
Vector Symbolic Architectures
as a Computing Framework
for Emerging Hardware
This article reviews recent progress in the development of the computing framework

referred to as vector symbolic architectures, or hyperdimensional computing.

By DENIS KLEYKO , Member IEEE, MIKE DAVIES , Member IEEE, EDWARD PAXON FRADY,
PENTTI KANERVA , SPENCER J. KENT, BRUNO A. OLSHAUSEN, EVGENY OSIPOV ,
JAN M. RABAEY , Life Fellow IEEE, DMITRI A. RACHKOVSKIJ, ABBAS RAHIMI ,
AND FRIEDRICH T. SOMMER

Manuscript received 11 April 2022; revised 30 June 2022; accepted 2 September
2022. Date of current version 17 October 2022. The work of Denis Kleyko was
supported in part by the European Union’s Horizon 2020 Research and
Innovation Programme under Marie Skłodowska-Curie Grant Agreement 839179,
in part by the Defense Advanced Research Projects Agency’s (DARPA) VIP
(Super-HD Project) and AIE (HyDDENN Project) Programs, in part by the Air Force
Office of Scientific Research (AFOSR) under Grant FA9550-19-1-0241, and in part
by the Intel’s THWAI Program. The work of Pentti Kanerva was supported in part
by the DARPA’s VIP (Super-HD Project) and AIE (HyDDENN Project) Programs and
in part by AFOSR under Grant FA9550-19-1-0241. The work of Bruno A.
Olshausen was supported in part by the DARPA’s VIP (Super-HD Project) and AIE
(HyDDENN Project) Programs, in part by AFOSR under Grant FA9550-19-1-0241,
and in part by the Intel’s THWAI Program. The work of Jan M. Rabaey was
supported in part by the DARPA’s VIP (Super-HD Project) and AIE (HyDDENN
Project) Programs. The work of Dmitri A. Rachkovskij was supported in part by
the National Academy of Sciences of Ukraine under Grant 0120U000122, Grant
0121U000016, Grant 0122U002151, and Grant 0117U002286; in part by the
Ministry of Education and Science of Ukraine under Grant 0121U000228 and
Grant 0122U000818; and in part by the Swedish Foundation for Strategic
Research (SSF) under Grant UKR22-0024. The work of Friedrich T. Sommer was
supported in part by the Intel’s THWAI Program, in part by NIH under Grant
R01-EB026955, and in part by NSF under Grant IIS-1718991. (Corresponding
author: Denis Kleyko.)

Denis Kleyko is with the Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA 94720 USA, and also with the
Intelligent Systems Laboratory, Research Institutes of Sweden, 16440 Kista,
Sweden (e-mail: denis.kleyko@ri.se).

Mike Davies and Edward Paxon Frady are with the Neuromorphic Computing
Laboratory, Intel Labs, Santa Clara, CA 95054 USA (e-mail:
mike.davies@intel.com; e.paxon.frady@intel.com).

Pentti Kanerva, Spencer J. Kent, and Bruno A. Olshausen are with the
Redwood Center for Theoretical Neuroscience, University of California at
Berkeley, Berkeley, CA 94720 USA (e-mail: pkanerva@berkeley.edu;
spencer.kent@berkeley.edu; baolshausen@berkeley.edu).

Evgeny Osipov is with the Department of Computer Science Electrical and
Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden
(e-mail: evgeny.osipov@ltu.se).

Jan M. Rabaey is with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
jan_rabaey@berkeley.edu).

Dmitri A. Rachkovskij is with the International Research and Training Center
for Information Technologies and Systems, 03680 Kyiv, Ukraine, and also with
the Department of Computer Science Electrical and Space Engineering, Luleå
University of Technology, 97187 Luleå, Sweden (e-mail: dar@infrm.kiev.ua).

Abbas Rahimi is with IBM Research–Zurich, 8803 Rüschlikon, Switzerland
(e-mail: abr@zurich.ibm.com).

Friedrich T. Sommer is with the Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA 94720 USA, and also with the
Neuromorphic Computing Laboratory, Intel Labs, Santa Clara, CA 95054 USA
(e-mail: fsommer@berkeley.edu).

Digital Object Identifier 10.1109/JPROC.2022.3209104

ABSTRACT | This article reviews recent progress in the devel-

opment of the computing framework vector symbolic archi-

tectures (VSA) (also known as hyperdimensional computing).

This framework is well suited for implementation in stochastic,

emerging hardware, and it naturally expresses the types of

cognitive operations required for artificial intelligence (AI).

We demonstrate in this article that the field-like algebraic

structure of VSA offers simple but powerful operations on

high-dimensional vectors that can support all data structures

and manipulations relevant to modern computing. In addition,

we illustrate the distinguishing feature of VSA, “computing

in superposition,” which sets it apart from conventional com-

puting. It also opens the door to efficient solutions to the

difficult combinatorial search problems inherent in AI applica-

tions. We sketch ways of demonstrating that VSA are com-

putationally universal. We see them acting as a framework

for computing with distributed representations that can play a

role of an abstraction layer for emerging computing hardware.

This article serves as a reference for computer architects by

illustrating the philosophy behind VSA, techniques of distrib-

uted computing with them, and their relevance to emerging

computing hardware, such as neuromorphic computing.

KEYWORDS | Computing framework; computing in superpo-

sition; data structures; distributed representations; emerging

hardware; holographic reduced representation (HRR); hyperdi-

mensional (HD) computing; Turing completeness; vector sym-

bolic architectures (VSA).

I. I N T R O D U C T I O N

The demands of computation are changing. First, artificial

intelligence (AI) and other novel applications pose a host

of computing problems that require a search over an

immense space of possible solutions, with many approx-

imately correct answers, but rarely a single correct one.

Second, future emerging hardware platforms, operating

1538 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

0018-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6032-6155
https://orcid.org/0000-0002-5459-5957
https://orcid.org/0000-0003-4879-6143
https://orcid.org/0000-0003-0069-640X
https://orcid.org/0000-0001-6290-4855
https://orcid.org/0000-0003-3141-4970

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

at ultralow voltages to reduce energy consumption and

support continued process scaling, are destined to be noisy

and, hence, operate stochastically [1]. These observations

expose the need for a computing framework that sup-

ports both deterministic computation in the presence of

noise, as well as the approximate and parallel nature of

algorithms used in AI.

By emerging hardware, we refer to the broad class of

new hardware designs that are highly parallel, fabricated

at ultrasmall scales, utilize novel components, and/or

operate at ultralow voltages, thus consisting of unreliable,

stochastic computational elements.

The conventional (à la von Neumann) computing archi-

tecture is not well adapted to these demands, as it was

designed assuming precise computational elements for

tasks that require exact answers. Conventional computing

architectures will continue to play an important role in

technology, but there is a growing amount of computa-

tional demands that are better served by new computing

designs. Thus, hardware engineers have been looking at

distributed and neuromorphic computing as a way of

meeting these demands.

Many of the emerging computational demands come

from cognitive or perceptual applications found within

the realm of AI. Examples include image recognition,

computer vision, and text analysis. Indeed, large-scale

deep learning neural network modeling dominates dis-

cussions about modern computing technology, pushing

innovations in hardware design toward parallel, distrib-

uted processing [2]. While widely used, deep learning

neural networks still have limitations, such as lacking the

transparency of learned representations and the difficulties

in performing symbolic computations. In order to support

more sophisticated symbolic computations, researchers

have been embedding conventional data structures, such

as graphs and key-value pairs, into neural network mod-

els [3], [4], [5]. However, it is not yet clear whether the

subsymbolic pattern recognition and learning capabilities

of deep neural networks can be augmented to handle the

rich control flow, abstraction, symbol manipulation, and

recursion of existing computing frameworks.

Work on developing emerging computing hardware

is accelerating. There are many showcase demonstra-

tions [6], [7], [8], [9], but, so far, the following holds.

1) These demonstrations have mostly lacked a unifying

theoretical framework that can bring sufficient com-

posability, explainability, and versatility.

2) Many demonstrations still depend on handcrafted

elements that would be prone to errors.

3) Most of the demonstrations have been subsymbolic in

nature and resort to support from the conventional

computing architecture to implement the symbolic

and flow control elements.

While these points are valid in general, there are some

exceptions that we discuss in Section VI-B. Nevertheless,

all of these demonstrate the need for a unifying computing

framework that can serve as an abstraction layer between

the hardware and desired functionality. Ideally, such a

framework should be flexible enough to provide inter-

faces to emerging hardware with various features, such as

stochastic components, asynchronous spiking communica-

tion, or devices with analog elements.

For the following reasons, we propose vector symbolic

architectures (VSA) [10] or, synonymously, hyperdimen-

sional (HD) computing [11], such as a computing frame-

work. First, HD/VSA can represent and manipulate both

symbolic and numerical data structures with distributed

vector representations to solve, e.g., cognitive [12], [13],

[14] or machine learning [15] tasks. HD/VSA is a suitable

framework for integration with neural network compu-

tations for solving problems in AI. It extends beyond

typical AI tasks as an approach capable of performing

symbolic manipulations with distributed representations.

Second, the design of HD/VSA, which was inspired by the

brain, lends itself to implementation in emerging com-

puting technologies [16] because it is highly robust to

individual device variations. Third, HD/VSA is a frame-

work with two interfaces: one toward computations and

algorithms and one toward implementation and represen-

tations (cf. Fig. 1). There are different HD/VSA models that

all offer the same operation primitives but differ slightly

in terms of their implementation of these primitives. For

example, there are HD/VSA models that compute with

binary, bipolar, continuous real, and continuous complex

vectors. Thus, the HD/VSA concept has the flexibility to

connect to a multitude of different hardware types, such

as analog in-memory computing architectures [16] for

binary-valued HD/VSA models or spiking neuron architec-

tures [17], [18] for complex-valued ones.

HD/VSA is a relatively new concept. The key idea goes

back to the 1990s, but computers of the day were not ready

to process large numbers of high-dimensional vectors in

parallel. Now hardware with such capabilities is emerging,

and, thus, the HD/VSA framework deserves to be looked

into anew, not to substitute conventional computing, but to

complement it in specific challenging domains. For exam-

ple, human and animal-like perception and learning have

eluded our attempts to be programmed into computers.

HD/VSA is a strong candidate for such tasks because of

its suitability for both statistical learning and symbolic

reasoning.

This article provides three main contributions. First,

we review the principles of HD/VSA and how they pro-

vide a generic computing framework for implementing

the primitives of conventional data structures and deter-

ministic algorithms. Second, we highlight the pros and

cons of a nontraditional mode of computing in HD/VSA,

“computing in superposition,” which can leverage distrib-

uted representations and parallelism for efficiently solving

computationally hard problems. Finally, we present two

proposals (see Appendix A) that show the universality of

HD/VSA by using them to represent systems known to be

Turing complete.

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1539

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 1. Place of HD/VSA within Marr’s levels of analysis [19]. The

focus of this article is marked by the dashed rectangle. We explain

how HD/VSA provides primitives to formalize algorithms in ways that

seamlessly connect to the computational and implementational

levels in the computing hierarchy.

A. Guide to This Article

This article is written with both newcomers to HD/VSA

and seasoned readers in mind. Section II provides some

motivation for using HD/VSA in the context of emerging

computing hardware. This section sets up the context for

this article. Section III offers a deep dive into the funda-

mentals of HD/VSA, recommended primarily to readers

not yet familiar with the framework. Section IV explains

different aspects of computing with HD/VSA, including a

“cookbook” for the representation primitives for numerous

data structures (see Section IV-A) and introducing an idea

of computing in superposition and its existing applica-

tions (see Section IV-B). Current hardware realizations of

HD/VSA models are considered in Section V. Section VI

provides the discussion. Finally, Appendix A describes pro-

posals for implementing two Turing complete systems with

HD/VSA.

II. M O T I V AT I O N

The exponential growth of big data and AI applications

exposes fundamental limitations of the conventional com-

puting framework. One problem is that energy efficiency

is stagnating [20]—-training and fine-tuning a neural net-

work for a natural language processing application con-

sume energy and computational resources equivalent to

several hundred thousand U.S. dollars [21] or more [22].

Conventional computing hardware is also highly suscepti-

ble to errors, and energy is often “wasted” attempting to

maintain low error rates.

Data-intensive applications illustrate the scale of the

problem and make energy efficiency the grand challenge

of computer engineering. To solve this challenge, alterna-

tive hardware is required that can work with imprecise

and unreliable computational elements [1]. Operating at

ultralow voltages with stochastic devices that are prone

to errors has the potential to greatly increase computing

power and efficiency. For example, the recent advances

in materials science and device manufacturing make it

possible to design computing hardware that accommo-

dates computational principles of biological brains or

exploits the physical properties of the substrate mater-

ial. For certain classes of problems, computing hardware,

such as neuromorphic processors [23], [24], [25] and

in-memory computing architectures [16], consumes only

a fraction of the energy compared to current technol-

ogy. For certain tasks, existing neuromorphic platforms

can be 1000 times more energy efficient [24] than the

conventional ones.

There is currently a focus on implementing AI capabili-

ties in emerging computing hardware [25], with the aim of

providing an energy-efficient implementation of a selected

class of AI functionalities (mainly neural networks). How-

ever, we see the opportunity for a computational frame-

work exceeding neural networks in scope, which could

empower an unprecedented breakthrough in emerging

computing technology. First, while neural network algo-

rithms serve a rather small subset of computation prob-

lems extremely well, they are unable to address a large

class of problems that require conventional algorithms and

data structures. A computing framework with a broader

application scope than neural networks could boost the

adoption of emerging computing by several orders of mag-

nitude. Second, despite many promising applications for

emerging computing hardware, the programming of any

new functionality is far from trivial. Emerging computing

hardware currently lacks a holistic software architecture,

which would streamline the development of the new func-

tionality. Current development strategies resemble those

of assembly programming, where the developer is left

with the entire job—from coming up with the algorithmic

idea to designing the actual machine instructions to be

executed by a central processing unit. Thus, the impres-

sive recent emerging hardware development [16], [26]

needs to be complemented with the creation of comput-

ing frameworks for such hardware, which can abstract

and simplify the implementation of new functionalities,

including the design of programs. Last but not least, most

emerging hardware differs fundamentally from traditional

computer and neural network accelerator hardware in that

the enabled computations are unreliable and stochastic.

Thus, a computing framework is required in which error

correction and error robustness are achieved.

There is ample work demonstrating that HD/VSA pos-

sesses a rich computational expressiveness from the func-

tionality of neural networks [27], [28], [29], [30] to

machine learning tasks [31], [32], [33], [34], [35] and

cognitive modeling [13], [14], [36], [37], [38], [39]. Fur-

thermore, HD/VSA can express conventional algorithms,

for example, finite state automata [40], [41] and context-

free grammars [42].

In this article, we explore whether HD/VSA can serve as

a computing framework for taking emerging computing to

the next level. We argue that HD/VSA provides a frame-

work to formalize and modularize algorithms and, at the

same time, bridge the computation and implementation

1540 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

levels in Marr’s framework [19] for information process-

ing systems (see Fig. 1). Our proposal generalizes earlier

suggestions to apply HD/VSA for implementing specific

machine learning algorithms on emerging hardware [43],

[44].

III. F U N D A M E N TA L S O F H D / V S A

HD/VSA [10], [11] is the term for a family of models for

representing and manipulating data in a high-dimensional

space. It was originally proposed in cognitive psychology

and cognitive neuroscience as a connectionist model for

symbolic reasoning [45]. In HD/VSA, data objects are

represented by vectors of high (but fixed) dimension N ,

sometimes called hypervectors or HD vectors. The encoded

information is distributed across all components of a

hypervector. Such distributed representations [46] are dis-

tinct from localist and semilocalist representations [47],

where single or subsets of components encode individual

data objects.

Distributed representations are, in and of themselves,

not the full story. As argued by Fodor and Pylyshyn [48],

distributed representations must be productive and sys-

tematic. Productivity refers to massive expressiveness gen-

erated by simple primitives, while systematicity means

that representations are sensitive to the structure of the

encoded objects. These desiderata were one of the drivers

for developing HD/VSA. One major advantage of HD/VSA

as the algorithmic level in the Marr hierarchy (see Fig. 1)

is that it embraces distributed representations, which are

robust to local noise.

The idea of computing with random hypervec-

tors as basic objects rather than Boolean or numeric

scalars was developed by Kussul et al. [49] as part of

associative-projective neural networks and independently

in seminal works by Smolensky [50] on tensor product

variable binding and Plate on holographic reduced rep-

resentation (HRR) [51]. HD/VSA can be formulated with

different types of vectors, namely, those containing real,

complex, or binary entries, as well as with the multivec-

tors from geometric algebra. These HD/VSA models come

under many different names: HRR [52], [53], multiply–

add–permute (MAP) [54], binary spatter codes [55],

sparse binary distributed representations (SBDRs) [56],

[57], sparse block codes [58], [59], matrix binding of

additive terms (MBAT) [60], the geometric analog of HRR

(GAHRR) [61], and so on. All of these different models

have similar computational properties—see [30] and [62].

For clarity, we will use the MAP model in the remainder of

this article.

A. Basic Elements of HD/VSA

1) High-Dimensional Space: HD/VSA requires a high-

dimensional space. The appropriate choice of dimension-

ality N is somewhat dependent on the problem, but there

are simple rules of thumb (N > 1000, for example), and

the representation of particular data structures in the given

problem is much more important. As mentioned above,

there are HD/VSA models defined for different types of

spaces (see Section V-A for more details). In this article,

we will use a variation of the MAP model (MAP-I; see [62])

that operates in integer vector spaces (ZN). Operations

and properties that have proven useful are presented in

the following (Appendix B provides the summary). It is

worth pointing out that the superposition and binding of

hypervectors form an algebraic structure that resembles

a field, and permutations extend the algebra to all finite

groups up to size N .

2) Quasi-Orthogonality: HD/VSA uses random (strictly

speaking, pseudorandom) vectors as a means for data

representation. By using random vectors as representa-

tions, HD/VSA can exploit the concentration of measure

phenomenon [63], [64], which implies that, with high

probability, random vectors become almost orthogonal

in high-dimensional vector spaces. This phenomenon is

sometimes called progressive precision [65] or the blessing

of dimensionality [64]. In the case of HD/VSA, it means

that, when, e.g., two objects are represented by random

vectors, with high probability, their representations will

be almost orthogonal to each other. MAP uses bipolar

random vectors where the ith component of a vector a

is generated independent identically distributed (i.i.d.)

random from the Bernoulli distribution: ai ∼ 2B(0.5) − 1.

In the HD/VSA literature, dissimilar representations

are described by various adjectives, such as unrelated,

uncorrelated, approximately, pseudo-orthogonal, or quasi-

orthogonal. Unlike exact orthogonality, the dimension N is

not a hard limit on the number of quasi-orthogonal vectors

that one can create.

3) Similarity Measure: Processing in HD/VSA is based

on the similarity between hypervectors. The common sim-

ilarity measures in HD/VSA are the dot (scalar, inner)

product, cosine similarity, overlap, and Hamming distance.

In MAP, it is common to use either the cosine similarity

or the dot product. Therefore, we will be using the dot

product (denoted as h·, ·i) as the similarity measure in the

following.

4) Seed Hypervectors: When designing an HD/VSA algo-

rithm for solving a problem, it is common to define a set of

the most basic concepts/symbols for the given problem and

assign hypervectors to them. Such seed hypervectors are

defined as representations of concepts that are irreducible.

All other hypervectors occurring in the course of computa-

tion are, therefore, reducible, that is, they are composed

of seed hypervectors. Here, we will focus on symbolic

structures, i.e., symbols from some alphabet with size D,

which are represented by i.i.d. random seed hypervectors

(see Section III-A2). As mentioned above, in MAP, seed

hypervectors are bipolar and so any hypervector a ∈

{−1, 1}N . The process of assigning seed hypervectors,

usually (but not always) by i.i.d. random generation of

vectors, is referred to as mapping, encoding, projection,

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1541

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

or embedding. We reiterate that representations in an

HD/VSA algorithm need not always be quasi-orthogonal.

For example, for representing real-valued variables, one

might use a locality-preserving representation scheme,

in which representations of similar values are systemati-

cally correlated and not quasi-orthogonal [66], [67], [68],

or where the hypervectors are learned [31], [69]. Thus,

one should keep in mind that i.i.d. randomness is not the

only tool for designing seed representations.

5) Item Memory: Seed hypervectors are stored in the

so-called item memory (or cleanup memory), a content-

addressable memory that can be just a matrix, or an

associative memory [70], [71], [72] that stores the hyper-

vectors as point attractors.

B. HD/VSA Operations and Compound

Representations

Seed hypervectors are the building blocks for compound

HD/VSA representations, which are built from operations

performed on the seed vectors. For example, a compound

hypervector representing the edges of a graph (compound

entity) can be constructed (see Section IV-A7) from seed

hypervectors representing its nodes (basis symbols). This

compositional formation of data structures in HD/VSA is

akin to conventional computing and very different from

the modern neural networks in which activity vectors,

especially in hidden layers, often cannot be readily parsed.

Two key HD/VSA operations are dyadic vector opera-

tions between hypervectors that are referred to as super-

position and binding. Like the corresponding operations

between ordinary numbers, they form, together with the

representation vector space, a field-like algebraic structure.

Another important HD/VSA operation is the permutation of

components within a hypervector.

The componentwise addition operation is used for

bundling or superposing, and in the MAP model, it is

implemented as a componentwise addition of hypervec-

tors. The binding operation is used for variable binding.

In the MAP model, the binding operation is implemented

via componentwise multiplication, i.e., via the Hadamard

product. The permutation operation, as its name suggests,

shuffles the components of a hypervector according to a

predefined permutation that can be, e.g., chosen randomly.

In practice, a rotation of components, i.e., a cyclic shift of

the hypervector component index, is used frequently.

In what follows, we describe each operation and its

properties in more detail. It is important to stress that

various HD/VSA models differ in the particular details of

realizing their operations. As a consequence, the oper-

ations’ properties presented below are relevant for the

MAP model but are not valid for each and every HD/VSA

model. For the sake of focus, we will not discuss differ-

ences between different HD/VSA models in depth here,

but we encourage interested readers to consult recent

studies [62], [73].

Note also that the seed hypervectors referred to in this

section are pseudorandom i.i.d. Because high-dimensional

representation tolerates errors, the conditions listed in the

following need only be satisfied approximately or with

high probability. Due to the concentration of measure

phenomenon, the operations—and computations based on

them—become ever more reliable, dependable, and pre-

dictable as the dimensionality N of the space increases.

1) Binding: A dyadic operation mapping two hypervec-

tors to another hypervector. It is used to represent an

object formed by the binding of two other objects. This

operation is an important ingredient for forming compo-

sitional structures with distributed representations (see a

discussion on its importance in the context of deep learning

in [74]). Formally, for two objects a and b, represented by

the hypervectors a and b, the hypervector that represents

the bound object (denoted by m) is

m = a � b. (1)

In the MAP model, � denotes the componentwise mul-

tiplication (Hadamard product). Multiple application of

binding is denoted by
�

, enabling the formation of a

hypervector representing the product of more than two

hypervectors.

Consider the example of representing a database for

trivia about countries [75]. The database record for a

country contains the name, the capital, and the currency.

The first step is to form hypervectors that represent key-

value pairs, which can be done by binding: country �

USA, capital � Washington, currency � USD. To create

a single hypervector that represents the entire data record

for a country, we need another operation to combine the

different key-value pairs (see below).

2) Superposition: A dyadic operation mapping two

hypervectors to another hypervector. It is denoted with +

and, in the MAP model, implemented via component-

wise addition, which sometimes can be thresholded to

keep bipolar representations (not used in this article).

The superposition operation combines several hypervec-

tors into a single hypervector. For example, for a and b,

the result z of the superposition of their hypervectors is

simply

z = a + b. (2)

The superposition of more than two hypervectors is

denoted by
�

. Often, superposition is followed by a

thresholding operation to produce a resultant hypervector

that is of the same type as the seed vectors. For example,

in the MAP model, the seed hypervectors are bipolar

vectors, but the arithmetic sum-vector is not. Therefore,

in the bipolar variant (MAP-B; see [62]), a thresholding

operation, using the signs in each component, can map

1542 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

the sum vector back to a bipolar hypervector. This type

of thresholding is sometimes called the majority rule/sum

and denoted by brackets: [a + b]. For the sake of consis-

tency, the examples in the following use the nonthresh-

olded sum, unless mentioned otherwise.

The nonthresholded sum has the advantage of being

invertible since individual elements in the sum can be

removed by subtraction (denoted as −) without interfering

with the rest. Using the example above

a = z − b. (3)

Continuing the database example, the superposition

operation can be used to create a single hypervector from

hypervectors representing all key-value pairs of the record.

Thus, the compound hypervector for the whole record

will be formed as follows: country � USA + capital �

Washington + currency � USD.

3) Permutation: A unary operation on a hypervector

that yields a hypervector. Akin to the binding operation,

permutation is often used to map into an area of hyper-

vector space that does not interfere strongly with other

representations. However, unlike binding in MAP, the same

permutation can be used recursively, projecting into pre-

viously unoccupied space with every iteration. Note that

the number of possible permutations grows superexpo-

nentially with the dimensionality (N !), and permutations

themselves are not elements of the space of representa-

tions. In most HD/VSA algorithms, a single one or a small

set of permutations are fixed at the onset of computation.

We continue with a simple example, and more examples

follow in Sections IV-A5, IV-A8, and IV-A10.

Permutation can be seen as an alternative approach

to binding when there is only one hypervector as the

operand [54]. The permutation operation can also be

used to represent sequence relations and other asymmetric

relations like “part-of.” For example, a fixed permutation

(denoted as ρ(·)) can be used to associate, e.g., a symbol

hypervector with the position of a symbol in a sequence,

resulting in a hypervector representing the symbol in that

position. The single application of the permutation is

r = ρ
1(a) = ρ(a). (4)

To associate a with the ith position in a sequence, the per-

mutation is applied i times. The result is the hypervector

r = ρ
i(a).

Note that permutation is an example of a more general

unary operation, matrix-vector multiplications (see [60]

for a proposal on using matrix-vector multiplications to

implement the binding operation).

4) Properties of HD/VSA Operations and Their Interaction:

Here, we summarize the properties of the basic HD/VSA

operations and how they interact.

a) Superposition: The superposition operation has the

following properties:

1) Superposition can be inverted with subtraction: a +

b + c − c = a + b.

2) In contrast to the binding and permutation opera-

tions, the result of the superposition z = a + b

(often called the superposition hypervector) is similar

to each of its argument hypervectors, i.e., the dot

product between z and a or b is significantly more

than 0: hz, ai ≈ hz, bi > 0.

3) Arguments of binding can be approximately recov-

ered from the superposition hypervector: b� (a�b+

c � d) ≈ a.

4) Superposition is commutative: a + b = b + a.

5) Thresholded superposition is approximately associa-

tive: [[a + b] + c] ≈ [a + [b + c]].

Note that, if several instances of any hypervector are

included (e.g., z = 3a + b), the resultant hypervector is

more similar to the dominating hypervector than to other

arguments.

b) Binding: The binding operation has the following

properties:

1) Binding is commutative: a � b = b � a.

2) Binding distributes over superposition: c � (a + b) =

(c � a) + (c � b).

3) Binding is invertible for m = a � b: a � m = b.

The inversion process is often called releasing or

unbinding. In the case of the componentwise multipli-

cation of bipolar vectors, the unbinding operation is

performed with the same operation. Therefore, we do

not introduce a separate notation for unbinding here.

4) Binding is associative: c � (a � b) = (c � a) � b.

5) The result of binding is dissimilar to each of its argu-

ment hypervectors, e.g., m is dissimilar to the hyper-

vectors being bound, i.e., the dot product between m

and a or b is approximately 0: hm, ai ≈ hm, bi ≈ 0.

6) Binding preserves similarity (for similar a and a0):

ha � b, a0 � bi � 0.

7) Binding is a “randomizing” operation (since

ha � b, ai ≈ 0) that preserves similarity (because

ha � b, c � bi = ha, ci).

c) Permutation: The permutation operation has the

following properties:

1) Permutation is invertible for r = ρ(a): a = ρ−1(r).

2) In MAP, permutation distributes over both binding

(ρ(a�b) = ρ(a)�ρ(b)) and superposition (ρ(a+b) =

ρ(a) + ρ(b)).

3) Similar to the binding operation, the result r of a

(random) permutation is dissimilar to the argument

hypervector a: hr, ai ≈ 0.

4) Permutation is a “randomizing” operation (since

hρ(a), ai ≈ 0) that preserves similarity (because

hρ(a), ρ(b)i = ha, bi).

It is worth clarifying what we mean by “similarity pre-

serving” in the case of binding and permutation versus

superposition above: For binding, the similarity between

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1543

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

two hypervectors is the same before and after binding with

a third hypervector, i.e., ha � b, c � bi = ha, ci, and for

permutation, the similarity between the two hypervectors

is also the same before and after the operation, i.e.,

hρ(a), ρ(b)i = ha, bi. However, for superposition, the simi-

larity between two hypervectors is generally lower before

versus after superimposing them to a third hypervector,

i.e., ha + b, c + bi > ha, ci, since the sum moves them

in a common direction b. On the other hand, since the

superposition hypervector is similar to each of the vectors

in the sum, ha + b, ai ≈ ha + b, bi > 0, it is also some-

times referred to as “similarity preserving,” in contrast

to binding and permutation, which generally creates a

dissimilar hypervector. One should keep this distinction in

mind when referring to the similarity preserving properties

of these operators.

C. Parsing Compound Representations

HD/VSA offers the possibility to encode data structures

into compound hypervectors and manipulate the hyper-

vectors with the operations described above to perform

computation on the data structures. In conventional com-

puting, data structures are always exposed, and the algo-

rithm queries or modifies individual elements within them.

In contrast, the vector operations in HD/VSA can search

or transform many or all elements of a data structure

in parallel, which we call “computing in superposition”

(see Section IV-B). All data structures are hypervectors and

can be manipulated immediately and in parallel, regardless

of how complicated a structure they possess. However,

this also means that the data structure of a compound

hypervector is not immediately decodable from the item

memory. To query element(s) of a compound hypervector,

it first needs to be analyzed or “parsed.” We borrow

the term parsing from linguistics because the parsing of

HD/VSA hypervectors is somewhat similar. To understand

a sentence, one needs to divide the sentence into its parts

and assign their syntactic roles, which involves comparing

the parts with the stored information about their mean-

ing and syntactic roles. Similarly, to extract the result of

an HD/VSA computation, one has to parse the resultant

hypervector. The parsing of HD/VSA hypervectors involves

the decomposition and comparison of the resulting parts

with the stored information.

Like with the sum or product of ordinary numbers, the

parsing of hypervectors requires additional information,

such as the operations used to form the compound repre-

sentation and the set of seed vectors. Parsing a compound

hypervector first entails the operation inverse that is used

to encode the wanted element in the data structure. How-

ever, the result is almost always approximate because of

crosstalk noise coming from all the other elements in the

compound hypervector. To single out the correct result, the

noisy vector has to be compared to the original seed vectors

in terms of similarity. Probing is the process of retrieving

the best-matching hypervector (i.e., the nearest neighbor)

among the hypervectors for a given query hypervector.

This is done in the item memory, which contains all the

seed hypervectors. For example, consider the compound

hypervector

s = a � b + c � d.

In order to know which hypervector has been bound to,

e.g., b, we have to unbind (inverse binding) b from s

s � b = b � (a � b + c � d)

= a + b � c � d = a + noise ≈ a.

The resultant hypervector contains the correct answer a

and a crosstalk noise term b � c � d, which is dissimilar

to any of the items in the item memory. The query hyper-

vector a + noise will be highly similar to the hypervector

a stored in the item memory, which will be successfully

retrieved by the nearest neighbor search with a high prob-

ability. Thus, the probing operation removes (or cleans up)

the noise and returns the correct result.

Cleanup via probing is a critical part of HD/VSA compu-

tations and has the advantage that its operation is intrinsi-

cally noise resilient, and the degree of noise robustness can

be easily controlled by the dimension N . In essence, prob-

ing is a signal detection problem. The number of hypervec-

tors that can be correctly retrieved from the superposition

is called capacity. The capacity increases roughly linearly

with the hypervector dimension and is quite insensitive to

the details of a particular HD/VSA model. The signal detec-

tion theory for HD/VSA [30] enables one to determine

the dimension of the hypervector space that is sufficient

for a given computation and a given precision of the

hardware.

1) Parsing Hypervectors With Multiple Bindings: In the

example above, it was assumed that one argument

(i.e., b) of the key-value pair was known. This, how-

ever, is not always the case. Moreover, there exist rep-

resentations where several hypervectors are being bound

(e.g., a � b � c). Parsing compound hypervectors with

such elements is challenging due to the fact that the

binding operation in the MAP model produces a hypervec-

tor dissimilar to its arguments (cf. Section III-B4.b). This

means that the most obvious way to parse hypervectors

of the form a � b � c is by brute force by checking all

possible combinations of the arguments. The number of

such combinations, however, grows exponentially with the

number of arguments involved. Therefore, a mechanism

called a resonator network has been proposed [76], [77],

which addresses this problem by a parallel search in the

space of all possible combinations.

The resonator network assumes that none of the argu-

ments is given, but that they are contained in different

item memories, which should be known to the resonator

1544 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 2. Example of a resonator network with three arguments. It is

factoring a compound hypervector s � a� b� c; A, B, and C denote

the corresponding item memories containing seed hypervectors for

a, b, and c arguments, respectively.

network. Fig. 2 illustrates an example of a resonator

network for factoring the hypervector s = a � b � c.

In a nutshell, the resonator network is a novel recurrent

neural network design that uses HD/VSA principles to

solve combinatorial optimization problems. As shown in

the example, it factors the arguments of the input vector s

representing the binding of several hypervectors. To do so,

it uses hypervectors â(t), b̂(t), ĉ(t), each storing the predic-

tion for a particular argument of the product forming s.

Each prediction communicates with the input hypervector

(s) and all other predictions using the following dynamics

â(t + 1) = sign
�

AA>(s � b̂(t) � ĉ(t))
�

b̂(t + 1) = sign
�

BB>(s � â(t) � ĉ(t))
�

ĉ(t + 1) = sign
�

CC>(s � â(t) � b̂(t))
�

(5)

where A, B, and C denote the corresponding item mem-

ories containing a, b, and c arguments, respectively, and

sign(·) denotes a step that projects the predictions back

to the bipolar values. Note that the resonator network

does not have to work with only bipolar hypervectors.

Rather, the usage of the sign(·) function is determined by

the fact that the seed hypervectors in the MAP model are

bipolar. Thus, other types of nonlinearity functions can be

used to make a resonator network compatible with the

desirable format of the seed hypervectors. Note also that

these item memories will contain other hypervectors as

well, but hypervectors stored in A, B, and C differ from

each other. The size of each item memory depends on a

task, but it will affect the performance of the resonator

network as larger item memories imply a larger search

space.

The key insight into the internals of the resonator

network is that it iteratively tries to improve its cur-

rent predictions of the arguments constituting the input

hypervector s. In essence, at time t each prediction might

hold multiple weighted guesses from the corresponding

item memory. The current predictions for other arguments

are used to invert the input vector and infer the current

argument (e.g., s � b̂(t) � ĉ(t)). The cost of using the

superposition for storing the predictions is crosstalk noise.

To clean up this noise, the predictions are projected back

to their item memories (e.g., A>(s � b̂(t) � ĉ(t))), which

provides weights for different seed hypervectors stored

in the item memory and, therefore, constrains the pre-

dictions to only to the valid entries in the item memory.

These weights are then used to form a new prediction,

which is a weighted superposition of all seed hypervectors.

Successive iterations of the process in (5) eliminate the

noise as the arguments become identified and find their

place in the input vector. Once the arguments are fully

identified, the resonator network reaches a stable equi-

librium, and the arguments can be read. For the sake of

space, we do not go into the details of applying resonator

networks here. Please refer to [76] for examples of fac-

toring hypervectors of data structures with resonator net-

works and [77] for their comparison with other standard

optimization-based methods.

D. Generality and Utility

Currently, there are several known areas where HD/VSA

have been employed. Hypervectors serve as representa-

tions for cognitive architectures [37], [38]. They are used

for the approximation of conventional data structures [40],

[41], [78], distributed systems [79], [80], communica-

tions [81], [82], [83], for forming representations in

natural language processing applications [31], [84], and

robotics [85], [86], [87], [88], [89]. The fact that it is

possible to map real-valued data to hypervectors allows

one to apply HD/VSA in machine learning domains. Most

of these works were connected to classification tasks (see

a recent overview in [15]). Examples of domains that

have benefited from the application of HD/VSA mod-

eling are biomedical signal processing [34], [90], ges-

ture recognition [33], [91], seizure onset detection and

localization [92], physical activity recognition [93], and

fault isolation [94]. However, HD/VSA modeling can also

be useful for very generic classification tasks [29], [95].

The common feature of these works is a simple train-

ing process, which does not require the use of iterative

optimization methods, and transparently learns with few

training examples.

IV. C O M P U T I N G W I T H H D / V S A

A. Computational Primitives Formalized in

HD/VSA

In Section III, we have introduced the basic elements

of HD/VSA. To provide the algorithmic level in the Marr

computing hierarchy in Fig. 1, one needs to combine

elements of HD/VSA into primitives of HD/VSA comput-

ing, i.e., something akin to design patterns in software

engineering. For instance, a set of HD/VSA templates has

been proposed for tasks in the domain of personalized

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1545

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

devices covering different multivariate modalities, such as

electromyography, electroencephalography, or electrocor-

ticography [34]. Here, we summarize the best practices for

representing well-known data structures with HD/VSA—

this section can be thought of as a “HD/VSA cookbook.”

All examples in this section are available in an interactive

Jupyter Notebook.1 After providing some basic rules for

representing data structures with HD/VSA, we present a

collection of primitives from prior work that has been done

along these lines. We do not go into an advanced topic

of how distributed representations of data structures can

be used to construct or learn single-shot transformations

between data structures that share symbols. It is, however,

worth noting that this property differentiates distributed

representations from conventional data structure manip-

ulations, and the interested readers are referred to, e.g.,

[96] and [97] for more details. A well-known example

of this property has been presented in [98] where a

mapping between the “mother-of” relation to the “parent-

of” relation was constructed with simple vector operations

and using only a few examples. It was shown later in [39]

that such a mapping can be used to easily form associations

between observed structures and decisions caused by these

structures.

It is worth noting that, in this article, we do not cover the

representation of real-valued data (see [66], [99], [100],

[101], and [102]) or solving machine learning problems

(see [15]) as it has been covered elsewhere and is outside

the immediate scope of this article.

1) Rules of Thumb: We should point out that the

HD/VSA implementations that we describe are not the only

possibilities, and other solutions may be possible/desirable

in a particular design context. The solutions provided are,

however, the most common/obvious choices, based on

several “rules of thumb.”

1) Superposition is used to combine individual elements

of a data structure into a set.

2) Binding is used to make associations between ele-

ments, e.g., key-value pairs.

3) Permutation is used for tagging data elements to put

them into a sequential order, such as in time series.

4) Permutation is used for protection from the

self-inverse property of the binding operation

since the hypervector will not cancel out when bound

with its permuted version.

We will follow these rules most of the time when forming

hypervectors for different data structures.

2) Sets: A set (denoted as S) represents a group of

elements, for example, S = {a, b, c, d, e}. In order to map a

set to a hypervector, two steps are required. First, an item

memory storing random hypervectors for each element of

a set is initialized. We will use bold font in notations of

hypervectors (e.g., a for “a”), but a more general notation

is via the mapping function φ(i) 7→ i, i ∈ S. Second,

1https://github.com/denkle/HDC-VSA_cookbook_tutorial

a single hypervector (denoted as s) is formed that repre-

sents the set as the superposition of hypervectors for the

set’s elements, e.g., for the set above

s = a + b + c + d + e

s =
�
i∈S

φ(i). (6)

The hypervector s is a distributed representation of the set

S. This mapping preserves the overlap between elements

of the sets. For example, set membership can be tested by

calculating the similarity between s and the hypervector

corresponding to the element of interest. If the similarity

score is higher than that expected between two random

hypervectors, then most likely the element is present in the

set. This mapping is very similar to a Bloom filter [103]

(in particular, to counting Bloom filter [104]), which

is a well-known randomized data structure for approxi-

mate membership query in a set. Bloom filters have been

recently shown to be a subclass of HD/VSA [78], where

the superposition operation is implemented via OR, and

seed hypervectors are sparse, as in the SBDRs [56] model.

While conceptually representation of sets via distributed

representations is a simple idea, it is very influential as it

has been applied in myriads of engineering problems (see

a survey in [105]).

Note that the limitation of the described mapping of sets

is that it does not have a simple and exact way of obtaining

distributed representations of the intersection or union of

two sets. The exact results can, obviously, be obtained by

first parsing distributed representations of the correspond-

ing sets, reconstructing the symbolic versions, computing

the union or intersection in the symbolic domain, and,

finally, forming the distributed representation of the result.

There are, however, simple approximations of the oper-

ations that require fewer interactions with the symbolic

domain. Both approximations are obtained by the super-

position operation on the corresponding set’s hypervectors

(e.g., s1 and s2)

s = s1 + s2.

The difference is in the way the parsing of the result in

s is done. In order to parse the intersection of two sets,

only the elements with the largest dot products should be

retrieved. Thus, if the result of the intersection is stored in

I , which is initially empty (I = ∅), then, for element i with

the corresponding entry Hi in the item memory

I =

�
I
�
{i}, if His ≥ Θi

I
�
{∅}, otherwise

where Θi denotes the corresponding threshold.

To retrieve the union (U = ∅ at the start), the elements

with the dot products sufficiently different from the noise

1546 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

level should be considered

U =

�
U
�
{i}, if His ≥ Θn

U
�
{∅}, otherwise

where Θn denotes the noise level threshold. Thus, the

subtlety of the intersection is that elements present in both

sets will have higher similarity then the ones present in

only one of the sets (see Section III-B2). This property of

the superposition operation is in fact used in Section IV-A3

for representing multisets.

3) Multisets/Histograms/Frequency Distributions: Let us

consider how to form a single hypervector of a multiset or

a frequency distribution in the form of counts of the occur-

rences of various elements in some source. The mapping is

essentially the same as in the case of sets in Section IV-A2

with the only difference that a hypervector of an element

can be present in the result of the superposition operation

several times. For example, given S = (a, a, a, b, b, c),

the hypervector representing the frequency of elements is

formed as

s = a + a + a + b + b + c

= 3a + 2b + c.

Thus, the number of times a hypervector is present in

the superposition determines the frequency of the corre-

sponding element in the sequence. Using s, it is possible

to estimate either the frequency of an individual element

or compare it to the frequency distribution of another

sequence. Both operations require calculating the similar-

ity between s and the corresponding hypervector.

Usually, s is used as an approximate representation of

the exact counters of a histogram. Fig. 3 demonstrates

the Pearson correlation coefficient between the histogram

and its approximate version retrieved from a compound

hypervector s where the approximate version was obtained

as the dot product between s and symbols’ seed hypervec-

tors. The simulations were done for different sizes of the

histogram and varying the dimensionality of hypervectors.

The results are characteristic for HD/VSA—the quality of

approximation improved with the increased dimensional-

ity of hypervectors.

This mapping shall be seen as a particular instance of a

count-min sketch [106] that is a randomized data structure

for obtaining frequency distributions from sequences. The

count-min sketch is used in a plethora of applications

where data are of streaming nature (see some examples

in [106]). In Section IV-A6, we will also see that the

representation of multisets is an essential primitive for

representing n-gram statistics that, in turn, is used for

solving classification tasks (see [107], [108], and [109]).

The limitation of the presented mapping is that, due to the

usage of bipolar hypervectors, the resultant representation

Fig. 3. Correlation coefficients between the exact histogram and

their approximations from integer-valued ZN compound

hypervectors. Six different sizes of histograms were considered. The

dimensionality of hypervectors varied in the range [200, 10000] with

a step of 200. The values of counters were drawn from the discrete

uniform distribution [0, 1023]. The reported values were averaged

over 100 simulations.

could both overcount and undercount the frequency. This

limitation is partially addressed by the standard count-min

sketch that could only overcount the frequency.

4) Cross-Product of Two Sets: A particularly interesting

case is when we have hypervectors representing two differ-

ent sets (e.g., {a, b, c, d, e} and {x, y, z}). Then, a mapping

based on the binding operation is used to create a hyper-

vector corresponding to the cross-product of two sets as

follows:

(a + b + c + d + e) � (x + y + z)

= (a � x + a � y + a � z) + (b � x + b � y + b � z)

+ (c � x + c � y + c � z) + (d � x + d � y + d � z)

+ (e � x + e � y + e � z).

In essence, here occurs (due to the superpositions) a

simultaneous binding between all the elements in the

two sets. The cross-product set, thus, consists of all pos-

sible bindings of hypervectors representing elements of

the original sets (e.g., a � x). In the example above,

when starting first with the representations of sets, only

seven operations (six superpositions and one binding)

were necessary to form the representation. The brute force

way of forming the cross-product set hypervector would

require 29 operations (14 superpositions and 15 bindings).

It is clear that this shortcut works due to the fact that

the binding operation distributes over the superposition

operation (see Section III-B4.b). Note that, using the tensor

product variable binding [50] model, the outer product

of vector representations of the two sets will be a tensor

with the number of dimensions determined by the number

of sets in the cross-product. In contrast, the HD/VSA

representation of a cross-product is given by a hypervector

of the same dimension as the individual set hypervectors.

Note also that, while it is simple to form a hypervector

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1547

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

corresponding to the cross-product of two sets with the

binding operation, computing the cross-product in the

symbolic domain might still require lower computational

costs as it does not require high-dimensional representa-

tions. Another potential issue of such a representation is

the required dimensionality of hypervectors for the situ-

ation when all the elements of the cross-product should

be retrievable from the distributed representation. In this

case, the dimensionality of hypervectors should be propor-

tional to the product of the sets’ cardinalities, so even mod-

erately sized sets require a large number of components in

hypervectors to provide high accuracy in retrieving individ-

ual elements of their cross-product from the corresponding

hypervector.

5) Sequences: A sequence is an ordered set of elements.

For example, the set from the previous section is now

a sequence (a, b, c, d, e), which is not the same as, e.g.,

(b, a, c, d, e) since the order of elements is different. Note

that a finite sequence with k elements is called k-tuple,

with an ordered pair being the special case for k = 2.

It is clear that plain superposition of hypervectors works

for representing sets but not for sequences, as the sequen-

tial order would be lost. Many authors have proposed

the following idea to represent sequences with permuta-

tion, e.g., in [11], [30], [44], [110], [111], and [112].

Before combining the hypervectors of sequence elements,

the order i of each element is associated by applying

some specific permutation k − i times to its hypervector

(e.g., ρ2(c)). The advantage of this recursive encoding of

sequences is that extending a sequence can be done by

permuting s and superimposing or binding it (see below)

with the next hypervector in the sequence, hence incurring

a fixed computational cost per symbol. The last step is to

combine the sequence elements into a single hypervector

representing the whole sequence.

There are two common ways to combine sequence ele-

ments. The first way is to use the superposition operation

similar to the case of sets. For the sequence above, the

resultant hypervector is

s = ρ
4(a) + ρ

3(b) + ρ
2(c) + ρ

1(d) + ρ
0(e).

In general, a given sequence S of length k is represented

as

s =

k�
i=1

ρ
k−i(φ(Si)) (7)

where Si is the ith element of sequence S. The advantage

of the mapping with the superposition operation is that

it is possible to estimate the similarity of two sequences

by measuring the similarity of their hypervectors. Here,

the similarity of sequences is defined by the number of

the same elements in the same sequential positions, where

the sequences are aligned by their last elements. Evidently,

this definition does not take into account the same ele-

ments in different positions in contrast to, e.g., an edit

distance of sequences [113]. Note that the edit distance

can be approximated by vectors of n-gram frequencies and

their randomized versions akin to hypervectors (see [114]

and [115]).

Another advantage of sequence representation with

superposition is that it allows easily probing of the distrib-

uted representation s. For example, one can check which

element is in position i by applying inverse permutation i

times to the resultant hypervector. Note that the permuta-

tion of a sequence representation is a general method for

shifting an entire sequence by a single operation. It pro-

duces a shifted sequence where the ith element is now at

the first position, and thus, it can be used to probe the

hypervector of element i from the sequence representation.

For example, when inverting position 3 in s

ρ
−2(s) = ρ

2(a) + ρ
1(b) + ρ

0(c) + ρ
−1(d) + ρ

−2(e)

= c + noise ≈ c.

Probing ρ−2(s) with the item memory containing hyper-

vectors of all sequence elements will return c as the best

match (with high probability).

The second way of forming the representation of a

sequence involves binding of the permuted hypervectors,

e.g., the sequence above is represented as (denoted by p)

p = ρ
4(a) � ρ

3(b) � ρ
2(c) � ρ

1(d) � ρ
0(e).

In general, a given sequence S of length k is represented

as

p =

k�
i=1

ρ
k−i(φ(Si)). (8)

The advantage of this sequence representation is that it

allows forming unique hypervectors even for sequences

that differ in only one position. Section IV-A6 provides

a concrete example of a task where this advantage is

important.

Both mappings allow the replacement of an element

at position i in the sequence if the current element at

the ith position is known. When the superposition oper-

ation is used, the replacement requires subtraction of the

permuted hypervector of the current element followed by

the superposition of the permuted hypervector of the new

element. For example, replacing “d” with “z” in position 4

is done as follows:

s − ρ
1(d) + ρ

1(z) = ρ
4(a) + ρ

3(b) + ρ
2(c) + ρ

1(z) + ρ
0(e).

When the binding operation is used in the mapping,

replacement requires the application of the unbinding

1548 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

operation between the permuted hypervector of the cur-

rent element and s, followed by binding with the permuted

hypervector of the new element. For the example above

s � ρ
1(d) � ρ

1(z) = ρ
4(a) � ρ

3(b) � ρ
2(c) � ρ

1(z) � ρ
0(e).

Another feature of both sequence mappings is that

the permutation operation distributes over both binding

and superposition operations. This means that, in both

mappings, the whole sequence can be shifted relative to

the initial position by applying the permutation operation

required number of times. For example, when applying

the permutation operation three times to s for (a, b, c, d, e),

we obtain

ρ
3(s) = ρ

7(a) + ρ
6(b) + ρ

5(c) + ρ
4(d) + ρ

3(e).

Thus, ρ3(s) is the shifted version of the original sequence.

This feature can be used for sequence concatenation. For

example, to concatenate (a, b, c, d, e) and (x, y, z), we can

use already calculated s for (a, b, c, d, e) as follows:

ρ
3(s) + ρ

2(x) + ρ
1(y) + ρ

0(z)

= ρ
7(a) + ρ

6(b)

+ ρ
5(c) + ρ

4(d) + ρ
3(e) + ρ

2(x) + ρ
1(y) + ρ

0(z).

This feature was applied in [116] for searching for the best

alignment (shift) of two sequences that results in the max-

imum number of coinciding elements. Other examples of

using distributed representation of sequences include mod-

eling human perception of word similarity [115], [117],

[118], [119], modeling human working memory [120],

[121], [122], [123], [124], [125], DNA string match-

ing [126], and spell checking [118], [127].

An evident limitation of the above mappings is that, due

to the usage of a random permutation ρ(), elements of

the sequence in the nearby positions are dissimilar (even

if the elements are the same). A possible way to handle

this limitation is by using locality-preserving representa-

tions to encode positions; see some proposals in [117],

[118], [119], and [128]. Generally, for a given problem,

it might be useful to consider alternative representations

that bind element and position hypervectors. Another lim-

itation is that the representations of the element’s order

here used hypervector transformation by the permutation

corresponding to its absolute position in a sequence. Thus,

the resultant hypervector does not reflect the information

about, e.g., successor/predecessor information. Some ways

of using relative positions when representing sequences in

HD/VSA are investigated in [115].

6) n-Gram Statistics: The n-gram statistics of a sequence

S is the histogram of all length n substrings occurring in

the sequence. The mapping of n-gram statistics to a single

hypervector was presented in, e.g., [84], and includes two

Fig. 4. Example of undirected and directed graphs with five nodes.

In the case of the undirected graph, each node has two edges.

steps using the primitives above: first, forming hypervec-

tors of n-grams, and second, forming a hypervector of

the frequency distribution. The hypervectors of n-grams

are formed as in Section IV-A5 using the chain of binding

operations, i.e., each n-gram is treated as an n-tuple. The

hypervectors of n-grams and their counters are then used

to form a single hypervector for the frequency distribution

as in Section IV-A3. Thus, in essence, this is a frequency

distribution with compound symbols.

The advantage of this mapping is that, in order to create

a representation for any n-gram, we only need to use a

single item memory and several simple operations where

the number of operations is proportional to n. In other

words, with a fixed amount of resources, the appropriate

use of operations allows forming a combinatorially large

number of new representations.

The mapping, obviously, inherits the limitations of its

intermediate steps. That is, due to the usage of the chain of

binding operations (see Section IV-A5), similar n-grams are

going to be mapped to dissimilar hypervectors (assuming

that all n-grams are assigned with random seed hypervec-

tors). Due to the representation of the frequency distribu-

tion (see Section IV-A3), the retrieved values of individual

n-grams can be either overcount or undercount.

This mapping has been found useful in several

applications: in language identification [84], news article

classification [129], and biosignal processing [34] that

leveraged its hardware-friendliness [130]. Distributed rep-

resentations were also used to untie the dimensionality of

the hypervector representing n-grams statistics from the

possible number of n-grams, which grows exponentially

with n and would dictate the size of a localist representa-

tion of the n-grams statistics. The same property was also

leveraged for constructing more compact neural networks

using the distributed representation of n-grams statistics as

their input [108], [131], [132].

7) Graphs: A graph (denoted as G) consists of vertices

and edges. Edges can either be undirected or directed.

Fig. 4 presents examples of both directed and undirected

graphs. Following earlier work on graph representations

with hypervectors, e.g., in [56], [133], and [134], we con-

sider the following very simple mapping of graphs into

hypervectors [133]. A random hypervector is assigned

to each vertex of the graph; according to Fig. 4, vertex

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1549

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

hypervectors are denoted by letters (i.e., a for vertex

“a” and so on). An edge is represented via the binding

operation applied to the hypervectors of the connected

vertices; for instance, the edge between vertices “a” and “b”

is represented as a � b. The whole graph G is represented

simply as the superposition of hypervectors representing

all edges in the graph, e.g., the undirected graph in Fig. 4 is

g = a � b + a � e + b � c + c � d + d � e.

Note that, if an edge is represented as the result of

the binding of two hypervectors for vertices, it has no

information about the direction of the edge, and therefore,

the representation above will not work for directed

graphs. The direction of an edge can be added applying

a permutation to the hypervector of the incidental node;

the directed edge from the vertex “a” to “b” in Fig. 4 is

represented as a � ρ(b). Note that this is just the mapping

of an ordered pair (two-tuple in this case) based on the

binding described in Section IV-A5. Thus, the directed

graph in Fig. 4 is represented by the hypervector

g = a � ρ(b) + a � ρ(e) + c � ρ(b)

+ d � ρ(c) + e � ρ(d).

The described graph representations g can be queried for

the presence of a particular edge. For graphs that have the

same vertex hypervectors, the inner product is a measure

of the number of overlapping edges. When it comes to the

usage of the described mappings, Gayler and Levy [133]

propose an HD-/VSA-based algorithm for graph matching.

For two graphs for which the correspondence between

their vertices is unknown, graph matching finds the best

match between the vertices so that the graph similarity

can be assessed. In [135], a similar mapping is applied to

the task of inferring missing links of knowledge graphs.

The mapping can also be extended to the case when some

of its parts are learned from the training data; in [136],

representations of knowledge graphs are constructed with

hypervectors of nodes and relations that are learned from

data.

The described mappings have a number of limitations.

First, they do not work for sparse graphs in which vertices

can be entirely isolated because those vertices are not

represented at all. One way to address it is by also super-

imposing to g the hypervectors representing the vertices or

to keep a separate hypervector with the superposition of

all the vertices. Another limitation is that one could come

up with operations that cannot be done directly on the

representation in g. One example of such an operation is

the computation of composite edges in a directed graph

(see details in [137]).

8) Binary Trees: A binary tree is a well-known data

structure where each node has at most two children: the

left child and the right child. Fig. 5 depicts an example

Fig. 5. Example of a binary tree from [76] where the leaves are

different symbols from the alphabet.

of a binary tree, which will be used to demonstrate the

mapping of such a data structure into a single hypervector.

We describe a mapping process [76] that involves all three

basic HD/VSA operations and two item memories. One

item memory stores two random hypervectors correspond-

ing to roles for the left child (denoted as l) and the right

child (denoted as r). Another item memory stores random

hypervectors corresponding to symbols of the alphabet,

which are associated with the leaves. The example below

uses letters so these hypervectors are denoted correspond-

ingly (i.e., a for “a” and so on).

The permutation operation is used to create a unique

hypervector corresponding to the association of the left or

right child with its level in the tree. For example, the left

child at the second level is represented as ρ2(l). In general,

the level of the node equals the number of times the

permutation operation is applied to its role hypervector.

The chain of the binding operations is used to create

a hypervector corresponding to the trace from the tree

root to a certain leaf associated with the leaf’s symbol. For

instance, to reach the leaf “a,” it is necessary to traverse

three left children. In terms of HD/VSA, this trace will be

represented as follows: a � l � ρ(l) � ρ2(l). In such a way,

traces of all leaves can be represented.

Finally, the superposition operation is used to combine

hypervectors of individual traces in order to create a single

hypervector (denoted as t) corresponding to the whole

binary tree. Combining all steps together, the single hyper-

vector for the tree depicted in Fig. 5 will then look like

t = a � l � ρ(l) � ρ
2(l)

+ b � l � ρ(r) � ρ
2(l)

+ c � r � ρ(r) � ρ
2(l)

+ d � r � ρ(r) � ρ
2(r) � ρ

3(l)

+ e � r � ρ(r) � ρ
2(r) � ρ

3(r)

+ f � l � ρ(r) � ρ
2(r) � ρ

3(l) � ρ
4(l)

+ g � l � ρ(r) � ρ
2(r) � ρ

3(l) � ρ
4(r).

1550 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Thus, the information about the tree in Fig. 5 is stored in

a distributed way in the compound hypervector t, which,

in turn, can be queried with HD/VSA operations. For exam-

ple, given a trace of children, we can extract the symbol

associated with the leaf at this trace. Assume that the trace

is right-right-left; then, its hypervector is r � ρ(r) � ρ2(l).

This hypervector can be unbound from t as

t � (r � ρ(r) � ρ
2(l)) = c + noise.

The result is c+noise because r�ρ(r)�ρ2(l) cancels out

itself in t and, thus, releases c, which was bound with this

trace. Since there were other terms in the superposition

t, they act as crosstalk noise for c, hence denoted as

noise. Thus, when c + noise is presented to the item

memory, the item memory is expected to return c as the

closest alternative with high probability. The inverse task

of querying the trace with a given leaf symbol is more

challenging because the resultant hypervector corresponds

to a chain of binding operations, e.g., for c, we get

t � c = r � ρ(r) � ρ
2(l) + noise.

In order to interpret the resultant hypervector, one has

to query all hypervectors corresponding to all possible

traces in a binary tree of the given depth, where the

number of traces grows exponentially with the depth of the

tree. This is a significant limitation of the representation.

This limitation can, however, be addressed in part by the

resonator network [76], [77] (see Section III-C).

We do not cover the details of factoring trees with the

resonator network here, but the interested readers are

referred to [76, Sec. 4.1]. It should, of course, be noted

that resonator networks are not limitless in their capabili-

ties, since as reported in [77], for the fixed dimensionality

of hypervectors their capacity decreases with the increased

number of factors (i.e., tree depth in this case). Neverthe-

less, they still seem to be the best alternative to tackle

the problem (cf. [77, Fig. 3])—their search space scales

quadratically with N .

The presented mapping is, of course, not the only pos-

sible way to represent binary trees. For example, in [44],

it was proposed to use two different random permutations

for representing nested structures. This mechanism can be

applied to trees as well by using these different random

permutations instead of l and r.

Last but not least, note that the mapping for binary

trees can be easily generalized to trees with nodes having

more than two children by superimposing additional role

hypervectors in the item memory. Also, filler hypervectors

for the leaves do not have to be seed hypervectors—they

could represent any compound structure.

9) Stacks: A stack is a memory in which elements are

written or removed in a last-in-first-out manner. At any

given moment, only the top-most element of the stack can

be accessed, and elements written to the stack before are

inaccessible until all later elements are removed. There

are two possible operations on the stack: writing (push-

ing) and removing (popping) an element. The writing

operation adds an element to the stack—it becomes the

top-most one, while all previously written elements are

“pushed down.” The removing operation allows read-

ing the top-most element of the stack. Once read, it is

removed from the stack, and the remaining elements are

moved up.

HD-/VSA-based representations of a stack were pro-

posed in [41] and [138]. The representation of a stack

is essentially the representation of a sequence with the

addition of an operation that always moves the top-most

element to the beginning of the sequence. For example,

if “d,” “c,” and “b” were successively added to the stack,

then the hypervector for the current state of the stack is

s = b + ρ(c) + ρ
2(d).

Thus, the pushing operation is implemented as the con-

catenation of two sequences (i.e., a new element to be

written and the current state of the stack) using their cor-

responding hypervectors (see Section IV-A5). In particular,

the hypervector of the newly written element is added to

the permuted hypervector of the current state of the stack.

For instance, writing “a” to the current state s is done as

follows:

s = a + ρ(s) = a + ρ(b) + ρ
2(c) + ρ

3(d).

The popping operation includes two steps. First, s is probed

with the item memory of elements’ hypervectors in order

to get the closest match for the seed hypervector of the

top-most element. Once the hypervector of the top-most

element is identified (e.g., a in the current example), it is

removed from the stack, and the hypervector representa-

tion of the stack with the remaining elements is moved

back by the permutation operation

ρ
−1(s − a) = ρ

−1(ρ(b) + ρ
2(c) + ρ

3(d))

= b + ρ(c) + ρ
2(d).

When it comes to the limitations of this representation,

there are several things to keep in mind. First, the popping

operation will not work well if the hypervector represent-

ing the stack is normalized after each writing operation,

so the operations described above assume that s is not nor-

malized. Second, the size of the stack that can be retrieved

reliably from s depends on the dimensionality of s. Third,

if the alphabet of symbols that can be stored in the stack is

large, then the probing process for the popping operation

might be a computationally demanding step. Fourth, if the

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1551

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 6. Example of a state diagram of a finite-state automaton

modeling the control logic of a turnstile. It has two states. The start

state is depicted by the arrow pointing from the black circle.

stack is going to store compound hypervectors, then the

popping operation would be more complicated as it either

would require the item memory storing all compound

hypervectors (this option quickly expands the item mem-

ory) or would need to incorporate a retrieval procedure

assuming the knowledge of the structure of the compound

hypervectors so that they could be parsed.

The main foreseen application of the presented repre-

sentation is within some control structures as a part of

HD/VSA systems. For example, it was used in [41] in a

proposal for implementing stack machines and in [138]

as a part of HD/VSA implementation of a general-purpose

left-corner parsing with simple grammars.

10) Finite-State Automata: A deterministic finite-state

automaton is an abstract computational model; it is speci-

fied by defining a finite set of states, a finite set of allowed

input symbols, a transition function, the start state, and

a finite set of accepting states. The automaton is always

in one of its possible states. The current state can change

in response to an input. The current state and input

symbol together uniquely determine the next state of the

automaton. Changing from one state to another is called a

transition. The transition function defines all transitions in

the automaton.

Fig. 6 presents an intuitive example of a finite-state

automaton, the control logic of a turnstile. The set of states

is {“Locked,” “Unlocked”}, and the set of input symbols is

{“Push,” “Token”}. The transition function can be easily

derived from the state diagram in Fig. 6.

HD-/VSA-based implementations of finite-state

automata were proposed in [40] and [41]. Similar

to binary trees, the mapping involves all three HD/VSA

operations and requires two item memories. One item

memory stores seed hypervectors corresponding to

the set of states (denoted as l for “Locked” and u

for “Unlocked”). Another item memory stores seed

hypervectors corresponding to the set of input symbols

(denoted as p for “Push” and t for “Token”). The

hypervectors from the item memories are used to form

a single hypervector (denoted as a), which represents

the transition function. Note that the state diagram of

a finite-state automaton is essentially a directed graph

in which each edge has an input symbol associated with

it. Therefore, the mapping for the transition function

is very similar to the mapping of the directed graph in

Section IV-A7. The only difference is that the binding of the

hypervectors for the vertices (i.e., states) involves, as an

additional factor, the hypervector for the input symbol,

which causes the transition. For example, the transition

from “Locked” state to “Unlocked” state, contingent on

receiving “Token,” is represented as

t � l � ρ(u).

Given the distributed representations of all transitions of

the automaton, the transition function a of the automaton

is represented by the superposition of the individual tran-

sitions

a=p � l � ρ(l)+t � l � ρ(u)+p � u � ρ(l)+t � u � ρ(g).

In order to calculate the next state, we query a with the

binding of the hypervectors of the current state and input

symbol followed by the inverse permutation operation

applied to the result. Calculated in this way, the result is

the noisy version of the hypervector representing the next

state. For example, if the current state is l and the input

symbol is p, then we have

ρ
−1(a � p � l) = l + noise.

As usual, this hypervector should be passed to the

item memory in order to retrieve the noiseless seed

hypervector l.

The same mapping can be used to create a hypervector

representing a nondeterministic finite-state automa-

ton [139]. The main difference between determinis-

tic finite-state automata is that the nondeterministic

finite-state automaton can reside simultaneously in sev-

eral of its states. The transitions do not have to be

uniquely determined by their current state and input sym-

bol, i.e., there can be several valid transitions from a

given current state and input symbol. The nondeterministic

finite-state automaton can assume a so-called generalized

state, defined as a set of the automaton’s states that are

simultaneously active. The generalized state corresponds

to a hypervector representing the set of the currently

active states with (6). Similar to the deterministic finite-

state automata, the hypervector for the generalized state

is used to query the automaton to get a hypervector for

the next generalized state. This corresponds to parallel

execution of the automaton from all currently active states.

It should also be noted that, in the case of the nonde-

terministic finite-state automaton, due to the potential

presence of several active states, the cleanup procedure

(see Section III-C) has to search for several nearest neigh-

bors. Please see Section IV-B2 for an example of such a

procedure.

1552 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 7. Average accuracy of the recall of the next state of the

automaton from a, which was bipolarized, against the

dimensionality of hypervectors (N ∈ �100,4000� with a step of 100).

The results were obtained from over 50 random initializations of the

item memories. For each initialization, 1000 transitions (chosen

randomly) were performed. For each transition function, noise

added to a was also generated at random. BERs were in the range of

0.0312–0.2500; BER is defined as the percentage of bits (here,

dimensions) that have errors relative to the total number of bits.

In Section IV-B2, we will see an example of how to

compute with hypervectors representing automata, but the

most obvious application of the presented representation

is to execute the automaton in the presence of noise in

hypervectors. Fig. 7 presents the accuracy of the correct

recall of the next state from a bipolarized hypervector

representing an automaton with 22 states and 29 symbols.

The figure shows how the accuracy changed with the

dimensionality of hypervectors for different values of noise

in a. As expected, we see that, for every amount of noise,

there is eventually a dimensionality that allows a perfect

recall—an elegant property that can be simply leveraged

for executing a deterministic behavior in a very stochastic

environment.

While, currently, there are not many HD/VSA applica-

tions that use finite-state automata (but we will see one in

Section IV-B2), there is potential in such a mapping as it

naturally allows using HD/VSA as a medium for executing

programs that can be formalized via automata. Moreover,

the primitives for stacks and finite-state automata can

be combined to create richer computational models, such

as deterministic pushdown automata or stack machines;

see [41] for a sketch of a stack machine operating with

hypervectors. An alternative representation for pushdown

automata and context-free grammars has been recently

presented in [42].

Finally, it should be noted that the presented mapping is

designed for executing an automaton; however, it is limited

in the sense that it cannot be used directly to modify it or

to perform composition operations (e.g., combining it with

another automaton).

11) Deeper Hierarchies: Finally, it is important to

touch upon constructing data structures encoding deep

hierarchies. In Sections IV-A2–IV-A10, we concentrated

mainly on data structures with a single-level hierarchy.

In fact, this is what most of the current studies in the

area used. Therefore, we will not go into technical details

of existing proposals. HD/VSA, however, is well-suited

for representing many levels of hierarchy, and the rep-

resentation of hierarchical data structures was a part of

the original motivation right from the start (see [51]).

The representation of binary trees in Section IV-A8 can

already be seen as a hierarchy since a tree has several

levels and the representation should be able to discrimi-

nate between different levels. In the presented mapping,

this was done using powers of permutation to protect

different levels of hierarchy. This can be done in some

other ways by, e.g., assigning special role hypervectors

for each level. Currently, the usage of representations for

hierarchies in HD/VSA is relatively uncommon. We mainly

attribute this fact to the nature of applications that are

being explored, rather than to the capabilities of HD/VSA.

The use cases, which relied on the representation of

the hierarchical representations, are the representation of

analogical episodes [36], [53], distributed orchestration

of workflows [79], and representation of hierarchies in

WordNet concepts [140]. It has also been argued that the

representation of hierarchical data structures via HD/VSA

is an important feature for modular learning where mod-

ules at different levels of hierarchy can communicate

with such representations [37], [141]. Finally, there is

a recent proposal that suggests that the JSON format

with several levels of hierarchy can be represented in

hypervectors [142].

B. Computing in Superposition With HD/VSA

1) Simple Examples of Computing in Superposition: A

well-known data structure—Bloom filter [103]—is the

simplest case of computing in superposition. The Bloom

filter is a sketch as a fixed-size memory footprint is used

to represent a set of elements. A Bloom filter encodes

a set as a superposition of its elements’ sparse binary

vectors, which, in essence, corresponds in HD/VSA to a

compound hypervector representing sets. Thus, the Bloom

filter directly corresponds to the primitive for representing

sets, as described in Section IV-A2. With Bloom filters, the

algorithm for searching an element in a set is a single

operation of comparing the similarity of the distributed

representation of the query element to the Bloom filter

instance. In other words, all elements of the set are tested

in one shot, i.e., the search is performed as a computation

in superposition. It enables solving the approximate mem-

bership query task instantaneously. This illustrates a simple

instance of computing in superposition. Bloom filters are

highly specialized for one particular task. In contrast,

HD/VSA constitutes a broad framework for computing in

superposition, containing Bloom filters as a subclass [78].

We have already seen other examples in Section IV-A for

computing in superposition with HD/VSA, such as the

primitives for recursive construction of sequence repre-

sentations [see (7) and (8)] and, in Section IV-A4, the

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1553

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 8. Automaton for the base string “hello.”

forming of a representation for the cross-product of two

sets via a single binding operation. In these examples, the

distributivity of HD/VSA operations (see Section III-B4)

played an important role.

2) Computing in Superposition for Substring Search:

Finding a substring within a larger string is a standard

computer science problem with numerous algorithms

(e.g., [143], [144], and [145]) that have a linear

complexity on the total length of the base and the

query strings. Recently, an algorithm based on non-

deterministic finite-state automata was formulated with

HD/VSA [146]. It nicely demonstrates how HD/VSA can

solve computer science problems, so we briefly explain it

here.

Each position of a symbol in the base string is mod-

eled as a unique state of the nondeterministic finite-state

automaton S = {s0, s1, s2, . . . , sn}. For example, the string

“hello” generates an automaton with six states: s0 through

s5. The transitions between states are defined by the base

string’s (denoted B) symbols bi from B = {b1, b2, . . . , bn}.

Fig. 8 illustrates the automaton for the string “hello.” The

nondeterministic finite-state automaton is then defined by

tuple < S, s0, B, T >, where s0 is the start state of the

automaton and T is the set of transition tuples of the form

ti = < si−1, bi, si >, where si−1 and si are the start and

end states of a particular transition caused by symbol bi.

The elements of sets B and S are represented by i.i.d.

random hypervectors (denoted in bold). The hypervector

β of the automaton for the base string is constructed as

(cf. Section IV-A10)

β =

|B|�
i=1

si−1 � bi � ρ
1(si). (9)

Thus, β is the superposition of all the automaton’s tran-

sitions caused by sequential input of symbols of the base

string. Note that this representation corresponds to the

primitive for the finite-state automata, as described in

Section IV-A10.

The algorithm for finding whether a query string Q =

{q1, . . . , ql} is a part of the base string B is a sequential

retrieval of the next state of automaton β for each symbol

of the query string qj . In terms of hypervectors, this is

pj = ρ
−1(pj−1 � β � qj) (10)

where pj denotes the hypervector that includes the hyper-

vector(s) of the next generalized automaton state (given

symbol qj), as well as crosstalk noise. Equation (10) is also

a primitive from Section IV-A10. Note, however, that the

generalized state may include one or several states si. The

set of valid (i.e., permitted) previous generalized states is

initialized as p0 =
�

si∈S
si, which is a superposition of

all the states of the base string. Since the operation in (10)

is performed on the superimposed set of all states, it is

qualified as computing in superposition.

While the algorithm presented in [146] works in princi-

ple (confirmed experimentally but not reported here), the

required dimensionality of hypervectors grows extremely

fast with the length of strings since every step of (10)

introduces additional crosstalk noise to pj . Crosstalk noise

can be reduced by a cleanup procedure on pj after every

execution of (10)

pj = SS>pj (11)

where S ∈ [N, n + 1] denotes the item memory storing

hypervectors for the unique states of the base string,

S = {s0, s1, s2, . . . , sn}. This primitive uses the idea of

projecting predictions back onto the item memory, and it

was introduced in Section III-C as a part of the resonator

network [see (5)].

We simulated the modified algorithm for searching a

fixed length query substring (30 symbols) in the base string

of four different lengths (see Fig. 9). The average accuracy

in 30 simulation runs is plotted against the varying dimen-

sionality of hypervectors. In every simulation run, 100 dif-

ferent random base strings were used. In approximately

half of the searches, the query substring was present in

the base string, so a single simulation run determines the

accuracy of correctly detecting when a substring is present

and when it is not (thus, the accuracy of a random guess

is 0.5). With increasing dimensionality of hypervectors, the

Fig. 9. Search of a substring in superposition with HD/VSA using

the modified algorithm from [146]. The length of a substring was

fixed to 30. The reported values were averaged over 30 simulations.

1554 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

accuracy of detecting a substring increases and eventually

approaches 1. For longer base strings, it would require

larger dimensions of the hypervectors to achieve high accu-

racy. Nevertheless, it scales much better than the original

algorithm for which we were not able to simulate large

enough dimensionalities that would provide reasonable

accuracy.

The substring search provides lessons for computing

in superposition with HD/VSA. Both algorithms use it;

the original one requires a large dimensionality to reduce

crosstalk sufficiently, while the modified one includes an

extra cleanup step to reduce the required dimensionality

significantly—but it also increases the algorithmic com-

plexity. In particular, the asymptotic computational com-

plexity of the query algorithm in HD/VSA operations is

O(|Q|) for the original algorithm versus (O(|Q||B|) for

the modified algorithm. However, in terms of hypervector

dimensionality, the original algorithm required much more

space than the modified algorithm. Another consequence

of long hypervectors required by the original algorithm

is that, despite not requiring an extra cleanup step (11),

the total number of operations would be higher due to

much shorter hypervectors used by the modified algo-

rithm. Moreover, with appropriate implementation of the

HD/VSA algorithm on parallel hardware, the cleanup step

in (11) can be parallelized2 using, e.g., in-memory com-

puting architectures with massive phase-change memory

devices [147]. When executed on such hardware, the

time complexity of the modified algorithm also becomes

O(|Q|).3 Thus, computing in superposition in HD/VSA

is natural but can require very high dimensionality for

managing crosstalk. Steps to manage the crosstalk can

be added to the algorithm at no compute time costs if

the algorithm is properly mapped on parallel hardware

(see [126] for the acceleration of DNA string matching

with HD/VSA).

Last, it is important to note that we do not claim that

the substring search will be a practically useful applica-

tion of computing in superposition since its computational

complexity exceeds that of the conventional algorithms

optimized for the problem. However, we think that this

example has a didactic value as it clearly demonstrates

how the primitives for representing data structures from

Section IV-A can be connected to a well-known computer

science problem. Thus, it serves as an important illustra-

tion of the lines along which one should think to utilize

computing in superposition. In the following, we elaborate

on more practical (but not always explicit) contemporary

examples of using computing in superposition.

3) Applications of Computing in Superposition: In the

long term, we anticipate the resonator networks [76], [77]

2For the sake of fairness, it should be noted that the conventional
substring search algorithms could also be parallelized.

3Of course, the size of the chip places limitations on the dimen-
sionality of hypervectors and the number of hypervectors in the item
memory.

(see Section III-C) to become a pivotal mechanism in

many solutions based on computing in superposition since

they use the idea of removing crosstalk noise from the

predictions represented in the superposition. In particular,

we believe that this idea would be important to efficiently

solve nontrivial combinatorial search problems. There are

already a couple of proposals for, e.g., scene decomposi-

tion [148] and prime factorization [149], but they are yet

to be demonstrated at scale.

In a short term, there is another practical direction

for the application of computing in superposition that

is already being used to tackle a large problem—

enhancement of capabilities of machine learning algo-

rithms (often neural networks).4 In the following,

we briefly explain the role computing in superposition

plays in approaches proposed within this direction since,

in our opinion, it is a unifying theme that will, hopefully,

inspire more approaches for machine learning algorithms

enhancement.

A recent connection, introduced in [102] and [150],

between a method for representation of numeric data

as hypervectors [51], [67], [68] and kernel methods

allowed representing functions as compound hypervectors

of weighted sets (see Section IV-A2). This finding, in turn,

allowed a one-shot evaluation of kernel machines since the

whole model can now be stored in the superposition as a

compound hypervector. The one-shot evaluation principle

was demonstrated on probability density estimation [102],

[150], [151], kernel regression [102], [150], Gaussian

processes-based mutual information exploration [152],

and rules search in superposition [153]. The distributed

representations of numeric data can also be very useful

even without formal links to the kernel methods. They

can be used to store in superposition multiple locations of

interest on a 2-D grid that has been shown to be impor-

tant for, e.g., implementing agent’s memory for cognitive

maps [154], navigation in 2-D environments [67], [154],

and reasoning on 2-D images [67], [148], [155].

When it comes to approaches for augmenting neural

networks, in [156], the weights of multiple deep neural

networks trained to solve different tasks were stored jointly

in superposition using a single compound hypervector.

This approach addressed the so-called “catastrophic forget-

ting” phenomenon by using a unique random permutation

assigned to each task that allows networks to co-exist in the

compound hypervector without much interference. These

permutations were used as keys to extract the correspond-

ing network’s weights from the superposition hypervector.

A big leap of such an approach is that new networks

can be added gradually into the superposition hypervector

without significant degradation of the performance of the

previously included networks.

Another approach combining computing in superposi-

tion and neural networks was presented in [157]. There,

4We additionally review some of these works in the context of
connections to hardware realizations of HD/VSA in Section V-B2.

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1555

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

activations of the network’s layers from a single data sam-

ple were used in place of value hypervectors. They were

bound to the corresponding random key hypervectors, and

all hypervectors of the key-value pairs were aggregated in a

single compound hypervector. Since the compound hyper-

vector simultaneously keeps all the activations, calculating

the similarity between two such hypervector corresponds

to an aggregate similarity score between two data sam-

ples. This property was leveraged successfully to detect

out-of-distribution data. In a similar way, in [158] and

[159], activations of multiple neural network-based image

descriptors were combined together into a compound

hypervector simultaneously representing the aggregated

descriptor. Such hypervectors allowed an efficient image

retrieval for visual place recognition tasks. A different

combination of a neural network and a compound hyper-

vector of the key-value pairs was reported in [160], where

the compound hypervector was used to simultaneously

represent the output of a neural network when solving

multilabel classification tasks.

From the descriptions above, one can notice a striking

pattern—most of the approaches relied on the primitive for

representing sets, in general, and sets of key-value pairs,

in particular. This is likely because the latter is a simple

yet nontrivial data structure. We, thus, anticipate that more

new approaches can be conceived by expanding to more

sophisticated data structures.

V. H A R D W A R E R E A L I Z AT I O N S

O F H D / V S A

A. HD/VSA Models for Different Types of

Hardware

The computational primitives of HD/VSA connect the

algorithmic level of Marr’s computing hierarchy (see

Fig. 1) to the computational level. At the same time,

an HD/VSA placed at the algorithmic level also interfaces

with the implementation level. While the computational

primitives are generic across different HD/VSA models,

the model choice can become critical when it comes to

interfacing with a particular physical substrate.5 This sug-

gests a general design pattern when designing an HD/VSA

system to be implemented on emerging hardware: the

desired computation is formalized in terms of the generic

HD/VSA computational primitives, and then, the specific

HD/VSA variant best suited for this emerging hardware is

used in implementing these primitives. Here, we describe

some of the existing HD/VSA models and examples of how

5It should be noted that there exist subtleties when it comes to
computational primitives of different HD/VSA models (see [62] for
a discussion). Thus, strictly speaking, the model choice may not be
only influenced by a physical substrate but also by the nature of the
task at the computational level. To put it simply, not all HD/VSA
models are interchangeable. This is not entirely unexpected since, if a
framework can provide tight matches between computation and hardware
to enable efficiency, the separation between abstraction and physical
realization cannot be perfect. Thus, for the sake of narration in this
section, we focus on the availability of an efficient mapping between
some physical substrate and some HD/VSA model.

they can be implemented in different hardware. Different

HD/VSA models can be distinguished in terms of the prop-

erties of seed hypervectors and corresponding algebraic

operations.

1) Dense Binary Vectors: The binary spatter codes [55]

model uses dense binary vectors. Superposition is done by

the componentwise majority rule followed by tie-breaking,

and binding is by the componentwise XOR. Due to its

discrete nature, binary spatter code is highly suitable for

conventional digital application-specific integrated circuits

(ASICs). The first ASIC design [130] was made in 65-nm

CMOS for language recognition, followed by more pro-

grammable designs in 28 nm [161] and 22 nm [162]. It has

been also mapped on a 28-nm FD-SOI silicon prototype

with four programmable OpenRISC cores operating in a

near-threshold regime (0.7–0.5 V) [163]. Overall, in the

binary spatter codes model, the hypervectors are station-

ary and robust, and related binary operations are local

and simple. This provides a natural fit for implementing

the model on non-von Neumann architectures (a.k.a. in-

memory computing) using emerging technologies, such

as carbon nanotube FETs and resistive RAM [26], [164],

[165], and phase-change memory [16], [147]. Specifically,

Karunaratne et al. [16] describe how to organize compu-

tational memories for storing and manipulating hyper-

vectors, whereby the operations are implemented inside,

or near, computational memory elements.

2) Integer Vectors: The MAP model [54], the HD/VSA

model that we have used in the examples so far as the

default, employs bipolar (+1s and −1s) hypervectors,

componentwise multiplication, and superposition with

possible thresholding. The MAP model will usually suit the

same technologies as binary spatter codes. For example,

it was recently implemented on an FPGA for hand gesture

recognition [166].

3) Real-Valued Vectors: The HRR model [52] was orig-

inally done with N -dimensional real-valued hypervectors

whose components are i.i.d. normal with zero mean and

1/N variance. Superposition is done by the normalized

vector sum, and binding is done by circular convolution.

It has been shown how to map real-valued hypervectors

onto spiking neurons using the principles from the neural

engineering framework [167] with the help of spike-rate

coding. For example, the Spaun cognitive architecture [38]

has been implemented in such a way. Most of the studies

were done using simulations in Nengo [168], which is a

Python-based package for simulating large-scale spiking

neural networks. Nevertheless, Nengo has compilers for

popular neuromorphic platforms, such as SpiNNaker and

Loihi; therefore, it is straightforward to deploy a model

built in Nengo on the neuromorphic platforms.

4) Complex Vectors: In the Fourier HRRs [53], vector

components are random phasors, superposition is by com-

ponentwise complex addition followed by normalization,

and binding is by componentwise complex multiplication

1556 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

(addition of phasors) [53]. This HD/VSA model should

be suited for implementations on coupled oscillator hard-

ware [169]; however, we are not aware of any concrete

hardware realizations as of yet. Another alternative is

mapping complex HD/VSA to the neuromorphic hard-

ware [24] by representing phasors with spike times [170].

This implementation is particularly interesting because the

neuromorphic hardware scales up more easily than the

current approaches to coupled oscillator hardware. How-

ever, no neuromorphic implementation of a full complex

HD/VSA has been reported to date.

5) Sparse Vectors: Traditional HD/VSA models use

densely distributed representations. However, sparsity is

an important ingredient of energy-efficient realizations in

hardware. Thus, HD/VSA models that use sparse repre-

sentations are important for mapping HD/VSA operations

efficiently onto hardware. We are aware of two such

models: SBDRs [56], [57] and sparse block codes [58],

[59]. In the SBDRs model, the hypervectors are sparse

patterns without any restrictions on placing the active com-

ponents, while, in sparse block codes, the hypervectors are

divided into blocks of the same size (denoted as K) with

just one single active component per block. The SBDRs

model was implemented around 1990 in specialized

hardware—“associative-projective neurocomputers” [49].

This hardware was designed to operate efficiently with

sparse representations [56] by using simple bitwise log-

ical operations and a long word processor with 256 bits

(later with 512 and 2048 bits, implemented by Wacom,

Japan). For cleanup memory, it used Willshaw-like asso-

ciative memories, following earlier ideas to implement

such memory networks [171] and motivated by theoretical

results suggesting high memory capacity [70], [71], [172],

[173], [174], [175]. Concerning HD/VSA with sparse

block codes, in particular with complex-valued sparse vec-

tors, they seem to be the most amenable for implemen-

tations on neuromorphic and coupled oscillator hardware.

Currently, there are two proposals for implementing binary

sparse block codes in spiking neural network circuits [17],

[18]. The proposal in [17] has been implemented on Intel’s

Loihi [24], while the one from [18] has not been realized

in hardware yet, but it has been implemented in the Brian

2 simulator [176].

B. Mapping Algorithms to Hardware

1) Hardware Implementations of Pure HD/VSA: How do

implementations of HD/VSA in existing conventional hard-

ware produce gains over conventional machine learning

methods? On a dedicated digital ASIC design, it has

been demonstrated that HD-/VSA-based classification can

lower the energy by about 2× compared to a k-nearest

neighbors classifier for the European language recognition

task [130]. By running these classifiers on the Nvidia Tegra

X2 GPU, HD/VSA exhibited over 3× lower energy per

prediction [161]. Considering a wide range of biomed-

ical signal classifications, HD/VSA achieved at least the

same level of accuracy compared to the baseline meth-

ods running on the conventional programmable hardware,

however, at 2× lower power compared to the fixed-point

SVM for EMG classification on the embedded ARM Cortex

M4 [163], 2.9× lower energy compared to SVM, and

over 16× compared to CNN and LSTM for iEEG classifi-

cation on the Nvidia Tegra X2 [107]. More details for this

benchmarking are available in [34]. Using the PageRank

centrality metric, HD/VSA achieved comparable accuracy

with 2× faster inference compared to the graph kernels

and neural networks for graph classifications on the Intel

Xeon CPUs [177]. These improvements are due to the fact

that the HD-/VSA-based solutions mostly use basic bitwise

operations, instead of fixed- or floating-point operations.

Another appealing property of HD-/VSA-based solutions

is their great robustness, for example, they tolerate 8.8×

higher probability of failures with respect to intermittent

hardware errors [130] and 60× higher probability of

failures with respect to permanent hardware errors [26].

This robustness makes HD/VSA ideally suited to the

low signal-to-noise ratio and high variability conditions

in the emerging hardware, as discussed in more detail

in [43]. Among them, as a large-scale experimental

demonstration [16] of HD/VSA, it was implemented on

760 000 phase-change memory devices performing ana-

log in-memory computing with 10 000-dimensional binary

hypervectors for three different classification tasks. The

implementation not only achieved accuracies comparable

to software implementations—despite the nonidealities in

the phase-change memory devices—but also achieved over

6× end-to-end energy saving compared to an optimized

digital ASIC implementation [16].

The connection of HD/VSA to spiking neuromorphic

hardware is not obvious since all classical HD/VSA models

used abstract connectionist representations, not spikes.

However, recent work has demonstrated that representa-

tions of a complex HD/VSA model, Fourier HRRs [53], can

be mapped to spike timing codes [170]. Although focused

just on content-addressable memory, i.e., item memory,

this work opens avenues for efficient implementations

of full HD/VSA models on neuromorphic hardware [9].

Because neuromorphic hardware often optimizes spike

communication for sparse network connectivity, the scal-

ing properties of neuromorphic HD/VSA will potentially

outperform other types of hardware. Furthermore, neu-

romorphic hardware might enable hybrid approaches

by integrating HD/VSA with other computing frame-

works. For instance, an event-based dynamic vision sen-

sor (as a front-end spiking sensor) has been combined

with sparse HD/VSA leading to 10× higher energy effi-

ciency than an optimized nine-layer perceptron with

comparable accuracy on an eight-core low-power digital

processor [89].

The results above bring a question worth discussing—

what are the common hardware primitives enabling these

gains? The most common architectural primitives that are

observed in the hardware implementations can, actually,

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1557

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

be naturally mapped to basic elements (see Section III-A)

and operations (see Section III-B) of HD/VSA. For exam-

ple, let us consider the implementations of the binary spat-

ter codes model based on phase-change memory devices

reported in [16] and the sparse block codes model on

spiking neural network circuits described in [18]. The

basic hardware primitives lying at the core of these imple-

mentations were item memory circuit (cf. [16, Fig. 1]

and [18, Sect. III-A1a]), superposition operation cir-

cuit (“the complete in-memory HD system” in [16] and

[18, Fig. 2]), binding operation circuit (cf. [16, Fig. 3]

and [18, Fig. 4]), and circuit for probing (cf. [16, Fig. 2]

and [18, Fig. 3]).

The fact that the basic HD/VSA elements and operations

are the most common hardware primitives should not be

surprising because, as it was demonstrated in Section IV-A,

they are the key building blocks of all the computational

primitives in the “HD/VSA cookbook.” This implies that,

given the hardware implementation of the most basic

elements, it is possible to construct architectures for com-

positional primitives that might, e.g., combine the usage

of several HD/VSA operations. This, of course, does not

mean that there is no other way to approach hardware

implementation of HD/VSA. In fact, there are incentives to

design implementations targeting concrete compositional

primitives, and they were even present in the two above

works, e.g., a circuit for representing n-grams (see [16,

Fig. 3]) and a circuit for representing a set of key-value

pairs (see [18, Fig. 5]). The main incentive for doing

so is to increase the efficiency of the implementation

since it allows applying, e.g., computational reuse. A vivid

example of such an approach is a circuit from [130] (cf.

[130, Fig. 3]) for generating hypervectors of trigrams (see

Section IV-A6) that used Barrel shifters to minimize the

switching activity during the permutation operations. Note

that the same circuit could have been designed using the

hardware primitives for binding and permutation oper-

ations as the building blocks, but such a design would

come at the price of reduced efficiency. Another common

bottleneck in the hardware implementations of machine

learning applications of HD/VSA is the item memory (cf.

[161, Fig. 8]). The presence of this bottleneck caused

researchers to consider ways of efficiently eliminating it.

A prominent way to do so is the rematerialization of

the item memory using inexpensive recurrent methods,

as proposed in [162], [178], and [179]. This idea of

rematerialization created room for trading off the sys-

tem’s dynamic and leakage powers and was demonstrated

to increase energy efficiency in scenarios involving, e.g.,

biosignal processing [162], [180], [181].

In summary, we can argue that hardware

implementations of HD/VSA rely on architectural

primitives corresponding to the basic elements and

operations of HD/VSA. However, in order to increase

the efficiency, it is also common to design circuits imple-

menting compositional computational primitives from

Section IV-A.

2) HD/VSA Combined With Neural Networks: The afore-

mentioned works have demonstrated the benefits of

HD/VSA on relatively small-scaled classification tasks.

In order to approach more complex tasks, a common

strategy is to combine some of the basic HD/VSA prim-

itives (discussed in Section IV-A) with neural networks.

For instance, representations from pretrained neural net-

works have been used with the HD/VSA primitives to

compactly represent a set of key-value pairs to gener-

ate image descriptors for visual place recognition [158],

[159]. One step further, the deep neural networks were

trained from scratch to be able to directly generate desired

hypervectors that were further bound or superposed by

HD/VSA operations to represent the concepts of inter-

est [147], [153], [182]. They achieved state-of-the-art

accuracy compared to the stand-alone deep learning solu-

tions in various tasks involving images, including few-

shot learning [147], continual learning [182], and visual

abstract reasoning [153]. The hardware implementation of

such hybrid architectures may vary. For instance, the asso-

ciative memory for few-shot learning was implemented

on the phase-change memory devices to execute searches

in constant time, while the neural network was imple-

mented externally [147]. Alternatively, the whole archi-

tecture for the visual abstract reasoning was executed on

CPUs, whereby leveraging HD/VSA leads to two orders of

magnitude faster execution than the functionally equiva-

lent symbolic logical reasoning [153].

VI. D I S C U S S I O N

HD/VSA has been criticized for lacking a structured

methodology to design systems and missing well-defined

design patterns [86]. Here (see Section IV-A), we compiled

existing computational primitives with HD/VSA that paint

a different picture. There is an HD/VSA methodology

addressing a wide range of applications, but it is scattered

throughout the literature. In addition to compiling existing

work, we laid out design principles for building distributed

representations of data structures, such as sets, sequences,

trees, and key-value pairs. This demonstrates a rich algo-

rithmic and representation-level approach that one can use

as an abstraction for the next generation of computing

devices.

Our compilation of varied HD/VSA primitives also sug-

gests that, contrary to some earlier assessments (see [183]

and the commentary in [184]), the repertoire potential

of HD/VSA applications is extremely wide, ranging from

low-level sensory processing to high-level reasoning. While

we provided an extensive introduction to HD/VSA and

a comprehensive collection of computational primitives

and existing connections to computing hardware, it was

not our goal to provide a complete overview of the area

such as, e.g., a review of all existing HD/VSA models. We

do however, hope that this article will motivate readers

to explore the current state of the area that is covered

in detail in a two-part survey covering both fundamen-

tals [73] and applications [185]. We think that the strength

1558 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

of HD/VSA benefits applications where there is a need for

a computing framework constructing transparent composi-

tional distributed representations that will allow interfac-

ing unconventional parallel computing hardware. It is not

obvious how to achieve this with, e.g., modern neural net-

works, though it should be noted that there is increasing

empirical evidence demonstrating that certain problems

benefit from hybrid approaches combining elements from

HD/VSA and neural networks.

That being said, it is still important to admit the

limitations and challenges of HD/VSA, and therefore,

before ending this article, we would like to mention them

(see Section VI-A). We conclude by discussing the role

of HD/VSA as a framework for computing with emerging

hardware (see Section VI-B).

A. Limitations and Open Challenges

Here, we would like to emphasize some of the limi-

tations of HD/VSA that are directly related to the scope

of this article: applications (see Section VI-A1), dimen-

sionality of hypervectors (see Section VI-A2), and flow

control (see Section VI-A3). For a broader discussion of

open challenges, we kindly refer the reader to the section

“Open Issues” in [185].

1) Applications: There have been numerous attempts

to use HD/VSA in problems within various application

domains (see [185] for detailed coverage). Some well-

known examples of using HD/VSA include word embed-

ding [186], [187] (though largely overshadowed by [188],

[189]), analogical reasoning [13], [97], cognitive archi-

tectures [37], [38], and modeling [190], [191], as well as

solving classification tasks [15], [34]. It must be admit-

ted, however, that most of these use cases were limited

to small scope problems; therefore, there is still a need

to demonstrate how HD-/VSA-based solutions scale up

to real-world computational problems and, what is also

important, to identify niches where the advantages of

HD/VSA are self-evident. We think that further research

will eventually address this limitation as we see two recent

developments in this direction. First, there is a continuing

trend towards extending HD/VSA to novel domains—

promising recent examples include applications in commu-

nications [83] and distributed systems [79]. Second, there

is an increasing number of studies (see Section V-B2 and,

e.g., [147], [153], [156], [158], [160], and [192]) that

combine neural networks and HD/VSA primitives. This

seems to be a promising way to scale up HD-/VSA-based

solutions to real-world problems in the short-term.

2) HD/VSA Dimensionality and Working Memory: The

key feature of data representation in HD/VSA is that data

structures are represented by fixed-sized hypervectors,

independent of the size of the data structure. This is in

contrast to the localist representations of data structures,

which grow linearly or even quadratically with the number

of elements. On the one hand, it is a great advantage

as data structures of arbitrary size and shape can be

manipulated in parallel with the elementary set of HD/VSA

operations. At the same time, as we have seen in Section IV-

A, the dimensionality of hypervectors might easily become

a limitation since, for a given dimensionality, the informa-

tion content of representation, i.e., the HD/VSA capacity,

limits the size of data structures that can be represented

reliably [30], [193].

Conceptually, one should think of the memory in hyper-

vectors as the working memory or working registers, hold-

ing the data relevant during an ongoing computation.

In contrast, the role of long-term memory for an HD-/VSA-

based system can be fulfilled by, e.g., a large capacity

associative content-addressable memory that might store

hypervectors of data structures [37], [194]. Currently, this

idea is being investigated by the community [195].

The limitation of the working memory in HD/VSA has

interesting parallels to the limitation of the human working

memory. For data structures of limited size, there are guar-

antees for exact reconstruction [193]. However, transcend-

ing the theoretical bound for exact reconstruction, the

data representation becomes lossy, with error rates being

theoretically predictable [30]. HD/VSA representations of

data structures in the lossy regime have been shown to

reproduce some properties of the human working memory.

For example, the recall of a sequence in an HD/VSA,

as described in Section IV-A5, can reproduce the perfor-

mance of humans remembering sequences [120], [122].

Furthermore, the modeling of memorizing sequences with

HD/VSA was linked to the neuroscience literature in [125].

It is not immediately clear how this capturing of the

limitations of human memory might be beneficial in engi-

neering applications. The way biological working memory

coarsens its content and gradually degrades might be an

important feature of cognition whose benefits are not yet

fully appreciated. However, for applications that require

guarantees for exact reconstruction, the dimensionality of

hypervectors needs to be specified at the design stage,

which makes it a limitation for situations where the data

structures to be represented can be of highly varying

sizes.

3) Flow Control: HD/VSA implementations of algo-

rithms generally rely on existing non-HD/VSA mechanisms

for flow control. This is reasonable in systems where

the aim is to use HD/VSA to implement conventional

computing approaches. This case can be seen more as a

way of extending conventional computing with HD/VSA.

However, if we are modeling biological systems, we should

not be using non-HD/VSA conventional computing flow

control. Moreover, from the efficiency point of view, when

using emerging hardware, it might not be desirable to

have a conventional processing unit for flow control. For

these reasons, it is important to develop methodologies

for flow control that would use native HD/VSA primitives.

In our opinion, this is possible. However, to date, the efforts

in this direction are quite limited. There was an attempt

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1559

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

in [196] to define a model of a biological system with

HD-/VSA-based control. Two other related efforts are [41],

which presented a proposal for a stack machine and, [58],

proposing a processor with instructions specified in the

form of hypervectors.

B. HD/VSA as a Framework for Computing With
Emerging Hardware

HD/VSA was originally proposed in cognitive neuro-

science as a model for symbolic reasoning with distrib-

uted representations. More recently, it has been shown

that HD/VSA can formulate subsymbolic computations, for

example, in machine learning tasks.

Here, we proposed that HD/VSA provides a computing

framework within the algorithmic level of Marr’s frame-

work [19] for linking abstract computation and emerging

hardware levels. The algorithmic formalism of HD/VSA

(with few exceptions) is the same for all of its variants.

Thus, HD/VSA enables a model-independent formulation

of computational primitives. At the same time, HD/VSA

also provides a seamless interface between algorithms and

hardware. In Section V-A, we illustrated how different

HD/VSA models can connect to specific types of emerging

hardware. Moreover, in Section IV-B, we demonstrated

how HD/VSA can be used for computing in superposition.

This feature extends HD/VSA beyond the conventional

computing architectures, and we foresee that, together

with algorithms that leverage computing in superposition,

such as resonator networks [76], [77] (see Section III-C1),

it will pave the way towards efficient solutions of nontrivial

combinatorial search problems (see examples in [148]

and [197]).

Another interesting aspect of computing with hyper-

vectors is that it occupies a realm between digital and

analog computing. After each computation step in a digital

computer, all vector components are pulled to one of the

possible digital states (bits). This individual discretization

of each component avoids error accumulation. Conversely,

an analog computer is supposed to implement an ana-

log dynamical system to predict its future states. Any

deviation between the dynamical system to be analyzed

and its computer implementation (e.g., noise) leads to

uncontrollable error accumulation in analog computers.

HD/VSA operations leverage analog operations on vectors

without discretization. However, discretization takes place

on the entire vector level when a resultant hypervector

is matched with the entries in the item memory. Thus,

HD/VSA can leverage (potentially very) noisy dynamics

in the high-dimensional state space of emerging hardware

while still protecting against error accumulation.

Despite all the promising aspects mentioned above, the

practicability of the HD/VSA computing framework for

emerging computing hardware is yet to be thoroughly

quantified. An important future direction is to develop

a systematic methodology to quantitatively measure and

compare side-by-side the efficiency of different computing

Table 1 Qualitative Assessment of HD/VSA Capabilities Compared to

Conventional Computing and Neural Networks

frameworks on concrete hardware. In this article, we con-

centrated on the question of how HD/VSA enables the

construction of varied algorithmic primitives and, there-

fore, could be a possible candidate framework in such a

comparison.

1) Alternative Frameworks: HD/VSA constitutes a com-

puting framework that provides an algebraic language for

formulating algorithms and, at the same time, links the

computation to distributed states on hardware. Table 1

compares the qualitative properties of HD/VSA as a com-

puting framework to conventional computing and neural

networks.

There is a tradeoff between how general a frame-

work is in terms of computation and how closely it is

linked to implementation. A general purpose framework

typically requires a full sealing between implementation

and computation, such as, for example, the conventional

computing architecture. Conversely, a framework that is

well matched to implementation, and can, therefore, effi-

ciently leverage the hardware, is typically of quite special

purpose. We argue that the tradeoff HD/VSA provides

between generality and linking to implementation, which

is ideal for emerging hardware. In particular, it seam-

lessly provides implementations of algorithms that lever-

age distributed representations and parallel operations,

and can tolerate noise and imprecision [43]. Of course,

HD/VSA is not the only framework candidate for emerg-

ing hardware; alternative approaches include probabilis-

tic computing [198], sampling-based computing [199],

computing by assemblies of neurons [200], and dynamic

neural fields [201]. For example, in neuromorphic comput-

ing, the dynamic neural field is an alternative computing

framework that could support fully symbolic operations.

In fact, dynamic neural fields and HD/VSA might comple-

ment each other by combining the real-time dynamics of

dynamic neural fields with the computational power and

scalability of HD/VSA. The detailed comparison between

these approaches and HD/VSA is, however, outside the

scope of this article. Nevertheless, in our opinion, HD/VSA

is the most transparent approach in structuring com-

putation and the most general with regard to different

types of hardware. In terms of formulating algorithms

and computational primitives, HD/VSA offers a common

language, independent of a particular HD/VSA model.

For the desired computation on given hardware, one of

the many existing HD/VSA models can provide the most

1560 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

advantageous implementation in terms of energy and time

efficiency.

There is currently a plethora of collective-state com-

puting approaches emerging, such as compressed sens-

ing, Bloom filters, and reservoir computing, all relying

on distributed representations [169]. These approaches

are rather disjoint and typically focus on special purpose

computing applications. HD/VSA has been shown to be

able to formalize different types of collective-state com-

puting, including reservoir computing [28], [30], Bloom

filters [78], compressed sensing [59], randomized ker-

nels [102], [150], and extreme learning machines/random

vector functional link networks [29]. Thus, we see

HD/VSA as a promising candidate framework for providing

a “lingua franca” for collective-state computing.

A P P E N D I X A

O N T U R I N G C O M P L E T E N E S S

O F H D / V S A

It is practical to have a collection of primitives for com-

mon data structures. However, these primitives alone do

not provide us with a quantification of the theoretical

capabilities of using HD/VSA as a computing framework.

Of course, it is desirable that a computing framework

for emerging hardware be able to (in theory, at least)

execute any algorithm. For example, in [202] that pro-

posed a system hierarchy for neuromorphic computing,

it has been emphasized that Turing completeness is an

essential property for an abstraction model that is used at

the algorithmic level. Therefore, in this section, we sketch

ways of demonstrating that HD/VSA is computationally

universal by exemplifying how they (with some assump-

tions) can be used to emulate systems that have already

been proven to be Turing complete. While computing in

superposition is likely to be the most interesting feature of

operating with HD/VSA, computational universality is still

a critical property to study as it characterizes the general

computational power of a system. It is worth noting that,

among HD/VSA researchers, there is a general agreement

that HD/VSA is computationally universal, but, to the best

of our knowledge, this has not been shown yet. There-

fore, here, we make two proposals toward demonstrating

their universality: by implementing a Turing machine and

by emulating an elementary cellular automaton, which

is also known to be Turing complete [203]. Note that,

while these proposals might not be tight enough to be

qualified as formal proof, we believe that the following

directions are the most promising ways to make such

proof.

A. Implementation of Turing Machines With

HD/VSA

Since there are a number of small Turing machines

known to be universal [204], we first focus on demon-

strating how HD/VSA can be used as a part of an imple-

mentation of such a machine. In order to do so, we present

Table 2 Table of Behavior of (2, 4) Turing Machine

how HD/VSA representations are used to map a table of

behavior [204] and execute the machine.

The presented implementation could be used to realize

any Turing machine, but, for the sake of compactness,

we exemplify the implementation with a (2, 4) Turing

machine, which has two states (A and B) and four symbols

(0, 1, 2, and 3). The table of the behavior of a (2, 4) Turing

machine is presented in Table 2. For a given combination of

the current state and the tape’s content, it provides which

symbol should be written to the current cell, the next state

of the machine, and the direction for the head’s movement.

1) HD/VSA Implementation of the Table of Behavior:

We use the MAP model described above. In order to

represent the table of the behavior of a Turing machine,

we first create two item memories populated with random

hypervectors. One item memory stores the states, e.g.,

in the case of a (2, 4) Turing machine, it includes only

two hypervectors for states A and B (denoted as a and b),

respectively. Another item memory stores hypervectors for

symbols. Since the considered machine uses only four

symbols, four hypervectors, 0, 1, 2, and 3, are sufficient.

These item memories are used to construct a hypervector

for each combination of states and symbols. The hypervec-

tor is constructed by applying the binding operation on the

hypervectors for a state and a symbol.

Eight hypervectors corresponding to all possible combi-

nations form a basis for constructing a third, heteroasso-

ciative, item memory, i.e., the memory where the address

and content parts store different hypervectors. The het-

eroassociative item memory can implement any table of

behavior by using the bound pair of state and symbol

as input to the memory and issuing hypervectors, which

should be used as the tape content, head’s move, and next

state as an output. Table 3 presents the heteroassociative

item memory for the table of the behavior of (2, 4) Turing

machine. Thus, three item memories constitute the static

Table 3 Heteroassociative Item Memory Implementing (2, 4) Turing

Machine

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1561

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 10. Illustration of the current state of the machine and its

tape.

part of the system, which is generated only once at the

initialization. At this point, it is worth making a note that,

in addition to the standard assumptions about unlimited

time and memory resources, there is an extra assumption

about the heteroassociative item memory. In particular,

it should be guaranteed to behave correctly in the absence

of external errors. Practically, it means that the address

part of the heteroassociative item memory should not

have repeated entries. Even for moderate dimensionality

of hypervectors, the chance of such an event is low, but,

if this happens, the issue is solved by the regeneration of

the item memories.

2) HD-/VSA-Based Tape: The other part of the system is

dynamic and includes the location for storing a hypervec-

tor for the current state, the tape, and the current position

of the head. Fig. 10 presents an example of the dynamic

part of the system. In the case of using HD/VSA, the tape

can be seen as a matrix where each column corresponds

to the hypervector of a symbol. In order to make the

next step, the machine has to read the hypervector of

the current state (b in Fig. 10) and the hypervector of the

symbol at the current location of the head (0 in Fig. 10).

The result of binding of these hypervectors b � 0 is used

as an input to the heteroassociative memory. The output of

the memory indicates that hypervector a should be written

to the current state; the tape’s content is changed to 3,

and the head should be moved to the right of the current

location. The updated state is shown in Fig. 11. In such

a manner, the system could operate on the tape for the

required number of computational steps. In summarizing,

the proposed implementation of a Turing machine uses

basic elements of HD/VSA, such as hypervectors, item

memories, and the binding operation; however, it also

includes few parts that go beyond HD/VSA, namely, con-

trol of head movements and unlimited memory tape.

3) Scaling HD/VSA Implementation: Since the proposed

implementation of a Turing machine does not make use

Fig. 11. Updated state and tape of the machine after the previous

state as in Fig. 10.

of the superposition operation, there is no crosstalk noise

being introduced to the computations, which, in turn,

means that, in the absence of external noise, the emula-

tion behaves in a deterministic way. Thus, even tiny 3-

D vectors can be used to construct the heteroassociative

item memory with unique entries. Nevertheless, since one

of the arguments in favor of HD/VSA is their built-in

tolerance to errors, it is interesting to observe the behav-

ior of the emulation in the presence of external noise.

We performed simulations where the external noise was

added to the tape by randomly flipping signs of a fraction

of hypervector components. Fig. 12 presents the average

dimensionality of hypervectors required to make at least

109 error-free updates of the emulated Turing machine

Fig. 12. Average dimensionality of hypervectors required to make

at least 109 error-free updates of the emulated (2, 4) Turing

machine when the hypervectors representing symbols on the tape

were subject to external bit flips. The BER was in the range [0.05,

0.30] with a step of 0.05. The results were computed from ten

simulation runs with random initializations of hypervectors in the

item memories and random bit flips added at every update of the

machine.

1562 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

when the hypervectors representing symbols on the tape

were subject to external bit flips. The bit error rate (BER)

varied in the range [0.05, 0.30] with a step of 0.05.

The starting dimensionality of hypervectors was 24. If the

error in emulation was happening in less than 109 steps,

then the dimensionality was increased by 10%. The results

demonstrate that the proposed implementation can reli-

ably emulate the Turing machine given adequate resources

(i.e., the dimensionality of hypervectors). Naturally, in the

presence of external noise, more resources are needed to

obtain the error-free execution of the machine. Neverthe-

less, an important observation is that the implementation

works with imprecise noisy representations. Moreover, the

robustness of the implementation comes at no cost in

terms of design, as the same algorithm is being used for

any amount of noise, and the only cost to be paid is the

increased size of the system.

B. Emulation of Cellular Automaton With HD/VSA

Since HD/VSA is designed to create vector represen-

tations of symbolic structures, when identifying a Turing

complete system suitable for emulation with HD/VSA,

it is also natural to choose a highly structured system

that uses a small finite alphabet of symbols. We think

that an elementary cellular automaton is one example of

such a system. Since the elementary cellular automaton

with rule 110 is known to be Turing complete [203],

we would like to demonstrate how HD/VSA can be used

in emulating this rule. In order to do so, we first revisit the

elementary cellular automaton concept. Next, we present

an HD/VSA algorithm for mapping and executing an ele-

mentary cellular automaton. Thus, we literally follow the

roadmap from [203]: “the automaton itself is so simple

that its universality gives us a new tool for proving that

other systems are universal.” Finally, we explore how

the proposed implementation is scaling with respect to

the size of the initial grid state of an elementary cellu-

lar automaton, the dimensionality of hypervectors, and

the amount of noise present during the computations.

The major point of the latter is that, even for a large

amount of noise, the implementation can perfectly emu-

late the elementary cellular automaton given sufficiently

large dimensionality of hypervectors, which is a nice

property as robustness is achieved without modifying the

design.

1) Elementary Cellular Automata: An elementary cellular

automaton is a discrete computational model consisting of

a 1-D grid of cells [205]. Each cell can be in one of a finite

number of states (two—for the elementary automaton).

States of cells evolve in discrete time steps according to

a fixed rule. The state of a cell at the next computational

step depends on its current state and the states of its

neighbors. The computations performed by an elementary

cellular automaton are local. The new state of a cell is

determined by the previous states of the cell itself and its

two neighboring cells (left and right). Thus, only three cells

Fig. 13. Assignment of new states for a center cell when the

cellular automaton uses rule 110. A hollow cell corresponds to a zero

state, while a shaded cell marks one state.

are involved in a computation step, i.e., for binary states,

there are in total 23 = 8 combinations. A rule assigns states

for each of the eight combinations. Fig. 13 presents all

combinations and the corresponding states for rule 110.

2) HD/VSA Algorithm for Emulating an Elementary Cellu-

lar Automaton With the Rule 110: We use the MAP model

described above. In order to represent an elementary cel-

lular automaton with rule 110, we first create two item

memories populated with random hypervectors. One item

memory stores the finite alphabet, i.e., it includes only

two hypervectors, for one and zero (denoted as 1 and

0, respectively). Another item memory stores hypervec-

tors for positions. Since an elementary cellular automaton

relies only on a cell in focus and its immediate neighbors,

then three hypervectors, l (left), c (center), and r (right),

are sufficient. These item memories are used to construct a

hypervector for each combination of states in three consec-

utive cells. The hypervector is constructed by applying the

superposition operation on the bound pairs of a positional

hypervector and an alphabet hypervector. In other words,

the current states in three consecutive cells are represented

as a set of unordered pairs. For example, for 010, the

corresponding compound hypervector is constructed as

h010 = [l � 0 + c � 1 + r � 0].

All eight compound hypervectors form a basis for con-

structing a heteroassociative item memory, which can

implement any elementary rule by using the compound

hypervectors as input to the memory, and issuing either

1 or 0 (determined by the rule) as an output. Table 4

Table 4 Heteroassociative Item Memory Implementing Rule 110

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1563

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

presents the heteroassociative item memory for the rule

110. Thus, three item memories constitute the static part

of the system, which is generated only once at the initial-

ization.

The other part of the system performs computations for

a given initial grid state of length l at time t = 0. The

initial grid state is mapped to a compound hypervector

(denoted as a0). The mapping is done by applying the

superposition operation on all hypervectors representing

the states of cells at all positions. Position j in the grid is

represented by applying the permutation operation j times

to the hypervector corresponding to a state at position j.

Thus, this representation corresponds to the mapping of a

sequence with the superposition operation. For example,

if the initial grid state is 10101, then the representation of

the state at the fifth position is ρ51, while the compound

hypervector for the initial grid state is

a0 = [ρ11 + ρ
20 + ρ

31 + ρ
40 + ρ

51].

Given a0, the next step is to compute a1 or, in general,

at+1 given at.

First, at+1 is initialized to be an empty hypervector.

Next, for each position j ranging from 1 to l, we do the

following (this step can be either serial or parallel).

1) Approximately recover the state at j and its neighbors

as ĥ = [l � ρ−(j−1)at + c � ρ−jat + r � ρ−(j+1)at].

2) Use ĥ as the query to the heteroassociative item

memory. The memory returns the content (i.e., 0 or

1) for the address closest to ĥ in terms of dot product.

The returned content is denoted as vj .

3) Modify at+1 with vj as at+1+ = ρjvj .

Finally, apply the majority rule on at+1: at+1 = [at+1],

so that it becomes bipolar. In such a manner, the system

could iterate through the grid for the required number of

computational steps.

Last but not least, it is worth explicating that the

proposed implementation assumes parts that go beyond

HD/VSA. First, the full computational system has its con-

trol architecture that is responsible for initializing the grid

state and running the for-loop, which can be seen as a

recurrent connection, required for constructing at+1. The

second part that is assumed here to be the same as in

the standard implementation of a cellular automaton is the

circuit determining when to stop the computation. We have

not focused on this circuit as our main goal here was

to demonstrate how to evolve HD/VSA representations to

perform cellular automaton computations.

3) Scaling HD/VSA Emulation: It is known that com-

pound hypervectors can be used to retrieve their compo-

nents (see Section III-C); however, there is a limit on the

number of components, which can be stored in a com-

pound hypervector without losing the ability to recover

the components [30]. The rule of thumb is that, for larger

hypervector dimensionalities, more components can be

Fig. 14. Average error rate after 100 computational steps of the

elementary cellular automaton against the dimensionality of

hypervectors (N � 2i, i ∈ �10,17�) for several different lengths of the

grid (l� 2i, i ∈ �5,10�). The results were computed from

100 simulation runs with random initializations of hypervectors in

the item memories. The initial grid states were also randomized.

recovered from a compound hypervector. For the task of

emulating an elementary cellular automaton, it is impor-

tant that ĥ is similar enough to the correct state hyper-

vector in the item memory. Otherwise, we will introduce

errors to the computations being emulated, which is highly

undesirable. When constructing ĥ, the main source of noise

is the crosstalk noise from other cell states stored in at.

Therefore, in order to avoid errors in the computations,

the dimensionality of hypervectors should depend on the

length of the grid: the longer the grid, the larger the

dimensionality is required for robustly querying the item

memory.6

Fig. 14 presents the empirical results for a range of l

and N values. The curves depict the average error rate

after 100 computational steps of the elementary cellular

automaton. Note that the errors occurring at the earlier

computational steps will most likely propagate to the

successive steps. The length of the grid, l, varied as 2i,

i ∈ [5, 10], while the dimensionality of hypervectors, N ,

varied as 2i, i ∈ [10, 17]. Thus, the results demonstrate

that HD/VSA can perfectly emulate the elementary cellular

automaton with a grid of a certain length, given adequate

resources (i.e., the dimensionality of hypervectors).

Note that Fig. 14 presented the results for the case

when hypervectors did not include any external noise.

Since one of the arguments in favor of HD/VSA is their

built-in tolerance to errors, it is interesting to observe

the behavior of the emulation in the presence of external

noise. External noise was added by randomly flipping a

fraction of components in at, but it was still assumed that

6In principle, it should be possible to analytically find the minimal
dimensionality of hypervectors for robustly emulating the grid of the
given length.

1564 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Fig. 15. Average error rate after 100 computational steps of the

elementary cellular automaton against the dimensionality of

hypervectors (N � 2i, i ∈ �10,17�) for several different BERs (p � 2−i,

i ∈ �2,5�) for the length of the grid l � 32. The results were computed

from 100 simulation runs with random initializations of hypervectors

in the item memories. The initial grid states were also randomized.

the control architecture functions without errors. Fig. 15

presents the average error rate after 100 computational

steps of the elementary cellular automaton in the presence

of external noise. The BER, p, varied as 2−i, i ∈ [2, 5]. The

length of the grid was fixed to l = 32.

The results demonstrate that, naturally, in the presence

of external noise, more resources are needed to obtain

error-free emulation. Nevertheless, an important observa-

tion is that the HD-/VSA-based system works with impre-

cise noisy representations. Moreover, the robustness of the

system comes at no cost in terms of design, as the same

algorithm is used in both cases, and the only cost to be

paid is the increased size of the system.

4) Studies Related to Computational Universality of

HD/VSA: Studying the computational universality of a

particular computing framework is important for under-

stating the ultimate theoretical limitations of computing

hardware using this framework. For example, Siegelmann

and Sontag [206] have shown that recurrent neural net-

works are computationally universal; Perez et al. [207]

have shown the universality of modern transformer and

Neural GPU networks. Since HD/VSA can express some

recurrent neural networks [28], studying their universality

by leveraging the existing results for neural networks is a

possible direction of research. We, however, followed ear-

lier approaches that showed that neural network-like sys-

tems can implement Turing machines [208]. In Appendix

A-A and Appendix A-B, we sketched how HD/VSA can be

used in implementations of a small Turing machine [204]

and a universal elementary cellular automaton with the

rule 110 [203].

Recently, Kwisthout and Donselaar [209] emphasized

the need for a formal machine model for novel neuromor-

phic hardware in order to develop a computational com-

plexity theory for neuromorphic computations. This is an

important direction of research for understanding the full

potential of emerging hardware. They argued, however,

that, in order to encompass the computational abilities

of neuromorphic hardware, one will likely need to define

an entirely new computing theory framework. Their study

has proposed to use spiking neural networks (shown to

be Turing complete [210]) because, similar to HD/VSA,

they are suitable for co-located computation and memory,

and massive parallelism—which is not the case for the

conventional computing architecture.

In addition to the demonstration of universality,

an important practical question is how a complete com-

putational architecture should look like. This is still an

open question. A proposal has been sketched in [58],

which featured an HD-/VSA-based processor where both

data and instructions were represented as hypervectors.

There is another approach known as tensor product vari-

able binding, which is closely related to HD/VSA. For

example, tensor product variable binding can also be

used to represent data structures in distributed represen-

tations [211]. The study [50] has demonstrated how to

implement push, pop, and the Lisp primitives CAR and

CDR with tensor product variable binding, while Dolan and

Smolensky [212] have demonstrated how to implement a

production system. An HD-/VSA-based model, which was

positioned as a general-purpose neural controller playing

a role analogous to a production system, was proposed

in [196].

Another relevant result is a demonstration of the fea-

sibility of implementing fluid construction grammars with

HD/VSA [213]. Even though fluid construction grammars

have not been shown to be universal, it is a powerful and

interesting approach for both cognitive and evolutionary

linguistics. Knight et al. [213] proposed a vision similar to

the one presented in Fig. 1. They suggest that HD/VSA

can be seen as a “virtual machine” that can have different

(independent) physical implementations, such as an indi-

rect mapping to spiking neurons [170] or direct mapping

of operations with analog/digital implementations [16].

A P P E N D I X B

S U M M A R Y O F V E C T O R - S Y M B O L I C

S P A C E A N D O P E R AT I O N S

A. Key Components

This appendix presents excerpts from Section III pro-

viding a summary of HD/VSA. The key components of all

HD/VSA are given as follows:

1) high-dimensional space (e.g., bipolar);

2) orthogonality;

3) similarity measure (e.g., dot product ha, bi);

4) seed representations (e.g., random i.i.d. vectors);

5) operations on representations.

There are three key operations in HD/VSA:

1) binding (denoted as �, implemented as component-

wise multiplication (Hadamard product) in the MAP

model);

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1565

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

2) superposition (denoted as +, implemented as com-

ponentwise addition, enclosed in [. . .] when thresh-

olded);

3) permutation (denoted as ρ, e.g., rotation of coordi-

nates).

In the following, we present the properties of the imple-

mentations of these operations for the MAP HD/VSA

model [54]. Here, we enumerate the properties assuming

that the seed hypervectors are bipolar.

B. Properties of the Binding Operation

The binding operation has the following properties:

1) Binding is commutative: a � b = b � a.

2) Binding distributes over superposition: c � (a + b) =

c � a + c � b.

3) Binding is invertible: (a � b) � b = a (bipolar b is

self-inverse); the inverse operation is called releasing

or unbinding.

4) Binding is associative: (a � b) � c = a � (b � c).

5) The result of binding is dissimilar to each of its

argument hypervectors: h(a � b), ai ≈ h(a � b), bi ≈

0; hence, binding is a “randomizing” operation.

6) Binding preserves similarity: h(c�a), (c�b)i = ha, bi.

C. Properties of the Superposition Operation

The superposition operation has the following

properties:

1) Superposition is invertible: (a + b) + (−b) = a; for

thresholded superposition: h[[a + b] + (−b)], ai > 0.

2) In contrast to binding and permutation operations,

the result of superposition z = a + b (often called

the superposition hypervector) is similar to each

of its argument hypervectors, i.e., the dot product

between z and a or b is considerably greater than 0,

hz, ai � 0, and hz, bi � 0.

3) Superposition is commutative: a + b = b + a.

4) Thresholded superposition is approximately associa-

tive: [[a + b] + c] ≈ [a + [b + c]].

D. Properties of the Permutation Operation

The permutation operation has the following properties:

1) Permutation is invertible: ρ−1(ρ(a)) = a.

2) Permutation distributes over both binding and super-

position: ρ(a � b) = ρ(a) � ρ(b) and ρ(a + b) =

ρ(a) + ρ(b).

3) Similar to the binding operation, a random permuta-

tion ρ results in a vector that is dissimilar to the argu-

ment hypervector: hρ(a), ai ≈ 0; hence, permutation

is a “randomizing” operation.

4) Permutation preserves similarity: hρ(a), ρ(b)i =

ha, bi. �

A c k n o w l e d g m e n t

The authors thank members of the Redwood Center

for Theoretical Neuroscience and the Berkeley Wireless

Research Center for stimulating discussions. They would

also like to thank Ross W. Gayler and Sohum Datta for

their in-depth comments on the early versions of this

article. Finally, they would like to thank three anonymous

reviewers and the editors for their insightful feedback and

Linda Rudin for the careful proofreading that contributed

to the final shape of this article.

R E F E R E N C E S

[1] H. Jaeger, “Towards a generalized theory

comprising digital, neuromorphic and

unconventional computing,” Neuromorphic

Comput. Eng., vol. 1, no. 1, pp. 1–38, 2021.

[2] T. Ben-Nun and T. Hoefler, “Demystifying parallel

and distributed deep learning: An in-depth

concurrency analysis,” ACM Comput. Surv.,

vol. 52, no. 4, pp. 1–43, Jul. 2020.

[3] T. N. Kipf and M. Welling, “Semi-supervised

classification with graph convolutional networks,”

in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,

pp. 1–14.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,

and G. Monfardini, “The graph neural network

model,” IEEE Trans. Neural Netw., vol. 20, no. 1,

pp. 61–80, Jan. 2009.

[5] A. Vaswani et al., “Attention is all you need,” in

Proc. Adv. Neural Inf. Process. Syst., 2017,

pp. 5998–6008.

[6] X. Lin et al., “All-optical machine learning using

diffractive deep neural networks,” Science,

vol. 361, no. 6406, pp. 1004–1008, Sep. 2018.

[7] J. Pei et al., “Towards artificial general intelligence

with hybrid Tianjic chip architecture,” Nature,

vol. 572, no. 7767, pp. 106–111, 2019.

[8] N. Imam and T. A. Cleland, “Rapid online learning

and robust recall in a neuromorphic olfactory

circuit,” Nat. Mach. Intell., vol. 2, no. 3,

pp. 181–191, Dec. 2020.

[9] M. Davies, “Advancing neuromorphic computing

with Loihi: A survey of results and outlook,” Proc.

IEEE, vol. 109, no. 5, pp. 911–934, May 2021.

[10] R. W. Gayler, “Vector symbolic architectures

answer Jackendoff’s challenges for cognitive

neuroscience,” in Proc. Joint Int. Conf. Cogn. Sci.

(ICCS/ASCS), 2003, pp. 133–138.

[11] P. Kanerva, “Hyperdimensional computing:

An introduction to computing in distributed

representation with high-dimensional random

vectors,” Cogn. Comput., vol. 1, no. 2,

pp. 139–159, Oct. 2009.

[12] C. Eliasmith et al., “A large-scale model of the

functioning brain,” Science, vol. 338, no. 6111,

pp. 1202–1205, 2012.

[13] D. A. Rachkovskij and S. V. Slipchenko,

“Similarity-based retrieval with structure-sensitive

sparse binary distributed representations,”

Comput. Intell., vol. 28, no. 1, pp. 106–129, 2012.

[14] B. Emruli, R. W. Gayler, and F. Sandin, “Analogical

mapping and inference with binary spatter codes

and sparse distributed memory,” in Proc. Int. Joint

Conf. Neural Netw. (IJCNN), Aug. 2013, pp. 1–8.

[15] L. Ge and K. K. Parhi, “Classification using

hyperdimensional computing: A review,” IEEE

Circuits Syst. Mag., vol. 20, no. 2, pp. 30–47,

2nd Quart., 2020.

[16] G. Karunaratne, M. Le Gallo, G. Cherubini,

L. Benini, A. Rahimi, and A. Sebastian,

“In-memory hyperdimensional computing,”

Nature Electron., vol. 3, no. 6, pp. 327–337,

Jun. 2020.

[17] A. Renner, Y. Sandamirskaya, F. Sommer, and

E. P. Frady, “Sparse vector binding on spiking

neuromorphic hardware using synaptic delays,” in

Proc. Int. Conf. Neuromorphic Syst., Jul. 2022,

pp. 1–5.

[18] G. Bent, C. Simpkin, Y. Li, and A. Preece,

“Hyperdimensional computing using time-to-spike

neuromorphic circuits,” in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), 2022, pp. 1–8.

[19] D. Marr, Vision: A Computational Investigation into

the Human Representation and Processing of Visual

Information. New York, NY, USA: W. H. Freeman

and Company, 1982.

[20] A. S. G. Andrae and T. Edler, “On global electricity

usage of communication technology: Trends to

2030,” Challenges, vol. 6, no. 1, pp. 117–157,

2015.

[21] E. Strubell, A. Ganesh, and A. McCallum, “Energy

and policy considerations for deep learning in

NLP,” in Proc. 57th Annu. Meeting Assoc. Comput.

Linguistics, 2019, pp. 3645–3650.

[22] A. Rogers. (2019). How the Transformers Broke

NLP Leaderboards. [Online]. Available:

https://hackingsemantics.xyz/2019/leaderboards/

[23] P. A. Merolla et al., “A million spiking-neuron

integrated circuit with a scalable communication

network and interface,” Science, vol. 345,

no. 6197, pp. 668–673, Aug. 2014.

[24] M. Davies et al., “Loihi: A neuromorphic manycore

processor with on-chip learning,” IEEE Micro,

vol. 38, no. 1, pp. 82–99, Jan. 2018.

[25] E. P. Frady et al., “Neuromorphic nearest neighbor

search using Intel’s Pohoiki springs,” in Proc.

Neuro-Inspired Comput. Elements Workshop

(NICE), Mar. 2020, pp. 1–10.

[26] H. Li et al., “Hyperdimensional computing with

3D VRRAM in-memory kernels:

Device-architecture co-design for energy-efficient,

error-resilient language recognition,” in IEDM

Tech. Dig., Dec. 2016, pp. 1–4.

[27] D. Kleyko, E. Osipov, D. D. Silva, U. Wiklund, and

D. Alahakoon, “Integer self-organizing maps for

digital hardware,” in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), Jul. 2019, pp. 1–8.

1566 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

[28] D. Kleyko, E. P. Frady, M. Kheffache, and

E. Osipov, “Integer echo state networks: Efficient

reservoir computing for digital hardware,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 33, no. 4,

pp. 1688–1701, Apr. 2022.

[29] D. Kleyko, M. Kheffache, E. P. Frady, U. Wiklund,

and E. Osipov, “Density encoding enables

resource-efficient randomly connected neural

networks,” IEEE Trans. Neural Netw. Learn. Syst.,

vol. 32, no. 8, pp. 3777–3783, Aug. 2021.

[30] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory

of sequence indexing and working memory in

recurrent neural networks,” Neural Comput.,

vol. 30, no. 6, pp. 1449–1513,

2018.

[31] G. Recchia, M. Sahlgren, P. Kanerva, and

M. N. Jones, “Encoding sequential information in

semantic space models: Comparing holographic

reduced representation and random

permutation,” Comput. Intell. Neurosci., vol. 2015,

pp. 1–18, Feb. 2015.

[32] O. J. Räsänen and J. P. Saarinen, “Sequence

prediction with sparse distributed

hyperdimensional coding applied to the analysis

of mobile phone use patterns,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 27, no. 9, pp. 1878–1889,

Sep. 2016.

[33] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov,

and J. M. Rabaey, “Classification and recall with

binary hyperdimensional computing: Tradeoffs in

choice of density and mapping characteristics,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 29,

no. 12, pp. 5880–5898, Dec. 2018.

[34] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey,

“Efficient biosignal processing using

hyperdimensional computing: Network templates

for combined learning and classification of ExG

signals,” Proc. IEEE, vol. 107, no. 1, pp. 123–143,

Jan. 2019.

[35] D. A. Rachkovskij, “Representation of spatial

objects by shift-equivariant similarity-preserving

hypervectors,” Neural Comput. Appl., pp. 1–17,

Sep. 2022.

[36] D. A. Rachkovskij, “Some approaches to

analogical mapping with structure sensitive

distributed representations,” J. Exp. Theor. Artif.

Intell., vol. 16, no. 3, pp. 125–145,

2004.

[37] D. A. Rachkovskij, E. M. Kussul, and T. N. Baidyk,

“Building a world model with structure-sensitive

sparse binary distributed representations,” Biol.

Inspired Cogn. Archit., vol. 3, pp. 64–86,

Jan. 2013.

[38] C. Eliasmith, How to Build a Brain. Oxford, U.K.:

Oxford Univ. Press, 2013.

[39] D. Kleyko, E. Osipov, R. W. Gayler, A. I. Khan, and

A. G. Dyer, “Imitation of honey bees’ concept

learning processes using vector symbolic

architectures,” Biologically Inspired Cogn. Archit.,

vol. 14, pp. 57–72, Oct. 2015.

[40] E. Osipov, D. Kleyko, and A. Legalov, “Associative

synthesis of finite state automata model of a

controlled object with hyperdimensional

computing,” in Proc. 43rd Annu. Conf. IEEE Ind.

Electron. Soc. (IECON), Oct. 2017, pp. 3276–3281.

[41] T. Yerxa, A. Anderson, and E. Weiss,

“The hyperdimensional stack machine,” in

Cognitive Computing, 2018, pp. 1–2.

[42] P. B. Graben, M. Huber, W. Meyer, R. Römer, and

M. Wolff, “Vector symbolic architectures for

context-free grammars,” Cogn. Comput., vol. 14,

no. 2, pp. 733–748, Mar. 2022.

[43] A. Rahimi et al., “High-dimensional computing as

a nanoscalable paradigm,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 64, no. 9, pp. 2508–2521,

Sep. 2017.

[44] P. Kanerva, “Computing with high-dimensional

vectors,” IEEE Des. Test, vol. 36, no. 3, pp. 7–14,

Jun. 2019.

[45] T. A. Plate, “Estimating analogical similarity by

dot-products of holographic reduced

representations,” in Proc. Adv. Neural Inf. Process.

Syst. (NIPS), 1994, pp. 1109–1116.

[46] G. E. Hinton, J. L. McClelland, and

D. E. Rumelhart, “Distributed representations,” in

Parallel Distributed Processing: Explorations in the

Microstructure of Cognition: Foundations.

Cambridge, MA, USA: MIT Press, 1986,

pp. 77–109.

[47] S. J. Thorpe, “Localized versus distributed

representations,” in The Handbook of Brain Theory

and Neural Networks. Cambridge, MA, USA: MIT

Press, 2003, pp. 643–646.

[48] J. A. Fodor and Z. W. Pylyshyn, “Connectionism

and cognitive architecture: A critical analysis,”

Cognition, vol. 28, nos. 1–2, pp. 3–71,

Mar. 1988.

[49] E. M. Kussul, D. A. Rachkovskij, and T. N. Baidyk,

“On image texture recognition by

associative-projective neurocomputer,” in

Intelligent Engineering Systems Through Artificial

Neural Networks (ANNIE), 1991, pp. 453–458.

[50] P. Smolensky, “Tensor product variable binding

and the representation of symbolic structures in

connectionist systems,” Artif. Intell., vol. 46,

nos. 1–2, pp. 159–216, Nov. 1990.

[51] T. A. Plate, “Distributed representations and

nested compositional structure,” Ph.D. thesis,

Graduate Dept. Comput. Sci., Univ. Toronto,

Toronto, ON, Canada, 1994.

[52] T. A. Plate, “Holographic reduced

representations,” IEEE Trans. Neural Netw., vol. 6,

no. 3, pp. 623–641, May 1995.

[53] T. A. Plate, Holographic Reduced Representations:

Distributed Representation for Cognitive Structures.

Stanford, CA, USA: CSLI, 2003.

[54] R. W. Gayler, “Multiplicative binding,

representation operators & analogy,” in Analogy

Research: Integration of Theory and Data from the

Cognitive, Computational, and Neural Sciences,

1998, pp. 1–4.

[55] P. Kanerva, “Fully distributed representation,” in

Proc. Real World Comput. Symp. (RWC), 1997,

pp. 358–365.

[56] D. A. Rachkovskij and E. M. Kussul, “Binding and

normalization of binary sparse distributed

representations by context-dependent thinning,”

Neural Comput., vol. 13, no. 2, pp. 411–452,

2001.

[57] D. Kleyko, E. Osipov, and D. A. Rachkovskij,

“Modification of holographic graph neuron using

sparse distributed representations,” Proc. Comput.

Sci., vol. 88, pp. 39–45, Oct. 2016.

[58] M. Laiho, J. H. Poikonen, P. Kanerva, and

E. Lehtonen, “High-dimensional computing with

sparse vectors,” in Proc. IEEE Biomed. Circuits Syst.

Conf. (BioCAS), Oct. 2015, pp. 1–4.

[59] E. P. Frady, D. Kleyko, and F. T. Sommer, “Variable

binding for sparse distributed representations:

Theory and applications,” IEEE Trans. Neural

Netw. Learn. Syst., early access, Sep. 3, 2021, doi:

10.1109/TNNLS.2021.3105949.

[60] S. I. Gallant and T. W. Okaywe, “Representing

objects, relations, and sequences,” Neural

Comput., vol. 25, no. 8, pp. 2038–2078,

2013.

[61] D. Aerts, M. Czachor, and B. De Moor, “Geometric

analogue of holographic reduced representation,”

J. Math. Psychol., vol. 53, no. 5, pp. 389–398,

2009.

[62] K. Schlegel, P. Neubert, and P. Protzel,

“A comparison of vector symbolic architectures,”

Artif. Intell. Rev., vol. 55, no. 6, pp. 4523–4555,

Aug. 2022.

[63] M. Ledoux, The Concentration of Measure

Phenomenon (Mathematical Surveys and

Monographs), no. 89. Providence, RI, USA: Amer.

Math. Soc., 2001.

[64] A. N. Gorban and I. Y. Tyukin, “Blessing of

dimensionality: Mathematical foundations of the

statistical physics of data,” Philos. Trans. Roy.

Soc. A, Math., Phys. Eng. Sci., vol. 376, no. 2118,

pp. 1–18, 2018.

[65] A. Alaghi and J. P. Hayes, “Computing with

randomness,” IEEE Spectr., vol. 55, no. 3,

pp. 46–51, Mar. 2018.

[66] D. A. Rachkovskij, S. V. Slipchenko, E. M. Kussul,

and T. N. Baidyk, “Sparse binary distributed

encoding of scalars,” J. Autom. Inf. Sci., vol. 37,

no. 6, pp. 12–23, 2005.

[67] E. Weiss, B. Cheung, and B. A. Olshausen,

“A neural architecture for representing and

reasoning about spatial relationships,”

in Proc. ICLR Workshop, 2016, pp. 1–4.

[68] B. Komer, T. C. Stewart, A. R. Voelker, and

C. Eliasmith, “A neural representation of

continuous space using fractional binding,” in

Proc. Annu. Meeting Cogn. Sci. Soc. (CogSci), 2019,

pp. 2038–2043.

[69] P. Sutor, D. Summers-Stay, and Y. Aloimonos,

“A computational theory for life-long learning of

semantics,” in Proc. Int. Conf. Artif. Gen. Intell.

(AGI), 2018, pp. 217–226.

[70] A. A. Frolov, D. A. Rachkovskij, and D. Husek,

“On informational characteristics of Willshaw-like

auto-associative memory,” Neural Netw. World,

vol. 12, no. 2, pp. 141–157, 2002.

[71] A. A. Frolov, D. Husek, and D. A. Rachkovskij,

“Time of searching for similar binary vectors in

associative memory,” Cybern. Syst. Anal., vol. 42,

no. 5, pp. 615–623, 2006.

[72] V. I. Gritsenko, D. A. Rachkovskij, A. A. Frolov,

R. Gayler, D. Kleyko, and E. Osipov, “Neural

distributed autoassociative memories: A survey,”

Cybern. Comput. Eng., vol. 2, no. 188, pp. 5–35,

2017.

[73] D. Kleyko, D. A. Rachkovskij, E. Osipov, and

A. Rahimi, “A survey on hyperdimensional

computing aka vector symbolic architectures,

part I: Models and data transformations,” ACM

Comput. Surv., pp. 1–40, May 2022.

[74] K. Greff, S. van Steenkiste, and J. Schmidhuber,

“On the binding problem in artificial neural

networks,” 2020, arXiv:2012.05208.

[75] P. Kanerva, “What we mean when we say ‘what’s

the dollar of Mexico?’: Prototypes and mapping in

concept space,” in Proc. AAAI Fall Symp. Ser.,

2010, pp. 2–6.

[76] E. P. Frady, S. J. Kent, B. A. Olshausen, and

F. T. Sommer, “Resonator networks, 1: An efficient

solution for factoring high-dimensional,

distributed representations of data structures,”

Neural Comput., vol. 32, no. 12, pp. 2311–2331,

Dec. 2020.

[77] S. J. Kent, E. P. Frady, F. T. Sommer, and

B. A. Olshausen, “Resonator networks, 2:

Factorization performance and capacity compared

to optimization-based methods,” Neural Comput.,

vol. 32, no. 12, pp. 2332–2388, Dec. 2020.

[78] D. Kleyko, A. Rahimi, R. W. Gayler, and E. Osipov,

“Autoscaling Bloom filter: Controlling trade-off

between true and false positives,” Neural Comput.

Appl., vol. 32, no. 8, pp. 3675–3684, Apr. 2020.

[79] C. Simpkin et al., “Constructing distributed

time-critical applications using cognitive enabled

services,” Future Gener. Comput. Syst., vol. 100,

pp. 70–85, Nov. 2019.

[80] A. Rosato, M. Panella, and D. Kleyko,

“Hyperdimensional computing for efficient

distributed classification with randomized neural

networks,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), Jul. 2021, pp. 1–10.

[81] P. Jakimovski, H. R. Schmidtke, S. Sigg,

L. W. F. Chaves, and M. Beigl, “Collective

communication for dense sensing environments,”

J. Ambient Intell. Smart Environ., vol. 4, no. 2,

pp. 123–134, Mar. 2012.

[82] D. Kleyko, N. Lyamin, E. Osipov, and L. Riliskis,

“Dependable MAC layer architecture based on

holographic data representation using

hyper-dimensional binary spatter codes,” in

Multiple Access Communications (Lecture Notes in

Computer Science), vol. 7642. Springer, 2012,

pp. 134–145.

[83] H.-S. Kim, “HDM: Hyper-dimensional modulation

for robust low-power communications,” in Proc.

IEEE Int. Conf. Commun. (ICC), May 2018,

pp. 1–6.

[84] A. Joshi, J. T. Halseth, and P. Kanerva, “Language

geometry using random indexing,” in Proc. Int.

Symp. Quantum Interact. (QI), 2016, pp. 265–274.

[85] S. Levy, S. Bajracharya, and R. W. Gayler,

“Learning behavior hierarchies via

high-dimensional sensor projection,” in Proc. 27th

AAAI Conf. Artif. Intell. (AAAI), 2013, pp. 1–4.

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1567

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2021.3105949

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

[86] P. Neubert, S. Schubert, and P. Protzel,

“An introduction to hyperdimensional computing

for robotics,” Künstliche Intelligenz, vol. 33, no. 4,

pp. 319–330, Dec. 2019.

[87] A. Mitrokhin, P. Sutor, C. Fermüller, and

Y. Aloimonos, “Learning sensorimotor control with

neuromorphic sensors: Toward hyperdimensional

active perception,” Sci. Robot., vol. 4, no. 30,

pp. 1–10, May 2019.

[88] D. Kleyko, R. W. Gayler, and E. Osipov,

“Commentaries on ‘learning sensorimotor control

with neuromorphic sensors: Toward

hyperdimensional active perception’ [science

robotics vol. 4 issue 30 (2019) 1–10,” 2020,

arXiv:2003.11458.

[89] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini,

and A. Rahimi, “Integrating event-based dynamic

vision sensors with sparse hyperdimensional

computing: A low-power accelerator with online

learning capability,” in Proc. ACM/IEEE Int. Symp.

Low Power Electron. Design, Aug. 2020,

pp. 169–174.

[90] D. Kleyko, E. Osipov, and U. Wiklund,

“A hyperdimensional computing framework for

analysis of cardiorespiratory synchronization

during paced deep breathing,” IEEE Access, vol. 7,

pp. 34403–34415, 2019.

[91] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and

J. M. Rabaey, “Hyperdimensional biosignal

processing: A case study for EMG-based hand

gesture recognition,” in Proc. IEEE Int. Conf.

Rebooting Comput. (ICRC), Oct. 2016,

pp. 1–8.

[92] A. Burrello, K. Schindler, L. Benini, and A. Rahimi,

“Hyperdimensional computing with local binary

patterns: One-shot learning of seizure onset and

identification of ictogenic brain regions using

short-time iEEG recordings,” IEEE Trans. Biomed.

Eng., vol. 67, no. 2, pp. 601–613,

Feb. 2020.

[93] O. Rasanen and S. Kakouros, “Modeling

dependencies in multiple parallel data streams

with hyperdimensional computing,” IEEE Signal

Process. Lett., vol. 21, no. 7, pp. 899–903,

Jul. 2014.

[94] D. Kleyko, E. Osipov, N. Papakonstantinou, and

V. Vyatkin, “Hyperdimensional computing in

industrial systems: The use-case of distributed

fault isolation in a power plant,” IEEE Access,

vol. 6, pp. 30766–30777, 2018.

[95] C. Diao, D. Kleyko, J. M. Rabaey, and

B. A. Olshausen, “Generalized learning vector

quantization for classification in randomized

neural networks and hyperdimensional

computing,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), Jul. 2021, pp. 1–9.

[96] J. Neumann, “Learning the systematic

transformation of holographic reduced

representations,” Cogn. Syst. Res., vol. 3, no. 2,

pp. 227–235, Jun. 2002.

[97] T. A. Plate, “Structure matching and

transformation with distributed representations,”

in Connectionist-Symbolic Integration, 1997,

pp. 1–19.

[98] P. Kanerva, “Large patterns make great symbols:

An example of learning from example,” in Proc.

Int. Workshop Hybrid Neural Syst., in Lecture

Notes in Computer Science, vol. 1778, 2000,

pp. 194–203.

[99] E. Kussul, D. Rachkovskij, and D. Wunsch,

“The random subspace coarse coding scheme for

real-valued vectors,” in Proc. Int. Joint Conf.

Neural Netw., vol. 1, 1999, pp. 450–455.

[100] D. A. Rachkovskij, “Formation of

similarity-reflecting binary vectors with random

binary projections,” Cybern. Syst. Anal., vol. 51,

no. 2, pp. 313–323, 2015.

[101] D. Widdows and T. Cohen, “Reasoning with

vectors: A continuous model for fast robust

inference,” Logic J. IGPL, vol. 23, no. 2,

pp. 141–173, 2015.

[102] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen,

and F. T. Sommer, “Computing on functions using

randomized vector representations,” 2021,

arXiv:2109.03429.

[103] B. H. Bloom, “Space/time trade-offs in hash

coding with allowable errors,” Commun. ACM,

vol. 13, no. 7, pp. 422–426, Jul. 1970.

[104] L. Fan, P. Cao, J. Almeida, and A. Z. Broder,

“Summary cache: A scalable wide-area web cache

sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,

no. 3, pp. 281–293, Jun. 2000.

[105] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz,

“Theory and practice of Bloom filters for

distributed systems,” IEEE Commun. Surveys Tuts.,

vol. 14, no. 1, pp. 131–155, Feb. 2012.

[106] G. Cormode and S. Muthukrishnan, “An improved

data stream summary: The count-min sketch and

its applications,” J. Algorithms, vol. 55, no. 1,

pp. 58–75, Apr. 2005.

[107] A. Burrello, L. Cavigelli, K. Schindler, L. Benini,

and A. Rahimi, “Laelaps: An energy-efficient

seizure detection algorithm from long-term

human iEEG recordings without false alarms,” in

Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),

Mar. 2019, pp. 752–757.

[108] P. Alonso, K. Shridhar, D. Kleyko, E. Osipov, and

M. Liwicki, “HyperEmbed: Tradeoffs between

resources and performance in NLP tasks with

hyperdimensional computing enabled embedding

of n-gram statistics,” in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), Jul. 2021,

pp. 1–9.

[109] K. Shridhar, H. Jain, A. Agarwal, and D. Kleyko,

“End to end binarized neural networks for text

classification,” in Proc. Workshop Simple Efficient

Natural Lang. Process., 2020, pp. 29–34.

[110] E. M. Kussul and T. N. Baidyk, “On information

encoding in associative-projective neural

networks,” V. M. Glushkov Inst. Cybern., Kyiv,

Ukraine, Tech. Rep., 93–3, 1993.

[111] T. A. Plate, “Networks which learn to store

variable-length sequences in a fixed set of unit

activations,” Univ. British Columbia, Vancouver,

BC, Canada, Tech. Rep., 1995, pp. 1–19.

[112] M. Sahlgren, A. Holst, and P. Kanerva,

“Permutations as a means to encode order in word

space,” in Proc. Annu. Meeting Cogn. Sci. Soc.

(CogSci), 2008, pp. 1300–1305.

[113] V. I. Levenshtein, “Binary codes capable of

correcting deletions, insertions, and reversals,”

Sov. Phys.-Dokl., vol. 10, no. 8, pp. 707–710,

1966.

[114] A. M. Sokolov, “Vector representations for efficient

comparison and search for similar strings,”

Cybern. Syst. Anal., vol. 43, no. 4, pp. 484–498,

Jul. 2007.

[115] T. Hannagan, E. Dupoux, and A. Christophe,

“Holographic string encoding,” Cogn. Sci., vol. 35,

no. 1, pp. 79–118, Jan. 2011.

[116] D. Kleyko and E. Osipov, “On bidirectional

transitions between localist and distributed

representations: The case of common substrings

search using vector symbolic architecture,” Proc.

Comput. Sci., vol. 41, pp. 104–113, Dec. 2014.

[117] T. Cohen, D. Widdows, M. Wahle, and

R. W. Schvaneveldt, “Orthogonality and

orthography: Introducing measured distance into

semantic space,” in Proc. Int. Symp. Quantum

Interact. (QI) in Lecture Notes in Computer

Science, vol. 8369, 2013, pp. 34–46.

[118] D. A. Rachkovskij, “Shift-equivariant

similarity-preserving hypervector representations

of sequences,” 2021, arXiv:2112.15475.

[119] D. A. Rachkovskij and D. Kleyko, “Recursive

binding for similarity-preserving hypervector

representations of sequences,” in Proc. Int. Joint

Conf. Neural Netw. (IJCNN), 2022, pp. 1–8.

[120] X. Choo and C. Eliasmith, “A spiking neuron model

of serial-order recall,” in Proc. Annu. Meeting

Cogn. Sci. Soc. (CogSci), 2010, pp. 2188–2193.

[121] P. Blouw and C. Eliasmith, “A neurally plausible

encoding of word order information into a

semantic vector space,” in Proc. Annu. Meeting

Cogn. Sci. Soc. (CogSci), 2013, pp. 1905–1910.

[122] M. A. Kelly, N. Arora, R. L. West, and D. Reitter,

“Holographic declarative memory: Distributional

semantics as the architecture of memory,” Cogn.

Sci., vol. 44, no. 11, pp. 1–34, Nov. 2020.

[123] J. Gosmann and C. Eliasmith, “CUE: A unified

spiking neuron model of short-term and long-term

memory,” Psychol. Rev., vol. 128, no. 1,

pp. 104–124, Jan. 2021.

[124] S. Reimann, “The algebra of cognitive states:

Towards modelling the serial position curve,” in

Proc. Int. Conf. Cogn. Modeling (ICCM), 2021,

pp. 1–7.

[125] R. Calmus, B. Wilson, Y. Kikuchi, and C. I. Petkov,

“Structured sequence processing and

combinatorial binding: Neurobiologically and

computationally informed hypotheses,” Philos.

Trans. Roy. Soc. B, vol. 375, no. 1791, pp. 1–13,

2019.

[126] Y. Kim, M. Imani, N. Moshiri, and T. Rosing,

“GenieHD: Efficient DNA pattern matching

accelerator using hyperdimensional computing,”

in Proc. Design, Autom. Test Eur. Conf. Exhib.

(DATE), Mar. 2020, pp. 115–120.

[127] D. Kleyko, E. Osipov, and R. W. Gayler,

“Recognizing permuted words with vector

symbolic architectures: A Cambridge test for

machines,” Proc. Comput. Sci., vol. 88,

pp. 169–175, Dec. 2016.

[128] K. Schlegel, P. Neubert, and P. Protzel,

“HDC-MiniROCKET: Explicit time encoding in

time series classification with hyperdimensional

computing,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), 2022, pp. 1–8.

[129] F. R. Najafabadi, A. Rahimi, P. Kanerva, and

J. M. Rabaey, “Hyperdimensional computing for

text classification,” in Proc. Design, Autom. Test

Eur. Conf. (DATE), 2016, p. 1.

[130] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust

and energy-efficient classifier using brain-inspired

hyperdimensional computing,” in Proc. Int. Symp.

Low Power Electron. Design (ISLPED), Aug. 2016,

pp. 64–69.

[131] D. Kleyko, E. Osipov, D. D. Silva, U. Wiklund,

V. Vyatkin, and D. Alahakoon, “Distributed

representation of n-gram statistics for boosting

self-organizing maps with hyperdimensional

computing,” in Proc. Int. Andrei Ershov Memorial

Conf. Perspect. Syst. Inform., 2019, pp. 64–79.

[132] T. Bandaragoda, D. De Silva, D. Kleyko, E. Osipov,

U. Wiklund, and D. Alahakoon, “Trajectory

clustering of road traffic in urban environments

using incremental machine learning in

combination with hyperdimensional computing,”

in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC),

Oct. 2019, pp. 1664–1670.

[133] R. W. Gayler and S. D. Levy, “A distributed basis for

analogical mapping,” in Proc. New Frontiers Anal.

Res., 2nd Int. Conf. Anal., 2009, pp. 165–174.

[134] J. K. Guo, D. Van Brackle, N. Lofaso, and

M. O. Hofmann, “Vector representation for

sub-graph encoding to resolve entities,” Proc.

Comput. Sci., vol. 95, pp. 327–334, Jan. 2016.

[135] Y. Ma, M. Hildebrandt, V. Tresp, and S. Baier,

“Holistic representations for memorization and

inference,” in Proc. Conf. Uncertainty Artif. Intell.

(UAI), 2018, pp. 1–11.

[136] M. Nickel, L. Rosasco, and T. Poggio, “Holographic

embeddings of knowledge graphs,” in Proc. AAAI

Conf. Artif. Intell., 2016, pp. 1955–1961.

[137] F. Qiu, “Graph embeddings via tensor products

and approximately orthonormal codes,” 2022,

arXiv:2208.10917.

[138] T. C. Stewart, X. Choo, and C. Eliasmith,

“Sentence processing in spiking neurons:

A biologically plausible left-corner parser,” in Proc.

Annu. Meeting Cogn. Sci. Soc. (CogSci), 2014,

pp. 1533–1538.

[139] M. O. Rabin and D. Scott, “Finite automata and

their decision problems,” IBM J. Res. Develop.,

vol. 3, no. 2, pp. 114–125, 1959.

[140] E. Crawford, M. Gingerich, and C. Eliasmith,

“Biologically plausible, human-scale knowledge

representation,” Cogn. Sci., vol. 40, no. 4,

pp. 782–821, 2016.

[141] B. Ghazi, R. Panigrahy, and J. Wang, “Recursive

sketches for modular deep learning,” in Proc. Int.

Conf. Mach. Learn. (ICML), 2019, pp. 2211–2220.

[142] S. I. Gallant, “Orthogonal matrices for MBAT

vector symbolic architectures, and a ‘soft’ VSA

representation for JSON,” 2022,

1568 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

arXiv:2202.04771.

[143] R. S. Boyer and J. S. Moore, “A fast string

searching algorithm,” Commun. ACM, vol. 20,

no. 10, pp. 762–772, Oct. 1977.

[144] R. M. Karp and M. O. Rabin, “Efficient randomized

pattern-matching algorithms,” IBM J. Res.

Develop., vol. 31, no. 2, pp. 249–260, Mar. 1987.
[145] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast

pattern matching in strings,” SIAM J. Comput.,

vol. 6, no. 2, pp. 323–350, Jul. 1977.
[146] D. V. Pashchenko, D. A. Trokoz, A. I. Martyshkin,

M. P. Sinev, and B. L. Svistunov, “Search for a

substring of characters using the theory of

non-deterministic finite automata and

vector-character architecture,” Bull. Electr. Eng.

Informat., vol. 9, no. 3, pp. 1238–1250, Jun. 2020.
[147] G. Karunaratne et al., “Robust high-dimensional

memory-augmented neural networks,” Nature

Commun., vol. 12, no. 1, pp. 1–12, Dec. 2021.
[148] E. P. Frady, S. J. Kent, P. Kanerva, B. A. Olshausen,

and F. T. Sommer, “Cognitive neural systems for

disentangling compositions,” in Cognitive

Computing, 2018, pp. 1–3.
[149] D. Kleyko et al., “Integer factorization with

compositional distributed representations,” in

Proc. Neuro-Inspired Comput. Elements Conf.

(NICE), Mar. 2022, pp. 73–80.
[150] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen,

and F. T. Sommer, “Computing on functions using

randomized vector representations (in brief),” in

Proc. Neuro-Inspired Comput. Elements Conf.

(NICE), Mar. 2022, pp. 115–122.
[151] P. M. Furlong and C. Eliasmith, “Fractional binding

in vector symbolic architectures as

quasi-probability statements,” in Proc. Annu.

Meeting Cogn. Sci. Soc. (CogSci), 2022,

pp. 259–266.
[152] P. M. Furlong, T. C. Stewart, and C. Eliasmith,

“Fractional binding in vector symbolic

representations for efficient mutual information

exploration,” in Proc. ICRA Workshop, Towards

Curious Robots, Mod. Approaches

Intrinsically-Motivated Intell. Behav., 2022,

pp. 1–5.
[153] M. Hersche, M. Zeqiri, L. Benini, A. Sebastian, and

A. Rahimi, “A neuro-vector-symbolic architecture

for solving Raven’s progressive matrices,” 2022,

arXiv:2203.04571.

[154] B. Komer and C. Eliasmith, “Efficient navigation

using a scalable, biologically inspired spatial

representation,” in Proc. Annu. Meeting Cogn. Sci.

Soc. (CogSci), 2020, pp. 1532–1538.
[155] T. Lu, A. R. Voelker, B. Komer, and C. Eliasmith,

“Representing spatial relations with fractional

binding,” in Proc. Annu. Meeting Cognit. Sci. Soc.

(CogSci), 2019, pp. 2214–2220.

[156] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and

B. Olshausen, “Superposition of many models into

one,” in Proc. Adv. Neural Inf. Process. Syst.

(NeurIPS), 2019, pp. 10868–10877.
[157] Z. Zou, H. Alimohamadi, F. Imani, Y. Kim, and

M. Imani, “Spiking hyperdimensional network:

Neuromorphic models integrated with

memory-inspired framework,” 2021,

arXiv:2110.00214.
[158] P. Neubert and S. Schubert, “Hyperdimensional

computing as a framework for systematic

aggregation of image descriptors,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2021, pp. 16938–16947.
[159] P. Neubert, S. Schubert, K. Schlegel, and P. Protzel,

“Vector semantic representations as descriptors for

visual place recognition,” in Robotics: Science and

Systems, Jul. 2021, pp. 1–11.

[160] A. Ganesan et al., “Learning with holographic

reduced representations,” in Proc. Adv. Neural Inf.

Process. Syst. (NeurIPS), 2021, pp. 1–15.

[161] S. Datta, R. A. G. Antonio, A. R. S. Ison, and

J. M. Rabaey, “A programmable

hyper-dimensional processor architecture for

human-centric IoT,” IEEE J. Emerg. Sel. Topics

Circuits Syst., vol. 9, no. 3, pp. 439–452,

Sep. 2019.
[162] M. Eggimann, A. Rahimi, and L. Benini, “A 5 µW

standard cell memory-based configurable

hyperdimensional computing accelerator for

always-on smart sensing,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 68, no. 10,

pp. 4116–4128, Oct. 2021.

[163] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and

L. Benini, “PULP-HD: Accelerating brain-inspired

high-dimensional computing on a parallel

ultra-low power platform,” in Proc. 55th

ACM/ESDA/IEEE Design Autom. Conf. (DAC),

Jun. 2018, pp. 1–6.
[164] T. Wu et al., “Brain-inspired computing exploiting

carbon nanotube FETs and resistive RAM:

Hyperdimensional computing case study,” in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, Apr. 2018, pp. 492–493.

[165] T. F. Wu et al., “Hyperdimensional computing

exploiting carbon nanotube FETs, resistive RAM,

and their monolithic 3D integration,” IEEE

J. Solid-State Circuits, vol. 53, no. 11,

pp. 3183–3196, Nov. 2018.

[166] A. Moin et al., “A wearable biosensing system with

in-sensor adaptive machine learning for hand

gesture recognition,” Nature Electron., vol. 4,

pp. 54–63, Jan. 2021.

[167] C. Eliasmith and C. H. Anderson, Neural

Engineering: Computation, Representation, and

Dynamics in Neurobiological Systems. Cambridge,

MA, USA: MIT Press, 2003.

[168] T. Bekolay et al., “Nengo: A Python tool for

building large-scale functional brain models,”

Frontiers Neuroinf., vol. 7, no. 48, pp. 1–13,

Jan. 2014.

[169] G. Csaba and W. Porod, “Coupled oscillators for

computing: A review and perspective,” Appl. Phys.

Rev., vol. 7, no. 1, pp. 1–19, 2020.
[170] E. P. Frady and F. T. Sommer, “Robust computation

with rhythmic spike patterns,” Proc. Nat. Acad. Sci.

USA, vol. 116, no. 36, pp. 18050–18059,

Sep. 2019.
[171] G. Palm and T. Bonhoeffer, “Parallel processing for

associative and neuronal networks,” Biol. Cybern.,

vol. 51, no. 3, pp. 201–204, Dec. 1984.

[172] D. J. Willshaw, O. P. Buneman, and

H. C. Longuet-Higgins, “Non-holographic

associative memory,” Nature, vol. 222, no. 5197,

pp. 960–962, Jun. 1969.

[173] G. Palm, “On associative memory,” Biol. Cybern.,

vol. 36, no. 1, pp. 19–31, 1980.

[174] G. Palm and F. T. Sommer, “Information capacity

in recurrent McCulloch–Pitts networks with

sparsely coded memory states,” Netw., Comput.

Neural Syst., vol. 3, no. 2, pp. 177–186, Jan. 1992.

[175] F. T. Sommer and P. Dayan, “Bayesian retrieval in

associative memories with storage errors,” IEEE

Trans. Neural Netw., vol. 9, no. 4, pp. 705–713,

Jul. 1998.

[176] M. Stimberg, R. Brette, and D. F. Goodman,

“Brian 2, an intuitive and efficient neural

simulator,” ELife, vol. 8, pp. 1–41, Aug. 2019.
[177] I. Nunes, M. Heddes, T. Givargis, A. Nicolau, and

A. Veidenbaum, “GraphHD: Efficient graph

classification using hyperdimensional computing,”

in Proc. Design, Autom. Test Eur. Conf. Exhib.

(DATE), Mar. 2022, pp. 1485–1490.

[178] M. Schmuck, L. Benini, and A. Rahimi, “Hardware

optimizations of dense binary hyperdimensional

computing: Rematerialization of hypervectors,

binarized bundling, and combinational associative

memory,” ACM J. Emerg. Technol. Comput. Syst.,

vol. 15, no. 4, pp. 1–25, Dec. 2019.
[179] D. Kleyko, E. P. Frady, and F. T. Sommer, “Cellular

automata can reduce memory requirements of

collective-state computing,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 33, no. 6, pp. 2701–2713,

Jun. 2022.

[180] A. Menon, D. Sun, M. Aristio, H. Liew, K. Lee, and

J. M. Rabaey, “A highly energy-efficient

hyperdimensional computing processor for

wearable multi-modal classification,” in Proc. IEEE

Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2021,

pp. 1–4.

[181] A. Menon et al., “A highly energy-efficient

hyperdimensional computing processor for

biosignal classification,” IEEE Trans. Biomed.

Circuits Syst., early access, Jul. 1, 2022, doi:

10.1109/TBCAS.2022.3187944.

[182] M. Hersche, G. Karunaratne, G. Cherubini,

L. Benini, A. Sebastian, and A. Rahimi,

“Constrained few-shot class-incremental

learning,” in Proc. Conf. Comput. Vis. Pattern

Recognit. (CVPR), 2022, pp. 1–19.

[183] F. van der Velde and M. de Kamps, “Neural

blackboard architectures of combinatorial

structures in cognition,” Behav. Brain Sci., vol. 29,

no. 1, pp. 37–70, Feb. 2006.

[184] R. W. Gayler, “Vector symbolic architectures are a

viable alternative for Jackendoff’s challenges,”

Behav. Brain Sci., vol. 29, no. 1, pp. 78–79,

Feb. 2006.
[185] D. Kleyko, D. A. Rachkovskij, E. Osipov, and

A. Rahimi, “A survey on hyperdimensional

computing aka vector symbolic architectures,

part II: Applications, cognitive models, and

challenges,” ACM Comput. Surv., pp. 1–52,

Aug. 2022.

[186] P. Kanerva, J. Kristoferson, and A. Holst, “Random

indexing of text samples for latent semantic

analysis,” in Proc. Annu. Meeting Cognit. Sci. Soc.

(CogSci), 2000, p. 1036.
[187] M. N. Jones and D. J. K. Mewhort, “Representing

word meaning and order information in a

composite holographic lexicon,” Psychol. Rev.,

vol. 114, no. 1, pp. 1–37, 2007.
[188] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in

Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2013,

pp. 1–9.
[189] J. Pennington, R. Socher, and C. Manning, “GloVe:

Global vectors for word representation,” in Proc.

Conf. Empirical Methods Natural Lang. Process.

(EMNLP), 2014, pp. 1532–1543.

[190] P. Blouw, E. Solodkin, P. Thagard, and

C. Eliasmith, “Concepts as semantic pointers:

A framework and computational model,” Cogn.

Sci., vol. 40, no. 5, pp. 1128–1162, Jul. 2016.

[191] M. A. Kelly, D. J. K. Mewhort, and R. L. West,

“The memory tesseract: Mathematical equivalence

between composite and separate storage memory

models,” J. Math. Psychol., vol. 77, pp. 142–155,

Apr. 2017.

[192] D. Kleyko, G. Karunaratne, J. M. Rabaey,

A. Sebastian, and A. Rahimi, “Generalized

key-value memory to flexibly adjust redundancy in

memory-augmented networks,” IEEE Trans. Neural

Netw. Learn. Syst., early access, Mar. 25, 2022,

doi: 10.1109/TNNLS.2022.3159445.
[193] A. Thomas, S. Dasgupta, and T. Rosing,

“A theoretical perspective on hyperdimensional

computing,” J. Artif. Intell. Res., vol. 72,

pp. 215–249, Oct. 2021.

[194] B. Emruli, F. Sandin, and J. Delsing, “Vector space

architecture for emergent interoperability of

systems by learning from demonstration,”

Biologically Inspired Cognit. Archit., vol. 11,

pp. 53–64, Jan. 2015.
[195] J. Steinberg and H. Sompolinsky, “Associative

memory of structured knowledge,” BioRxiv,

pp. 1–27, Jan. 2022.
[196] T. C. Stewart, X. Choo, and C. Eliasmith,

“Symbolic reasoning in spiking neurons: A model

of the cortex/basal ganglia/thalamus loop,” in

Proc. Annu. Meeting Cognit. Sci. Soc. (CogSci),

2010, pp. 1100–1105.
[197] A. Renner et al., “Neuromorphic visual scene

understanding with resonator networks,” 2022,

arXiv:2208.12880.

[198] V. K. Mansinghka, “Natively probabilistic

computation,” Ph.D. dissertation, Dept. Comput.

Sci., Massachusetts Inst. Technol., Cambridge,

MA, USA, 2009.
[199] G. Orbán, P. Berkes, J. Fiser, and M. Lengyel,

“Neural variability and sampling-based

probabilistic representations in the visual cortex,”

Neuron, vol. 92, no. 2, pp. 530–543,

Oct. 2016.
[200] C. H. Papadimitriou, S. S. Vempala,

D. Mitropolsky, M. Collins, and W. Maass, “Brain

computation by assemblies of neurons,” Proc. Nat.

Acad. Sci. USA, vol. 117, no. 25,

pp. 14464–14472, Jun. 2020.

[201] G. Schöner, J. P. Spencer, and T. D. R. Group,

Dynamic Thinking: A Primer on Dynamic Field

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1569

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TBCAS.2022.3187944
http://dx.doi.org/10.1109/TNNLS.2022.3159445

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Theory. New York, NY, USA: Oxford Univ. Press,

2016.
[202] Y. Zhang et al., “A system hierarchy for

brain-inspired computing,” Nature, vol. 586,

no. 7829, pp. 378–384, Oct. 2020.
[203] M. Cook, “Universality in elementary cellular

automata,” Complex Syst., vol. 15, no. 1, pp. 1–40,

2004.

[204] T. Neary and D. Woods, “Small weakly universal

Turing machines,” in Proc. Int. Symp.

Fundamentals Comput. Theory (FCT), 2009,

pp. 262–273.
[205] S. Wolfram, A New Kind of Science. Champaign, IL,

USA: Wolfram Media, 2002.
[206] H. T. Siegelmann and E. D. Sontag, “Turing

computability with neural nets,” Appl. Math. Lett.,

vol. 4, no. 6, pp. 77–80, 1991.
[207] J. Perez, J. Marinkovic, and P. Barcelo, “On the

Turing completeness of modern neural network

architectures,” in Proc. Int. Conf. Learn. Represent.

(ICLR), 2019, pp. 1–36.

[208] P. B. Graben and R. Potthast, “Implementing

Turing machines in dynamic field architectures,”

2012, arXiv:1204.5462.
[209] J. Kwisthout and N. Donselaar, “On the

computational power and complexity of spiking

neural networks,” in Proc. Neuro-Inspired Comput.

Elements Workshop, Mar. 2020, pp. 1–7.

[210] W. Maass, “Lower bounds for the computational

power of networks of spiking neurons,” Neural

Comput., vol. 8, no. 1, pp. 1–40,

Jan. 1996.
[211] A. Demidovskij, “Encoding and decoding of

recursive structures in neural-symbolic systems,”

Opt. Memory Neural Netw., vol. 30, no. 1,

pp. 37–50, Jan. 2021.
[212] C. P. Dolan and P. Smolensky, “Tensor product

production system: A modular architecture and

representation,” Connection Sci., vol. 1, no. 1,

pp. 53–68, Jan. 1989.
[213] Y. Knight, M. Spranger, and L. Steels, “A vector

representation of fluid construction grammar

using holographic reduced representations,” in

Proc. EuroAsianPacific Joint Conf. Cognit. Sci.

(EAPCogSci), Apr. 2015, pp. 560–565.

A B O U T T H E A U T H O R S

Denis Kleyko (Member, IEEE)

received the B.S. degree (Hons.) in

telecommunication systems and the M.S.

degree (Hons.) in information systems from

the Siberian State University of Telecom-

munications and Informatics, Novosibirsk,

Russia, in 2011 and 2013, respectively, and

the Ph.D. degree in computer science from

the Luleå University of Technology, Luleå,

Sweden, in 2018.

He is currently a Postdoctoral Researcher on a joint appointment

between the Redwood Center for Theoretical Neuroscience, Univer-

sity of California at Berkeley, Berkeley, CA, USA, and the Intelligent

Systems Laboratory, Research Institutes of Sweden, Kista, Sweden.

His current research interests include machine learning, reservoir

computing, and vector symbolic architectures/hyperdimensional

computing.

Mike Davies (Member, IEEE) received the

B.S. and M.S. degrees from the California

Institute of Technology (Caltech), Pasadena,

CA, USA, in 1998 and 2000, respectively.

He was a Founding Employee with Fulcrum

Microsystems, Calabasas, CA, USA, and the

Director of its Silicon Engineering Group until

Intel’s acquisition of Fulcrum in 2011. He led

the development of four generations of low-

latency, highly integrated Ethernet switches using Fulcrum’s propri-

etary asynchronous design methodology. Since 2014, he has been

researching neuromorphic circuits, architectures, and algorithms at

Intel Labs, Intel Corporation, Santa Clara, CA, USA. He is currently

a Senior Principal Engineer and the Director of the Neuromorphic

Computing Laboratory, Intel Corporation.

Edward Paxon Frady received the B.S.

degree in computation and neural systems

from the California Institute of Technology

(Caltech), Pasadena, CA, USA, in 2008, and

the Ph.D. degree in neuroscience from the

University of California at San Diego, La Jolla,

CA, USA, in 2014.

He is currently a Research Lead with

the Neuromorphic Computing Labora-

tory, Intel Labs, Santa Clara, CA, USA. His research interests

include neuromorphic engineering, vector symbolic architectures/

hyperdimensional computing, and machine learning.

Pentti Kanerva received the Ph.D. degree

in philosophy from Stanford University,

Stanford, CA, USA, in 1984.

He was involved in designing and build-

ing computer systems for 20 years, and he

has over 30 years of research into under-

standing brains in computing terms. He has

held research positions at the NASA Ames

Research Center, Mountain View, CA, USA;

the Swedish Institute of Computer Science, Kista, Sweden; and

the Redwood Neuroscience Institute, Berkeley, CA, USA. He is

currently a Researcher with the Redwood Center for Theoretical

Neuroscience, University of California at Berkeley, Berkeley. His

thesis was published in the book Sparse Distributed Memory (MIT

Press). His subsequent research includes binary spatter code, ran-

dom indexing, and hyperdimensional computing.

Spencer J. Kent received the B.S. degree

in electrical and computer engineering from

Rice University, Houston, TX, USA, in 2015,

and the Ph.D. degree in electrical engineer-

ing and computer sciences from the Univer-

sity of California at Berkeley, Berkeley, CA,

USA, in 2020.

He is currently leading an early stage

company that builds software and actuarial

models for the insurance industry.

Dr. Kent was a recipient of a National Science Foundation Grad-

uate Research Fellowship for his work on vector symbolic architec-

tures and image compression.

Bruno A. Olshausen received the B.S. and

M.S. degrees in electrical engineering from

Stanford University, Palo Alto, CA, USA, in

1986 and 1987, respectively, and the Ph.D.

degree in computation and neural systems

from the California Institute of Technology

(Caltech), Pasadena, CA, USA, in 1994.

From 1996 to 2005, he was an Assistant

Professor and subsequently an Associate

Professor with the Departments of Psychology and Neurobiology,

Physiology, and Behavior, University of California at Davis, Davis,

CA, USA. Since 2005, he has been with the University of California

at Berkeley, Berkeley, CA, USA, where he is currently a Professor

of neuroscience and optometry. He also serves as the Director

of the Redwood Center for Theoretical Neuroscience, University

of California at Berkeley, which is developing mathematical and

computationalmodels of brain function. His research aims to under-

stand the information processing strategies employed by the brain

for doing tasks, such as object recognition and scene analysis. The

aim of this work is not only to advance our understanding of the

brain but also to discover new algorithms for scene analysis based

on how brains work.

1570 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

Evgeny Osipov received the Ph.D. degree

in computer science from the University of

Basel, Basel, Switzerland, in 2005.

He is currently a Full Professor

of dependable communication and

computation systems with the Department

of Computer Science and Electrical

Engineering, Luleå University of Technology,

Luleå, Sweden. His research interests are

in novel computational models for unconventional computer

architectures. His current research focuses on hyperdimensional

computing and vector symbolic architectures.

Jan M. Rabaey (Life Fellow, IEEE) became

the CTO of the System-Technology Co-

Optimization Division, imec, Leuven, Bel-

gium, in 2019. He has twice served as

the Electrical Engineering Division Chair at

the University of California at Berkeley (UC

Berkeley), Berkeley, CA, USA. He is currently

a Professor with the Department of Electrical

Engineering and Computer Sciences (EECS),

Graduate School, UC Berkeley, after being the holder of the Donald

O. Pederson Distinguished Professorship at the same institute for

over 30 years. He is the Founding Director of the Berkeley Wireless

Research Center (BWRC) and the Berkeley Ubiquitous SwarmLab,

UC Berkeley. He has been involved in a broad variety of startup

ventures. He has made high-impact contributions to a number of

fields, including low-power integrated circuits, advanced wireless

systems, mobile devices, sensor networks, and ubiquitous comput-

ing. He is the primary author of the influential Digital Integrated

Circuits: A Design Perspective textbook that has served to educate

hundreds of thousands of students all over the world. His current

interests include the conception of the next-generation distributed

systems and the exploration of the interaction between the cyber

and the biological worlds.

Dr. Rabaey was a recipient of numerous awards.

Dmitri A. Rachkovskij received the M.S.

degree in radiophysics from Rostov State

University, Rostov, Russia, in 1983, the Ph.D.

degree from the V. M. Glushkov Institute

of Cybernetics, Kyiv, Ukraine, in 1990, and

the D.Sc. degree in artificial intelligence

from the International Research and Train-

ing Center for Information Technologies and

Systems (IRTC ITS), National Academy of Sci-

ences of Ukraine and Ministry of Education and Science of Ukraine,

Kyiv, in 2008.

In 1987, he joined the Cybernetics Center, and IRTC ITS in

1997, where he is currently a Chief Research Scientist. In 2019,

he received the title of a Full Professor. Since 2022, he has been

a Visiting Professor with the Luleå University of Technology, Luleå,

Sweden. He led over 20 projects and has authored or coauthored

more than 80 refereed publications, including those in high-impact

journals. His research is connected with the domain of artificial

intelligence and neural networks. He was also involved extensively

in the areas of pattern recognition, software and hardware neu-

rocomputers, and micromechanics. His current research interests

include distributed representations, similarity search, analogical

reasoning, and distributed autoassociative memories.

Abbas Rahimi received the B.S. degree in

computer engineering from the University of

Tehran, Tehran, Iran, in 2010, and the M.S.

and Ph.D. degrees in computer science and

engineering from the University of California

at San Diego, La Jolla, CA, USA, in 2013 and

2015, respectively.

Since then, until 2020, he held postdoc-

toral research positions at the University of

California at Berkeley, Berkeley, CA, USA, and ETH Zürich, Zürich,

Switzerland. In 2020, he joined the IBM Research–Zürich Labora-

tory, Rüschlikon, Switzerland, as a Research Staff Member.

Dr. Rahimi received the 2015 Outstanding Dissertation Award

in the area of “new directions in embedded system design and

embedded software” from the European Design and Automation

Association and the ETH Zürich Postdoctoral Fellowship in 2017. He

was a co-recipient of the Best Paper Nominations at the ACM/IEEE

Design Automation Conference (DAC) in 2013 and the Design,

Automation Test in Europe Conference Exhibition (DATE) in 2019,

the Best Paper Awards at the EAI International Conference on Bio-

inspired Information and Communications Technologies (BICT) in

2017 and the IEEE Biomedical Circuits and Systems Conference

(BioCAS) in 2018, and the IBM’s Pat Goldberg Memorial Best Paper

Award in 2020.

Friedrich T. Sommer received the Diploma

degree in physics from the University of

Tübingen, Tübingen, Germany, in 1987, the

Ph.D. degree from the University of Düs-

seldorf, Düsseldorf, Germany, in 1993, and

the Habilitation degree in computer sci-

ence from Ulm University, Ulm, Germany, in

2002.

He is currently an Adjunct Professor with

the Redwood Center for Theoretical Neuroscience, University of

California at Berkeley, Berkeley, CA, USA, and a Researcher with

the Neuromorphic Computing Laboratory, Intel Labs, Santa Clara,

CA, USA. His research interests include neuromorphic engineering,

vector symbolic architectures/hyperdimensional computing, and

machine learning.

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1571

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.

