


Tractable Control for Autoregressive Language Generation

where we use TPMs to impose lexical constraints in autore-

gressive text generation. Given a pre-trained autoregressive

LM PrLM, e.g., GPT3 (Brown et al., 2020), our goal is to

generate text effectively following the conditional distribu-

tion PrLM(x1:n | α) for arbitrary lexical constraints α. As

illustrated in Figure 1, our proposed framework consists of

two major components: (1) we train a TPM PrTPM via max-

imum likelihood estimation (MLE) on samples drawn from

PrLM, which is equivalent to minimizing the KL-divergence

between PrTPM and PrLM; then (2) at generation time, we

compute PrTPM(xt+1 | x1:t, α) efficiently and combine it

with PrLM(xt+1 | x1:t) to approximate PrLM(xt+1 | x1:t, α)
for reliable control. Note that we assume nothing about the

lexical constraint α as we train PrTPM, which means that

the TPM does not need to be re-trained for different types

of constraints: given a trained TPM that approximates PrLM

well enough, we can use it to impose any lexical constraints

α, as long as PrTPM(. | α) can be efficiently computed.

Throughout this paper, we use hidden Markov mod-

els (HMMs) (Rabiner & Juang, 1986) as an example TPM

to demonstrate the effectiveness of GeLaTo. Specifically,

(1) we show that, when trained as probabilistic circuits (Choi

et al., 2020b; Liu et al., 2023), HMMs can approximate

the GPT2-large model finetuned on downstream tasks well

enough and (2) we propose a dynamic programming al-

gorithm that efficiently computes conditional probabilities

PrHMM(· | α), for αs that encode constraints as conjunctive

normal forms (CNFs):

(I(w1,1)∨· · ·∨I(w1,d1
))∧· · ·∧(I(wm,1)∨· · ·∨I(wm,dm

));

here each wi,j is a string of tokens, and I(wi,j) is an indi-

cator variable denoting whether or not wij appears in the

generated text. Intuitively, constraint α requires that a set of

m keywords must appear somewhere in the generated text,

in any of their inflections, where each inflection is encoded

as a string of one or more tokens. We evaluate the perfor-

mance of GeLaTo on challenging constrained text genera-

tion datasets: CommonGen (Lin et al., 2020), News (Zhang

et al., 2020), and Yelp!Review (Cho et al., 2019). GeLaTo

not only achieves state-of-the-art generation quality but also

guarantees that the constraints are satisfied 100%; for both

unsupervised and supervised settings, GeLaTo beats strong

baselines belonging to different families of constrained gen-

eration approaches by a large margin.

Our study demonstrates the potential of TPMs in controlling

large language models and motivates the development of

more expressive TPMs.

2. Guiding Autoregressive Generation with

Tractable Probabilistic Models

In this section, we present the general GeLaTo framework

for guiding autoregressive generation with tractable proba-

bilistic models. Throughout this paper, we use uppercase

letters Xt for random variables and lowercase letters xt for

their assignment.

Let PrLM(x1:n) be the distribution of an autoregressive

LM (e.g., GPT) over n tokens and α a lexical constraint

defined over X1:n; our goal is to generate from the follow-

ing conditional distribution:

PrLM(x1:n | α) =
∏

t
PrLM(xt+1 | x1:t, α)

Though PrLM(xt+1 | x1:t, α) is intractable, we can assume

that PrTPM(xt+1 | x1:t, α) can be efficiently computed.

The first step of GeLaTo is to train our TPM model such

that PrTPM approximates PrLM as well as possible. We train

the TPM model via maximum likelihood estimation (MLE)

on data drawn from PrLM, that is, we maximize

Ex1:n∼PrLM
log PrTPM(x1:n),

which effectively minimizes their KL-divergence:

DKL(PrLM ∥ PrTPM)

=Ex1:n∼PrLM
log PrLM(x1:n)−Ex1:n∼PrLM

log PrTPM(x1:n)

With the recent development of scaling up TPMs (Chiu &

Rush, 2020; Dang et al., 2022a; Liu et al., 2023), we show

in Section 4 that it is possible to train TPMs as good enough

approximations of LMs.

Now given some TPM as a good enough approximation

for the LM that we want to generate from, we combine

both models for constrained generation, where the TPM is

responsible for providing guidance on incorporating lexical

constraints and LM responsible for generating fluent texts.

To derive our formulation, in addition to lexical constraint

α, we assume that there exists some “quality” constraint

β such that PrTPM( | β) is even closer to PrLM; intuitively

we interpret β as some constraint characterizing the high-

quality (fluent & grammatical) sentences that are likely to

be sampled from our base LM PrLM. Hence, in order to

generate a high-quality sentence satisfying some lexical

constraint α, we generate from

PrTPM(x1:n | α, β) =
∏

t
PrTPM(xt+1 | x1:t, α, β);

in particular, in addition to the assumption that PrTPM(· | β)
is a good enough approximation for PrLM, we also assume

the key independence assumption: α and β are condition-

ally independent given x1:t+1. By applying Bayes rule, it

follows from our assumptions that:

PrTPM(xt+1 | x1:t, α, β)

∝ PrTPM(α | x1:t+1, β) · PrTPM(xt+1 | x1:t, β)

∝ PrTPM(α | x1:t+1) · PrLM(xt+1 | x1:t).
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Now we examine whether our key independence assumption

holds for the unsupervised and supervised settings.

Unsupervised setting. In the unsupervised setting, we as-

sume that the base pre-trained LM is not finetuned given

task-specific supervision; that is, PrLM is not finetuned to

generate texts satisfying α provided as input, but is possibly

finetuned or prompted for the purpose of domain adapta-

tion. In this setting, there is no easy way for the “quality”

constraint β to obtain any information about the lexical

constraint α and our key independence assumption should

roughly hold. In other words, satisfying the lexical con-

straint α should not help or hinder the fluency of the gen-

erated sentence according to the pre-trained LM, it merely

biases what the sentence talks about. Hence for the unsu-

pervised setting, we generate autoregressively following the

next-token distribution defined as:

p(xt+1|x1:t, α) ∝ PrTPM(α|x1:t+1)·PrLM(xt+1|x1:t). (1)

This formulation is also adopted in FUDGE (Yang & Klein,

2021) and NADO (Meng et al., 2022), which train auxiliary

models to approximate PrLM(α |x1:t+1); the key difference

is that such auxiliary models take α as input during training

while our TPM training is unconditional.

Supervised setting. In this setting, we assume that

the language model PrLM is finetuned in a sequence-to-

sequence (seq2seq) manner; that is, during training, α is

explicitly supplied to the LM together with some gold sen-

tences: e.g., for keyword-type constraints, the LM is fine-

tuned over texts of the form “weather winter cold = the

weather is cold in winter,” where the prompt “weather win-

ter cold = ” encodes the constraint that all words before

“=” should be used. In this case, our key independence as-

sumption no longer holds because PrLM is already trained to

satisfy the lexical constraint α, which is provided as part of

the prefix x1:t+1. Hence for the supervised setting, we adopt

an alternative formulation by viewing PrTPM(xt+1 | x1:t, α)
and PrLM(xt+1 | x1:t) as classifiers trained for the same

task yet with different biases; by Satopää et al. (2014), if

we assume that each model predicts the true logits up to

additive Gaussian noise, then the most likely logits can be

found by taking a geometric mean of the models. Hence,

in the supervised setting, we generate autoregressively fol-

lowing the next-token distribution defined as their weighted

geometric mean (Hinton, 2002; Grover & Ermon, 2018):

p(xt+1 | x1:t, α)

∝ PrTPM(xt+1 | x1:t, α)
w ·PrLM(xt+1 | x1:t)

1−w; (2)

here w ∈ (0, 1) is a hyper-parameter to be tuned.

To summarize, GeLaTo consists of two major steps: (1) dis-

tillation: we train a TPM on samples drawn from the pre-

trained LM via MLE to effectively minimize the KL diver-

gence between PrLM and PrTPM; (2) probabilistic reason-

ing: for each step of autoregressive generation, we compute

PrTPM(· | α) and generate from the conditional next-token

distribution p(xt+1 | x1:t, α) defined above. In addition

to better generation quality, which we demonstrate in Sec-

tion 4, GeLaTo has two major advantages compared to its

counterparts for constrained generation:

• The sentences generated following p(xt+1 |x1:t, α) are

guaranteed to satisfy the lexical constraint α; in autore-

gressive generation, as we generate the next token xt+1,

it follows from the definition that for choices of xt+1

such that α cannot be satisfied, PrTPM(xt+1, x1:t, α)
is 0, thus p(xt+1 | x1:t, α) is also 0.

• The TPM training is independent of the lexical con-

straint α, which is only enforced at inference time; it

immediately follows that we do not need to re-train

the TPM model no matter how α changes; on the other

hand, constrained decoding approaches that train auxil-

iary neural models, e.g., FUDGE and NADO, need to

re-train their model for different types of constraints.

Throughout the rest of this paper, we use hidden Markov

models (HMMs) as example TPMs to demonstrate the

practicality and effectiveness of GeLaTo. In the following

section, we propose an efficient algorithm for computing

PrTPM(α | x1:t+1) and PrTPM(xt+1 | x1:t, α).

3. Efficient Probabilistic Reasoning with

Hidden Markov Models

To impose lexical constraint α in autoregressive genera-

tion via TPM, for any given prefix x1:t, we need to com-

pute PrTPM(x1:t, α) (omit subscript for rest of the section);

specifically, as described in Section 2, we need to compute

Pr(α | x1:t+1) = Pr(x1:t+1, α)/Pr(x1:t+1) for the unsu-

pervised setting and Pr(xt+1 | x1:t, α) ∝ Pr(x1:t+1, α) for

the supervised setting. In this section, we describe a dy-

namic programming algorithm that computes Pr(x1:t, α)
for hidden Markov models (HMMs), where α is some lexi-

cal constraint encoded in a conjunctive normal form (CNF):

(I(w1,1)∨· · ·∨I(w1,d1
))∧· · ·∧(I(wm,1)∨· · ·∨I(wm,dm

));

here each wi,j is a string of tokens, which we denote as

“keystrings” for short, and I(wij) is the indicator variable

that represents whether wij appears in the generated text.1

We refer to (I(wi,1) ∨ · · · ∨ I(wi,di
)) as a clause.

For simplicity, we use the short-hand αl:r to denote the event

that α is satisfied on the sub-sequence Xl:r. In practice, we

1To be precise, denoting the kth token of wij as
(wij)k, I(wi,j) is in fact a disjunction over conjunctions:
∨1≤t≤n−|wij |+1

(

∧0≤k<|wij |Xt+k = (wij)k
)

, representing that
wij can be in any position of the generated text.
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Pr(x1:t−1, Xt ≠ , Xt ≠ , α′t:n)

= Pr(x1:t−1, α′t:n) − Pr(x1:t−1, Xt = , α′t:n) − Pr(x1:t−1, Xt = , α′t:n)

= ∑j
Pr(x1:t−1, Zt = j) ⋅ (Pr(α′t:n |Zt = j) − Pr(Xt = , α′

t:n
|Zt = j) − Pr(Xt = , α′

t:n
|Zt = j))

α = (I(   ) ∨ I( )) ∧ I(   )

Z1

Pr(x1:t−1, Xt = , α′t:n) = ∑j
Pr(x1:t−1, Zt = j) ⋅ Pr(Xt = , α′t:n |Zt = j) I(   )

I(   ) ∨ I( )

(I(   ) ∨ I( ))
∧ I(   )

Pr(x1:t−1,  α1:n),

Pr(x1:t−1,  Zt = j) Pr(Xt = ?  α′t:n |Zt = j)

X1 Xt−1

Zt

Xt

Zn

Xn

Pr(x1:t−1, Xt = , α′t:n) = ∑j
Pr(x1:t−1, Zt = j) ⋅ Pr(Xt = , α′t:n |Zt = j)

Xt α′

Zt−1

Pr(x1:t−1,  α1:n) = (1) + (2) + (3)

(1)

(2)

(3)

 x1:t−1 =        α1:n   α       X1:n

Figure 2. A toy example illustrating our dynamic programming algorithm. Here, given the the first t−1 tokens “Kids ... like” that have

been generated, the figure illustrates how to compute Pr(X1:t−1=“Kids ... like”, α1:n). We consider three possible cases for the next

token Xt: “eating”, “working” or neither, and for each case we can reduce the constraint α1:n to the “easier” constraint α′
t:n for some α′.

Then by conditioning on Zt = j (hidden states), we can break down Pr(x1:t−1, Xt =?, α′
t:n) into two terms: Pr(x1:t−1, Zt = j) and

Pr(Xt =?, α′
t:n |Zt = j), which are underlined and boxed in the figure, respectively; in particular the underlined terms can be computed

by the forward algorithm for HMMs and the boxed terms can be computed recursively by the dynamic programming algorithm.

treat HMMs as language models over sequences of tokens

of maximum length n and the lexical constraint we enforce

is denoted as α1:n; in the following discussions, we write

Pr(x1:t, α1:n) instead of Pr(x1:t, α).

3.1. Hidden Markov Models

A hidden Markov model (HMM) represents a joint prob-

ability distribution over n observed variables X1:n and n
latent variables Z1:n. Specifically, for language modeling,

Xt represents the token at position t and Zt represents the

corresponding latent state; Zt takes values in {1, 2, . . . , h},

where h is the number of latent states. Given observed to-

ken sequence x1:n and latent state sequence z1:n, the joint

probability Pr(x1:n, z1:n) is defined as:

Pr(x1 | z1) Pr(z1)
∏

2≤t≤n
Pr(xt | zt) Pr(zt | zt−1);

in particular, the parameters of HMM are given by the ini-

tial probability Pr(z1), emission matrix Pr(xt | zt) and the

transition matrix Pr(zt+1 | zt), which stay the same across

different positions t. HMMs can also be represented as

Bayesian networks (Pearl, 1985); see Figure 2 for an exam-

ple. To perform probabilistic inference on HMMs efficiently,

we leverage the following Markov property:

Pr(xt:n | zt, x1:t−1) = Pr(xt:n | zt). (3)

For example, we can compute the probability of any prefix

Pr(x1:t) =
∑

zt
Pr(x1:t, zt), which can be efficiently com-

puted by the following recurrence relation, which is referred

to as the forward algorithm (Rabiner & Juang, 1986):

Pr(x1:t, zt)

=
∑

1≤zt−1≤h

Pr(xt | zt) Pr(zt | zt−1) Pr(x1:t−1, zt−1).

Modeling Variable-length Texts with HMMs. HMMs

model distributions over a fixed number of random vari-

ables X1:n. To model texts with variable lengths, we first

determine a maximum sequence length n and pad training

texts of length< nwith the special EOS (“endoftext”) token

to the maximum length. We also construct our HMM in a

special way such that an EOS token can only be followed by

EOS tokens; that is, sequences that do not satisify this con-

straint have 0 probability. Hence, PrHMM(x1:n) effectively

defines a distribution over all texts with length ≤ n.

3.2. An Efficient Dynamic Programming Algorithm

We first illustrate the dynamic programming algorithm with

a toy example. As shown in Figure 2, assume that we have

generated the first t − 1 tokens “Kids ... like” and we are

given the constraint:

α = I(like ⊕ working) ∧ (I(like ⊕ eating) ∨ I(soccer)) ;
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Algorithm 1 Constrained Sampling with GeLaTo

Input: constraint α, maximum text length n, HMM q1,

autoregressive LM q2, # of HMM latent states h.

for l from n to 1 do

for x in suffixes of keystrings in α, zl from 1 to h do

for ψ in subsets of clauses of α do

compute q1(xl:r, ψl:n | zl) by the recurrence rela-

tion and store values in cache.

end for

end for

end for

initialize x1:0 = empty string

for t from 1 to n do

for xt in vocabulary do

compute q1(α | x1:t−1, xt) by Case 1.

p(xt | x1:t−1, α)=q1(α | x1:t−1, xt)q2(xt | x1:t−1)
end for

sample xt ∼ p(· | x1:t−1, α)
update x1:t := x1:t−1 ⊕ xt

end for

return x1:n

here we assume “like”, “working”, “eating” and “soc-

cer” are single tokens and ⊕ denotes string concatenation.

To compute Pr(x1:t−1, α1:n), we marginalize out xt in

Pr(x1:t−1, xt, α1:n); in particular, we sum over three pos-

sible cases for the next token xt: “eating”, “working” or

neither, and for each case we reduce Pr(x1:t−1, xt, α1:n) to

Pr(x1:t−1, xt, α
′
t:n) for some α′; here α′ is some CNF for-

mula obtained by removing from the original α the clauses

that are already satisfied. Then, we leverage the Markov

property of HMMs (see Equation 3) to break down the joint

probability Pr(x1:t−1, xt, α
′
t:n) into sub-problems.

Before we describe how to compute Pr(x1:t, α1:n), we es-

tablish a recurrence relation for computing terms of the form

Pr(xl:r, ψl:n | zl), where xl:r is either the empty string or a

suffix for some keystring in α, ψ is a CNF consisting of a

subset of clauses in α and zl is a latent state for Zl.

Assumptions & Notations. For simplicity, we make

the following non-overlapping assumption: for the set of

keystrings appearing in α, denoted as {wij}, the prefix of

wij cannot be a suffix for wpq for all ij ̸= pq. We also

define the following set of strings:

S(x, α) := {s : ∃x′ a suffix of x s.t. x′ ⊕ s lies in α},

which contains all strings that can be appended to x to form

some keystrings in α. For the example in Figure 2, for x =
“Kids ... like”, S(x, α) is given by {“eating”, “working”}.

We write si:j as a shorthand for Xi:j = s.

Recurrence Relation. Pr(xl:r, ψl:n | zl) follows the follow-

ing recurrence relation:

Case 1. xl:r ̸= ∅; then,

Pr(xl:r, αl:n | zl)

=
∑

zr+1

Pr(xl:r, zr+1 | zl)

(

Pr(αr+1:n | zr+1)

+
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1)

−
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αr+1:n | zr+1)

)

;

here ⊕ denotes string concatenation and α \ xl:r ⊕ s repre-

sents the CNF obtained by removing the clauses with any

keywords appearing in xl:r ⊕ s.

Case 2. xl:r = ∅; we reduce the problem to Case 1 by

enumerating xl over the vocabulary:

Pr(αl:n | zl) =
∑

xl∈vocabulary

Pr(xl, αl:n | zl) ;

The recurrence relation presented above gives us a dynamic

programming algorithm for computing terms of the form

Pr(xl:r, ψl:n | zl); see appendix for derivations. Note that

the boxed terms are the sub-problems and the underlined

terms are either HMM parameters or can be pre-computed

via the forward algorithm and then cached for later use.

Finally, as discussed at the beginning of this section, we

guide autoregressive generation from language models at

step t by computing Pr(x1:t−1, xt, α1:n), where x1:t−1 de-

notes the first t− 1 tokens that have been generated:

Pr(x1:t, α1:n) =
∑

z1
Pr(z1) Pr(x1:t, α1:n | z1);

here Pr(z1) is the initial probability of the HMM and

Pr(x1:t, α1:n | z1) can be computed by the formula in

Case 1 (setting l = 1), given that all boxed terms are pre-

computed by the dynamic programming algorithm.

As an example, Algorithm 1 summarizes how to perform

constrained generation with GeLaTo by sampling from the

autoregressive distribution p(xt | x1:t−1, α), as defined in

Section 2 (unsupervised setting). We can easily adapt Algo-

rithm 1 for other decoding procedures like beam search.

For a rough analysis of the time complexity of Algorithm 1,

we treat both the number of latent states h and the vocabu-

lary size as constants; in practice, we can avoid enumerating

all tokens in the vocabulary and all latent states of HMM via

GPU parallelization (see appendix & code for details). It

follows that the time complexity of GeLaTo is O(2|α|nm),
where |α| is the number of clauses in α, n is the maximum

sequence length and m is the number of different suffixes

for all keystrings in α. We show that GeLaTo scales well in

practice in Section 4.3.
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4. Experiments

In this section, we demonstrate the effectiveness of GeLaTo2

on challenging benchmarks for constrained generation:

CommonGen (Lin et al., 2020), Yelp!Review (Cho et al.,

2019) and News (Zhang et al., 2020); in particular, we focus

on CommonGen for detailed analysis. For both unsuper-

vised and supervised settings, GeLaTo achieves state-of-the-

art performance in terms of various automatic evaluation

metrics including BLEU score while guaranteeing 100%

constraint satisfaction.

4.1. Dataset & Baselines

CommonGen (Lin et al., 2020) is a benchmark for con-

strained generation with lexical constraints: the input of

each example consists of three to five concepts (keywords)

and the goal is to generate a natural sentence using all con-

cepts; in particular, the given keywords can appear in any

order or in any form of inflections in the generated sentences.

For example, given “car snow drive” as concepts, both “a

man drives a car on a snow covered road” and “the car

drove through the snow” are considered acceptable. We

also evaluate GeLaTo on the Yelp!Review (Cho et al., 2019)

and the News (Zhang et al., 2020) datasets. Compared to

CommonGen, both Yelp!Review and News share similar

formats, except that they require all keywords to be gener-

ated in the forms as given (i.e. no inflections allowed) and

to follow specific orders.

We compare GeLaTo against constrained generation ap-

proaches belonging to different families:

InsNet (Lu et al., 2022a) is a class of insertion-based lan-

guage models (Susanto et al., 2020) that generate text by

repeatedly inserting new tokens into the sequence. InsNet

guarantees that the keywords appear in the generated sen-

tence by initializing the token sequence as the keywords,

arranged in some order.

NeuroLogic (A*esque) Decoding (Lu et al., 2021; 2022b)

are search-based decoding algorithms; they are inference-

time algorithms like beam search and do not use any auxil-

iary models. Leveraging look-ahead heuristics, NeuroLogic

A*esque decoding not only optimizes the probability of the

generated sentence but also steers the generation towards

satisfying the lexical constraints.

NADO (Meng et al., 2022) trains an auxiliary neural model

approximating the conditional distribution Pr(α|x1:t, xt+1)
to guide constrained generation of the base model. As men-

tioned in Section 2, NADO needs to re-train the auxiliary

model for different types of α (e.g., ten keywords) while

GeLaTo does not need re-training.

2https://github.com/UCLA-StarAI/GeLaTo

4.2. Approach

Following the experiment setup of Lu et al. (2021) and Meng

et al. (2022), we evaluate GeLaTo under both unsupervised

and supervised settings, as described in Section 2.

finetuning GPT2-large All baselines, except for InsNet,

perform generation with GPT2-large (Radford et al., 2019)

as the base model. Following prior works (Meng et al.,

2022), we use finetuned GPT2-large as base models:

1. Unsupervised Setting: we perform domain adapta-

tion (DA) by finetuning GPT2-large on all gold (refer-

ence) sentences of the training split of CommonGen

without supplementing the keywords. We finetune the

model for 1 epoch with learning rate = 1e-6.

2. Supervised Setting: following the template proposed

in Lin et al. (2020), we finetune the GPT2-large model

in a sequence-to-sequence (seq2seq) manner; in partic-

ular we finetune the model on sequences of the form

“car snow drive = a car drove through snow” for 3

epochs with learning rate = 1e-6.

Training HMMs. We use HMMs as an example TPM to

enforce lexical constraint in autoregressive generation from

GPT2-large. Following Section 4, we sample sequences of

length 32 from the finetuned GPT2-large models and train

HMMs with 4096 hidden states to approximate the base

model distributions; we train HMMs with the expectation-

maximization (EM) algorithm for 40 epochs, and we re-

sample 0.2 million examples for each epoch. The HMM

models are trained as probabilistic circuits with the Juice.jl

framework (Dang et al., 2021) and the training procedure

leverages the latent variable distillation technique proposed

in Liu et al. (2023); we refer readers to the original papers

for more details.

Constraint Formulation. For CommonGen, as described

in Section 4.1, the goal is to generate a sentence using

the given concepts (keywords) and we encode this lexical

constraint as a CNF. For example, given the concepts “catch

frisbee snow”, the lexical constraint can be represented as:

[I(catch) ∨ I(caught) ∨ . . . ]

∧[I(fr ⊕ is ⊕ bee) ∨ I(fr ⊕ is ⊕ bees) ∨ . . . ]

∧[I(snow) ∨ I(snow ⊕ ing) ∨ I(snow ⊕ ed) ∨ . . . ];

here each clause encodes the constraint that a keyword has

to appear, in any form of its inflections; each literal I(w) in-

dicates the occurrence of a string of tokensw (i.e. keystring),

which represents the tokenization of a specific inflection of

a keyword and ⊕ denotes the concatenation of individual

tokens. For the keywords, we use LemmInflect3 to gen-

erate their inflections. We also enforce the constraint that

3https://github.com/bjascob/LemmInflect
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5. Related Works

5.1. Tractable Probabilistic Models

Tractable probabilistic models support efficient probabilistic

inference (e.g., marginal probability), thus they have been

widely used in inference-demanding tasks, including enforc-

ing algorithmic fairness (Choi et al., 2020a; 2021), and mak-

ing predictions under missing data (Khosravi et al., 2019;

Correia et al., 2020; Li et al., 2021; Dang et al., 2022b).

Probabilistic circuits (PCs) is a unified framework for a

large family of tractable probabilistic models including hid-

den Markov models (Rabiner & Juang, 1986), bounded

tree-width graphical models (Meila & Jordan, 2000) and

sum-product networks (SPNs) (Poon & Domingos, 2011).

Recent progress in learning probabilistic circuits for gen-

erative modeling (Dang et al., 2022c; Liu et al., 2023) and

their efficient implementation (Molina et al., 2019; Peharz

et al., 2020; Dang et al., 2021) have been pushing the limits

of PC’s expressive power.

5.2. Enforcing Constraints in Neural Networks

The capacity of deep generative models is continuously in-

creasing, while their probabilistic and logic querying ability

is restricted. A variety of methods have been developed.

Boyd et al. (2022) introduce a general inference typology

on autoregressive sequence models that can develop query

estimation methods based on beam search and importance

sampling. Ahmed et al. (2022) use PCs as a replacement for

the SoftMax layer in neural networks such that their outputs

are guaranteed to satisfy the constraint.

5.3. Controllable Autoregressive Language Generation

One line of research on constrained text generation focuses

on modifying the decoding algorithm to inject constraints

into the beam search process, such as constrained beam

search (Post & Vilar, 2018), NeuroLogic Decoding (Lu et al.,

2021) and A*esque NeuroLogic Decoding (Lu et al., 2022b).

Though they can be easily applied to various language mod-

els without training, these search-based methods can be

inefficient as they suffer from large search spaces. Recent

works like NADO (Meng et al., 2022) and FUDGE (Yang

& Klein, 2021) train auxiliary neural models to provide

token-level guidance for autoregressive generation. Another

family of approaches that enforce keyword-type constraints

are insertion-based language models (Lu et al., 2022a; Su-

santo et al., 2020), where the initial sequences only consist

of the desired keywords and the transition phrases are re-

peatedly inserted to complete the sentences.

6. Conclusion

In this paper, we propose GeLaTo, where we use tractable

probabilistic models (TPMs) to impose complex lexical con-

straints (denoted α) in autoregressive language generation

from large language models. Specifically, we provide token-

level guidance to autoregressive generation by computing

PrTPM(xt+1 | x1:t, α). With hidden Markov model as a run-

ning example, we (1) present an efficient dynamic program-

ming algorithm for conditioning HMMs on complex lexical

constraints and (2) demonstrate the effectiveness of GeLaTo

on various constrained generation benchmarks; GeLaTo

achieves state-of-the-art generation quality (i.e. BLEU-4

scores) while guaranteeing 100% constraint satisfaction.

This work opens up new avenues for constrained language

generation and motivates for the development of more ex-

pressive tractable probabilistic models.
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A. Recurrence Relation Analysis

We establish the recurrence relation for computing Pr(xl:r, αl:n | zl); there are two possible cases:

Case 1. xl:r ̸= ∅; in this case, we can append s ∈ S(xl:r, α) to xl:r to reduce the number of clauses in α; abusing notation,

we write si:j as a shorthand for Xi:j = s:

Pr(αl:n | zr+1, xl:r, zl)

=Pr(Xr+1:r+|s| ̸= s ∀s ∈ S(xl:r, α), αl:n | zr+1, xl:r, zl) +
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αl:n | zr+1, xl:r, zl)

=Pr(Xr+1:r+|s| ̸= s ∀s ∈ S(x, α), αr+1:n | zr+1) +
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1);

here ⊕ denotes string concatenation and α\xl:r⊕s represents the CNF obtained by removing the clauses with any keywords

appearing in xl:r ⊕ s. In particular, the second step in the derivation above follows from the non-overlapping assumption

and the independence property of HMMs; then, by expanding the second term, we have:

Pr(αl:n | zr+1, xl:r, zl)

= Pr(αr+1:n | zr+1)

+
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, (α \ xl:r ⊕ s)r+1:n | zr+1) −
∑

s∈S(xl:r,α)

Pr(sr+1:r+|s|, αr+1:n | zr+1) ;

finally, by summing over all hidden states zr+1:

Pr(xl:r, αl:n | zl) =
∑

zr+1

Pr(xl:r, zr+1 | zl) Pr(αl:n | zr+1, xl:r, zl)

Case 2. When x = ∅, we can reduce the computation of Pr(αl:n | zl) to Case 1. by summing over all possible tokens at

position l:

Pr(αl:n | zl)=
∑

xl∈vocabulary

Pr(xl, αl:n | zl)=
∑

S(xl,α) ̸=∅

Pr(xl, αl:n | zl) +
∑

S(xl,α)=∅

Pr(xl, αl:n | zl)

In practice, the vocabulary size is usually large (e.g., 50k), and most tokens lie in {xl : S(xl, α) = ∅}. To avoid repetitive

computation, we re-write
∑

S(xl,α)=∅ Pr(xl, αl:n | zl):

∑

S(xl,α)=∅
Pr(xl, αl:n | zl)

=
∑

S(xl,α)=∅

∑

zl+1

Pr(xl, αl:n, zl+1 | zl)

=

(

∑

S(xl,α)=∅
Pr(xl | zl)

)

·

(

∑

zl+1

Pr(zl+1 | zl) Pr(αl+1:n | zl+1)

)

where
∑

zl+1
Pr(zl+1 | zl) Pr(αl+1:n | zl+1) does not depend on xl and the summation

∑

S(xl,α)=∅ Pr(xl | zl) can be

efficiently computed with CUDA parallelization without enumerating over all tokens.
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