a universal constant that may be different for each event, then

J J J
P{NE|=1-PJE|=1-D PE)>1-ce".
j=1 j=1 j=1

A. Proofs: Section 2

This appendix contains the proofs of all the theorems in Section 2. Background results on covariance
estimation are reviewed in Subsection A.l and the continuity and boundedness of the Kalman gain,
mean-update, covariance-update and nonlinear gain-update operators are summarized in Subsection A.2.
These preliminary results are used in Subsection A.3 to establish our main theorems.

A.1 Preliminaries: concentration and covariance estimation

THEOREM A.l. (Sub-Gaussian Norm Concentration, [102, Exercise 6.3.5]) Let X be a d-dimensional
sub-Gaussian random vector with E[X] = ,uX , var[X] = XX. Then, for any ¢t > 1, with probability at
least 1 — ce™" it holds that

IX = 1511y S VTRE) + /12X S IZX (%) v .

Proof of Proposition2.1 Forn=1,...,N,letu, = Z,4+m, where Z, is a centered sub-Gaussian random
vector with var[Z,] = C. Then we may write

N N
al 1 ~ T 1 T 77T _ v dl
Czﬁnz_l(zn—Z)(Zn—Z) Aﬁnz_]znzn —-7272"=c-277".

Therefore,

- -~ 55 =~ =2
IC—Cll < IC°—ClI +1ZZ"|| = IC° — C|l + 1ZI|>.

Let E; denote the event on which

12—l < ||C||(,/@vﬂv\/zvi),
N N N N

and E, the event on which

=.2 r2(C) t
Zll, < |IC v—].
1Z1l, <l II( N N
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Then by Theorem 9 of [57], P(E|) > 1 — e~ !, and from Theorem A.1, PE,) >1— e~ !. Therefore, the
result holds on E| N E,, which has probability at least 1 — ce™". O

LemmA A.2. (Sample Covariance Operator Norm Bound) Let uy, . . ., uy and Chbeasin Proposition 2.1.
Then, for any ¢ > 1, it holds with probability at least 1 — ce™" such that

—~ C t
ICI < lcll (1 v 29, —).
N N

Proof. By the triangle inequality ||6|| < ||6 — C|| + |IC||. The result follows by Proposition 2.1 noting

that, forany x > 0, 1 V /xVx =1V x. O
LEmMMA A.3. (Cross-Covariance Estimation—Unstructured Case) Let uy, . . . , u be d-dimensional i.i.d.
sub-Gaussian random vectors with E[u;] = m and var[u;] = C. Let n,, ..., ny be k-dimensional i.i.d.

sub-Gaussian random vectors with E[;] = 0 and var[n;] = I", and assume that the two sequences are
independent. Consider the estimator

N
—~ 1 ~ _
c" = No1 E (w, —m)(n,, — e
n=1

of the cross-covariance C*'! = IE[(u1 — m)n]—]. Then there exists a constant ¢ such that, for all 7 > 1, it
holds with probability at least 1 — ce™" that

I — i < il v ||r||)(,/’2(c) v 2O, [0 nd) \/Zv i).
N N N N N N

Proof. First, we note that

N

o N—1{1 R ) N—1-
C" = T(]T] Z(un—m)(nn - U)T)E TCW/,

n=1

and so it suffices to prove the claim for the biased sample covariance estimator, which we denote by cu,
Letting Z, = u,, — m, it follows that

N
~ 1 _ _
Ic | = HNE Zy, —Z7' | < +1Z7 ). (A1)
n=1

X

.

N 2
n=1
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For the second term in the right-hand side of (A1), let E| denote the event on which

71, < r(©) i)
||Z||2N\/||C||( N VN ,

and E, the event on which

r t
il < \/nrn (rzl(v N ﬁ),

each of which have probability at least 1 — e~ from Theorem A.1. Therefore, the event E; N E, occurs

with probability at least 1 — ce™, and on which it follows that
r5(C) v ry(IM) v i),
N

Zi' = 1ZIL 70, < (ICl v IIT
1Zn" I = 1ZllI7l, S AICH vl II)( N N

where the inequality follows since /ab < a Vv b for a,b > 0. To control the first term in the right-hand
side of (A1), we define the vector

and note that W,..., Wy is an i.i.d. sub-Gaussian sequence with E[W,] = [mT,Ol—cr]T and variance
CV = diag(C, I"). Let E5 denote the event on which

W w
<y (W cLaRav L )
<qepvirp(( /=29 [T, O+ T ) \/Z i
~ el Ty )Y sacivirn VN Y N

C F C I
5<||C||v||r||>((\/r21(v) zj(v) v(”( ), ))v(ﬁv;))
( (0 rz(C) () | ) tvt)

o)

N
1
v ZW,,W,lT yelid

n=1

s dcivirn v

N N N N

By Proposition 2.1, it holds for any # > 1 that P(E5) > 1 — e~!. Note that we can express

N —1 5N -1 N
=gl =[G 7= [ s ]
n=1 ! or N~ Zn:l nnZn N~ Zn:l Ml — r
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and that

= IE[ | PE | < IE TIPHIE I = 1P

N

-

N 2 2,
n=1

where E|, E;, are block selection matrices that pick the relevant sub-block matrix of P. Therefore, it
holds on E; that

N

1S, n©  n©  [nd) ) \/Z I
N 2P 5<||C||v||r||>(,/ vy [ Iy NVN)_

The final result follows by noting that the intersection E; N E, N E; has probability at least 1 — ce™".0]

A.2  Continuity and boundedness of update operators

The next three lemmas, shown in [59], ensure the continuity and boundedness of the Kalman gain, mean-
update, and covariance-update operators introduced in Section 2. We include them here for completeness.
Lemma A.7 below establishes similar properties for the nonlinear gain-update operator introduced in
Section 3.

LeEMMA A.4. (Continuity and Boundedness of Kalman Gain Operator [59, Lemma 4.1 and Corollary
4.2]) Let 2% be the Kalman gain operator defined in (2.2). Let P, Q € S84, r e S_’;+ and A € RF*_ The
following holds:

I£(Q) — A (P)| < IIQ—PIIIIAIIIIIVIII(1 + min ([|P]l, 121D IIAI|2||F71II),

I @I < lQIAINT ",
I — 2 (@Al <1+ IOIIAIPIT.

LeMMA A.5. (Continuity and Boundedness of Mean-Update Operator [59, Corollary 4.3 and Lemma
4.7]) Let .# be the mean-update operator defined in (2.3). Let P, Q € S84 re SLF, A € Rkxd y € Rk
and m,m’ € RY. The following holds:
Il (m, Q)| < llmll + IQIIAINT "y — Amll,,
|t (m, Q) — A (', P)| < |lm—m| (1 + JAIZIT " 1IQN)

+ 10 = PIIANIT =M I+ APPSR [y — Amd |,

LeEMMA A.6. (Continuity and Boundedness of Covariance-Update Operator [59, Lemma 4.4 and Lemma
4.6]) Let € be the covariance-update operator defined in (2.4). Let P,Q € S r e SLF, A € Rkxd
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y € R* and m, m’ € RY. The following holds:

1€ — &Pl < 10— PI(1+ 1AM IAQH+ IPD + AT 17 P QNP ),
0<% <0
1@l = Il

LEmMA A.7. (Continuity and Boundedness of Nonlinear Gain-Update Operator) Let & be the nonlinear
gain-update operator defined in (3.5). Let P, P € Rk 0,0 ¢ S_’; and I" € S_’i - The following holds:

12P.0) — @O < IF~1P =Pl + 1717 IPIIC - Ol
12®, o) < IT~1IPI+ 1T 1P 1oll.

Proof. The proof follows in similar style to Lemma 4.1 in [59]. We note that

IPQ+ ) —PQ+ ) <IIPQ+T)" —PQ+D)H+IPQ+T) —PQ+ )7
<|IPIN@+ D) =@+ D)7+ 1P =PlIIIQ+ D).

Since I' > 0 and Q > 0, it holds that Q + I" > I" and so (Q + F)_l < I'"!, which, in turn, implies

1(Q + M~Y < ||Ir~Y|. Further,

Q@+ =@+ D)= 1r 2= 2er="2 + n=' — (r=\2or="2 + n='1r=12
<r-ta=2er=2 + =t — (r=12or=12 4 n7Y
<\r=hr e — p o

<1r1*1e - o,

where the second to last equality follows by the fact that ||(/ + A'—a+B Y <|B-A | forA,B €
Sﬁ. To prove the pointwise boundedness of &2, take P to be the d x k matrix of zeroes, and Q to be the
k x k matrix of zeroes, and plug these values into the continuity bound. O

A.3  Proof of main results in Section 2

THEOREM A.8. (Posterior Mean Approximation with Finite Ensemble—High Probability Bound) Con-
sider the PO and SR ensemble Kalman updates given by (2.7) and (2.9), respectively, leading to an
estimate [t of the posterior mean u defined in (1.2). Set ¢ = 1 for the PO update and ¢ = O for the SR
update. Then there exists a constant ¢ such that, for all # > 1, it holds with probability at least 1 — ce™’
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that
17— wlly S ACH v ICIDAALV AT ATV I 1AV 1y — Amily)
X (‘/M \Y \/Zv (ﬁ)w2 v (1)3/2 Y M\/Zv,/ Mi)—ﬂbé@,
N N N N N N N N
where

r C r 0) |t r 13/2
gﬂwwwme@%ﬁwffﬁ)%*ﬂﬁﬁNQWVVG))

Proof. Tt follows from Lemma A.5 that

I — lly = |4 (1, C) — ¢ (C)ij — A (m, Ol
< |l.# @, C) — A (m,C) |, + ¢ll# (O)iill,

< I = mly (1+ 1AIRIT 11C) (A2)
2 -1 2 -1

+ 1T = AT (1 + BAIRIE T ICH ) Iy = Aml, (A3)

+ 1 Ol I7ll- (A4)

We now control each of the terms in equations (A2), (A3) and (A4) separately. For (A2), we note that
m—m~ N (0,C/N). Let E| be the set on which

~ 7,(C) t
73— mll, < /ucn (27 v 1‘v)’

let E, be the set on which

Ic—ci<icl (,/@ v 29 \/Zv i)
N N N N

and

—~ C t
@< (iv 29y 1Y,
N N
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and let E5 be the set on which

r t
il < \/nrn (“](V—) v N)'

From Theorem A.1, Proposition 2.1 and Lemma A.2, the set E = E; N E, N E; has probability at least
1 — ce™, and it holds on this set that (A2) is bounded above by

12 32 2y 1 r,(C) \/Z (rz(c))3/2 1332

AICI2 VI v AP T ||)(\/—N vWeiv(E©) viE) v
SN IR
N N N N

Further, on the set E, we can bound (A3) above by

’ 3 ) 1,2 r(C)  1r,(C) \/7 t
arci v e )(IIAIIVIIAII)(IIF Ivir II)IIy—AmII(\/ v VY Nvﬁ)' (A6)

Finally, for (A4), it follows from Lemma A.4:

Il Ol < 1AC el

and so on the set E, we can show that (A4) is bounded above by

3/2
i IR (,/’2(” v Ly 2O o 2O jL, LD, (1) / )E E. (A7)
N N N N N N N N N

Putting the three bounds (A5), (A6) and (A7) together, we see that on E, it holds that

—~ _ 1.2
17— wll, S A2 VIS AAILV AN AT v 1T~ A vy — Amlly)

X( [r,(O) V\/ZV (rz(c)).%/zv(i)wzv rz(C)\/ZV /rz(C)i)
N N UN N N VN N N

+ ¢E.
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Proof of Theorem 2.3 Recall that from Theorem A.8, for all ¢ > 1 with probability at least 1 — ce™,

17— wlly S ACH v ICID ATV A AT TV I 1AV Dy — Amily)
X (\/@v (w)m v]Liv (i)3/2 v w\/zv \/@i) + ¢&.
N N N N N N N N
For notational brevity, let
W = (ICIY2 v ICIP ALV A AT 1T AV Ly = Amlly),

3/2
and let B = W( rZ(C) Vv (rZ(C)) ) Then, for¢ =0andp > 1,

o0
E[I% — nl5] =p/0 PR = plly > x)dx
B o]
SP/ xl’*ldx+p/ PP = lly > x)dx
0 B
Nx? Nx*3 N322 N3/%x
< B+ / ¥ ex min , , dx
p p( (WZ W?2/3 W2I’ <)’ w /rZ(C)
L (WY 3p W
— BP 2y (L “r(Z£) (L
=3 (5) (75) 30 (3) (7))
1 0\’ WJrn©'Y
() (R9) o (P29 .
2" \» N3/2 N3/2
where the final equality follows by direct integration. It follows then that

1L 1 n© \/r2<c>)<c(p)3

_ 1
[El — wlb] & <B+C@)Wmax(f N3/2° N3/Z T N32

where the final inequality holds since r,(C) > 1. The result for the ¢ = 1 case is identical and thus
omitted. The constants in the statement of the result are then

_ 1.2
ey = ACI v cIHAAl v IAIH AT v Ir =5 a v lly — Amlly),

= A= 2icl.
O

THEOREM A.9. (Posterior Covariance Approximation with Finite Ensemble—High Probability Bound)
Consider the PO and SR ensemble Kalman updates given by (2.7) and (2.9), respectively, leading to an
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estimate X of the posterior covariance X' defined in (1.2). Set ¢ = 1 for the PO update and ¢ = 0 for
the SR update. For any ¢ > 1, it holds with probability at least 1 — ce™" that

I1Z = 21 S A v IS AAIR v IAIHAr v =%
r5(C) r(C)\? ! £\2
(\/TV (%) /5~ () )H’@”’

where

& = ALV AT 1V 1T~ B ACH v IFDACT v IETR)
X —rz(C) \ (—rz(C))3 \V i V (1)3 Vv _rz(F) Vv _Vz(F) 1v (_V2(C))2 V2 (1)2 .
N N N N N N N N

Proof. From Proposition 4 of [36], for the PO-ensemble Kalman update, we may write

> =%C)+0,

while for the SR-ensemble Kalman update, we have S = %(6). We deal initially with the %(/(:‘) term
that is common to both expressions, and then proceed to show how the operator norm of the additional
O term can be controlled. From Lemma A.6, the continuity of 4" immediately implies that

P —~ _ - —1,2 5~
1€ — €Ol = I = Cll (1+ IAIPIF (IS + I€1) + A1 e~ P Icnic)
— 1,2 - —
= [+ e wien] e - ciiel
+[1+1aPirten ] ie - i.
Forany N € Nand a > 0, let Zy(a) = \/% V - Let Eq be the set on which both

IC = CIl S ICI (Zy () v Zy(®) . and  [ICI S ICIl (1 V Zy(r2(0)) V By (1)) .

Let E, be the set on which

IE =TI ST (Zy(ra (D)) v Zy (1)
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and E; the set on which
IC* = C*U S AICI VT (Zy (12 () v Ry (ry (1)) ¥ By (D)) -
Then, by Proposition 2.1 applied separately to E; and E,, and Lemma A.3 applied to Ej3, the
intersection E = E; N E, N E; has probability at least 1 — ce™". It follows that on E:

IC = CIICI S ICI2 (N (2 (C)) v Zn @) (1 vV By (r2(C)) v B (1))

SICI (BN (r2(C) v By (0) v 35 (C) v 5 0)) (A8)
|2 = TIICI S NCPITI @y 21 v By @) (1v B () v B ,0)) (A9)

IC“" — CYIIICH S ICHAICH VTN (1 Zn (ra(C) V By (1)) (RN (r2(C)) v Zn (ra (1)) V N (1) 5
(A10)

1C = CMIIEN® S ICIRACV 1T (1V % 5(0) v B 50)) (A (r2(©) v A (r2(I1) ¥ By (1)
(A11)

Using (AS8), it follows that on E,

1E = SIS AV ICIAAIR v IAIHAT VT (B 0a(©) v v ) v 73 5(©) v 73 50)

_ 3 Al v AT (-1 12 [R© (O [T 12
= (i v I AAI v IAhar=i v ir ||>(\/ v (57) Wy v ()

Next, for the PO-ensemble Kalman update, it follows by the triangle inequality that

10l < I# (O — )2 T (©)] (A12)
+ It = 2 (©AC" 2T (O (A13)
+ 1 )€ - AT T O, (Al4)

and so we may proceed by bounding each of the three terms (A12), (A13) and (A14) separately. For
(A12), invoking first the bound on J#” from Lemma A.4 as well as the inequality in (A9), it holds on E
that

|4 @) — M T ©| < |4 O =
1022 A
< AR ICIP I - Iy

SIARIE PICIRIT I (o) v 2y 0) (1 v 5 2(0) v 5 0)
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38 0. AL-GHATTAS AND D. SANZ-ALONSO

Both (A13) and (A14) are equal in operator norm, and so we consider only (A13). We use Lemmas
A.4 and A.2, along with the inequalities (A10) and (A11) to show that on E,

I — 2 ©AC" 2T )| < |1 O — A OA[|IC*|
< 12 @1 (1+ 12 OlIA]) 1C]
< A=t e (1+ 1A= e e
S ALV IAPYAT v 17U + ISP e )
S AAIV IAPYAT v Ir~ et v Irndach v ici?
x (1 V By (s (C) V B 5 (C) V Ty (i) v %]%,’2(1‘))
X (Zy(ry(C)) v Ry (ry (1) V Ry (D)) -

Some algebra shows that

(1 v Gy (15(C)) v T 1 (C) NV Bp() v 9?,2%2(;)) (B (ry(C)) V By (ry (1) v Ty (1))
o [© (O [T 13 1O\ [ 1\2
_( N v( N ) \Y, ITJV(IV) V%N(rz(l“))(lv( N ) v(ﬁ) ,

and so

1011 S (Al v 1A A~ v I Bdch v irmact v i)

[ (C) (1O’ t £\3 O\ [1\2
x( N v( N ) \Y, NV(]T/) v%N(rz(F))(lv( N ) V(Z_V) .

0

Proof of Theorem 2.5 The proof follows similarly to that of Theorem 2.3 and is therefore omitted. The
constants in the statement of the result are as follows:

_ 1.2
ey = (ICI vV ICIPY AN v IAIH AT~ v =5,

¢y = (Al V IAID AT v 1P DACTV IFIDACH v IICl.

A4 Multi-step analysis of the square root ensemble Kalman filter

Here we provide a description of the multi-step EnKF algorithm discussed in Remark 2.7. As described

there, we focus on the square root EnKF studied in [59]. Given an initial ensemble {U,(,O) }2]:1, the

algorithm iterates the steps of the square root ensemble update (2.9) with new observations y and with
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TABLE A1 Comparison of the Kalman filter and square root EnKF considered in [59]. The forecast

and analysis steps are to be repeated fort = 1,...,T iterations
Kalman filter Square root EnKF
Input O,AO0 MOV @ 5O DO,A0, MOV i A (W@, 50y
uf,t) = M(t)v,(f_l), n=1,...,N
Forecast ~ m®¥ = M®p =D m® = LN D
CO = M® pE=Dpg0)T O — ﬁ Z;V:l(“g) — DY@ — T

U,(,t) = %(u’(lt)’/é(t)’A(t),y(t)’ F)’ n= 1’ s ’N
Analysis  p@ = .7 m®,CcO;AD O ) A =530 vy

2O —gCD;A0, ) 0 — ﬁ Zﬁ’:l(vlgf) _ ﬁ(’))(v,gt) T ONE

Output (n®, I {m®, O

possibly varying model matrices A”). We assume that the noise distribution does not change over time,
though this assumption can easily be relaxed at the expense of more cumbersome notation. We summarize
both the Kalman filter and the square root EnKF in TABLE Al. In this filtering set-up, M e R4*4
is the dynamics map and A®) € R**? is the observation map at time # > 1. As detailed in [83], such a
filtering set-up leads to a sequence of inverse problems of the form (2.1), where the forward model is
given by the observation map, and the prior forecast distribution blends the dynamics map with previous

~ A 1/p
probabilistic estimates. Throughout this subsection, we write |71 — u® || p = [EHM(’) —u® ||127] and

=~ = 1/p
120 - 20y, = [EI£0 - 20|

We will use two auxiliary lemmas to prove the main result of this subsection, Corollary A.12 below.

LeEMMA A.10. (Continuity and Boundedness of Covariance-Update Operator in L? [59, Corollary 4.8])
Let ¥ be the covariance-update operator defined in (2.4). Let Q € Si be a random matrix and P € Si

be a deterministic matrix, I” € Sﬁ A€ Rkxd y € R¥ and m, m’ € R?. Then, for any 1 <p < oo, the
following holds:

16(Q) — €P)ll, < 11Q — Pll, (1 + IAI*IT " 11PI)

_ 1.2
+ AAPIC M+ 1A T IPIDII, I1Q = Pl

LeMMA A.11. (Continuity and Boundedness of Mean-Update Operator in LP [59, Corollary 4.10]) Let
M be the mean-update operator defined in (2.3). Let P,Q € S re Sﬂ‘rJr, A € Rkxd y € R* and
m,m’ € RY. Assume that Q and m are random, and that P and m’ are deterministic. The following holds:

|4, Q) =t P, < |m = ||, + IAIPUT T HIQNy m — 1,

+1Q = Pl IAIIT (T + AP P [y — Amd |,
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40 0. AL-GHATTAS AND D. SANZ-ALONSO

The next result shows how our one-step bounds in Theorems 2.3 and 2.5 can be extended to provide
non-asymptotic bounds on the performance of the multi-step square root EnKF. The proof follows a
similar argument to the proof of [59, Theorem 6.1].

COROLLARY A.12. Consider the square root EnKF defined in TABLE Al. Suppose that N 2 r, (X Oy,
Then, forany > landp > 1,

0 _ 0y < [2ED Oy A0 1 50=Dp (O _ QO =1
129 = w1, S, | Fg— X MO AP 12010 — ACm O, 1=,
~ (X)) _ _

150 = 2O, <, (| x c@MOL IACT 12D, 1.

Proof. The proof follows by strong induction on the predicate in the statement of the theorem. To that
end, the base case (¢ = 1) holds by Theorems 2.3 and 2.5, which state that, for any p > 1,

~_ oy < [RED) Oy aD 15O 1o 4 Dy -]
12D =1V, S, | 2 % cUMDLIAD L Z O 1y Y = AQm O, =,
« [ry(ZO) _

120 = 2O, 5, (| 5 x cAM P IAD 1 12O, 1 r .

Suppose now that the claim holds for I = 2,...,¢ — 1. Then, for [ = ¢, we have from Lemma A.10
IZ0 — 2O, = £ @C?) —E [,
-~ 2 _
< [CO = O, + 1AYr e

2 _ 4 1,2 - -
+ (AN 1IAQ I HTICD IDICO g, ICD = Oy, (A15)

By the definition of 6(’), c® together with the inductive hypothesis, it follows that, for p € {p, 2p},
O _ o~ — O (@=1) _ y@=1 O\T
c CVll, = M7 (X 2T

2 S— —
< MO -

2 [y (ZO) g
Sp MO [ 22— UM 1A L= DIz e D
7 (X)) _ _
:\/ZT x (MO AP NS0 e,
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Further, we have

ICD Y, < ICO = O, + €O

_ _ 2 _
UM AP 2D 1)+ MO 20D

r(2©)
ST

Plugging these two results into (A15) gives

350 _ y®
IO - 20, <,

ry (2 0) ~ _
2T x c(UIMO N 1A 120, 1.

Similarly, from Lemma A.11, we have

129 = u O, = . @, 0 — A (m®, D],
-~ 2 _ - -~
< A —m@ ), + NAC I IT=HICO Y, 13 — m©,,

~ _ 2 _
+ICO = O IAD T (A IAC IO 1y = ADm O, (Al6)

By the definition of m®, m'” together with the inductive hypothesis, we have, for p € {p, 2p},

1 = m O, = MO @Y = u O,

< IMOPEY = 1,

[y (2O) _ T
Sp MO = MO, 1AL, 1201 1y = ACm Oy, =
[ry(2©) _ _
= T iU AL =R O = ACm O D,

Plugging this bound and the one for ||6(t) ll, derived previously in the proof into (A16) yields

0 _ 0y < [RED MOTTAD USED ] 1y® — AD Oy g !
ll wl, S, N x c({IIM1L AL Il 1ly m s 171D
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42 0. AL-GHATTAS AND D. SANZ-ALONSO

B. Proofs: Section 3

This appendix contains the proofs of all the theorems in Section 3. Results on covariance estimation are
in Subsection B.1 and our main results on ensemble Kalman updates are in Subsection B.2.

B.1 Covariance estimation

Here we establish Theorems 3.1 and 3.3. We first collect some required technical results in Subsec-
tion B.1.1. Next we study covariance and cross-covariance estimation under soft sparsity in Subsec-
tions B.1.2 and B.1.3, respectively.

B.1.1 Background and preliminaries DEFINITION B.1. ([92, Definition 2.2.17]) Given a set T, an
admissible sequence of partitions of T is an increasing sequence (A,,) of partitions of T such that
card(Ag) = 1 and card(4,) < 22" forn > 1.

The notion of an admissible sequence of partitions allows us to define the following notion of complexity
of a set T, often referred to as generic complexity.

DEeFINITION B.2. ([92, Definition 2.2.19]) Let (7, d) be a possibly infinite metric space, and define

75(T,d) = inf sup Z 2"/2Diam(An(t)),

teT >0

where A, (¢) denotes the unique element of the partition to which ¢ belongs, and the infimum is taken
over all admissible sequences of partitions.

The following theorem is known as the Majorizing Measure Theorem and provides upper and lower
bounds for centered Gaussian processes in terms of the generic complexity.

THEOREM B.3. ([92, Theorem 2.4.1]) Let X,, t € T be a centered Gaussian process that induces a metric
dy : T x T — [0, 0o] defined by

s =E [, - x)?].

Then there exists an absolute constant L > 0 such that

1
ZyZ(Ts dX) S E [SupXt] S LVZ(T, dX)
teT

We will be primarily interested in the case that 7 = F is some function class on the probability
space (X, A, P), and with d being the metric induced either by || - || L, or - Ily,- We denote these spaces
by (F,L,) and (F, yr,), respectively, throughout this section. The next result is an exponential generic
chaining bound, which was introduced in [28, Corollary 5.7] and described in [57, Theorem 8]. We
present it as it was described in the latter reference.

THEOREM B.4. ([57, Theorem 8]) Let (X, A, P) be a probability space and consider the random sample
X, Xq,.... Xy i P. Let F be a class of measurable functions on (X, A). There exists a universal
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constant ¢ > 0 such that, for all # > 1, it holds with probability at least 1 — e’ that

sup
feF

1 N
5 2% — Bl (0]
1

n=

n(F ¥ v (F ) , [t ot
<c|sup /Il % v sup I 15,/ v sup If1y, - )-
(fe]-' 1) /N N feF LAY, feF Vo N

LemMmA B.5. (Expectation Bound from Probability Bound, [92, Lemma 2.2.3]) Let Y > 0 be a random
variable satisfying

2
[P’(er)faexp(—l%), r>0,

for certain numbers a > 2 and b > 0. Then there is a universal constant ¢ such that

E[Y] < cb+/loga.

Finally, we recall the following dimension-free bound for the maxima of sub-Gaussian random
variables.
LemMA B.6. (Dimension-Free Sub-Gaussian Maxima, [101, Lemma 2.4]) Let X/, ... X,y be not neces-
sarily independent sub-Gaussian random variables with

PX, > x) < cefxz/wﬂz, forallx >0, 1 <n <N,

where o, > 0 is given, or alternatively 11Xl < o, Then, for any ¢ > 1, it holds with probability at
least 1 — ce™ that

maxX, S \/;maxa(n)\/log(n + 1),
n<N n<N
where Oy = 0@y = ...0n) is the decreasing rearrangement of o, . . ., oy. Further,

E|maxX, | < max o )\/log(n—i— 1).
n<N n anN n
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44 0. AL-GHATTAS AND D. SANZ-ALONSO

Proof. The proof of the upper bound is based on the proof of Proposition 2.4.16 in [92]. By permutation
invariance, we can assume without loss of generality that 0; > 0, > --- > oy. Then

N N
P (315%{%/% > \/;) < Z]P’(Xn > o0,4/tlog(n + 1)) < Zexp (—é log(n + 1)) .

n=1 n=1

For t > 2c¢, the final expression in the above display is finite, and we may write

N N+1

> exp (~2log+ D) = 3 exp (- logm) = exp (~= log@) + / e < e,

2

n=1 n=2

Therefore, for any # > 2c, it holds with probability at least 1 — ce™"/¢ that

maxX, S \/Zmaxa(n)\/log(n + 1.
n<N n<N

This implies that, for any ¢ > 1, it holds with probability at least 1 — ce~*V29)/¢ that

maA)]<Xn < (Vv /20) ma}\)lco(n)\/log(n +D < \/;maﬁ(a(n)\/log(n +1).
n= n=< n<

Since 1 — ce~V29)/¢ > 1 — ce™'/¢ it holds that, for any ¢ > 1, with probability at least 1 — ce /¢

ma}\)an < \/Zmaﬁo(n)\/log(n + D).
n< n=<

It follows from Lemma B.5 that

X
E|max ——2——| <c,
|:an o,+/log(n + 1):| -

which, in turn, implies

E [maxXn] < %13),( o,/ logn+1) = 31<a1\>/<o<n)\/log(n + D).

n<N
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B.1.2  Covariance estimation under soft sparsity ~ This subsection contains the proof of Theorem 3.1.
We follow the approach in [57, Theorem 4], but we restrict our attention to finite dimensional spaces. Our
proof will rely on the following max-norm covariance estimation bound, which may be of independent
interest.

THEOREM B.7. (Covariance Estimation with Sample Covarlance—Max Norm Bound) Let X, ..., Xy
be d-dimensional i.i.d. sub-Gaussian random vectors with E[X;] = wX and var(X;) = X Let X =

N—-D! zn 1 X, — X) X, — X )T. Then there exists a constant ¢ such that, for all # > 1, it holds
with probability at least 1 — ce™ that

~ Foo ():X) y oo (EX)
12X = 2 ¥ < 20 [ 22— ,/ :

where

max; 2(’]?) log(j + 1)

X
2(1)

rOO(EX) =

Proof. The proof of this result is based on the proof of the upper bound of Theorem 4 of [57], in
conjunction with Theorem B.4. We deal with the case uX = 0 first. To this end, let Z,,...,Zy be
d-dimensional i.i.d. sub-Gaussian random vectors with zero mean and var[Z;] = X, We denote the
distribution of Z; by IP, and note that ||-|| vy Il and |-, are defined implicitly with respect to P. Let

N1 22/:1 7,7 . We rewrite the expectation of interest as a squared empirical process term over
an appropriate class of functions. For j > 1 we denote the jth canonical vector (the vector with 1 in the
Jth index and zero otherwise) by e;. Then, we note that

12° = ZX oy = sup<e,~, (20— Ex)ej>
L
— sup |:<ei+ej’(§0_ Ex)ei+?/>_<ei—ej,(fo_zx)ei—ejﬂ
y 2 2 2 2

< 2sup K(fo — Z‘X)u, u> s
ueld

where U = {u eRY:u= :I:%(ei:tej), 1<i,j<d } Define the set of functions F;; = {(~,u) Tu € Z/{},
and note that, for any f € F;;, —f € F;; and E[f(Z;)] = 0. It then follows from Theorem B.4 that for
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the same universal constant ¢ in the statement of the theorem,

2 sup <(§0 — 3%, u>‘
ueld

%] Z:(Zn,u)2 — <u, Z’Xu>

N
> Az, - E[fz(Zl)]‘

n=1

N

2 .
nFu¥) v (Fys¥) 2 |t 5t
< 2¢| sup I/ v vosup If12,, )~ v osup IF13, = ).
(fe]‘—u V2 /N N FeFy v\ N FeFy V2 N

Using the equivalence of the y/, and L, norms for linear functionals, we have

1
S Wy, < sup Wl = max VE[2, )] = max w, ) = 5 max et 5 £ ¢p)

1 1
- _ X X X — _ X X X X
=3 rrﬁx\/(el-, 2he;) + (ej, Xe;) £ 2e;, Xhej) = > mi?x\/zii + ij + 221.]. < \/2(1)'

To control the generic complexity y,(Fy, ¥,), let ¥ ~ N, EX) be a d-dimensional Gaussian
vector, with induced metric

Ay, ) = JE[(Vow) = (,0)2] = o) = ()l wov €U,

Using again the equivalence of the v/, and L, norms for linear functionals, we have that

Vz(}—uﬂﬁz) N Vz(fz,{;Lz) = Vz(u§dy)-

It follows then from Theorem B.3 that

y,(U;dy) S E | sup (Y, u)i|
L ueld

1
—E _n%?x<y, (e = ej)>]

<& [ [r.q) |

< max,/ Z‘g) log(j + 1),
j
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where the final inequality follows from Lemma B.6. We have shown that with probability at least 1 —e™’

X log(j + 1) X log(j + 1)
S0 X 20 log () 08 x [! x !
120 — 2% e S \/zg)m ax ¥ v max v vzl /N E(I)N

[r (X X [t ¢
= E(ﬁ) Foo (27) v Foo(27) v —=v—]. (B1)
N N N N

In the un-centered case, taking X, = Z, + ,u we have 2X = X0 — ZZT, which follows that

| =X — X < 12° = ZX|lnax + 1ZZ -

” max ” max

By Lemma B.6, with probability at least 1 — ce™"

¥ Too(Z%)

S5T - 2 t X . _
ZZ" | |Zl max =< N T;lgix 2(,') log(j+1) = 12(1) N (B2)

<
max —

Denote the set on which (B1) occurs by E|, and the set on which (B2) occurs by E,. Then the intersection
E = E| N E, has probability at least 1 — ce™’, and it holds on E that

ax ¥ |10 (ZX) o (2%) tot g (X%
Foo (ZJX) tr (EX)
(0 \/ \/

=yX

O

LemMaA B.8. LetXj,..., Xy be d-dimensional i.i.d. sub-Gaussian random vectors with E[X,] = u* and
var[X;] = X Let SX=(N-1)"! Z;V:l(Xn — [LX)(Xn — wX)T. Then, forany p > 1,

~ 1/p r (ZX)  r (2%
[Enzx—zxnﬁm] S B8 | o v
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Proof. To ease notation, let B = E( 1 (\/ % \Y %EX)) then using that for positive W, E[WP] =
pJo o wTIP(W > w) dw gives

| pax > X) dx

o0
[EIS = Si] =1 /0 w1 5 = X

B [}
Sp/ xp_ld)H—/ TIPOEX = ZX e > X dx
0 B
o0 Nx* N N.
,SB”—i—p/ x”_lexp(—min( u > ;C , ;C )) dx
0 (Eu)) 2y Teo(¥ )2(1)
/2 X \? X
re/2) (%Y by r (ZX)xX
— B” + pmax %(% ,T(p) (” ,T'(p) T(l) ,

where the last line follows by direct integration. We therefore have

_ 1/p X xX o (ZX XX
[EIEY = 2X) ] §B+c@nmm( = = =

JN N~ N
[1o(ZX)  ree(Z9)
< pops o0 v =X ,
c(p) 1) N N
where the final inequality holds due to the fact that (X~ Xy > 1. 0

THEOREM B.9. (Covariance Estimation with Localized Sample Covariance—Operator-Norm Bound)
Let X;, ..., Xy be d-dimensional i.i.d. sub-Gaussian random vectors with E[X,] = u* and var[X,] =
X, Further assume that XX € Uy(q,R,) for some g € [0,1) and R, > 0. Let 5X — (N -

I 22\7:1 X, —X)(X, — X)T and, for any ¢ > 1, set

(EX) l (EX)
Py = Z \/ \/7 -

and let fffN be the localized sample covariance estimator. There exists a constant ¢ > 0 such that, with
probability at least 1 — ce™, it holds that

X X 1—¢q
IZX = ZXI S R,py
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Proof. The localized sample covariance matrix has elements

(=X

Xly= I<ij<d.

axqy
= Eij1|Z‘X

ij [=pN°

From Theorem B.7, it holds with probability at least 1 — ce™ that

||§X _ EX

”max S PN-

The remainder of the analysis is catried out conditional on this event, following the approach taken in
[103, Theorem 6.27]. Define the set of indices of the ith row of XX that exceed poyn/2 by

Ty = (e (hnd) |28 2 v2) . i=1a
‘We then have
(DRSS HERPLES %N
= max Z)E I2X|>p1v
_ X X
_igll,a,,}fd )E 2 1|2X|>,0N‘+ ‘2 2 1|2X\>,0N‘ ,
€T (o /2) J#Ti(on/2)
where f;.‘ is element (i, ) of ZX. For j € Z;(py/2), it holds that |ZX| = py/2 so that
X X X =X
AR PRI RN DN L | K> R/ T
J€Li(pn/2) J€ZLi(on/2)
X =X
< X IS = Sl | B - S s
J€Ti(on/2)
P
> <7N+mv>
J€Ti(pn/2)

3p
= II,-(pN/Z)ITN,

where we have used the fact that

X-5X G150y | = 0 X L5y +z§x1|§§‘§pN5pN.
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Further, since

Qﬁv
'M&

=51 = e/ (2)",

1

J

it follows that |Z;(py/2)| < quNqR and so

3ION 3 _ 1—
D ‘2 — S 5110 | = Ton/DIEY < 5270 R,,
JETion/2)

For j ¢ Z;(oy), then | | < py/2 and so

X PN
max+|2 |—_+__'ON'

12X <12 - ZX 1+ 1581 < 12 - 2X) T+

This implies that 2 1‘ Zx = 0, and, therefore, for g € [0, 1), since |El§( I/(on/2) < 1,it holds that

[Zon
X _ $X PN |Ei§|
‘Eu = Silsren| = 20 1TI=T 2
7#Zi(on/2) J#Zi(on/2) J¢Ti(on/2) 2

PN |Zi;(| ’ l—q
< — < R .
-2 Z on/2) PN g
J€ZLi(on/2)

Combining these two results gives
X X 1—q
I=X — X || < 405 'R
O

Proof of Theorem 3.1 The result follows immediately from Theorem B.9. 0

B.1.3  Cross-covariance estimation under soft sparsity This subsection contains the proof of Theo-
rem 3.3. The presentation is parallel to that in Subsection B.1.2. We will use a max-norm cross-covariance
estimation bound, analogous to Theorem B.7. The proof relies on a high probability bound for product
function classes that was shown in [74, Theorem 1.13]. We present here a simplified version of that more
general statement that suffices for our purposes.

THEOREM B.10. Let (X, A, P) be a probability space and consider the random sample X, X, ..., Xy Sy
P. Let F, G be two classes of measurable functions on (X, A) such that 0 € F and 0 € G. There exist
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positive universal constants ¢y, ¢,, ¢y such that, for all # > 1, it holds with probability at least 1 — ¢, ec!
that

sup
feF.geG

1 N
v 2 X)X, — E[f(X02(X)]
1

n=

: t V2 (F, ¥2)v2(G, ¥,)
- [(ﬁv\/;)(?Eﬁ'v”wzyz(g"/fzwigg ||gllwzyz(]:dﬂ2))v AN }

Proof. For notational brevity, throughout this proof, we write y, (F) instead of y,(F, ¥,) and sz F)
instead of supsc 7 [If|| and similarly for the class G. The result follows by an application of [74,

Theorem 1.13] and the ensuing remark, which deals with the case F = G, but is easily extended to
the general case considered here. Together they imply that, for any u > 1, it holds with probability at

2 2
_ 2 ) 3 (9)
least 1 — 2 exp ( cu (—diz( = ) that

N
1
5 2 KX — E[f(0g(0)]

n=1

2

< u
S N)/z(]:))/z(g)—i—m

sup

o (Y2(F)dy, (G) + v2(G)dy, (F)) . (B3)
[SNANLS

We seek to rewrite (B3) so that all problem specific terms appear only in the upper bound. To this end,
let

2 2
_ P G B (dwz(F) dm(g))
e (dfzq(f) Adiz(@) = u=vt n@® G

) A v2(G)
dy, (P dj,©)

and note that since u > 1, it must hold that r+ > ( ) Therefore, for any ¢ >

( VAF) 20

SRR ) , we have that with probability at least 1 —2e¢~¢, the right-hand side of (B3) becomes
2 2

t (B, G i (4, (F)  dy(©)
- F + = Fd dy, ().
N(sz(f) ! v3(9) 7 (F70) «/N(Vz(}") @ ) (VZ( 8y, () F 12(G)dy, ))

The above implies that, for any ¢ > 1, it holds with probability at least

2 2
1-— Zexp(—c(tv( 1/22(]:) A J/zz(g) ))) >1—-2e9,
dy,(F)  dy, (@)
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that

1 BE RO N\[95.F d,0
vl A A % Fns @G B4
N ( (dsz(}“) dj,(©) viF)  v3G) @) &)

1 Y2(F) 72(9) (dxpz (F) dy, (g)) d q BS
+\/’V(\/;V(dwz(f) Adwz(g))) »@ " 7©) (2985, +1,90,,P) . ®3)

Straightforward calculations then show that the first of the two terms, (B4), is bounded above by

I d3, (P (G) i d7, (@ ys(F) L nPn@
N »nF) N ) N

[}

and (B5) is similarly bounded above by

[T, (PG  [18,@n@E  dy,@n@F)  d,F)nG
—_—— V| = Vv Vv .
AT N~ 70 N JN

Note then that since 0 € F,

dy, (F) =suplflly, < sup |fi —Ally, = diam, (F) < y,(F),
1) feF 1) fiheF 1 211y 2 2

where the final equality holds since y, (F) = inf supy. z >° 2 2”/2diamw2 (4,()),andforn =0, Ay =

o dj, P Q) i, rF)
F. Similarly, d,,,(9) < ,(G), and so ~2-5" < d,, (F)y,(9) and 22— < dy, (G)y,(F)
O

which along with the fact that # > 1 completes the proof.
THEOREM B.11. (Cross-Covariance Estimation—Max-Norm Bound) Let X, ..., X), be d-dimensional
ii.d. sub-Gaussian random vectors with E[X,] = uX and var[X;] = XX. Let ¥;,...,Yy be k-

dimensional i.i.d. sub-Gaussian random vectors with E[Y,] = u! and var[¥,] = 7. Define ZX¥ =
E[(X — u*)(¥ — u¥)T] and consider the cross-covariance estimator

N
~ 1 _ _
XY _ T § X, -X)(Y,-7)".
n=1

Then there exist positive universal constants ¢y, ¢, such that, for all # > 1, it holds with probability at
least 1 — ¢;e™ % that

- 1 1 reo(ZX) [reo(ZY)
||2XY_2XY”maX§(E(XI)V2()1)) ((NV N) (\/roo(EX)v\/roo(EY))v\/ ooN \/OON )
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Proof. Assume first that uX = u¥ = 0. Let Z,,...,Zy be d-dimensional i.i.d. sub-Gaussian random
vectors with zero mean and var[Z] = >X and similarly let V..., Vy be k-dimensional i.i.d. sub-
Gaussian random vectors with zero mean and var[V,] = X7 Further, let W, = [Z],V]]T forn =
I,...,N. We denote the distribution of W; by IP and note that ||‘||¢2 and |-/, are defined implicitly

with respect to P throughout this proof. Define £0 = N~ an: 1 Z,V,]. Define the dilation operator:
H - RI¥Kk _y R(d+k)x(d+k) by

H(A) = [AOT g]

see, for example, [99, Section 2.1.16], and note that [|A|| . = IIFH(A) |l pax- Let B™ be the space of
standard basis vectors in m dimensions, i.e. any b € B™ is an m-dimensional vector with 1 in a single
coordinate and O otherwise. Then, for ¢;, e € Btk we have

159 — ZXY | o = IH(E0) = H(ZX) o =

max

550 XY
(max ((HE) = HE ey )
= 2sup | ((H(E®) = H(E T u )|
ueld

where

1
U= Hu e Ry = :I:E(ei + ¢;) ande;, ¢; € Bd+k].

Writing u = [ulT, 142T]—r where u; € R4 and uy € R¥, we have

N

- 2 2 &
(M) = 5 D 1.2, o V,) = & n;fu(w,,x

n=1

where f,(W,) = (A W,,u (AW, u,) and o = [I;,0,,,] € R>*E@HD and of, = [0}, 4. 1;] €
RK* @+ are the relevant selection matrices so that .7} W, = Z, and .o, W, = V,. We define the class of
functions

Fi = {10 = i) =l 17 e .
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It is clear then that 7, C F| - F,, where
1
U = [“1 eRY:u = ii(ei + ¢;) ande;, ¢; € Bd], Fr={fC) = () uy) cuy €Uy},

1
U, = [u2 eRF:u, = iz(ei + ¢)) ande;, ¢; € Bk], Fo={f() = (s uy)  uy €Uy},

and

Fi-Fa={fO) =f0OAC) 1 fi € Fi.fy € Fr}.

We can then apply the product empirical process concentration bound of Theorem B.10, which
implies that, with probability 1 — c,e~,

sup '<(H(§O) — H(EXY))u, u>‘ = sup
ueld fueFu

N

1

~ 2 Su W) = E[fu(W)]
=1

n=

Fna(F
s(fv v /g) Ay Fom ) v dy, P ) v 2RI (e,

where we use the notational shorthand y,(F;) = ,(F;,¥,) and d1ﬁ2 (F)) = SUPse 7, If1ly,, and
similarly for F,. Following a similar approach to the one taken in the proof of Theorem B.7, it follows
by the equivalence of ¥, and L, norms for linear functionals that

dy,(F) = sup Ifilly, S sup Wfyll, = max /(u. SXuy) < /55,
v fieF & fieF B e M

and similarly that d,;, (F,) < E(’i). Further,

Y2 (F1) = »a(F1,¥,) S va(Fi, Ly) = v (Uy, dy),

where

deev) = E[(erou) — (gD gx ~ N0, 55,
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From Theorem B.3 and Lemma B.6,

M]GZ/{l

X .
<E |:1?<EZX <gx,ei)i| < I?;ix' [ X log(i+ 1).

1
U dy) SE| sup (gx’”1>] =E [?;§§<gx,i§(ei L ej)>]

Similarly, y,(F) < max; /£ log(j + 1). In summary, we have that

~ ' ‘ : ;
150 - gXry < (N v N)( /E(’i) max /E(’;) log(i+ 1) v E(yl) %Laj(,/z(’g) log(i + 1))

max;<g ):5) log(i + 1) max;<x 25) log(j + 1)
\2
N

t f E(Xl)roo(EX) E(};)roo(z’y)
S(NV /N) ():(’ﬁ) roo(xX)vz(ﬁ),/roo(zY)) v\/ S S
<(sX yx¥ ! ! \/ X \/ Y roo(ZX) [ree(ZY)
SEHVEWD vV roo(ZX) V /ool )) v N n .

In the un-centered case, take X, = Z, +uXand ¥, =V, +u” forn =1,...,N,then ZX¥ = T0_XYT,
and so

1SX — S < IE0 = XY A I e

The first term is controlled by appealing to the result in the centered case. For the second term, we note
that from Lemma B.6,

- o I : :
IXF lmax < WXl Pl S 3 max JEE log(i + 1) ma JED og+ 1)

3 \/z("l)roo(zx)\/z(yl)roo(ﬂ)
- N N '

O

THEOREM B.12. (Cross-Covariance Estimation with Localized Sample Cross-Covariance—Operator-
Norm bound) Let X, . . . , X be d-dimensional i.i.d. sub-Gaussian random vectors with E[X,] = X and
var[X,] = XX. Let Y,,..., Yy be k-dimensional i.i.d. sub-Gaussian random vectors with E[Y,] = uY
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and var[Y,] = XY Define XY = IE[(X — XY - MY)T] and consider the estimator
| X
sxy _ L 3 T
2 = N1 n_EI(Xn X\)(Y,-Y) .

Assume that ZX¥ ¢ Z’{d,k(QI’qu) and XX ¢ L{k’d(qz,qu) where g,,q, € [0,1) and R
constants. For any 7 > 1, set

t t Foo(ZX) 1o (ZY)
pNx(Z()i)vZ(};)) (ﬁv\/;) (\/VOO(EX)V\/"oo(ZY))V\/ N \/ N s

and let fg; be the localized sample cross-covariance estimator. There exist positive universal constants
¢y, ¢, such that, with probability at least 1 — cle_CZ’ ,

e qu are positive

SXY XY 1-q 1—q2
”2,0]\] - X ” SqupN Vqu,ON .

Proof;\ (Proof of Theorem B.12) Let E denote the event on which ||fXY - Z‘XYHmaX
= | ZYX — ¥ < py- From Theorem B.11, E holds with probability at least 1 — ¢je™".

max n~v
Conditional on E, and following an analysis identical to the one in the proof of Theorem B.9 with

SXY(ZYX) and XXY (X YX) in place of £X and XX, respectively, it follows that

XY XY 1—q
X5y =21 SRy oy s

and

SYX _ yYX < 1=q2
1250 = 21, S Ryow ™.

The result then follows by noting that

IZX = =X = |HEX — 2| < |HEX = 2l

= = 1— 1-
= 1250 = TN VIER = Z SRy oy MV Ry, oy
where H is the dilation operator defined in the proof of Theorem B.11. O
Proof. (Proof of Theorem 3.3) The proof follows immediately from Theorem B.12: since uy,. .., uy

are i.i.d. Gaussian, they are sub-Gaussian. Moreover, since G is Lipschitz, by [102, Theorem 5.2.2],

y20z Arenuer g1 uo Jasn meT - saleiqi] obeoIy) Jo AlsieAlun Aq 6681 ./STOPEEI/L/S | /a|oNJe/Ielewl/wod dno olwapese//:sd)y Wol) papeojuMo(]



NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN UPDATES 57

G, — IEl[g(ul)]llw2 < ||g||Lip||C||l/2 < 00, and so G(uy), ..., G(uy) are i.i.d. sub-Gaussian random
vectors. ([

LemMA B.13. (Stein’s Lemma [90]) Let u ~ N (m, C) be a d-dimensional Gaussian vector. Let / :
R? — R such that ajh = 8h(u)/8uj exists almost everywhere and E[|8jh(u)|] <o00,j=1,...,d. Then

Cov (u;, h(u)) Z BRG],

LeEMmmA B.14. (Soft-Sparsity of Cross-Covariance—Nonlinear Forward Map) Let u be a d-dimensional
Gaussian random vector with E[u] = m and var[u] = C € %,(q, c). Consider the function G : RY — RF
with coordinate functions G, ..., G,. Assume that foreachi =1,...,dandj =1,...,k, gj ‘RIS R
forj = 1,...,k, such that aigj = agj(u)/aul. exists almost everywhere, and E[|8igj|] < o0. Let DG €
Rk*d denote the Jacobian of G, and assume that E[(DQ)T] € %;,(q,a) for some g € [0,1) and a > 0.
Then,

C'’ e %dk(q, aC”E[Dg]”maX”C”max)

Proof. By Stein’s Lemma (Lemma B.13), the ith row sum of C*? is given by

Z Cr = Z Z CyE[8,6,w)] = Z C; ZJE 8,6,

j=11=1

k E[9,G;(u)]
= IEIDG]| Z Cy Z IEDGI]
l N ] max

d k
< |EIDG ek D, Cy D BI8,G;(u)}?

I=1 j=1
d

< a|[EIDG] ek Y. Cy
=1

< ac|[EIDG] | mak | Cllimak-

where the first inequality holds since ¢ € [0, 1) and ]E[Blgj(u)] < E[DG]|| . ([

max
LeEMmmA B.15. (Product of Two Soft-Sparse Matrices) Fix ¢ € [0,1) and let S € %,;(g,s) and assume
ST = 5. Let B € % 4(q.b). Then BS € % 4(q. bs|Bll k]|l ina).
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Proof. The (i, j)th element of BS is given by [BS]; = Zle B;;S);, and so the sum of the ith row of BS
satisfies

d d S
Ii

d d d
B.

Sty =33 - S B > Sy = 1Bl Sl S = >

j=1 =1 j=1 = max =

j=1 I=1 7 [15llmax

d By \'< Si )’
< 1Bl o 1S lmax > B >
=1 max j=l

ISl max

< 1B ok | Sll ok,

where the first inequality holds since g € [0, 1), and the second follows by the symmetry of S. U

LeEmMA B.16. (Product of Three Soft-Sparse Matrices) Fix ¢ € [0, 1) and let S € %;(q, s) with st =s.
Let B € % 4(q,by) and BT € Uy 1(q,by), that is, B is both row and column sparse. Then BSB'T €

Uy 4> b1bs11 B osex 1Sl et
Proof. The (i, j)-th element of BSB is given by

d d
[BSBT Z[BS]W mj Z[BS]”” jm = Z (Z BilSlm)BJm
m=1 \/=1

Therefore, the sum of the ith row of BSB satisfies

d d
Z[BSBT i= Z Z ZBilSlmBjm Z ZleSlm Z jm

= j=1 m=1I=1 m=1 I=1
d d
2(1

]7
< 1Bltnakby D D BySy < b1bysl1Blakax” 1S | ina.
m=1 [=1

where the final inequality follows from Lemma B.15. 0

LEmMMA B.17. (Sample Covariance Deviation) Let Xi,...,Xy be d-dimensional i.i.d. sub-Gaussian
random vectors with E[X;] = uX and var[X,] = Z¥. Let f}é =N-D'IN x, - X, - 15T
Then

SX X 11+ 1o 1 N -1\ -
Xy — Ly < NXNXN —IT/ZNA N2XNXN N — 1) Xy_1 Xy

N-1 5T v T
- ( N2 ) (XNXN—I +XN—1XN)’

where fﬁ, =N'3IN x xT.
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Proof. We work with the biased sample covariance estimator ﬁ > (X, — X X, — X N)T, which is
equivalent to the unbiased covariance estimator up to constants. Note then that

N N
—~ 1 — — 1 — —~ _ _
CUSED SRR ST NISNEE PSR
n=l1
We now seek to control the difference f]i,( - 21)\571- To that end, note that

o (1 N—1- 1 N—15 \'
XnXy = NXN+ Xn-1 NXN+ I Xn-1

1+ (N-1\o of N-1 = o7
ZJWXNXN"‘ N X1 Xy + N (XNXN—1+XN—1XN)’

and so
¥y ¥ _% %7 1 N-1)? ¥ %7
XnXy — Xy Xy = NQXNXN ) ) KX
N-1 7T ¥ T
+ (= ) (Xdos + Xy (B7)
Therefore,
| N =
SX X T _ % %7 A
Xy — Ly = (ﬁ ZXan - XNXN) - (m ZXan - XN—IXN—I)
n=1 n=1
1 T T 5 »T -l
=N NN+ ((ﬁ - m) ZX X ) (XNfIXN—l _XNXN)
1o 1 1o 1 N -1}’ S —
= ﬁ NN — NENA N2XNXN T — 1) Xy_1 Xy
N-—1 - _
- ( N2 ) (XNX;—I +XN—1X]—V|—)’ (B8)
where the last equality follows by (B7). (I
Lemma B.18. (Sample Cross-Covariance Deviation) Let X;,...,Xy be d-dimensional ii.d. sub-

Gaussian random vectors with E[X;] = /,LX and var[X;] = X LetY 1»---» Yy be k-dimensional i.i.d.
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sub-Gaussian random vectors with E[Y;] = w¥ and var[Y] = Y Let ZXY (N — 1)_1 22;1 X, —
wX) (¥, — u¥)T. Then

~ - 1 1 - 1 N -1\ - -
XY XY T 0.XY T
2y - Ayo < NXNYN - ZT/EN—l - N2XNYN ((T) - 1)XN—lyN—l
N-1 T v T
- ( N ) (XNYN—I +XN—1YN)’

where ZJOXY N~! Zilv:anYn.

Proof. The result follows using the same approach utilized in the proof of Lemma B.17 and is omitted
for brevity. g

LeEmmMmA B.19. (Covariance Estimation with Known Particle—Operator-Norm Bound) Consider the set-
up in Lemma B.17 and assume additionally that X, is known for some n € {I,...,N}. Then with
probability at least 1 — ce™’

- X |, I X X r ot
15X _ 5Y) < c(IX,, 15, ™ 1lo) e 7, (XX) y ry(X%) y /1 vt
N N N N N

Proof. By symmetry, we can assume without loss of generality that n» = N. Let E| denote the event

on which [|Xy_; — u*1l, < \/||2X||%_X{W = \/||2X||%X>V’. Then from Theorem A.1, P(E,) >
1 — e~" and on E| it holds that

- 1 1 N —1)? _
X X T 0 T
12Xy — 2y_ill S N”XNXN” + ]—VIIEN_1|| +((T) - 1) 1Xy_1 Xy_1ll
N-1 _ _
+ (nXNXE_lH + ||XN,1X£ )
<1 Xy l? 30 X Xyl 1X
NNII iz + || N_ 1||+ || N_ 1I|2 || NI X y—11,
1 5 -0 S R w2 1 42
SNIIXNIIZJr]T[IIEN_l—E |I+NIIE |I+N||XN_1—M ||2+]T]IIM Il
1 _ X 1 X
+]T[|IXNII2IIXN,1 — W ||2+N||XN||2|I/L Il
r2(2 )Vt 1

2
+ = 1eXl3

1 1 ~
< —||XN||§+ —||2ﬁ3,1 - 2X+ = ||2X|| + 12X
N2 N

1
+ 1 Xyl 112X N3 /2 NHXNHZHMX”z’ (B9)
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where the first line follows from Lemma B.17. Let E, denote the event on which

r(ZX) 7 (EX)
B e P Dl e VYT

>X X t ot
ST I LAV 1S RV AV
N N NN

Then by Proposition 2.1, P(E,) > 1 — ce”". It holds on E; N E, that

IZY — =X < 1ZX - SX_ 1+ 15%, - =%

1 2, <0 X X x (X Vv 1 52
§ﬁ||XN||2+—IIEN_1—E I+ = IIE I+ ||N—+]T]||,U« 2
@OV
+ 11Xy I/ 11 Z%]] 2N3/2 ||XN|| el

X »X r ot
N iV vy LRV
N N N N

X X X
< (Xl 147 112) LI & nE /ivi ,
N N N N N

where the first inequality holds by (B9). The result follows by noting that P(E; N E,) > 1 —ce™'. O

LeMmA B.20. (Covariance Estimation with Known Particle—Maximum-Norm Bound) Consider the
set-up in Lemma B.17 and assume additionally that X, is known for some n € {1,...,N}. Then with
probability at least 1 — ce™’

15X~ 5%) < cUix IIOO,IIM lloo) + 5 /oo(EX) / (EX)
maXN

Proof. As in the proof of Lemma B.19, we may assume that n = N. Let E| denote the event on which

1Xy_1 — ¥l < \/IE()i) ’Oj(,():] = \/tZ()i) '“SVE . Then from Lemma B.6, P(E;) > 1 — ce™" and on

E|, using similar calculations to those used to derive (B9), it holds that

1 =% 1 40
+N||2X||max+z2§§)°°— S

IZ% — Zx_i| o

||XN||2 ||f}&_1 - X

S

N3/2

max N max

+ 1 Xyl /12, IIXNII 11X oo (B10)
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Let E, be the event on which

X
ax ¥ r (EX) tr (Z’)
1281 = 2 e S % (1) Vo v

From Theorem B.7, P(E,) > 1 — ce™". Finally, note that the desired result holds on E; N E, and that
P(E, NE,) > 1 — ce™!, which completes the proof. O

LEMmaA B.21. (Cross-Covariance Estimation with Known Particle—Maximum-Norm Bound) Consider
the set-up in Lemma B.18 and assume additionally that (X, Y, ) is known for some n € {1, ..., N}. Then
with probability at least 1 — ce™

n’>-n

sxv sxry < UXnlloos 15X loos 1Yalloos 147 lloo)
12N = 2 xS
max N

0o (ZX o (ZY
+(2(1)v25)) ((;jvﬁ)(\/roo(xx)v\/roo(EY))v\/V EV )\/r EV )).

Proof. The result follows using the same approach utilized in the proof of Lemma B.17 and utilizing the
statements of Lemma B.18 and Theorem B.11. We omit the details for brevity. U

LemmMA B.22. (Covariance Estimation with Localized Sample Covariance and with Known Particle—
Operator-Norm Bound) Consider the set-up in Theorem B.9 and assume additionally that X, is known
for some n € {1,...,N}. For any ¢ > 1, set

c(IX, 7||M lloo r (EX) s (EX)

and let fifN be the localized sample covariance estimator. There exists a constant ¢ > 0 such that, with
probability at least 1 — ce™, it holds that

X X 1—¢q
||210N—2 ”SquN .

Proof. The proof follows in identical fashion to that of Theorem B.9, except that we now use the max-
norm bound established in Lemma B.20 in place of Theorem B.7. U

LeMMA B.23. (Cross-Covariance Estimation with Localized Sample Covariance and with Known
Particle—Operator-Norm Bound) Consider the set-up in Theorem B.12 and assume additionally that
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(X,,,Y,,) is known for some n € {1,...,N}. Forany ¢ > 1, set

Xl oor 15 oo 1Yl 1227 1l o)
Py X N

t t roo(EX) roo(zy)
() )

There exists positive universal constants ¢, ¢, such that, with probability at least 1 — ¢ e,

XY _ XYV < l=q1 I=q2
120y = 2N S Ry oy =V Ryyon

Proof. The proof follows in identical fashion to that of Theorem B.9, except that we now use the max-
norm bound established in Lemma B.21 in place of Theorem B.7. 0

B.2  Proof of main results in Section 3
Proof of Theorem 3.5 First, we may write
v, = vl = (v = G(w,) = n,) (2 (€, TP — 2(C, ™)),

< ly = G@w,) — 1,12, CPP) — P(C*, CPP)|,. (B11)

For the second term in (B11), it follows from Lemma A.7 that

|2, TPy — 2(C*,CPPY) |, < | T~ T — | + |7~ P e — ey,

In order to control the two deviation terms, we write W; = [uiT, g’ (ui)]T for 1 < i < N. Further, let

N
~ 1 — — T c cw
oV = V1 DWW —Wwpw,-wyT, V= [Clm Cpp] .

i=1

with V_VN = [ﬁT,ET]T and G the sample mean of {g(un)}ﬁjzl. Since u ~ N (m, C) and G is Lipschitz,
by Gaussian concentration [102, Theorem 5.2.2], it holds that [|G(u) — E[G)]ll, < IIG]l;,lIC]I'/* and
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we can apply Lemma B.19. Letting E; be the event on which

IC" — || v |[CPP — PPl < |V — Y|
W w
< AW IEWID vy (o) (€ I |
N N N N N

then Lemma B.19 ensures that P(E;) > 1 — c;e~“?". It follows that on the event E,, we also have

S . _ y r(CY) 1y (CY) r ot
|2(C",CPPy — 2", CPP), S It vC ”II)IICWII( 2N v 2N v Nvﬁ)'

The expression can be simplified by noting that since C¥ > 0, ||CV|| < ||C|| + ||C?P|| and further since
Tr(CY) = Tr(C) + Tr(CPP)

w w
o WReiCutivasiC )v\/§vi

N N N

< e v e ( [EO+THER) | THO) + THC™) \/Z JL
= Nacrvicen ¥ Nacivicen VN Y N
<l v ||CPP||)(,/ rzl(vc) v VQI(VC) v/ ’2(2”) y ’2(?”’) v \/g v ]iv)

where the last inequality follows by similar reasoning to that used in the proof of Lemma A.3. U

Proof of Theorem 3.7 As in the proof of Theorem 3.5, we have that

o~

lof = urlly < lly = G@,) = m,lL,| Z(C, Ty — 2(C*, CP),.

PN’ N

Further, from Lemma A.7,

-~

% — 1.2 -~ ~
12, Cory — 2, CPP), < (I VI~ DAV IC?IAICHE — C*) 4 | C22 — CPP).

PN’

Let E; denote the event on which

atll u 1—qi I—q2
”C/)z[v) —C"IS qupN,l VqupN,2 :

~
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By Lemma B.23 , E| has probability at least 1 — ¢;e~“'. Let E, be the event on which

-~ 1
pp _ PP 93
12 = P71 S Ryyoy 3"

By Lemma B.22, E, has probability at least 1 — ¢;e~'. Therefore, E = E, N E, has probability at least
1 — cye™“, and on E it holds that

- —1,2 1- 1—- 1-
12Chy, Chx) — 2, PPy S AT~ VAT AV ICP )Ry py 1" + Rgpoy 2™ + Raz oy 37)-

O

C. Proofs: Section 4

This appendix contains the proofs of the auxiliary results discussed in Section 4.

Lemma C.1. (Kalman Gain Deviation with Localization) Let u,...,uy be d-dimensional i.i.d. sub-
Gaussian random vectors with E[u;] = m and IE[(ul —m)(u; — m)T] = C. Assume further that C €
?/d(q, Rq) for some g € [0, 1) and Rq > 0. For any ¢ > 1, set

50 (0) 00 (0)
()

and let 601\/ be the localized sample covariance estimator. There exists a positive universal constant ¢

such that, with probability at least 1 — ce™,

| (C

- -1 2 -1 1—q
o) — A OIS AN IR, L+ AN HICID ey

Proof. By Lemma A.4 and Theorem 3.1, it follows immediately that

Il# (C H O < IANTHIC,, — CIA + IAIFITHIC

PN) -
S AT IIquN A+ AP CI.

O

THEOREM C.2. (Square Root Ensemble Kalman Covariance Deviation with Localization) Consider the

localized SR ensemble Kalman update given by (4.2), leading to an estimate S of the posterior covariance
X defined in (1.2). Assume that C € %,(q, Rq) for g € [0,1) and Rq > 0. For any 7 > 1, set

C) t C
PNAC(l)( [T (C) \/7 Foo( )).
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There exists a positive universal constant ¢ such that, with probability at least 1 — ce™,

~ 1— _ 1— 1,2 1—
1E = 21 S Ry (1 IARPIT (2UCH + Ry ) + BAIIE T IPICIACH + Ry ).

Proof. For the localized SR update we have S= ‘5(6 y)- From Lemma A6, the continuity of € implies
that

~ ~ _ ~ 12~
14C,y) = €Ol < 1€, — CI(1+ AT (I, | + ICH) + IAFI T 17IE,, HICT).

Let E denote the event on which

-~

]
IC,, — Cll S R,y *.

From Theorem B.12, E has probability at least 1 — ce™". It also holds on E that

~ ~ 1—
IC,, Il < IICll + IC,, — CIl S ICIl + R,on *.

Therefore, it holds on E that

o~ 1— _ 1— 1,2 1—
12 = 20 S Ryoy (14 1ARIT T (1€ + Rypy ™) + 1AIIT T P ICIAICH + Ryoy )

O
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