
Hyperspecialized Compilation for Serverless Data Analytics

Leonhard Spiegelberg1, Tim Kraska2 and Malte Schwarzkopf1

1Brown University, Providence, Rhode Island
2MIT, Cambridge, Massachusetts

Abstract
Serverless functions can be spun up in milliseconds and scaled out quickly, forming an ideal platform for quick, interactive
parallel queries over large data sets. Modern databases use code generation to produce efficient physical plans, but compiling
such a plan on each serverless function is costly: every millisecond spent executing on serverless functions multiplies in cost by
the number of functions running. Existing serverless data science frameworks therefore generate and compile code on the client,
which precludes specializing this code to patterns that may exist in the input data of individual serverless functions. This paper
argues for exploring a trade-off space between one-off code generation on the client, and hyperspecialized compilation that
generates bespoke code on each serverless function. Our preliminary experiments show that hyperspecialization outperforms
client-based compilation on typical heterogeneous datasets in both cost and performance by 2–4×.

1. Introduction
Designing an efficient data analytics framework that uti-
lizes serverless functions is challenging, as it must balance
parallelism, communication, and runtime costs. Many
modern databases and data analytics systems allow end-
users to write queries in familiar languages like SQL or
Python, but generate code and compile these queries into
native machine code for efficiency [1, 2, 3, 4, 5, 6, 7].
Using compiled code in a serverless setting makes sense,
as more efficient code directly lowers costs and avoids
merely parallelizing overheads [8]. Code generation, and
compilation into machine code naturally fit on the client,
which knows the query and can generate code before
dispatching hundreds or thousands of parallel serverless
functions (“Lambdas” for short in the rest of this paper)
that each operate over a part of the input data. Existing
serverless frameworks like Starling [9] or Lambada [2]
therefore employ code generation on the client machine,
and invoke Lambdas with the generated plan in form of a
custom runtime executable or shared object, which avoids
compilation costs on individual Lambdas. But what if we
performed code generation and compilation on individual
Lambda functions?

This fine-grained code generation and compilation al-
lows harnessing additional opportunities for performance
optimization: as each Lambda processes a small part of
the input data (e.g., a day’s worth) and many datasets
have shifting distributions and patterns over time, code
generation can produce specialized, more efficient code if
it knows the input data distribution. This allows a system,

Joint Workshops at 49th International Conference on Very Large
Data Bases (VLDBW’23) — Workshop on Serverless Data Analytics
(SDA’23), August 28 - September 1, 2023, Vancouver, Canada
$ leonhard@brown.edu (L. Spiegelberg); kraska@mit.edu
(T. Kraska); malte@brown.edu (M. Schwarzkopf)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

for example, to specialize the code to schema changes that
occur over time, to constant-fold values that change rarely
(e.g., years), or to fit to other patterns in the input data,
such as data sorted by categories. In other words, while
compiling the same code on each Lambda is wasteful, our
idea is to generate different specialized code paths on indi-
vidual Lambda functions to offset compilation overheads
by obtaining more efficient code for execution. As every
millisecond on a Lambda is expensive and comes at a
premium over longer-running provisioned resources, it be-
comes critical to hit the right trade-off between ahead-of-
time work on the client and the Lambdas and the runtime
reductions realized.

Our approach, hyperspecialization, demonstrates that
compilation on individual Lambdas is feasible and bene-
ficial to craft efficient data analytics frameworks on top
of serverless functions. We present preliminary results
from a prototype hyperspecializing system, Viton, built
on top of an existing analytics system for Python work-
loads, Tuplex [1]. Our preliminary findings indicate that
compilation for subsets on Lambdas can lead to both cost
and efficiency improvements by 2–4×.

2. Motivation
Python became the dominant language for writing modern
data science pipelines due to its rich universe of packages
and popular data processing frameworks like Pandas or
PySpark. Similarly, writing serverless functions in Python
is attractive for data scientists, as the benefit of the quick
launch of a Python runtime [10] together with the paral-
lelism of thousands of serverless functions makes Python
attractive for large-scale data processing when trying to
minimize end-to-end runtime.

For example, PyWren [11] is a popular framework that
combines Python, AWS Lambda serverless functions, and
storage via S3 without the need to provision a cluster first

mailto:leonhard@brown.edu
mailto:kraska@mit.edu
mailto:malte@brown.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

to run simple queries that can be expressed as a sequence
of map operations, with each map operation taking a user-
defined function (UDF) as a parameter. PyWren’s limited
API only allows for simple data analytics workloads that
apply a UDF f to each of N input rows stored within
S3, but it demonstrates that processing large quantities
via serverless functions relying on Python is feasible and
scales nearly linearly.

However, this scalability comes at a cost: for increased
dataset sizes, the benefit of the Python runtime’s low
startup times gets eclipsed by the slow execution speed
for the actual processing work in the Python UDFs. A
data scientist might be tempted to simply increase the
parallelism level to reduce runtime, but this could be an
expensive mistake: each millisecond wasted due to slow
execution rapidly multiplies by the number of Lambda
functions invoked—e.g., spending an extra second on
5,000 Lambdas on AWS with 1GB memory each trans-
lates to an added $0.08 cost. Reducing end-to-end run-
time by scaling up the parallelism may therefore end up
merely parallelizing Python overhead, hiding a higher-
than-necessary total compute cost (in cycles and dollars).

A possible answer is to instead generate efficient ma-
chine code, similar to what an optimizing C/C++ compiler
may produce. This is a tried-and-tested approach in a
single-machine setting, but making it work for interactive
queries on Lambdas poses new challenges.

3. Code generation for Lambdas
Code generation improves runtime efficiency for queries
at the expense of a one-time compile cost, which amor-
tizes when running over sufficiently large input data. In-
deed, code generation (either fine-grained, or by tem-
plating and combining query fragments) and subsequent
compilation are a standard way to produce an efficient
physical plan. In the serverless setting, this raises the
question where and how to generate and compile a query.

Code generation blocks query execution. Compil-
ing on the client machine (or via a dedicated compilation
service) is cost-effective, as no Lambda functions are in-
voked, but also limits the parallelism to the client machine
and blocks query execution until this machine finishes
compiling the plan. Generating C/C++ code is a popular
choice because it makes code generation easy, but C/C++
compilers like Clang or GCC take a long time to generate
code with optimizations enabled. For example, Meta re-
ports that its unified execution engine, Velox, which uses
C/C++ templating and code generation, takes tens of sec-
onds to generate code, invoke a C/C++ compiler, and pro-
duce a shared library to load into the execution engine [12].
While ahead-of time code generation for queries can be
cost-effective, as shown in proof-of-concept engines like
Starling [9], it can become the dominant cost in query exe-

cution as the serverless function parallelism increases and
per-function runtime shrinks, making it harder to amortize
long compile times.

Vectorized execution engines that rely on pre-compiled
primitives trade-off shorter compile time against missed
optimization potential for generated code and larger code
size compared to fully-compiling, fine-grained execution
engines. Thus, it becomes difficult to provide both effi-
cient code and low, interactive end-to-end query latency
by relying on a classic compiler.

Heterogeneity and marginal optima. In cases where
the data distribution varies across subsets of the input
data, compiling different code paths may be beneficial.
Generating individual code for subsets of the data would
allow a system to locally specialize and emit optimized
code that may outperform a single, globally optimized
code path. By compiling different code paths in parallel on
individual Lambdas, the system can also prevent stalling
execution when all Lambdas would otherwise need to wait
on the physical plan to compile on the client machine.

Given the HTTP request model of Lambdas, existing
techniques involving multiple code-paths—such as on-
stack replacement, where an existing code-path is replaced
on-the-fly with a more performant version [13]—are chal-
lenging to realize, as serverless environments allow only
for limited communication and synchronization between
individual Lambdas (or require extensive effort to over-
come network limitations [14]), and provide no bidirec-
tional communication channel to the client.

Pre-baking code in the form of specialized primitives,
as proposed in micro-adaptivity [15], may benefit long-
running queries, but could also lead to high runtime costs
when swapping between paths too often, or miss out on
optimization potential when relying on primitives that are
too coarse-grained.

Low startup times come from light runtimes. To
guarantee fast startup times, images for Lambda functions
should be as small as possible.1 A common optimization
is to use warmed-up instances by keeping “hot” contain-
ers around, via warmup calls or by paying a premium to
the vendor (e.g., AWS Lambda provisioned functions).
Caching techniques on the service side [16, 17, 18, 19]
or loading only necessary application code during run-
time [20] can also help to drive down overheads.

Frameworks that are able to compile most of the user-
supplied logic reduce the image size by including only
minimal runtime and compile logic. This much reduces
startup time compared to including a full language in-
terpreter and all dependencies, even though it may re-
quire shipping compiled code from the client to individual
Lambdas, or compiling code on them.

1Image size restrictions (e.g., 250MB on AWS Lambda) can be over-
come using a container registry at the cost of higher startup time.

4. Hyperspecialization
The central idea of hyperspecialization is to generate be-
spoke, specialized code for each input slice rather than to
rely on a single, global specialization. As emitting differ-
ent code paths benefits only heterogeneous datasets, we
focus on such in the following. For homogeneous datasets,
a system would automatically disable hyperspecialization,
or let users do so explicitly.

4.1. Challenges
The overall challenge of hyperspecialization is that any
cost to perform hyperspecialization weighs against the
performance benefits of better-fitted code. In particular,
a hyperspecializing query compiler must avoid situations
where hyperspecialization performs worse than just a sin-
gle, globally-generated code path.

Balancing optimization cost. One key challenge is
to balance where the system generates, optimizes, and
executes code. Typically, the client machine issuing the
query to each Lambda executor has limited parallelism
and a slow connection to a blob service like S3. However,
any compute time spent on the client machine is essen-
tially free, whereas every single millisecond spent on a
Lambda multiplies by the parallelism employed. Keeping
overheads low on each Lambda is crucial, but spending
too much time on the client to generate and optimize code
results in a slow query and a bad user experience.

In Viton, our hyperspecializing query compiler, we find
a compromise: Viton performs a raw global optimization
using a cheap sample on the client that it uses to split
a query into stages, to project an initial set of columns,
and to perform logical optimizations (like pushing filters
through joins). Re-optimization on the Lambdas then re-
solves any initial sampling errors Viton may have incurred
on the client and addresses heterogeneity within the input
data. With this design choice, Viton balances the cost of
too much optimization and code generation on a Lambda
versus increased end-to-end time.

Balancing sampling cost. To generate a new special-
ized code-path, a Lambda must draw an input data sample
for its specific input slice from S3. Controlling the sam-
pling cost here is challenging, as the system must avoid
issuing too many S3 requests and spending cycles pars-
ing many rows, but must also ensure that the sample is
representative. For example, sorted input data easily pro-
vokes sampling errors where using randomized sampling
or sampling the first and last rows only.

Viton issues two S3 requests to get a block of fixed size
of the start and end of a file to base the initial sample on.
To further reduce sampling cost, Viton uses stratified sam-
pling instead of parsing all available rows in the received
data blocks. With stratified sampling, Viton partitions the
input data into groups (strata) of equal size, and draws

sample, specialize
and re-optimize

codegen local path and
lower to native code

5

6

sample and
globally pre-optimize

codegen global path
and interpreter path

2

3

client

invoke with lightly
annotated ASTs

4

S3
store results

7

Python program
1

Figure 1: Viton system architecture: the client performs initial
sampling and code generation, but each serverless Lambda
function further samples and specializes to its particular input.

an identical number of random samples from each group.
Picking random samples within a group avoids sampling
errors. Viton then detects whether the Lambda’s input
data distribution differs from the global distribution. If
so, Viton triggers re-optimization of the complete stage
assigned to the Lambda, which fits both logic and data rep-
resentation tightly to the concrete input data the Lambda
is about to process.

4.2. Design
We base the design of Viton on a setting in which a sin-
gle client machine issues AWS Lambda requests for data
stored in S3. Viton divides query execution into two steps
when it comes to planning, reflected in the overall system
architecture (Figure 1). In a first step, which executes
on the client, Viton draws a small initial sample from S3
to estimate an initial data distribution for the query to
perform initial query planning steps, like detecting the
schema, deciding which stages to generate, and collecting
globally helpful statistics to derive a global physical plan.
Viton intentionally keeps the sampling on the client cheap,
as it expects hyperspecialization to adapt the query during
execution. Viton also generates and compiles a general
code path that is globally optimized and serves as a fall-
back on each Lambda executor when subsets are similar
in distribution or hyperspecialization on an executor fails.

Viton then executes each stage using parallel Lambda
executors. With hyper-specialization mode active, Viton
assigns each Lambda a specialization unit. While there
may be different strategies on how to identify and assign
specialization units, in Viton, each input file serves as a
specialization unit. We base this choice on the assumption
that data sets are often partitioned by initial attributes,
such as time. Thus, individual files marginalize the data
distribution such that marginal distributions have overall
lower variance. For historical data, this is typically the
time of collection, but other schemes exist (e.g., categori-
cal grouping or sorted data).

In the second step, each Lambda draws a new sample
and re-optimizes the stage if the data distribution differs
from the global sample. In order to re-optimize a stage on
a Lambda executor, Viton ships logical operators together
with associated UDFs in the form of lightly annotated
abstract syntax trees (ASTs).

Specializing code on each Lambda on the new sample
allows the specialization to combine logical with compiler
optimizations, with each potentially benefiting the other.
For example, a UDF may require different input columns
to be parsed for input data from different years, but a
globally optimized pipeline would always parse all the
union of all required input columns. By re-optimizing the
code locally and detecting common branches (a compiler
optimization), Viton avoids parsing unnecessary columns
in the first place (a logical pushdown optimization). Like-
wise, Viton could remove operators that become dead
code, or reorder filters based on patterns in the data.

To make hyperspecialization work, the cost of execut-
ing all these steps has to be low enough to be offset by a
performance gain through a more efficient code path. Vi-
ton uses aggressive optimizations, which may work for a
subset of the data, but would likely fail if applied globally.

4.3. Optimizations
Viton adds two additional, aggressively-specializing spec-
ulative optimizations to those already in Tuplex [1].

Constant folding applies when an input data column
is constant (e.g., a year or month), and allows Viton to
remove deserialization of constant data and eliminates un-
necessary code. While constant folding is a well-known
compiler optimization, Viton applies it as a logical opti-
mization to avoid deserialization.

Filter promotion assumes that a filter condition always
holds or fails, which reduces code complexity by elimi-
nating any future checks on the filter condition and allows
Viton to base other optimizations only on sample rows
that pass the filter. In the best case, filter promotion fully
collapses individual operators.

These two optimizations are examples of a broader
class of speculative optimizations that may be effective
locally on subsets of a dataset. They also benefit logical
optimizations when, e.g., they reduce the set of input
columns required.

4.4. Implementation
We implemented our Viton prototype on top of Tuplex [1].
Creating Viton required adding support for more aggres-
sive optimizations that can exploit properties of marginal
distributions, and extending the early-stage Lambda back-
end of Tuplex to support shipping stages in the form of
abstract syntax trees (ASTs) to Lambda executors. For
this, we implemented a custom AWS Lambda runtime as

this was more efficient in micro-benchmarks than building
on top of existing runtimes in AWS Lambda. In addition
to implementing per-Lambda, per-input file sampling, and
hyperspecialized code generation, Viton also adds support
for semi-structured JSON files with a parser built on top
of simdjson [21].

5. Preliminary Results
We configure each Lambda to run a single Viton executor
that uses up to 10 GB of memory and a maximum of three
threads. As of June 2023, a Lambda instance with 10
GB of memory has six vCPUs, three of which we use
for processing and three for S3. We run the client on a
single r5d.xlarge EC2 instance. For our preliminary
evaluation, we evaluate two queries.

Flights query. This query performs data cleaning over
the flights dataset [22], but imputes missing values for
delay factors prior to 06/2003, and retrieves a cleaned
result for the years 2002–2005. Due to a schema change,
delay information prior to 06/2003 was collected only as
a single, aggregate delay factor in the form of one column
which then changed into collecting detailed information
breaking down delays into several delay factors using addi-
tional columns. The input data consists of 410 files (83.51
GB total) with sizes from 177–284 MB, each containing
data for one month between 10/1987 to 11/2021.

Github query. The second query analyzes historical
data in the Github Archive dataset collected from Github
since February, 2011 [23], which contains raw informa-
tion about 20+ events. Within this dataset, data is or-
ganized as newline-delimited JSON files for each day.
Schema changes due to introduction of new fields are fre-
quent (e.g., there are 3,748 changes over 417 days [24]).
In addition, the schema of each row varies depending on
the event type and time of collection, as data collection
used multiple APIs with different response schemas over
time. Due to resource constraints, we limit out experiment
to a subset of eleven files for October 15th of each year
(35.5GB total). We run a query that, for each fork event,
extracts the number of commits, original repository ID,
and when a fork happened.

Results. We evaluate the potential of hyperspecializa-
tion by measuring the runtime improvements that special-
ized code paths provide. We keep files in each dataset
partitioned as they were in the original dataset, including
heterogeneous input file sizes, and measure performance
without hyperspecialization (i.e., vanilla Tuplex [1]), with
hyperspecialization using only Tuplex’s existing optimiza-
tions (e.g., speculating on NULL values), and with ag-
gressive hyperspecialization, which adds the two new
optimizations from §4.3. A good result would show hy-
perspecialization reducing the querys’ end-to-end runtime
and monetary cost.

flights github
0

25

50

75

100

125
en
d
-t
o-
en
d
ti
m
e
in

s

flights github
0.0

0.2

0.4

0.6

0.8

1.0

co
st

in
U

S
D

Global only (Tuplex)

Hyperspecialization

Aggr. Hyperspecialization

Figure 2: Hyperspecialization reduces end-to-end runtime
by 3.05× and 2.27× for the flights and github queries, and
reduces cost by 2.8× and 2.3×. The github query’s runtime is
larger due to longer-running executors, but cost is lower than
the flights query’s, which uses higher parallelism. Times are
averages of 10 runs after a single warm-up run.

0 20 40 60 80 100
% of requests completed

0

5

10

15

ti
m

e
in

s

17.8s end-to-end query time

client-side
planning (6.9s)

hyperspecialization

execution

(a) Overall query breakdown over time.
1.5% (33.6s)
deserialization

22.1% (495.9s)
sampling

19.0% (426.7s)
specialization

1.8% (41.3s)
LLVM (opt. + x86)

52.3% (1173.7s)
fast path

3.2% (72.8s)
general

& fallback path
& other

(b) Cumulative time spent on Lambda executors.

Figure 3: Breakdown for a single execution of the flights
query: Lambda executors spent 44% of time on hyperspecial-
ization overheads, but with hyperspecialization enabled still
better end-to-end performance and cost is achievable here.

Figure 2 shows the results. Hyperspecialization both
makes existing optimizations more impactful (“hyperspe-
cialization”), reducing runtime by 1.25–2×, and enables
extra, aggressive optimizations (“aggr. hyperspecializa-
tion”) that further reduce runtime for a total runtime gain
of 2.3–3×. These reduced runtimes translate into 2.3–
2.8× lower cost-per-query. The github query sees larger
improvements from the extra optimizations, as it benefits
from both filter promotion and constant folding, while the
flights query only benefits from constant folding. These
early results indicate that generating hyperspecialized
code paths for sufficiently large specialization units can
yield overall improvements in cost and performance, amor-
tizing any overheads incurred.

Breakdown. We now break down an individual run of
the flights query to understand the overheads of hyperspe-
cialization. Figure 3 shows a timeline of the query. Viton
spends 6.9 seconds on the client retrieving data from S3,
sampling globally, and generating the global code path.

Total Total $ per λ ct per λ

Lambda exec. time 2231.6s $0.370 5.44s 0.091ct

deserialization 33.6s $0.006 0.08s 0.001ct
sampling 495.9s $0.083 1.21s 0.020ct
specialization 426.7s $0.071 1.04s 0.017ct
LLVM (opt. + x86) 41.3s $0.007 0.10s 0.002ct
Σ overheads 997.6s $0.166 2.43s 0.041ct

fast path 1173.7s $0.196 2.86s 0.048ct

Figure 4: Breakdown of an example flights query execution
which took 17.8s end-to-end with 410 parallel Lambdas.

Afterwards, Viton’s Lambdas spend about 44% of their
7–10 second execution time on hyperspecialization (Fig-
ure 3a), and the remainder of execution time processing
data. Figures 3b and 4 further break down the time spent
on Lambdas. Sampling takes about one second and code
generation and compilation take about 1.2 seconds per
Lambda. Importantly, it was necessary to restrict our-
selves to a set of cheap LLVM optimizations in order
to achieve this quick optimization time. Combined with
other overheads, the total overheads of hyperspecializa-
tion come to 2.43 seconds, while 2.86 seconds are spent
running the specialized fast path, and 0.15 seconds on the
general compiled code path or in the interpreter. The ini-
tial time spent on the client could be reduced by caching
information about files stored in S3, as the client spends
most of the time accessing S3.

These results indicate that hyperspecialization is effec-
tive and can amortize its overheads sufficiently to provide
end-to-end runtime reduction and cost savings.

6. Conclusion and Outlook
In this paper, we introduced the idea of hyperspecializa-
tion. Our preliminary results indicate that hyperspecial-
ization is a promising direction. Further work will need
to investigate several research questions.

What specialization unit size to pick? We want to
quickly identify large, distinct subsets of input data and
compile efficient code for them. However, optimizing too
narrowly may fail to amortize the overheads of hyperspe-
cialization despite improvements in performance. New
techniques to identify regions for which hyperspecializa-
tion is a good idea and for a query optimizer to utilize this
information are needed.

How to handle scenarios where compilation cost is
high? Interpreters with JIT-compilation support typically
compile only small code regions like individual loops or
functions. But query compilation for a full query can
become prohibitively expensive. Automating the process
of detecting when to perform costly compilation within a
serverless setting, and what optimizations are affordable,
is part of the set of research questions we are just starting
to understand better.

Acknowledgments
This research was supported by a Meta PhD fellowship.
We thank Ben Givertz, Yunzhi Shao, Andrew Wei, Rhea
Goyal, Shreeyash Gotmare, Khemarat (March) Boonya-
paluk and Rahul Yesantharao for their contributions to
Viton’s implementation. This research was supported
by NSF awards DGE-2039354 and IIS-1453171, and by
funding from Google and VMware.

References
[1] L. Spiegelberg, R. Yesantharao, M. Schwarzkopf,

T. Kraska, Tuplex: Data Science in Python at Native
Code Speed, Association for Computing Machinery,
New York, NY, USA, 2021, p. 1718–1731. URL:
https://doi.org/10.1145/3448016.3457244.

[2] I. Müller, R. Marroquín, G. Alonso, Lambada: In-
teractive data analytics on cold data using serverless
cloud infrastructure, in: Proceedings of the 2020
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’20, Association for
Computing Machinery, New York, NY, USA, 2020,
p. 115–130. URL: https://doi.org/10.1145/3318464.
3389758. doi:10.1145/3318464.3389758.

[3] J. Sompolski, M. Zukowski, P. Boncz, Vector-
ization vs. compilation in query execution, in:
Proceedings of the Seventh International Work-
shop on Data Management on New Hardware, Da-
MoN ’11, Association for Computing Machinery,
New York, NY, USA, 2011, p. 33–40. URL: https:
//doi.org/10.1145/1995441.1995446. doi:10.1145/
1995441.1995446.

[4] T. Neumann, Efficiently compiling efficient
query plans for modern hardware, Proc. VLDB
Endow. 4 (2011) 539–550. URL: https://doi.
org/10.14778/2002938.2002940. doi:10.14778/
2002938.2002940.

[5] K. Krikellas, S. D. Viglas, M. Cintra, Generating
code for holistic query evaluation, in: 2010 IEEE
26th International Conference on Data Engineering
(ICDE 2010), IEEE, 2010, pp. 613–624.

[6] R. Y. Tahboub, G. M. Essertel, T. Rompf, How
to architect a query compiler, revisited, in: Pro-
ceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, Association for
Computing Machinery, New York, NY, USA, 2018,
p. 307–322. URL: https://doi.org/10.1145/3183713.
3196893. doi:10.1145/3183713.3196893.

[7] W. Zhang, J. Kim, K. A. Ross, E. Sedlar, L. Stadler,
Adaptive code generation for data-intensive ana-
lytics, Proc. VLDB Endow. 14 (2021) 929–942.
URL: https://doi.org/10.14778/3447689.3447697.
doi:10.14778/3447689.3447697.

[8] F. McSherry, M. Isard, D. G. Murray, Scalability!
but at what COST?, in: Proceedings of the 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS), 2015.

[9] M. Perron, R. Castro Fernandez, D. DeWitt, S. Mad-
den, Starling: A scalable query engine on cloud
functions, in: Proceedings of the 2020 ACM
SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’20, Association for Com-
puting Machinery, New York, NY, USA, 2020,
p. 131–141. URL: https://doi.org/10.1145/3318464.
3380609. doi:10.1145/3318464.3380609.

[10] D. Jackson, G. Clynch, An investigation of the im-
pact of language runtime on the performance and
cost of serverless functions, in: 2018 IEEE/ACM
International Conference on Utility and Cloud Com-
puting Companion (UCC Companion), 2018, pp.
154–160. doi:10.1109/UCC-Companion.2018.
00050.

[11] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica,
B. Recht, Occupy the cloud: Distributed computing
for the 99%, in: Proceedings of the 2017 Sympo-
sium on Cloud Computing, 2017, pp. 445–451.

[12] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong,
L. Sakka, K. Pai, W. He, B. Chattopadhyay, Velox:
meta’s unified execution engine, Proceedings of the
VLDB Endowment 15 (2022) 3372–3384.

[13] G. M. Essertel, R. Y. Tahboub, T. Rompf, On-stack
replacement for program generators and source-to-
source compilers, in: Proceedings of the 20th ACM
SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE
2021, Association for Computing Machinery, New
York, NY, USA, 2021, p. 156–169. URL: https://
doi.org/10.1145/3486609.3487207. doi:10.1145/
3486609.3487207.

[14] M. Wawrzoniak, I. Müller, R. Fraga Barcelos
Paulus Bruno, G. Alonso, Boxer: Data analytics
on network-enabled serverless platforms, in: 11th
Annual Conference on Innovative Data Systems Re-
search (CIDR 2021), 2021.

[15] B. Răducanu, P. Boncz, M. Zukowski, Micro
adaptivity in vectorwise, in: Proceedings of the
2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, Associ-
ation for Computing Machinery, New York, NY,
USA, 2013, p. 1231–1242. URL: https://doi.org/10.
1145/2463676.2465292. doi:10.1145/2463676.
2465292.

[16] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin,
Q. Wu, H. Chen, Catalyzer: Sub-millisecond
startup for serverless computing with initialization-
less booting, in: Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems,

https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/3318464.3389758
http://dx.doi.org/10.1145/3318464.3389758
https://doi.org/10.1145/1995441.1995446
https://doi.org/10.1145/1995441.1995446
http://dx.doi.org/10.1145/1995441.1995446
http://dx.doi.org/10.1145/1995441.1995446
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/3183713.3196893
http://dx.doi.org/10.1145/3183713.3196893
https://doi.org/10.14778/3447689.3447697
http://dx.doi.org/10.14778/3447689.3447697
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
http://dx.doi.org/10.1145/3318464.3380609
http://dx.doi.org/10.1109/UCC-Companion.2018.00050
http://dx.doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1145/3486609.3487207
https://doi.org/10.1145/3486609.3487207
http://dx.doi.org/10.1145/3486609.3487207
http://dx.doi.org/10.1145/3486609.3487207
https://doi.org/10.1145/2463676.2465292
https://doi.org/10.1145/2463676.2465292
http://dx.doi.org/10.1145/2463676.2465292
http://dx.doi.org/10.1145/2463676.2465292

ASPLOS ’20, Association for Computing Machin-
ery, New York, NY, USA, 2020, p. 467–481. URL:
https://doi.org/10.1145/3373376.3378512. doi:10.
1145/3373376.3378512.

[17] A. Singhvi, A. Balasubramanian, K. Houck, M. D.
Shaikh, S. Venkataraman, A. Akella, Atoll: A scal-
able low-latency serverless platform, in: Proceed-
ings of the ACM Symposium on Cloud Comput-
ing, SoCC ’21, Association for Computing Machin-
ery, New York, NY, USA, 2021, p. 138–152. URL:
https://doi.org/10.1145/3472883.3486981. doi:10.
1145/3472883.3486981.

[18] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale,
S. Pouget, J. Kouam, R. Lachaize, J. Hwang,
T. Wood, D. Hagimont, N. De Palma, B. Batchakui,
A. Tchana, Ofc: An opportunistic caching sys-
tem for faas platforms, in: Proceedings of the Six-
teenth European Conference on Computer Systems,
EuroSys ’21, Association for Computing Machin-
ery, New York, NY, USA, 2021, p. 228–244. URL:
https://doi.org/10.1145/3447786.3456239. doi:10.
1145/3447786.3456239.

[19] L. Ao, G. Porter, G. M. Voelker, Faasnap: Faas
made fast using snapshot-based vms, in: Proceed-
ings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, Association for
Computing Machinery, New York, NY, USA, 2022,
p. 730–746. URL: https://doi.org/10.1145/3492321.
3524270. doi:10.1145/3492321.3524270.

[20] X. Liu, J. Wen, Z. Chen, D. Li, J. Chen, Y. Liu,
H. Wang, X. Jin, Faaslight: General application-
level cold-start latency optimization for function-
as-a-service in serverless computing, ACM Trans.
Softw. Eng. Methodol. (2023). URL: https://doi.org/
10.1145/3585007. doi:10.1145/3585007.

[21] G. Langdale, D. Lemire, Parsing gigabytes of json
per second, The VLDB Journal 28 (2019) 941–960.

[22] Bureau of Transportation Statistics, United States
Department of Transportation, Reporting carrier on-
time performance (1987-present), 2020. URL: https:
//www.transtats.bts.gov/Fields.asp?Table_ID=236.

[23] I. Grigorik, Github archive, https://www.gharchive.
org/, 2023.

[24] Github, Changelog - github docs, 2022. URL: https:
//docs.github.com/en/graphql/overview/changelog.

https://doi.org/10.1145/3373376.3378512
http://dx.doi.org/10.1145/3373376.3378512
http://dx.doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3472883.3486981
http://dx.doi.org/10.1145/3472883.3486981
http://dx.doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3447786.3456239
http://dx.doi.org/10.1145/3447786.3456239
http://dx.doi.org/10.1145/3447786.3456239
https://doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3492321.3524270
http://dx.doi.org/10.1145/3492321.3524270
https://doi.org/10.1145/3585007
https://doi.org/10.1145/3585007
http://dx.doi.org/10.1145/3585007
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.gharchive.org/
https://www.gharchive.org/
https://docs.github.com/en/graphql/overview/changelog
https://docs.github.com/en/graphql/overview/changelog

	1 Introduction
	2 Motivation
	3 Code generation for Lambdas
	4 Hyperspecialization
	4.1 Challenges
	4.2 Design
	4.3 Optimizations
	4.4 Implementation

	5 Preliminary Results
	6 Conclusion and Outlook

