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This article reviews recent progress in the development of the computing framework
referred to as vector symbolic architectures, or hyperdimensional computing.
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ABSTRACT | This article reviews recent progress in the devel-
opment of the computing framework vector symbolic archi-
tectures (VSA) (also known as hyperdimensional computing).
This framework is well suited for implementation in stochastic,
emerging hardware, and it naturally expresses the types of
cognitive operations required for artificial intelligence (Al).
We demonstrate in this article that the field-like algebraic
structure of VSA offers simple but powerful operations on
high-dimensional vectors that can support all data structures
and manipulations relevant to modern computing. In addition,
we illustrate the distinguishing feature of VSA, “computing
in superposition,” which sets it apart from conventional com-
puting. It also opens the door to efficient solutions to the
difficult combinatorial search problems inherent in Al applica-
tions. We sketch ways of demonstrating that VSA are com-
putationally universal. We see them acting as a framework
for computing with distributed representations that can play a
role of an abstraction layer for emerging computing hardware.
This article serves as a reference for computer architects by
illustrating the philosophy behind VSA, techniques of distrib-
uted computing with them, and their relevance to emerging
computing hardware, such as neuromorphic computing.

KEYWORDS | Computing framework; computing in superpo-
sition; data structures; distributed representations; emerging
hardware; holographic reduced representation (HRR); hyperdi-
mensional (HD) computing; Turing completeness; vector sym-
bolic architectures (VSA).

I.INTRODUCTION

The demands of computation are changing. First, artificial
intelligence (AI) and other novel applications pose a host
of computing problems that require a search over an
immense space of possible solutions, with many approx-
imately correct answers, but rarely a single correct one.
Second, future emerging hardware platforms, operating
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at ultralow voltages to reduce energy consumption and
support continued process scaling, are destined to be noisy
and, hence, operate stochastically [1]. These observations
expose the need for a computing framework that sup-
ports both deterministic computation in the presence of
noise, as well as the approximate and parallel nature of
algorithms used in Al

By emerging hardware, we refer to the broad class of
new hardware designs that are highly parallel, fabricated
at ultrasmall scales, utilize novel components, and/or
operate at ultralow voltages, thus consisting of unreliable,
stochastic computational elements.

The conventional (& la von Neumann) computing archi-
tecture is not well adapted to these demands, as it was
designed assuming precise computational elements for
tasks that require exact answers. Conventional computing
architectures will continue to play an important role in
technology, but there is a growing amount of computa-
tional demands that are better served by new computing
designs. Thus, hardware engineers have been looking at
distributed and neuromorphic computing as a way of
meeting these demands.

Many of the emerging computational demands come
from cognitive or perceptual applications found within
the realm of AI. Examples include image recognition,
computer vision, and text analysis. Indeed, large-scale
deep learning neural network modeling dominates dis-
cussions about modern computing technology, pushing
innovations in hardware design toward parallel, distrib-
uted processing [2]. While widely used, deep learning
neural networks still have limitations, such as lacking the
transparency of learned representations and the difficulties
in performing symbolic computations. In order to support
more sophisticated symbolic computations, researchers
have been embedding conventional data structures, such
as graphs and key-value pairs, into neural network mod-
els [3], [4], [5]. However, it is not yet clear whether the
subsymbolic pattern recognition and learning capabilities
of deep neural networks can be augmented to handle the
rich control flow, abstraction, symbol manipulation, and
recursion of existing computing frameworks.

Work on developing emerging computing hardware
is accelerating. There are many showcase demonstra-
tions [6], [7], [8], [9], but, so far, the following holds.

1) These demonstrations have mostly lacked a unifying
theoretical framework that can bring sufficient com-
posability, explainability, and versatility.

2) Many demonstrations still depend on handcrafted
elements that would be prone to errors.

3) Most of the demonstrations have been subsymbolic in
nature and resort to support from the conventional
computing architecture to implement the symbolic
and flow control elements.

While these points are valid in general, there are some
exceptions that we discuss in Section VI-B. Nevertheless,
all of these demonstrate the need for a unifying computing

framework that can serve as an abstraction layer between
the hardware and desired functionality. Ideally, such a
framework should be flexible enough to provide inter-
faces to emerging hardware with various features, such as
stochastic components, asynchronous spiking communica-
tion, or devices with analog elements.

For the following reasons, we propose vector symbolic
architectures (VSA) [10] or, synonymously, hyperdimen-
sional (HD) computing [11], such as a computing frame-
work. First, HD/VSA can represent and manipulate both
symbolic and numerical data structures with distributed
vector representations to solve, e.g., cognitive [12], [13],
[14] or machine learning [15] tasks. HD/VSA is a suitable
framework for integration with neural network compu-
tations for solving problems in Al. It extends beyond
typical Al tasks as an approach capable of performing
symbolic manipulations with distributed representations.
Second, the design of HD/VSA, which was inspired by the
brain, lends itself to implementation in emerging com-
puting technologies [16] because it is highly robust to
individual device variations. Third, HD/VSA is a frame-
work with two interfaces: one toward computations and
algorithms and one toward implementation and represen-
tations (cf. Fig. 1). There are different HD/VSA models that
all offer the same operation primitives but differ slightly
in terms of their implementation of these primitives. For
example, there are HD/VSA models that compute with
binary, bipolar, continuous real, and continuous complex
vectors. Thus, the HD/VSA concept has the flexibility to
connect to a multitude of different hardware types, such
as analog in-memory computing architectures [16] for
binary-valued HD/VSA models or spiking neuron architec-
tures [17], [18] for complex-valued ones.

HD/VSA is a relatively new concept. The key idea goes
back to the 1990s, but computers of the day were not ready
to process large numbers of high-dimensional vectors in
parallel. Now hardware with such capabilities is emerging,
and, thus, the HD/VSA framework deserves to be looked
into anew, not to substitute conventional computing, but to
complement it in specific challenging domains. For exam-
ple, human and animal-like perception and learning have
eluded our attempts to be programmed into computers.
HD/VSA is a strong candidate for such tasks because of
its suitability for both statistical learning and symbolic
reasoning.

This article provides three main contributions. First,
we review the principles of HD/VSA and how they pro-
vide a generic computing framework for implementing
the primitives of conventional data structures and deter-
ministic algorithms. Second, we highlight the pros and
cons of a nontraditional mode of computing in HD/VSA,
“computing in superposition,” which can leverage distrib-
uted representations and parallelism for efficiently solving
computationally hard problems. Finally, we present two
proposals (see Appendix A) that show the universality of
HD/VSA by using them to represent systems known to be
Turing complete.
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Fig. 1. Place of HD/VSA within Marr’s levels of analysis [19]. The
focus of this article is marked by the dashed rectangle. We explain
how HD/VSA provides primitives to formalize algorithms in ways that
seamlessly connect to the computational and implementational
levels in the computing hierarchy.

A. Guide to This Article

This article is written with both newcomers to HD/VSA
and seasoned readers in mind. Section II provides some
motivation for using HD/VSA in the context of emerging
computing hardware. This section sets up the context for
this article. Section III offers a deep dive into the funda-
mentals of HD/VSA, recommended primarily to readers
not yet familiar with the framework. Section IV explains
different aspects of computing with HD/VSA, including a
“cookbook” for the representation primitives for numerous
data structures (see Section IV-A) and introducing an idea
of computing in superposition and its existing applica-
tions (see Section IV-B). Current hardware realizations of
HD/VSA models are considered in Section V. Section VI
provides the discussion. Finally, Appendix A describes pro-
posals for implementing two Turing complete systems with
HD/VSA.

II. MOTIVATION

The exponential growth of big data and AI applications
exposes fundamental limitations of the conventional com-
puting framework. One problem is that energy efficiency
is stagnating [20]—-training and fine-tuning a neural net-
work for a natural language processing application con-
sume energy and computational resources equivalent to
several hundred thousand U.S. dollars [21] or more [22].
Conventional computing hardware is also highly suscepti-
ble to errors, and energy is often “wasted” attempting to
maintain low error rates.

Data-intensive applications illustrate the scale of the
problem and make energy efficiency the grand challenge
of computer engineering. To solve this challenge, alterna-
tive hardware is required that can work with imprecise
and unreliable computational elements [1]. Operating at
ultralow voltages with stochastic devices that are prone
to errors has the potential to greatly increase computing
power and efficiency. For example, the recent advances
in materials science and device manufacturing make it

1540 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

possible to design computing hardware that accommo-
dates computational principles of biological brains or
exploits the physical properties of the substrate mater-
ial. For certain classes of problems, computing hardware,
such as neuromorphic processors [23], [24], [25] and
in-memory computing architectures [16], consumes only
a fraction of the energy compared to current technol-
ogy. For certain tasks, existing neuromorphic platforms
can be 1000 times more energy efficient [24] than the
conventional ones.

There is currently a focus on implementing Al capabili-
ties in emerging computing hardware [25], with the aim of
providing an energy-efficient implementation of a selected
class of Al functionalities (mainly neural networks). How-
ever, we see the opportunity for a computational frame-
work exceeding neural networks in scope, which could
empower an unprecedented breakthrough in emerging
computing technology. First, while neural network algo-
rithms serve a rather small subset of computation prob-
lems extremely well, they are unable to address a large
class of problems that require conventional algorithms and
data structures. A computing framework with a broader
application scope than neural networks could boost the
adoption of emerging computing by several orders of mag-
nitude. Second, despite many promising applications for
emerging computing hardware, the programming of any
new functionality is far from trivial. Emerging computing
hardware currently lacks a holistic software architecture,
which would streamline the development of the new func-
tionality. Current development strategies resemble those
of assembly programming, where the developer is left
with the entire job—from coming up with the algorithmic
idea to designing the actual machine instructions to be
executed by a central processing unit. Thus, the impres-
sive recent emerging hardware development [16], [26]
needs to be complemented with the creation of comput-
ing frameworks for such hardware, which can abstract
and simplify the implementation of new functionalities,
including the design of programs. Last but not least, most
emerging hardware differs fundamentally from traditional
computer and neural network accelerator hardware in that
the enabled computations are unreliable and stochastic.
Thus, a computing framework is required in which error
correction and error robustness are achieved.

There is ample work demonstrating that HD/VSA pos-
sesses a rich computational expressiveness from the func-
tionality of neural networks [27], [28], [29], [30] to
machine learning tasks [31], [32], [33], [34], [35] and
cognitive modeling [13], [14], [36], [37], [38], [39]. Fur-
thermore, HD/VSA can express conventional algorithms,
for example, finite state automata [40], [41] and context-
free grammars [42].

In this article, we explore whether HD/VSA can serve as
a computing framework for taking emerging computing to
the next level. We argue that HD/VSA provides a frame-
work to formalize and modularize algorithms and, at the
same time, bridge the computation and implementation
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levels in Marr’s framework [19] for information process-
ing systems (see Fig. 1). Our proposal generalizes earlier
suggestions to apply HD/VSA for implementing specific
machine learning algorithms on emerging hardware [43],
[44].

INI. FUNDAMENTALS OF HD/VSA

HD/VSA [10], [11] is the term for a family of models for
representing and manipulating data in a high-dimensional
space. It was originally proposed in cognitive psychology
and cognitive neuroscience as a connectionist model for
symbolic reasoning [45]. In HD/VSA, data objects are
represented by vectors of high (but fixed) dimension N,
sometimes called hypervectors or HD vectors. The encoded
information is distributed across all components of a
hypervector. Such distributed representations [46] are dis-
tinct from localist and semilocalist representations [47],
where single or subsets of components encode individual
data objects.

Distributed representations are, in and of themselves,
not the full story. As argued by Fodor and Pylyshyn [48],
distributed representations must be productive and sys-
tematic. Productivity refers to massive expressiveness gen-
erated by simple primitives, while systematicity means
that representations are sensitive to the structure of the
encoded objects. These desiderata were one of the drivers
for developing HD/VSA. One major advantage of HD/VSA
as the algorithmic level in the Marr hierarchy (see Fig. 1)
is that it embraces distributed representations, which are
robust to local noise.

The idea of computing with random hypervec-
tors as basic objects rather than Boolean or numeric
scalars was developed by Kussul et al. [49] as part of
associative-projective neural networks and independently
in seminal works by Smolensky [50] on tensor product
variable binding and Plate on holographic reduced rep-
resentation (HRR) [51]. HD/VSA can be formulated with
different types of vectors, namely, those containing real,
complex, or binary entries, as well as with the multivec-
tors from geometric algebra. These HD/VSA models come
under many different names: HRR [52], [53], multiply—
add-permute (MAP) [54], binary spatter codes [55],
sparse binary distributed representations (SBDRs) [56],
[57]1, sparse block codes [58], [59], matrix binding of
additive terms (MBAT) [60], the geometric analog of HRR
(GAHRR) [61], and so on. All of these different models
have similar computational properties—see [30] and [62].
For clarity, we will use the MAP model in the remainder of
this article.

A. Basic Elements of HD/VSA

1) High-Dimensional Space: HD/VSA requires a high-
dimensional space. The appropriate choice of dimension-
ality N is somewhat dependent on the problem, but there
are simple rules of thumb (N > 1000, for example), and
the representation of particular data structures in the given

problem is much more important. As mentioned above,
there are HD/VSA models defined for different types of
spaces (see Section V-A for more details). In this article,
we will use a variation of the MAP model (MAP-I; see [62])
that operates in integer vector spaces (Z"). Operations
and properties that have proven useful are presented in
the following (Appendix B provides the summary). It is
worth pointing out that the superposition and binding of
hypervectors form an algebraic structure that resembles
a field, and permutations extend the algebra to all finite
groups up to size N.

2) Quasi-Orthogonality: HD/VSA uses random (strictly
speaking, pseudorandom) vectors as a means for data
representation. By using random vectors as representa-
tions, HD/VSA can exploit the concentration of measure
phenomenon [63], [64], which implies that, with high
probability, random vectors become almost orthogonal
in high-dimensional vector spaces. This phenomenon is
sometimes called progressive precision [65] or the blessing
of dimensionality [64]. In the case of HD/VSA, it means
that, when, e.g., two objects are represented by random
vectors, with high probability, their representations will
be almost orthogonal to each other. MAP uses bipolar
random vectors where the ith component of a vector a
is generated independent identically distributed (i.i.d.)
random from the Bernoulli distribution: a; ~ 2B(0.5) — 1.
In the HD/VSA literature, dissimilar representations
are described by various adjectives, such as unrelated,
uncorrelated, approximately, pseudo-orthogonal, or quasi-
orthogonal. Unlike exact orthogonality, the dimension N is
not a hard limit on the number of quasi-orthogonal vectors
that one can create.

3) Similarity Measure: Processing in HD/VSA is based
on the similarity between hypervectors. The common sim-
ilarity measures in HD/VSA are the dot (scalar, inner)
product, cosine similarity, overlap, and Hamming distance.
In MAB it is common to use either the cosine similarity
or the dot product. Therefore, we will be using the dot
product (denoted as (-, -)) as the similarity measure in the
following.

4) Seed Hypervectors: When designing an HD/VSA algo-
rithm for solving a problem, it is common to define a set of
the most basic concepts/symbols for the given problem and
assign hypervectors to them. Such seed hypervectors are
defined as representations of concepts that are irreducible.
All other hypervectors occurring in the course of computa-
tion are, therefore, reducible, that is, they are composed
of seed hypervectors. Here, we will focus on symbolic
structures, i.e., symbols from some alphabet with size D,
which are represented by i.i.d. random seed hypervectors
(see Section III-A2). As mentioned above, in MAP seed
hypervectors are bipolar and so any hypervector a €
{—1,1}". The process of assigning seed hypervectors,
usually (but not always) by i.i.d. random generation of
vectors, is referred to as mapping, encoding, projection,
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or embedding. We reiterate that representations in an
HD/VSA algorithm need not always be quasi-orthogonal.
For example, for representing real-valued variables, one
might use a locality-preserving representation scheme,
in which representations of similar values are systemati-
cally correlated and not quasi-orthogonal [66], [67], [68],
or where the hypervectors are learned [31], [69]. Thus,
one should keep in mind that i.i.d. randomness is not the
only tool for designing seed representations.

5) Item Memory: Seed hypervectors are stored in the
so-called item memory (or cleanup memory), a content-
addressable memory that can be just a matrix, or an
associative memory [70], [71], [72] that stores the hyper-
vectors as point attractors.

B. HD/VSA Operations and Compound
Representations

Seed hypervectors are the building blocks for compound
HD/VSA representations, which are built from operations
performed on the seed vectors. For example, a compound
hypervector representing the edges of a graph (compound
entity) can be constructed (see Section IV-A7) from seed
hypervectors representing its nodes (basis symbols). This
compositional formation of data structures in HD/VSA is
akin to conventional computing and very different from
the modern neural networks in which activity vectors,
especially in hidden layers, often cannot be readily parsed.

Two key HD/VSA operations are dyadic vector opera-
tions between hypervectors that are referred to as super-
position and binding. Like the corresponding operations
between ordinary numbers, they form, together with the
representation vector space, a field-like algebraic structure.
Another important HD/VSA operation is the permutation of
components within a hypervector.

The componentwise addition operation is used for
bundling or superposing, and in the MAP model, it is
implemented as a componentwise addition of hypervec-
tors. The binding operation is used for variable binding.
In the MAP model, the binding operation is implemented
via componentwise multiplication, i.e., via the Hadamard
product. The permutation operation, as its name suggests,
shuffles the components of a hypervector according to a
predefined permutation that can be, e.g., chosen randomly.
In practice, a rotation of components, i.e., a cyclic shift of
the hypervector component index, is used frequently.

In what follows, we describe each operation and its
properties in more detail. It is important to stress that
various HD/VSA models differ in the particular details of
realizing their operations. As a consequence, the oper-
ations’ properties presented below are relevant for the
MAP model but are not valid for each and every HD/VSA
model. For the sake of focus, we will not discuss differ-
ences between different HD/VSA models in depth here,
but we encourage interested readers to consult recent
studies [62], [73].
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Note also that the seed hypervectors referred to in this
section are pseudorandom i.i.d. Because high-dimensional
representation tolerates errors, the conditions listed in the
following need only be satisfied approximately or with
high probability. Due to the concentration of measure
phenomenon, the operations—and computations based on
them—become ever more reliable, dependable, and pre-
dictable as the dimensionality N of the space increases.

1) Binding: A dyadic operation mapping two hypervec-
tors to another hypervector. It is used to represent an
object formed by the binding of two other objects. This
operation is an important ingredient for forming compo-
sitional structures with distributed representations (see a
discussion on its importance in the context of deep learning
in [74]). Formally, for two objects a and b, represented by
the hypervectors a and b, the hypervector that represents
the bound object (denoted by m) is

m=aobh. (D

In the MAP model, ® denotes the componentwise mul-
tiplication (Hadamard product). Multiple application of
binding is denoted by [], enabling the formation of a
hypervector representing the product of more than two
hypervectors.

Consider the example of representing a database for
trivia about countries [75]. The database record for a
country contains the name, the capital, and the currency.
The first step is to form hypervectors that represent key-
value pairs, which can be done by binding: country ©
USA, capital ® Washington, currency ® USD. To create
a single hypervector that represents the entire data record
for a country, we need another operation to combine the
different key-value pairs (see below).

2) Superposition: A dyadic operation mapping two
hypervectors to another hypervector. It is denoted with +
and, in the MAP model, implemented via component-
wise addition, which sometimes can be thresholded to
keep bipolar representations (not used in this article).
The superposition operation combines several hypervec-
tors into a single hypervector. For example, for a and b,
the result z of the superposition of their hypervectors is
simply

z=a+b. 2

The superposition of more than two hypervectors is
denoted by ). Often, superposition is followed by a
thresholding operation to produce a resultant hypervector
that is of the same type as the seed vectors. For example,
in the MAP model, the seed hypervectors are bipolar
vectors, but the arithmetic sum-vector is not. Therefore,
in the bipolar variant (MAP-B; see [62]), a thresholding
operation, using the signs in each component, can map
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the sum vector back to a bipolar hypervector. This type
of thresholding is sometimes called the majority rule/sum
and denoted by brackets: [a + b]. For the sake of consis-
tency, the examples in the following use the nonthresh-
olded sum, unless mentioned otherwise.

The nonthresholded sum has the advantage of being
invertible since individual elements in the sum can be
removed by subtraction (denoted as —) without interfering
with the rest. Using the example above

a=1z—Db.

3

Continuing the database example, the superposition
operation can be used to create a single hypervector from
hypervectors representing all key-value pairs of the record.
Thus, the compound hypervector for the whole record
will be formed as follows: country ©® USA + capital ©®
Washington + currency ® USD.

3) Permutation: A unary operation on a hypervector
that yields a hypervector. Akin to the binding operation,
permutation is often used to map into an area of hyper-
vector space that does not interfere strongly with other
representations. However, unlike binding in MAB the same
permutation can be used recursively, projecting into pre-
viously unoccupied space with every iteration. Note that
the number of possible permutations grows superexpo-
nentially with the dimensionality (N!), and permutations
themselves are not elements of the space of representa-
tions. In most HD/VSA algorithms, a single one or a small
set of permutations are fixed at the onset of computation.
We continue with a simple example, and more examples
follow in Sections IV-A5, IV-A8, and IV-A10.

Permutation can be seen as an alternative approach
to binding when there is only one hypervector as the
operand [54]. The permutation operation can also be
used to represent sequence relations and other asymmetric
relations like “part-of.” For example, a fixed permutation
(denoted as p(-)) can be used to associate, e.g., a symbol
hypervector with the position of a symbol in a sequence,
resulting in a hypervector representing the symbol in that
position. The single application of the permutation is

“

To associate a with the ith position in a sequence, the per-
mutation is applied ¢ times. The result is the hypervector

r=p'(a).

Note that permutation is an example of a more general
unary operation, matrix-vector multiplications (see [60]
for a proposal on using matrix-vector multiplications to
implement the binding operation).

4) Properties of HD/VSA Operations and Their Interaction:
Here, we summarize the properties of the basic HD/VSA
operations and how they interact.

a) Superposition: The superposition operation has the
following properties:

1) Superposition can be inverted with subtraction: a +
b+c—c=a+b.
2) In contrast to the binding and permutation opera-
tions, the result of the superposition z = a + b
(often called the superposition hypervector) is similar
to each of its argument hypervectors, i.e., the dot
product between z and a or b is significantly more
than 0: (z,a) ~ (z,b) > 0.
3) Arguments of binding can be approximately recov-
ered from the superposition hypervector: b® (a®b+
cod) = a.
4) Superposition is commutative: a+b =b + a.
5) Thresholded superposition is approximately associa-
tive: [[a+b] +c]~ [a+ [b+c]].
Note that, if several instances of any hypervector are
included (e.g., z = 3a + b), the resultant hypervector is
more similar to the dominating hypervector than to other
arguments.

b) Binding: The binding operation has the following
properties:

1) Binding is commutative: a®b =b © a.

2) Binding distributes over superposition: ¢ ® (a + b) =
(c®a)+ (cob).

3) Binding is invertible for m = a©®b: a® m = b.
The inversion process is often called releasing or
unbinding. In the case of the componentwise multipli-
cation of bipolar vectors, the unbinding operation is
performed with the same operation. Therefore, we do
not introduce a separate notation for unbinding here.

4) Binding is associative: c©® (a®b) = (c®a) ©b.

5) The result of binding is dissimilar to each of its argu-
ment hypervectors, e.g., m is dissimilar to the hyper-
vectors being bound, i.e., the dot product between m
and a or b is approximately 0: (m,a) ~ (m,b) ~ 0.

6) Binding preserves similarity (for similar a and a’):
(a®b,a’ ®b) > 0.

7) Binding is a “randomizing” operation (since
(a ® b,a) ~ 0) that preserves similarity (because
(ao®b,cob) =(a,c)).
¢) Permutation: The permutation operation has the

following properties:

1) Permutation is invertible for r = p(a): a = p~}(r).

2) In MAB permutation distributes over both binding
(p(a®b) = p(a) ®p(b)) and superposition (p(a+b) =
p(a) + p(b)).

3) Similar to the binding operation, the result r of a
(random) permutation is dissimilar to the argument
hypervector a: (r,a) =~ 0.

4) Permutation is a “randomizing” operation (since
(p(a),a) =~ 0) that preserves similarity (because
{p(a), p(b)) = (a,b)).

It is worth clarifying what we mean by “similarity pre-
serving” in the case of binding and permutation versus
superposition above: For binding, the similarity between

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1543

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.



Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

two hypervectors is the same before and after binding with
a third hypervector, i.e.,, (a ® b,c ® b) = (a,c), and for
permutation, the similarity between the two hypervectors
is also the same before and after the operation, i.e.,
(p(a), p(b)) = (a,b). However, for superposition, the simi-
larity between two hypervectors is generally lower before
versus after superimposing them to a third hypervector,
ie., (a+ b,ec+ b) > (a,c), since the sum moves them
in a common direction b. On the other hand, since the
superposition hypervector is similar to each of the vectors
in the sum, (a + b,a) =~ (a + b,b) > 0, it is also some-
times referred to as “similarity preserving,” in contrast
to binding and permutation, which generally creates a
dissimilar hypervector. One should keep this distinction in
mind when referring to the similarity preserving properties
of these operators.

C. Parsing Compound Representations

HD/VSA offers the possibility to encode data structures
into compound hypervectors and manipulate the hyper-
vectors with the operations described above to perform
computation on the data structures. In conventional com-
puting, data structures are always exposed, and the algo-
rithm queries or modifies individual elements within them.
In contrast, the vector operations in HD/VSA can search
or transform many or all elements of a data structure
in parallel, which we call “computing in superposition”
(see Section IV-B). All data structures are hypervectors and
can be manipulated immediately and in parallel, regardless
of how complicated a structure they possess. However,
this also means that the data structure of a compound
hypervector is not immediately decodable from the item
memory. To query element(s) of a compound hypervector,
it first needs to be analyzed or “parsed.” We borrow
the term parsing from linguistics because the parsing of
HD/VSA hypervectors is somewhat similar. To understand
a sentence, one needs to divide the sentence into its parts
and assign their syntactic roles, which involves comparing
the parts with the stored information about their mean-
ing and syntactic roles. Similarly, to extract the result of
an HD/VSA computation, one has to parse the resultant
hypervector. The parsing of HD/VSA hypervectors involves
the decomposition and comparison of the resulting parts
with the stored information.

Like with the sum or product of ordinary numbers, the
parsing of hypervectors requires additional information,
such as the operations used to form the compound repre-
sentation and the set of seed vectors. Parsing a compound
hypervector first entails the operation inverse that is used
to encode the wanted element in the data structure. How-
ever, the result is almost always approximate because of
crosstalk noise coming from all the other elements in the
compound hypervector. To single out the correct result, the
noisy vector has to be compared to the original seed vectors
in terms of similarity. Probing is the process of retrieving
the best-matching hypervector (i.e., the nearest neighbor)
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among the hypervectors for a given query hypervector.
This is done in the item memory, which contains all the
seed hypervectors. For example, consider the compound
hypervector

s=aGb+cod

In order to know which hypervector has been bound to,
e.g., b, we have to unbind (inverse binding) b from s

s©b=bo(a®b+cod)

=a+boGced=a+noise ~ a.

The resultant hypervector contains the correct answer a
and a crosstalk noise term b ® ¢ ® d, which is dissimilar
to any of the items in the item memory. The query hyper-
vector a + noise will be highly similar to the hypervector
a stored in the item memory, which will be successfully
retrieved by the nearest neighbor search with a high prob-
ability. Thus, the probing operation removes (or cleans up)
the noise and returns the correct result.

Cleanup via probing is a critical part of HD/VSA compu-
tations and has the advantage that its operation is intrinsi-
cally noise resilient, and the degree of noise robustness can
be easily controlled by the dimension N. In essence, prob-
ing is a signal detection problem. The number of hypervec-
tors that can be correctly retrieved from the superposition
is called capacity. The capacity increases roughly linearly
with the hypervector dimension and is quite insensitive to
the details of a particular HD/VSA model. The signal detec-
tion theory for HD/VSA [30] enables one to determine
the dimension of the hypervector space that is sufficient
for a given computation and a given precision of the
hardware.

1) Parsing Hypervectors With Multiple Bindings: In the
example above, it was assumed that one argument
(i.e., b) of the key-value pair was known. This, how-
ever, is not always the case. Moreover, there exist rep-
resentations where several hypervectors are being bound
(e.g.,a®b®c). Parsing compound hypervectors with
such elements is challenging due to the fact that the
binding operation in the MAP model produces a hypervec-
tor dissimilar to its arguments (cf. Section III-B4.b). This
means that the most obvious way to parse hypervectors
of the form a ® b ® ¢ is by brute force by checking all
possible combinations of the arguments. The number of
such combinations, however, grows exponentially with the
number of arguments involved. Therefore, a mechanism
called a resonator network has been proposed [76], [77],
which addresses this problem by a parallel search in the
space of all possible combinations.

The resonator network assumes that none of the argu-
ments is given, but that they are contained in different
item memories, which should be known to the resonator
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factoring a compound hypervectors —a® b & c; A, B, and C denote

Example of a resonator network with three arguments. It is

the corresponding item memories containing seed hypervectors for
a, b, and c arguments, respectively.

network. Fig. 2 illustrates an example of a resonator
network for factoring the hypervector s = a ® b ©® c.
In a nutshell, the resonator network is a novel recurrent
neural network design that uses HD/VSA principles to
solve combinatorial optimization problems. As shown in
the example, it factors the arguments of the input vector s
representing the binding of several hypervectors. To do so,
it uses hypervectors a(t), b(), &(t), each storing the predic-
tion for a particular argument of the product forming s.
Each prediction communicates with the input hypervector
(s) and all other predictions using the following dynamics

a(t+1) = sign (AAT(S ob(t) o é(t)))

oY

(t+1) = sign (BBT(s ®alt) o é(t)))

&(t+1) = sign (ccT(s ®at) o B(t))) )

where A, B, and C denote the corresponding item mem-
ories containing a, b, and ¢ arguments, respectively, and
sign(-) denotes a step that projects the predictions back
to the bipolar values. Note that the resonator network
does not have to work with only bipolar hypervectors.
Rather, the usage of the sign(-) function is determined by
the fact that the seed hypervectors in the MAP model are
bipolar. Thus, other types of nonlinearity functions can be
used to make a resonator network compatible with the
desirable format of the seed hypervectors. Note also that
these item memories will contain other hypervectors as
well, but hypervectors stored in A, B, and C differ from
each other. The size of each item memory depends on a
task, but it will affect the performance of the resonator
network as larger item memories imply a larger search
space.

The key insight into the internals of the resonator
network is that it iteratively tries to improve its cur-
rent predictions of the arguments constituting the input
hypervector s. In essence, at time ¢ each prediction might
hold multiple weighted guesses from the corresponding

item memory. The current predictions for other arguments
are used to invert the input vector and infer the current
argument (e.g., s ® B(t) ® ¢(t)). The cost of using the
superposition for storing the predictions is crosstalk noise.
To clean up this noise, the predictions are projected back
to their item memories (e.g., AT (s ® B(t) ® ¢(t))), which
provides weights for different seed hypervectors stored
in the item memory and, therefore, constrains the pre-
dictions to only to the valid entries in the item memory.
These weights are then used to form a new prediction,
which is a weighted superposition of all seed hypervectors.
Successive iterations of the process in (5) eliminate the
noise as the arguments become identified and find their
place in the input vector. Once the arguments are fully
identified, the resonator network reaches a stable equi-
librium, and the arguments can be read. For the sake of
space, we do not go into the details of applying resonator
networks here. Please refer to [76] for examples of fac-
toring hypervectors of data structures with resonator net-
works and [77] for their comparison with other standard
optimization-based methods.

D. Generality and Utility

Currently, there are several known areas where HD/VSA
have been employed. Hypervectors serve as representa-
tions for cognitive architectures [37], [38]. They are used
for the approximation of conventional data structures [40],
[41], [78], distributed systems [79], [80], communica-
tions [81], [82], [83], for forming representations in
natural language processing applications [31], [84], and
robotics [85], [86], [87], [88], [89]. The fact that it is
possible to map real-valued data to hypervectors allows
one to apply HD/VSA in machine learning domains. Most
of these works were connected to classification tasks (see
a recent overview in [15]). Examples of domains that
have benefited from the application of HD/VSA mod-
eling are biomedical signal processing [34], [90], ges-
ture recognition [33], [91], seizure onset detection and
localization [92], physical activity recognition [93], and
fault isolation [94]. However, HD/VSA modeling can also
be useful for very generic classification tasks [29], [95].
The common feature of these works is a simple train-
ing process, which does not require the use of iterative
optimization methods, and transparently learns with few
training examples.

IV. COMPUTING WITH HD/VSA
A. Computational Primitives Formalized in
HD/VSA

In Section III, we have introduced the basic elements
of HD/VSA. To provide the algorithmic level in the Marr
computing hierarchy in Fig. 1, one needs to combine
elements of HD/VSA into primitives of HD/VSA comput-
ing, i.e., something akin to design patterns in software
engineering. For instance, a set of HD/VSA templates has
been proposed for tasks in the domain of personalized
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devices covering different multivariate modalities, such as
electromyography, electroencephalography, or electrocor-
ticography [34]. Here, we summarize the best practices for
representing well-known data structures with HD/VSA—
this section can be thought of as a “HD/VSA cookbook.”
All examples in this section are available in an interactive
Jupyter Notebook.! After providing some basic rules for
representing data structures with HD/VSA, we present a
collection of primitives from prior work that has been done
along these lines. We do not go into an advanced topic
of how distributed representations of data structures can
be used to construct or learn single-shot transformations
between data structures that share symbols. It is, however,
worth noting that this property differentiates distributed
representations from conventional data structure manip-
ulations, and the interested readers are referred to, e.g.,
[96] and [97] for more details. A well-known example
of this property has been presented in [98] where a
mapping between the “mother-of” relation to the “parent-
of” relation was constructed with simple vector operations
and using only a few examples. It was shown later in [39]
that such a mapping can be used to easily form associations
between observed structures and decisions caused by these
structures.

It is worth noting that, in this article, we do not cover the
representation of real-valued data (see [66], [99], [100],
[101], and [102]) or solving machine learning problems
(see [15]) as it has been covered elsewhere and is outside
the immediate scope of this article.

1) Rules of Thumb: We should point out that the
HD/VSA implementations that we describe are not the only
possibilities, and other solutions may be possible/desirable
in a particular design context. The solutions provided are,
however, the most common/obvious choices, based on
several “rules of thumb.”

1) Superposition is used to combine individual elements
of a data structure into a set.

Binding is used to make associations between ele-
ments, e.g., key-value pairs.

Permutation is used for tagging data elements to put
them into a sequential order, such as in time series.
Permutation is used for protection from the
self-inverse property of the binding operation
since the hypervector will not cancel out when bound
with its permuted version.

2)
3)

4)

We will follow these rules most of the time when forming
hypervectors for different data structures.

2) Sets: A set (denoted as S) represents a group of
elements, for example, S = {a, b, ¢, d, e}. In order to map a
set to a hypervector, two steps are required. First, an item
memory storing random hypervectors for each element of
a set is initialized. We will use bold font in notations of
hypervectors (e.g., a for “a”), but a more general notation
is via the mapping function ¢(i) — i,i € S. Second,

Uhttps://github.com/denkle/HDC-VSA_cookbook _tutorial
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a single hypervector (denoted as s) is formed that repre-
sents the set as the superposition of hypervectors for the
set’s elements, e.g., for the set above

s=at+b+c+d+e
S:Zd)(i). (6)
i€S

The hypervector s is a distributed representation of the set
S. This mapping preserves the overlap between elements
of the sets. For example, set membership can be tested by
calculating the similarity between s and the hypervector
corresponding to the element of interest. If the similarity
score is higher than that expected between two random
hypervectors, then most likely the element is present in the
set. This mapping is very similar to a Bloom filter [103]
(in particular, to counting Bloom filter [104]), which
is a well-known randomized data structure for approxi-
mate membership query in a set. Bloom filters have been
recently shown to be a subclass of HD/VSA [78], where
the superposition operation is implemented via OR, and
seed hypervectors are sparse, as in the SBDRs [56] model.
While conceptually representation of sets via distributed
representations is a simple idea, it is very influential as it
has been applied in myriads of engineering problems (see
a survey in [105]).

Note that the limitation of the described mapping of sets
is that it does not have a simple and exact way of obtaining
distributed representations of the intersection or union of
two sets. The exact results can, obviously, be obtained by
first parsing distributed representations of the correspond-
ing sets, reconstructing the symbolic versions, computing
the union or intersection in the symbolic domain, and,
finally, forming the distributed representation of the result.
There are, however, simple approximations of the oper-
ations that require fewer interactions with the symbolic
domain. Both approximations are obtained by the super-
position operation on the corresponding set’s hypervectors
(e.g., s1 and s3)

S =81 + S2.

The difference is in the way the parsing of the result in
s is done. In order to parse the intersection of two sets,
only the elements with the largest dot products should be
retrieved. Thus, if the result of the intersection is stored in
1, which is initially empty (I = 0), then, for element ¢ with
the corresponding entry H; in the item memory

otherwise

I {IU{iL
TU{0},

where ©; denotes the corresponding threshold.
To retrieve the union (U = () at the start), the elements
with the dot products sufficiently different from the noise
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level should be considered

otherwise

. {Uum,
UUo},

where O, denotes the noise level threshold. Thus, the
subtlety of the intersection is that elements present in both
sets will have higher similarity then the ones present in
only one of the sets (see Section III-B2). This property of
the superposition operation is in fact used in Section IV-A3
for representing multisets.

3) Multisets/Histograms/Frequency Distributions: Let us
consider how to form a single hypervector of a multiset or
a frequency distribution in the form of counts of the occur-
rences of various elements in some source. The mapping is
essentially the same as in the case of sets in Section IV-A2
with the only difference that a hypervector of an element
can be present in the result of the superposition operation
several times. For example, given S = (a,a,a,b,b,c),
the hypervector representing the frequency of elements is
formed as

—a+at+at+b+b+e
3a-+2b+c.

Thus, the number of times a hypervector is present in
the superposition determines the frequency of the corre-
sponding element in the sequence. Using s, it is possible
to estimate either the frequency of an individual element
or compare it to the frequency distribution of another
sequence. Both operations require calculating the similar-
ity between s and the corresponding hypervector.

Usually, s is used as an approximate representation of
the exact counters of a histogram. Fig. 3 demonstrates
the Pearson correlation coefficient between the histogram
and its approximate version retrieved from a compound
hypervector s where the approximate version was obtained
as the dot product between s and symbols’ seed hypervec-
tors. The simulations were done for different sizes of the
histogram and varying the dimensionality of hypervectors.
The results are characteristic for HD/VSA—the quality of
approximation improved with the increased dimensional-
ity of hypervectors.

This mapping shall be seen as a particular instance of a
count-min sketch [106] that is a randomized data structure
for obtaining frequency distributions from sequences. The
count-min sketch is used in a plethora of applications
where data are of streaming nature (see some examples
in [106]). In Section IV-A6, we will also see that the
representation of multisets is an essential primitive for
representing n-gram statistics that, in turn, is used for
solving classification tasks (see [107], [108], and [109]).
The limitation of the presented mapping is that, due to the
usage of bipolar hypervectors, the resultant representation

=

[0}

S

8 Histogram size
g 0.6 —16 symbols
RS —32 symbols
E —64 symbols
204 ——128 symbols
o 256 symbols
O 512 symbols

0.2 ' ' ' '
2000 4000 6000 8000 10000

Dimensionality of hypervectors

Fig. 3. Correlation coefficients between the exact histogram and
their approximations from integer-valued 7N compound
hypervectors. Six different sizes of histograms were considered. The
dimensionality of hypervectors varied in the range [200, 10000] with
a step of 200. The values of counters were drawn from the discrete
uniform distribution [0, 1023]. The reported values were averaged
over 100 simulations.

could both overcount and undercount the frequency. This
limitation is partially addressed by the standard count-min
sketch that could only overcount the frequency.

4) Cross-Product of Two Sets: A particularly interesting
case is when we have hypervectors representing two differ-
ent sets (e.g., {a,b,c,d, e} and {z,y, 2}). Then, a mapping
based on the binding operation is used to create a hyper-
vector corresponding to the cross-product of two sets as
follows:

(a+b+c+d+e)o(x+y+2)
=(a0x+ac0y+anz)+ (box+boy+boz)
+(cOX+cOy+coz)+(dox+doy+doz)
+(eGx+e@y+enz).

In essence, here occurs (due to the superpositions) a
simultaneous binding between all the elements in the
two sets. The cross-product set, thus, consists of all pos-
sible bindings of hypervectors representing elements of
the original sets (e.g., a ® x). In the example above,
when starting first with the representations of sets, only
seven operations (six superpositions and one binding)
were necessary to form the representation. The brute force
way of forming the cross-product set hypervector would
require 29 operations (14 superpositions and 15 bindings).
It is clear that this shortcut works due to the fact that
the binding operation distributes over the superposition
operation (see Section III-B4.b). Note that, using the tensor
product variable binding [50] model, the outer product
of vector representations of the two sets will be a tensor
with the number of dimensions determined by the number
of sets in the cross-product. In contrast, the HD/VSA
representation of a cross-product is given by a hypervector
of the same dimension as the individual set hypervectors.
Note also that, while it is simple to form a hypervector
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corresponding to the cross-product of two sets with the
binding operation, computing the cross-product in the
symbolic domain might still require lower computational
costs as it does not require high-dimensional representa-
tions. Another potential issue of such a representation is
the required dimensionality of hypervectors for the situ-
ation when all the elements of the cross-product should
be retrievable from the distributed representation. In this
case, the dimensionality of hypervectors should be propor-
tional to the product of the sets’ cardinalities, so even mod-
erately sized sets require a large number of components in
hypervectors to provide high accuracy in retrieving individ-
ual elements of their cross-product from the corresponding
hypervector.

5) Sequences: A sequence is an ordered set of elements.
For example, the set from the previous section is now
a sequence (a,b,c,d,e), which is not the same as, e.g.,
(b,a,c,d,e) since the order of elements is different. Note
that a finite sequence with k elements is called k-tuple,
with an ordered pair being the special case for k = 2.

It is clear that plain superposition of hypervectors works
for representing sets but not for sequences, as the sequen-
tial order would be lost. Many authors have proposed
the following idea to represent sequences with permuta-
tion, e.g., in [11], [30], [44], [110], [111], and [112].
Before combining the hypervectors of sequence elements,
the order ¢ of each element is associated by applying
some specific permutation k — i times to its hypervector
(e.g., p?(c)). The advantage of this recursive encoding of
sequences is that extending a sequence can be done by
permuting s and superimposing or binding it (see below)
with the next hypervector in the sequence, hence incurring
a fixed computational cost per symbol. The last step is to
combine the sequence elements into a single hypervector
representing the whole sequence.

There are two common ways to combine sequence ele-
ments. The first way is to use the superposition operation
similar to the case of sets. For the sequence above, the
resultant hypervector is

s =p"(a) + p°(b) + p*(c) + p' (d) + p"(e).

In general, a given sequence S of length k is represented
as

O]

where S; is the ith element of sequence S. The advantage
of the mapping with the superposition operation is that
it is possible to estimate the similarity of two sequences
by measuring the similarity of their hypervectors. Here,
the similarity of sequences is defined by the number of
the same elements in the same sequential positions, where
the sequences are aligned by their last elements. Evidently,

1548 PROCEEDINGS OF THE IEEE | Vol. 110, No. 10, October 2022

this definition does not take into account the same ele-
ments in different positions in contrast to, e.g., an edit
distance of sequences [113]. Note that the edit distance
can be approximated by vectors of n-gram frequencies and
their randomized versions akin to hypervectors (see [114]
and [115]).

Another advantage of sequence representation with
superposition is that it allows easily probing of the distrib-
uted representation s. For example, one can check which
element is in position 7 by applying inverse permutation ¢
times to the resultant hypervector. Note that the permuta-
tion of a sequence representation is a general method for
shifting an entire sequence by a single operation. It pro-
duces a shifted sequence where the ith element is now at
the first position, and thus, it can be used to probe the
hypervector of element ¢ from the sequence representation.
For example, when inverting position 3 in s

p*(@) + p'(b) + p’(c) + p~(d) + p*(e)

= ¢+ noise =~ C.

p~2(s)

Probing p~2(s) with the item memory containing hyper-
vectors of all sequence elements will return c¢ as the best
match (with high probability).

The second way of forming the representation of a
sequence involves binding of the permuted hypervectors,
e.g., the sequence above is represented as (denoted by p)

P =0r(a) ©p’(b) ©p°(c) ©p'(d) @ p°(e).

In general, a given sequence S of length k is represented
as

®)

The advantage of this sequence representation is that it
allows forming unique hypervectors even for sequences
that differ in only one position. Section IV-A6 provides
a concrete example of a task where this advantage is
important.

Both mappings allow the replacement of an element
at position 7 in the sequence if the current element at
the ith position is known. When the superposition oper-
ation is used, the replacement requires subtraction of the
permuted hypervector of the current element followed by
the superposition of the permuted hypervector of the new
element. For example, replacing “d” with “z” in position 4
is done as follows:

s—p'(d)+p'(z) = p'(a) + p°(b) + p’(c) + p' (2) + p"(e).

When the binding operation is used in the mapping,
replacement requires the application of the unbinding
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operation between the permuted hypervector of the cur-
rent element and s, followed by binding with the permuted
hypervector of the new element. For the example above

sOp'(d) ©p'(z) = p'(a) @ p°(b) @ p°(c) © p'(2) ® p°(e).

Another feature of both sequence mappings is that
the permutation operation distributes over both binding
and superposition operations. This means that, in both
mappings, the whole sequence can be shifted relative to
the initial position by applying the permutation operation
required number of times. For example, when applying
the permutation operation three times to s for (a, b, c,d, ¢),
we obtain

p’(s) = p"(a) + p°(b) + p°(c) + p*(d) + p*(e).

Thus, p(s) is the shifted version of the original sequence.
This feature can be used for sequence concatenation. For
example, to concatenate (a,b,c,d,e) and (z,y, z), we can
use already calculated s for (a, b, ¢, d, e) as follows:

p*(s) + p* (%) + p' (y) + 0’ (2)
— (@) + p°(b)
+0°(e) + p'(d) + p°(e) + p°(x) + p' () + " (2).

This feature was applied in [116] for searching for the best
alignment (shift) of two sequences that results in the max-
imum number of coinciding elements. Other examples of
using distributed representation of sequences include mod-
eling human perception of word similarity [115], [117],
[118], [119], modeling human working memory [120],
[121], [122], [123], [124], [125], DNA string match-
ing [126], and spell checking [118], [127].

An evident limitation of the above mappings is that, due
to the usage of a random permutation p(), elements of
the sequence in the nearby positions are dissimilar (even
if the elements are the same). A possible way to handle
this limitation is by using locality-preserving representa-
tions to encode positions; see some proposals in [117],
[118], [119], and [128]. Generally, for a given problem,
it might be useful to consider alternative representations
that bind element and position hypervectors. Another lim-
itation is that the representations of the element’s order
here used hypervector transformation by the permutation
corresponding to its absolute position in a sequence. Thus,
the resultant hypervector does not reflect the information
about, e.g., successor/predecessor information. Some ways
of using relative positions when representing sequences in
HD/VSA are investigated in [115].

6) n-Gram Statistics: The n-gram statistics of a sequence
S is the histogram of all length n substrings occurring in
the sequence. The mapping of n-gram statistics to a single
hypervector was presented in, e.g., [84], and includes two

Fig. 4. Example of undirected and directed graphs with five nodes.
In the case of the undirected graph, each node has two edges.

steps using the primitives above: first, forming hypervec-
tors of n-grams, and second, forming a hypervector of
the frequency distribution. The hypervectors of n-grams
are formed as in Section IV-A5 using the chain of binding
operations, i.e., each n-gram is treated as an n-tuple. The
hypervectors of n-grams and their counters are then used
to form a single hypervector for the frequency distribution
as in Section IV-A3. Thus, in essence, this is a frequency
distribution with compound symbols.

The advantage of this mapping is that, in order to create
a representation for any n-gram, we only need to use a
single item memory and several simple operations where
the number of operations is proportional to n. In other
words, with a fixed amount of resources, the appropriate
use of operations allows forming a combinatorially large
number of new representations.

The mapping, obviously, inherits the limitations of its
intermediate steps. That is, due to the usage of the chain of
binding operations (see Section IV-A5), similar n-grams are
going to be mapped to dissimilar hypervectors (assuming
that all n-grams are assigned with random seed hypervec-
tors). Due to the representation of the frequency distribu-
tion (see Section IV-A3), the retrieved values of individual
n-grams can be either overcount or undercount.

This mapping has been found wuseful in several
applications: in language identification [84], news article
classification [129], and biosignal processing [34] that
leveraged its hardware-friendliness [130]. Distributed rep-
resentations were also used to untie the dimensionality of
the hypervector representing n-grams statistics from the
possible number of n-grams, which grows exponentially
with n and would dictate the size of a localist representa-
tion of the n-grams statistics. The same property was also
leveraged for constructing more compact neural networks
using the distributed representation of n-grams statistics as
their input [108], [131], [132].

7) Graphs: A graph (denoted as ) consists of vertices
and edges. Edges can either be undirected or directed.
Fig. 4 presents examples of both directed and undirected
graphs. Following earlier work on graph representations
with hypervectors, e.g., in [56], [133], and [134], we con-
sider the following very simple mapping of graphs into
hypervectors [133]. A random hypervector is assigned
to each vertex of the graph; according to Fig. 4, vertex
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hypervectors are denoted by letters (i.e., a for vertex
“a” and so on). An edge is represented via the binding
operation applied to the hypervectors of the connected
vertices; for instance, the edge between vertices “a” and “b”
is represented as a ® b. The whole graph G is represented
simply as the superposition of hypervectors representing
all edges in the graph, e.g., the undirected graph in Fig. 4 is

g=aGb+ave+boOct+cod+doe.

Note that, if an edge is represented as the result of
the binding of two hypervectors for vertices, it has no
information about the direction of the edge, and therefore,
the representation above will not work for directed
graphs. The direction of an edge can be added applying
a permutation to the hypervector of the incidental node;
the directed edge from the vertex “a” to “b” in Fig. 4 is
represented as a ® p(b). Note that this is just the mapping
of an ordered pair (two-tuple in this case) based on the
binding described in Section IV-A5. Thus, the directed
graph in Fig. 4 is represented by the hypervector

g=a0opb)+acple)+copb)
+dop(c)+eop(d).

The described graph representations g can be queried for
the presence of a particular edge. For graphs that have the
same vertex hypervectors, the inner product is a measure
of the number of overlapping edges. When it comes to the
usage of the described mappings, Gayler and Levy [133]
propose an HD-/VSA-based algorithm for graph matching.
For two graphs for which the correspondence between
their vertices is unknown, graph matching finds the best
match between the vertices so that the graph similarity
can be assessed. In [135], a similar mapping is applied to
the task of inferring missing links of knowledge graphs.
The mapping can also be extended to the case when some
of its parts are learned from the training data; in [136],
representations of knowledge graphs are constructed with
hypervectors of nodes and relations that are learned from
data.

The described mappings have a number of limitations.
First, they do not work for sparse graphs in which vertices
can be entirely isolated because those vertices are not
represented at all. One way to address it is by also super-
imposing to g the hypervectors representing the vertices or
to keep a separate hypervector with the superposition of
all the vertices. Another limitation is that one could come
up with operations that cannot be done directly on the
representation in g. One example of such an operation is
the computation of composite edges in a directed graph
(see details in [137]).

8) Binary Trees: A binary tree is a well-known data
structure where each node has at most two children: the
left child and the right child. Fig. 5 depicts an example
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Fig. 5.
different symbols from the alphabet.

Example of a binary tree from [76] where the leaves are

of a binary tree, which will be used to demonstrate the
mapping of such a data structure into a single hypervector.
We describe a mapping process [76] that involves all three
basic HD/VSA operations and two item memories. One
item memory stores two random hypervectors correspond-
ing to roles for the left child (denoted as 1) and the right
child (denoted as r). Another item memory stores random
hypervectors corresponding to symbols of the alphabet,
which are associated with the leaves. The example below
uses letters so these hypervectors are denoted correspond-
ingly (i.e., a for “a” and so on).

The permutation operation is used to create a unique
hypervector corresponding to the association of the left or
right child with its level in the tree. For example, the left
child at the second level is represented as p*(1). In general,
the level of the node equals the number of times the
permutation operation is applied to its role hypervector.

The chain of the binding operations is used to create
a hypervector corresponding to the trace from the tree
root to a certain leaf associated with the leaf’s symbol. For
instance, to reach the leaf “a,” it is necessary to traverse
three left children. In terms of HD/VSA, this trace will be
represented as follows: a ® 1® p(1) ® p2(1). In such a way,
traces of all leaves can be represented.

Finally, the superposition operation is used to combine
hypervectors of individual traces in order to create a single
hypervector (denoted as t) corresponding to the whole
binary tree. Combining all steps together, the single hyper-
vector for the tree depicted in Fig. 5 will then look like

t=aolopl) opl)
2

+bolopr) ©p (1)

+ecoropr) o p*(l)
+doropr)op’(r)®p’ 1)
+eoropr) e p’(r)© p’(r)
+Eolo pr) © p*(r) © p°(1) © p*(1)
+80lopr) 0 p°(r) 0 p°(1) © p'(r)
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Thus, the information about the tree in Fig. 5 is stored in
a distributed way in the compound hypervector t, which,
in turn, can be queried with HD/VSA operations. For exam-
ple, given a trace of children, we can extract the symbol
associated with the leaf at this trace. Assume that the trace
is right-right-left; then, its hypervector is r ® p(r) ® p?(1).
This hypervector can be unbound from t as

to (rop(r) @ p°(1)) = ¢+ noise.

The result is ¢+ noise because r® p(r) ® p*(1) cancels out
itself in t and, thus, releases ¢, which was bound with this
trace. Since there were other terms in the superposition
t, they act as crosstalk noise for ¢, hence denoted as
noise. Thus, when ¢ + noise is presented to the item
memory, the item memory is expected to return c as the
closest alternative with high probability. The inverse task
of querying the trace with a given leaf symbol is more
challenging because the resultant hypervector corresponds
to a chain of binding operations, e.g., for ¢, we get

toec=r0p(r)©p°(l) + noise.

In order to interpret the resultant hypervector, one has
to query all hypervectors corresponding to all possible
traces in a binary tree of the given depth, where the
number of traces grows exponentially with the depth of the
tree. This is a significant limitation of the representation.
This limitation can, however, be addressed in part by the
resonator network [76], [77] (see Section III-C).

We do not cover the details of factoring trees with the
resonator network here, but the interested readers are
referred to [76, Sec. 4.1]. It should, of course, be noted
that resonator networks are not limitless in their capabili-
ties, since as reported in [77], for the fixed dimensionality
of hypervectors their capacity decreases with the increased
number of factors (i.e., tree depth in this case). Neverthe-
less, they still seem to be the best alternative to tackle
the problem (cf. [77, Fig. 3])—their search space scales
quadratically with V.

The presented mapping is, of course, not the only pos-
sible way to represent binary trees. For example, in [44],
it was proposed to use two different random permutations
for representing nested structures. This mechanism can be
applied to trees as well by using these different random
permutations instead of 1 and r.

Last but not least, note that the mapping for binary
trees can be easily generalized to trees with nodes having
more than two children by superimposing additional role
hypervectors in the item memory. Also, filler hypervectors
for the leaves do not have to be seed hypervectors—they
could represent any compound structure.

9) Stacks: A stack is a memory in which elements are
written or removed in a last-in-first-out manner. At any

given moment, only the top-most element of the stack can
be accessed, and elements written to the stack before are
inaccessible until all later elements are removed. There
are two possible operations on the stack: writing (push-
ing) and removing (popping) an element. The writing
operation adds an element to the stack—it becomes the
top-most one, while all previously written elements are
“pushed down.” The removing operation allows read-
ing the top-most element of the stack. Once read, it is
removed from the stack, and the remaining elements are
moved up.

HD-/VSA-based representations of a stack were pro-
posed in [41] and [138]. The representation of a stack
is essentially the representation of a sequence with the
addition of an operation that always moves the top-most
element to the beginning of the sequence. For example,
if “d,” “c,” and “b” were successively added to the stack,
then the hypervector for the current state of the stack is

s =b+ p(c) + p*(d).

Thus, the pushing operation is implemented as the con-
catenation of two sequences (i.e., a new element to be
written and the current state of the stack) using their cor-
responding hypervectors (see Section IV-A5). In particular,
the hypervector of the newly written element is added to
the permuted hypervector of the current state of the stack.
For instance, writing “a” to the current state s is done as
follows:

s=a+p(s) = a+p(b) + p’(c) + p’(d).

The popping operation includes two steps. First, s is probed
with the item memory of elements’ hypervectors in order
to get the closest match for the seed hypervector of the
top-most element. Once the hypervector of the top-most
element is identified (e.g., a in the current example), it is
removed from the stack, and the hypervector representa-
tion of the stack with the remaining elements is moved
back by the permutation operation

p~'(s—a) = p '(p(b) + p°(c) + p*(d))
— b+ p(e) + 4(d).

When it comes to the limitations of this representation,
there are several things to keep in mind. First, the popping
operation will not work well if the hypervector represent-
ing the stack is normalized after each writing operation,
so the operations described above assume that s is not nor-
malized. Second, the size of the stack that can be retrieved
reliably from s depends on the dimensionality of s. Third,
if the alphabet of symbols that can be stored in the stack is
large, then the probing process for the popping operation
might be a computationally demanding step. Fourth, if the
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Token (t)
Push (p),
Token (t)
Push (p)
Fig. 6. Example of a state diagram of a finite-state automaton

modeling the control logic of a turnstile. It has two states. The start
state is depicted by the arrow pointing from the black circle.

stack is going to store compound hypervectors, then the
popping operation would be more complicated as it either
would require the item memory storing all compound
hypervectors (this option quickly expands the item mem-
ory) or would need to incorporate a retrieval procedure
assuming the knowledge of the structure of the compound
hypervectors so that they could be parsed.

The main foreseen application of the presented repre-
sentation is within some control structures as a part of
HD/VSA systems. For example, it was used in [41] in a
proposal for implementing stack machines and in [138]
as a part of HD/VSA implementation of a general-purpose
left-corner parsing with simple grammars.

10) Finite-State Automata: A deterministic finite-state
automaton is an abstract computational model; it is speci-
fied by defining a finite set of states, a finite set of allowed
input symbols, a transition function, the start state, and
a finite set of accepting states. The automaton is always
in one of its possible states. The current state can change
in response to an input. The current state and input
symbol together uniquely determine the next state of the
automaton. Changing from one state to another is called a
transition. The transition function defines all transitions in
the automaton.

Fig. 6 presents an intuitive example of a finite-state
automaton, the control logic of a turnstile. The set of states
is {“Locked,” “Unlocked”}, and the set of input symbols is
{“Push,” “Token”}. The transition function can be easily
derived from the state diagram in Fig. 6.

HD-/VSA-based implementations of finite-state
automata were proposed in [40] and [41]. Similar
to binary trees, the mapping involves all three HD/VSA
operations and requires two item memories. One item
memory stores seed hypervectors corresponding to
the set of states (denoted as 1 for “Locked” and u
for “Unlocked”). Another item memory stores seed
hypervectors corresponding to the set of input symbols
(denoted as p for “Push” and t for “Token”). The
hypervectors from the item memories are used to form
a single hypervector (denoted as a), which represents
the transition function. Note that the state diagram of
a finite-state automaton is essentially a directed graph
in which each edge has an input symbol associated with
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it. Therefore, the mapping for the transition function
is very similar to the mapping of the directed graph in
Section IV-A7. The only difference is that the binding of the
hypervectors for the vertices (i.e., states) involves, as an
additional factor, the hypervector for the input symbol,
which causes the transition. For example, the transition
from “Locked” state to “Unlocked” state, contingent on
receiving “Token,” is represented as

tolopu).

Given the distributed representations of all transitions of
the automaton, the transition function a of the automaton
is represented by the superposition of the individual tran-
sitions

a=po10 o)+t 10 p(w)+p O ue p()+to u e p(g).

In order to calculate the next state, we query a with the
binding of the hypervectors of the current state and input
symbol followed by the inverse permutation operation
applied to the result. Calculated in this way, the result is
the noisy version of the hypervector representing the next
state. For example, if the current state is 1 and the input
symbol is p, then we have

p '(@aep®l)=1+noise.

As usual, this hypervector should be passed to the
item memory in order to retrieve the noiseless seed
hypervector 1.

The same mapping can be used to create a hypervector
representing a nondeterministic finite-state automa-
ton [139]. The main difference between determinis-
tic finite-state automata is that the nondeterministic
finite-state automaton can reside simultaneously in sev-
eral of its states. The transitions do not have to be
uniquely determined by their current state and input sym-
bol, i.e., there can be several valid transitions from a
given current state and input symbol. The nondeterministic
finite-state automaton can assume a so-called generalized
state, defined as a set of the automaton’s states that are
simultaneously active. The generalized state corresponds
to a hypervector representing the set of the currently
active states with (6). Similar to the deterministic finite-
state automata, the hypervector for the generalized state
is used to query the automaton to get a hypervector for
the next generalized state. This corresponds to parallel
execution of the automaton from all currently active states.
It should also be noted that, in the case of the nonde-
terministic finite-state automaton, due to the potential
presence of several active states, the cleanup procedure
(see Section III-C) has to search for several nearest neigh-
bors. Please see Section IV-B2 for an example of such a
procedure.
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Fig. 7. Average accuracy of the recall of the next state of the
automaton from a, which was bipolarized, against the
dimensionality of hypervectors (N c [100,4000] with a step of 100).
The results were obtained from over 50 random initializations of the
item memories. For each initialization, 1000 transitions (chosen
randomly) were performed. For each transition function, noise
added to a was also generated at random. BERs were in the range of
0.0312-0.2500; BER is defined as the percentage of bits (here,
dimensions) that have errors relative to the total number of bits.

In Section IV-B2, we will see an example of how to
compute with hypervectors representing automata, but the
most obvious application of the presented representation
is to execute the automaton in the presence of noise in
hypervectors. Fig. 7 presents the accuracy of the correct
recall of the next state from a bipolarized hypervector
representing an automaton with 22 states and 29 symbols.
The figure shows how the accuracy changed with the
dimensionality of hypervectors for different values of noise
in a. As expected, we see that, for every amount of noise,
there is eventually a dimensionality that allows a perfect
recall—an elegant property that can be simply leveraged
for executing a deterministic behavior in a very stochastic
environment.

While, currently, there are not many HD/VSA applica-
tions that use finite-state automata (but we will see one in
Section IV-B2), there is potential in such a mapping as it
naturally allows using HD/VSA as a medium for executing
programs that can be formalized via automata. Moreover,
the primitives for stacks and finite-state automata can
be combined to create richer computational models, such
as deterministic pushdown automata or stack machines;
see [41] for a sketch of a stack machine operating with
hypervectors. An alternative representation for pushdown
automata and context-free grammars has been recently
presented in [42].

Finally, it should be noted that the presented mapping is
designed for executing an automaton; however, it is limited
in the sense that it cannot be used directly to modify it or
to perform composition operations (e.g., combining it with
another automaton).

11) Deeper Hierarchies: Finally, it is important to
touch upon constructing data structures encoding deep
hierarchies. In Sections IV-A2-IV-A10, we concentrated

mainly on data structures with a single-level hierarchy.
In fact, this is what most of the current studies in the
area used. Therefore, we will not go into technical details
of existing proposals. HD/VSA, however, is well-suited
for representing many levels of hierarchy, and the rep-
resentation of hierarchical data structures was a part of
the original motivation right from the start (see [51]).
The representation of binary trees in Section IV-A8 can
already be seen as a hierarchy since a tree has several
levels and the representation should be able to discrimi-
nate between different levels. In the presented mapping,
this was done using powers of permutation to protect
different levels of hierarchy. This can be done in some
other ways by, e.g., assigning special role hypervectors
for each level. Currently, the usage of representations for
hierarchies in HD/VSA is relatively uncommon. We mainly
attribute this fact to the nature of applications that are
being explored, rather than to the capabilities of HD/VSA.
The use cases, which relied on the representation of
the hierarchical representations, are the representation of
analogical episodes [36], [53], distributed orchestration
of workflows [79], and representation of hierarchies in
WordNet concepts [140]. It has also been argued that the
representation of hierarchical data structures via HD/VSA
is an important feature for modular learning where mod-
ules at different levels of hierarchy can communicate
with such representations [37], [141]. Finally, there is
a recent proposal that suggests that the JSON format
with several levels of hierarchy can be represented in
hypervectors [142].

B. Computing in Superposition With HD/VSA

1) Simple Examples of Computing in Superposition: A
well-known data structure—Bloom filter [103]—is the
simplest case of computing in superposition. The Bloom
filter is a sketch as a fixed-size memory footprint is used
to represent a set of elements. A Bloom filter encodes
a set as a superposition of its elements’ sparse binary
vectors, which, in essence, corresponds in HD/VSA to a
compound hypervector representing sets. Thus, the Bloom
filter directly corresponds to the primitive for representing
sets, as described in Section IV-A2. With Bloom filters, the
algorithm for searching an element in a set is a single
operation of comparing the similarity of the distributed
representation of the query element to the Bloom filter
instance. In other words, all elements of the set are tested
in one shot, i.e., the search is performed as a computation
in superposition. It enables solving the approximate mem-
bership query task instantaneously. This illustrates a simple
instance of computing in superposition. Bloom filters are
highly specialized for one particular task. In contrast,
HD/VSA constitutes a broad framework for computing in
superposition, containing Bloom filters as a subclass [78].
We have already seen other examples in Section IV-A for
computing in superposition with HD/VSA, such as the
primitives for recursive construction of sequence repre-
sentations [see (7) and (8)] and, in Section IV-A4, the
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Fig. 8. Automaton for the base string “hello.”

forming of a representation for the cross-product of two
sets via a single binding operation. In these examples, the
distributivity of HD/VSA operations (see Section III-B4)
played an important role.

2) Computing in Superposition for Substring Search:
Finding a substring within a larger string is a standard
computer science problem with numerous algorithms
(e.g., [143], [144], and [145]) that have a linear
complexity on the total length of the base and the
query strings. Recently, an algorithm based on non-
deterministic finite-state automata was formulated with
HD/VSA [146]. It nicely demonstrates how HD/VSA can
solve computer science problems, so we briefly explain it
here.

Each position of a symbol in the base string is mod-
eled as a unique state of the nondeterministic finite-state
automaton S = {so, $1, S2, - - - , $n }. For example, the string
“hello” generates an automaton with six states: sy through
ss. The transitions between states are defined by the base
string’s (denoted B) symbols b; from B = {b1,ba,...,bn}.
Fig. 8 illustrates the automaton for the string “hello.” The
nondeterministic finite-state automaton is then defined by
tuple < S,so, B,T >, where s is the start state of the
automaton and 7 is the set of transition tuples of the form
ti = < s;_1,bi,s; >, where s;,_; and s; are the start and
end states of a particular transition caused by symbol b;.
The elements of sets B and S are represented by i.i.d.
random hypervectors (denoted in bold). The hypervector
3 of the automaton for the base string is constructed as
(cf. Section IV-A10)

| B

B=> s 10bi@p'(s:) ©)
i=1

Thus, 3 is the superposition of all the automaton’s tran-
sitions caused by sequential input of symbols of the base
string. Note that this representation corresponds to the
primitive for the finite-state automata, as described in
Section IV-A10.

The algorithm for finding whether a query string Q =
{@1,...,q} is a part of the base string B is a sequential
retrieval of the next state of automaton 3 for each symbol
of the query string g;. In terms of hypervectors, this is

p;=p (P;1©B0OQ) (10)

where p; denotes the hypervector that includes the hyper-
vector(s) of the next generalized automaton state (given
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symbol ¢;), as well as crosstalk noise. Equation (10) is also
a primitive from Section IV-A10. Note, however, that the
generalized state may include one or several states s;. The
set of valid (i.e., permitted) previous generalized states is
initialized as py, = 3_, gsi, which is a superposition of
all the states of the base string. Since the operation in (10)
is performed on the superimposed set of all states, it is
qualified as computing in superposition.

While the algorithm presented in [146] works in princi-
ple (confirmed experimentally but not reported here), the
required dimensionality of hypervectors grows extremely
fast with the length of strings since every step of (10)
introduces additional crosstalk noise to p,. Crosstalk noise
can be reduced by a cleanup procedure on p; after every
execution of (10)

p, =SS'p; (11)

where S € [N,n + 1] denotes the item memory storing
hypervectors for the unique states of the base string,
S = {so,s1,52,...,8.}. This primitive uses the idea of
projecting predictions back onto the item memory, and it
was introduced in Section III-C as a part of the resonator
network [see (5)].

We simulated the modified algorithm for searching a
fixed length query substring (30 symbols) in the base string
of four different lengths (see Fig. 9). The average accuracy
in 30 simulation runs is plotted against the varying dimen-
sionality of hypervectors. In every simulation run, 100 dif-
ferent random base strings were used. In approximately
half of the searches, the query substring was present in
the base string, so a single simulation run determines the
accuracy of correctly detecting when a substring is present
and when it is not (thus, the accuracy of a random guess
is 0.5). With increasing dimensionality of hypervectors, the
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Fig. 9. Search of a substring in superposition with HD/VSA using

the modified algorithm from [146]. The length of a substring was
fixed to 30. The reported values were averaged over 30 simulations.
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accuracy of detecting a substring increases and eventually
approaches 1. For longer base strings, it would require
larger dimensions of the hypervectors to achieve high accu-
racy. Nevertheless, it scales much better than the original
algorithm for which we were not able to simulate large
enough dimensionalities that would provide reasonable
accuracy.

The substring search provides lessons for computing
in superposition with HD/VSA. Both algorithms use it;
the original one requires a large dimensionality to reduce
crosstalk sufficiently, while the modified one includes an
extra cleanup step to reduce the required dimensionality
significantly—but it also increases the algorithmic com-
plexity. In particular, the asymptotic computational com-
plexity of the query algorithm in HD/VSA operations is
O(|Q)) for the original algorithm versus (O(|Q||B|) for
the modified algorithm. However, in terms of hypervector
dimensionality, the original algorithm required much more
space than the modified algorithm. Another consequence
of long hypervectors required by the original algorithm
is that, despite not requiring an extra cleanup step (11),
the total number of operations would be higher due to
much shorter hypervectors used by the modified algo-
rithm. Moreover, with appropriate implementation of the
HD/VSA algorithm on parallel hardware, the cleanup step
in (11) can be parallelized’ using, e.g., in-memory com-
puting architectures with massive phase-change memory
devices [147]. When executed on such hardware, the
time complexity of the modified algorithm also becomes
0(|Q|).> Thus, computing in superposition in HD/VSA
is natural but can require very high dimensionality for
managing crosstalk. Steps to manage the crosstalk can
be added to the algorithm at no compute time costs if
the algorithm is properly mapped on parallel hardware
(see [126] for the acceleration of DNA string matching
with HD/VSA).

Last, it is important to note that we do not claim that
the substring search will be a practically useful applica-
tion of computing in superposition since its computational
complexity exceeds that of the conventional algorithms
optimized for the problem. However, we think that this
example has a didactic value as it clearly demonstrates
how the primitives for representing data structures from
Section IV-A can be connected to a well-known computer
science problem. Thus, it serves as an important illustra-
tion of the lines along which one should think to utilize
computing in superposition. In the following, we elaborate
on more practical (but not always explicit) contemporary
examples of using computing in superposition.

3) Applications of Computing in Superposition: In the
long term, we anticipate the resonator networks [76], [77]

2For the sake of fairness, it should be noted that the conventional
substring search algorithms could also be parallelized.

30f course, the size of the chip places limitations on the dimen-
sionality of hypervectors and the number of hypervectors in the item
memory.

(see Section III-C) to become a pivotal mechanism in
many solutions based on computing in superposition since
they use the idea of removing crosstalk noise from the
predictions represented in the superposition. In particular,
we believe that this idea would be important to efficiently
solve nontrivial combinatorial search problems. There are
already a couple of proposals for, e.g., scene decomposi-
tion [148] and prime factorization [149], but they are yet
to be demonstrated at scale.

In a short term, there is another practical direction
for the application of computing in superposition that
is already being used to tackle a large problem—
enhancement of capabilities of machine learning algo-
rithms (often neural networks). In the following,
we briefly explain the role computing in superposition
plays in approaches proposed within this direction since,
in our opinion, it is a unifying theme that will, hopefully,
inspire more approaches for machine learning algorithms
enhancement.

A recent connection, introduced in [102] and [150],
between a method for representation of numeric data
as hypervectors [51], [67], [68] and kernel methods
allowed representing functions as compound hypervectors
of weighted sets (see Section IV-A2). This finding, in turn,
allowed a one-shot evaluation of kernel machines since the
whole model can now be stored in the superposition as a
compound hypervector. The one-shot evaluation principle
was demonstrated on probability density estimation [102],
[150], [151], kernel regression [102], [150], Gaussian
processes-based mutual information exploration [152],
and rules search in superposition [153]. The distributed
representations of numeric data can also be very useful
even without formal links to the kernel methods. They
can be used to store in superposition multiple locations of
interest on a 2-D grid that has been shown to be impor-
tant for, e.g., implementing agent’s memory for cognitive
maps [154], navigation in 2-D environments [67], [154],
and reasoning on 2-D images [67], [148], [155].

When it comes to approaches for augmenting neural
networks, in [156], the weights of multiple deep neural
networks trained to solve different tasks were stored jointly
in superposition using a single compound hypervector.
This approach addressed the so-called “catastrophic forget-
ting” phenomenon by using a unique random permutation
assigned to each task that allows networks to co-exist in the
compound hypervector without much interference. These
permutations were used as keys to extract the correspond-
ing network’s weights from the superposition hypervector.
A big leap of such an approach is that new networks
can be added gradually into the superposition hypervector
without significant degradation of the performance of the
previously included networks.

Another approach combining computing in superposi-
tion and neural networks was presented in [157]. There,

4We additionally review some of these works in the context of
connections to hardware realizations of HD/VSA in Section V-B2.
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activations of the network’s layers from a single data sam-
ple were used in place of value hypervectors. They were
bound to the corresponding random key hypervectors, and
all hypervectors of the key-value pairs were aggregated in a
single compound hypervector. Since the compound hyper-
vector simultaneously keeps all the activations, calculating
the similarity between two such hypervector corresponds
to an aggregate similarity score between two data sam-
ples. This property was leveraged successfully to detect
out-of-distribution data. In a similar way, in [158] and
[159], activations of multiple neural network-based image
descriptors were combined together into a compound
hypervector simultaneously representing the aggregated
descriptor. Such hypervectors allowed an efficient image
retrieval for visual place recognition tasks. A different
combination of a neural network and a compound hyper-
vector of the key-value pairs was reported in [160], where
the compound hypervector was used to simultaneously
represent the output of a neural network when solving
multilabel classification tasks.

From the descriptions above, one can notice a striking
pattern—most of the approaches relied on the primitive for
representing sets, in general, and sets of key-value pairs,
in particular. This is likely because the latter is a simple
yet nontrivial data structure. We, thus, anticipate that more
new approaches can be conceived by expanding to more
sophisticated data structures.

V. HARDWARE REALIZATIONS
OF HD/VSA

A. HD/VSA Models for Different Types of
Hardware

The computational primitives of HD/VSA connect the
algorithmic level of Marr’s computing hierarchy (see
Fig. 1) to the computational level. At the same time,
an HD/VSA placed at the algorithmic level also interfaces
with the implementation level. While the computational
primitives are generic across different HD/VSA models,
the model choice can become critical when it comes to
interfacing with a particular physical substrate.’ This sug-
gests a general design pattern when designing an HD/VSA
system to be implemented on emerging hardware: the
desired computation is formalized in terms of the generic
HD/VSA computational primitives, and then, the specific
HD/VSA variant best suited for this emerging hardware is
used in implementing these primitives. Here, we describe
some of the existing HD/VSA models and examples of how

STt should be noted that there exist subtleties when it comes to
computational primitives of different HD/VSA models (see [62] for
a discussion). Thus, strictly speaking, the model choice may not be
only influenced by a physical substrate but also by the nature of the
task at the computational level. To put it simply, not all HD/VSA
models are interchangeable. This is not entirely unexpected since, if a
framework can provide tight matches between computation and hardware
to enable efficiency, the separation between abstraction and physical
realization cannot be perfect. Thus, for the sake of narration in this
section, we focus on the availability of an efficient mapping between
some physical substrate and some HD/VSA model.
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they can be implemented in different hardware. Different
HD/VSA models can be distinguished in terms of the prop-
erties of seed hypervectors and corresponding algebraic
operations.

1) Dense Binary Vectors: The binary spatter codes [55]
model uses dense binary vectors. Superposition is done by
the componentwise majority rule followed by tie-breaking,
and binding is by the componentwise XOR. Due to its
discrete nature, binary spatter code is highly suitable for
conventional digital application-specific integrated circuits
(ASICs). The first ASIC design [130] was made in 65-nm
CMOS for language recognition, followed by more pro-
grammable designs in 28 nm [161] and 22 nm [162]. It has
been also mapped on a 28-nm FD-SOI silicon prototype
with four programmable OpenRISC cores operating in a
near-threshold regime (0.7-0.5 V) [163]. Overall, in the
binary spatter codes model, the hypervectors are station-
ary and robust, and related binary operations are local
and simple. This provides a natural fit for implementing
the model on non-von Neumann architectures (a.k.a. in-
memory computing) using emerging technologies, such
as carbon nanotube FETs and resistive RAM [26], [164],
[165], and phase-change memory [16], [147]. Specifically,
Karunaratne et al. [16] describe how to organize compu-
tational memories for storing and manipulating hyper-
vectors, whereby the operations are implemented inside,
or near, computational memory elements.

2) Integer Vectors: The MAP model [54], the HD/VSA
model that we have used in the examples so far as the
default, employs bipolar (+1s and —1s) hypervectors,
componentwise multiplication, and superposition with
possible thresholding. The MAP model will usually suit the
same technologies as binary spatter codes. For example,
it was recently implemented on an FPGA for hand gesture
recognition [166].

3) Real-Valued Vectors: The HRR model [52] was orig-
inally done with N-dimensional real-valued hypervectors
whose components are i.i.d. normal with zero mean and
1/N variance. Superposition is done by the normalized
vector sum, and binding is done by circular convolution.
It has been shown how to map real-valued hypervectors
onto spiking neurons using the principles from the neural
engineering framework [167] with the help of spike-rate
coding. For example, the Spaun cognitive architecture [38]
has been implemented in such a way. Most of the studies
were done using simulations in Nengo [168], which is a
Python-based package for simulating large-scale spiking
neural networks. Nevertheless, Nengo has compilers for
popular neuromorphic platforms, such as SpiNNaker and
Loihi; therefore, it is straightforward to deploy a model
built in Nengo on the neuromorphic platforms.

4) Complex Vectors: In the Fourier HRRs [53], vector
components are random phasors, superposition is by com-
ponentwise complex addition followed by normalization,
and binding is by componentwise complex multiplication
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(addition of phasors) [53]. This HD/VSA model should
be suited for implementations on coupled oscillator hard-
ware [169]; however, we are not aware of any concrete
hardware realizations as of yet. Another alternative is
mapping complex HD/VSA to the neuromorphic hard-
ware [24] by representing phasors with spike times [170].
This implementation is particularly interesting because the
neuromorphic hardware scales up more easily than the
current approaches to coupled oscillator hardware. How-
ever, no neuromorphic implementation of a full complex
HD/VSA has been reported to date.

5) Sparse Vectors: Traditional HD/VSA models use
densely distributed representations. However, sparsity is
an important ingredient of energy-efficient realizations in
hardware. Thus, HD/VSA models that use sparse repre-
sentations are important for mapping HD/VSA operations
efficiently onto hardware. We are aware of two such
models: SBDRs [56], [57] and sparse block codes [58],
[59]. In the SBDRs model, the hypervectors are sparse
patterns without any restrictions on placing the active com-
ponents, while, in sparse block codes, the hypervectors are
divided into blocks of the same size (denoted as K) with
just one single active component per block. The SBDRs
model was implemented around 1990 in specialized
hardware—*“associative-projective neurocomputers” [49].
This hardware was designed to operate efficiently with
sparse representations [56] by using simple bitwise log-
ical operations and a long word processor with 256 bits
(later with 512 and 2048 bits, implemented by Wacom,
Japan). For cleanup memory, it used Willshaw-like asso-
ciative memories, following earlier ideas to implement
such memory networks [171] and motivated by theoretical
results suggesting high memory capacity [70], [71], [172],
[173], [174], [175]. Concerning HD/VSA with sparse
block codes, in particular with complex-valued sparse vec-
tors, they seem to be the most amenable for implemen-
tations on neuromorphic and coupled oscillator hardware.
Currently, there are two proposals for implementing binary
sparse block codes in spiking neural network circuits [17],
[18]. The proposal in [17] has been implemented on Intel’s
Loihi [24], while the one from [18] has not been realized
in hardware yet, but it has been implemented in the Brian
2 simulator [176].

B. Mapping Algorithms to Hardware

1) Hardware Implementations of Pure HD/VSA: How do
implementations of HD/VSA in existing conventional hard-
ware produce gains over conventional machine learning
methods? On a dedicated digital ASIC design, it has
been demonstrated that HD-/VSA-based classification can
lower the energy by about 2x compared to a k-nearest
neighbors classifier for the European language recognition
task [130]. By running these classifiers on the Nvidia Tegra
X2 GPU, HD/VSA exhibited over 3x lower energy per
prediction [161]. Considering a wide range of biomed-
ical signal classifications, HD/VSA achieved at least the

same level of accuracy compared to the baseline meth-
ods running on the conventional programmable hardware,
however, at 2x lower power compared to the fixed-point
SVM for EMG classification on the embedded ARM Cortex
M4 [163], 2.9x lower energy compared to SVM, and
over 16x compared to CNN and LSTM for iEEG classifi-
cation on the Nvidia Tegra X2 [107]. More details for this
benchmarking are available in [34]. Using the PageRank
centrality metric, HD/VSA achieved comparable accuracy
with 2x faster inference compared to the graph kernels
and neural networks for graph classifications on the Intel
Xeon CPUs [177]. These improvements are due to the fact
that the HD-/VSA-based solutions mostly use basic bitwise
operations, instead of fixed- or floating-point operations.

Another appealing property of HD-/VSA-based solutions
is their great robustness, for example, they tolerate 8.8x
higher probability of failures with respect to intermittent
hardware errors [130] and 60x higher probability of
failures with respect to permanent hardware errors [26].
This robustness makes HD/VSA ideally suited to the
low signal-to-noise ratio and high variability conditions
in the emerging hardware, as discussed in more detail
in [43]. Among them, as a large-scale experimental
demonstration [16] of HD/VSA, it was implemented on
760000 phase-change memory devices performing ana-
log in-memory computing with 10 000-dimensional binary
hypervectors for three different classification tasks. The
implementation not only achieved accuracies comparable
to software implementations—despite the nonidealities in
the phase-change memory devices—but also achieved over
6x end-to-end energy saving compared to an optimized
digital ASIC implementation [16].

The connection of HD/VSA to spiking neuromorphic
hardware is not obvious since all classical HD/VSA models
used abstract connectionist representations, not spikes.
However, recent work has demonstrated that representa-
tions of a complex HD/VSA model, Fourier HRRs [53], can
be mapped to spike timing codes [170]. Although focused
just on content-addressable memory, i.e., item memory,
this work opens avenues for efficient implementations
of full HD/VSA models on neuromorphic hardware [9].
Because neuromorphic hardware often optimizes spike
communication for sparse network connectivity, the scal-
ing properties of neuromorphic HD/VSA will potentially
outperform other types of hardware. Furthermore, neu-
romorphic hardware might enable hybrid approaches
by integrating HD/VSA with other computing frame-
works. For instance, an event-based dynamic vision sen-
sor (as a front-end spiking sensor) has been combined
with sparse HD/VSA leading to 10x higher energy effi-
ciency than an optimized nine-layer perceptron with
comparable accuracy on an eight-core low-power digital
processor [89].

The results above bring a question worth discussing—
what are the common hardware primitives enabling these
gains? The most common architectural primitives that are
observed in the hardware implementations can, actually,
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be naturally mapped to basic elements (see Section III-A)
and operations (see Section III-B) of HD/VSA. For exam-
ple, let us consider the implementations of the binary spat-
ter codes model based on phase-change memory devices
reported in [16] and the sparse block codes model on
spiking neural network circuits described in [18]. The
basic hardware primitives lying at the core of these imple-
mentations were item memory circuit (cf. [16, Fig. 1]
and [18, Sect. III-Ala]), superposition operation -cir-
cuit (“the complete in-memory HD system” in [16] and
[18, Fig. 2]), binding operation circuit (cf. [16, Fig. 3]
and [18, Fig. 4]), and circuit for probing (cf. [16, Fig. 2]
and [18, Fig. 3]).

The fact that the basic HD/VSA elements and operations
are the most common hardware primitives should not be
surprising because, as it was demonstrated in Section IV-A,
they are the key building blocks of all the computational
primitives in the “HD/VSA cookbook.” This implies that,
given the hardware implementation of the most basic
elements, it is possible to construct architectures for com-
positional primitives that might, e.g., combine the usage
of several HD/VSA operations. This, of course, does not
mean that there is no other way to approach hardware
implementation of HD/VSA. In fact, there are incentives to
design implementations targeting concrete compositional
primitives, and they were even present in the two above
works, e.g., a circuit for representing n-grams (see [16,
Fig. 3]) and a circuit for representing a set of key-value
pairs (see [18, Fig. 5]). The main incentive for doing
so is to increase the efficiency of the implementation
since it allows applying, e.g., computational reuse. A vivid
example of such an approach is a circuit from [130] (cf.
[130, Fig. 3]) for generating hypervectors of trigrams (see
Section IV-A6) that used Barrel shifters to minimize the
switching activity during the permutation operations. Note
that the same circuit could have been designed using the
hardware primitives for binding and permutation oper-
ations as the building blocks, but such a design would
come at the price of reduced efficiency. Another common
bottleneck in the hardware implementations of machine
learning applications of HD/VSA is the item memory (cf.
[161, Fig. 8]). The presence of this bottleneck caused
researchers to consider ways of efficiently eliminating it.
A prominent way to do so is the rematerialization of
the item memory using inexpensive recurrent methods,
as proposed in [162], [178], and [179]. This idea of
rematerialization created room for trading off the sys-
tem’s dynamic and leakage powers and was demonstrated
to increase energy efficiency in scenarios involving, e.g.,
biosignal processing [162], [180], [181].

In summary, we can argue that hardware
implementations of HD/VSA rely on architectural
primitives corresponding to the basic elements and
operations of HD/VSA. However, in order to increase
the efficiency, it is also common to design circuits imple-
menting compositional computational primitives from
Section IV-A.
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2) HD/VSA Combined With Neural Networks: The afore-
mentioned works have demonstrated the benefits of
HD/VSA on relatively small-scaled classification tasks.
In order to approach more complex tasks, a common
strategy is to combine some of the basic HD/VSA prim-
itives (discussed in Section IV-A) with neural networks.
For instance, representations from pretrained neural net-
works have been used with the HD/VSA primitives to
compactly represent a set of key-value pairs to gener-
ate image descriptors for visual place recognition [158],
[159]. One step further, the deep neural networks were
trained from scratch to be able to directly generate desired
hypervectors that were further bound or superposed by
HD/VSA operations to represent the concepts of inter-
est [147], [153], [182]. They achieved state-of-the-art
accuracy compared to the stand-alone deep learning solu-
tions in various tasks involving images, including few-
shot learning [147], continual learning [182], and visual
abstract reasoning [153]. The hardware implementation of
such hybrid architectures may vary. For instance, the asso-
ciative memory for few-shot learning was implemented
on the phase-change memory devices to execute searches
in constant time, while the neural network was imple-
mented externally [147]. Alternatively, the whole archi-
tecture for the visual abstract reasoning was executed on
CPUs, whereby leveraging HD/VSA leads to two orders of
magnitude faster execution than the functionally equiva-
lent symbolic logical reasoning [153].

VI. DISCUSSION

HD/VSA has been criticized for lacking a structured
methodology to design systems and missing well-defined
design patterns [86]. Here (see Section IV-A), we compiled
existing computational primitives with HD/VSA that paint
a different picture. There is an HD/VSA methodology
addressing a wide range of applications, but it is scattered
throughout the literature. In addition to compiling existing
work, we laid out design principles for building distributed
representations of data structures, such as sets, sequences,
trees, and key-value pairs. This demonstrates a rich algo-
rithmic and representation-level approach that one can use
as an abstraction for the next generation of computing
devices.

Our compilation of varied HD/VSA primitives also sug-
gests that, contrary to some earlier assessments (see [183]
and the commentary in [184]), the repertoire potential
of HD/VSA applications is extremely wide, ranging from
low-level sensory processing to high-level reasoning. While
we provided an extensive introduction to HD/VSA and
a comprehensive collection of computational primitives
and existing connections to computing hardware, it was
not our goal to provide a complete overview of the area
such as, e.g., a review of all existing HD/VSA models. We
do however, hope that this article will motivate readers
to explore the current state of the area that is covered
in detail in a two-part survey covering both fundamen-
tals [73] and applications [185]. We think that the strength
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of HD/VSA benefits applications where there is a need for
a computing framework constructing transparent composi-
tional distributed representations that will allow interfac-
ing unconventional parallel computing hardware. It is not
obvious how to achieve this with, e.g., modern neural net-
works, though it should be noted that there is increasing
empirical evidence demonstrating that certain problems
benefit from hybrid approaches combining elements from
HD/VSA and neural networks.

That being said, it is still important to admit the
limitations and challenges of HD/VSA, and therefore,
before ending this article, we would like to mention them
(see Section VI-A). We conclude by discussing the role
of HD/VSA as a framework for computing with emerging
hardware (see Section VI-B).

A. Limitations and Open Challenges

Here, we would like to emphasize some of the limi-
tations of HD/VSA that are directly related to the scope
of this article: applications (see Section VI-A1l), dimen-
sionality of hypervectors (see Section VI-A2), and flow
control (see Section VI-A3). For a broader discussion of
open challenges, we kindly refer the reader to the section
“Open Issues” in [185].

1) Applications: There have been numerous attempts
to use HD/VSA in problems within various application
domains (see [185] for detailed coverage). Some well-
known examples of using HD/VSA include word embed-
ding [186], [187] (though largely overshadowed by [188],
[189]), analogical reasoning [13], [97], cognitive archi-
tectures [37], [38], and modeling [190], [191], as well as
solving classification tasks [15], [34]. It must be admit-
ted, however, that most of these use cases were limited
to small scope problems; therefore, there is still a need
to demonstrate how HD-/VSA-based solutions scale up
to real-world computational problems and, what is also
important, to identify niches where the advantages of
HD/VSA are self-evident. We think that further research
will eventually address this limitation as we see two recent
developments in this direction. First, there is a continuing
trend towards extending HD/VSA to novel domains—
promising recent examples include applications in commu-
nications [83] and distributed systems [79]. Second, there
is an increasing number of studies (see Section V-B2 and,
e.g., [147], [153], [156], [158], [160], and [192]) that
combine neural networks and HD/VSA primitives. This
seems to be a promising way to scale up HD-/VSA-based
solutions to real-world problems in the short-term.

2) HD/VSA Dimensionality and Working Memory: The
key feature of data representation in HD/VSA is that data
structures are represented by fixed-sized hypervectors,
independent of the size of the data structure. This is in
contrast to the localist representations of data structures,
which grow linearly or even quadratically with the number
of elements. On the one hand, it is a great advantage

as data structures of arbitrary size and shape can be
manipulated in parallel with the elementary set of HD/VSA
operations. At the same time, as we have seen in Section IV-
A, the dimensionality of hypervectors might easily become
a limitation since, for a given dimensionality, the informa-
tion content of representation, i.e., the HD/VSA capacity,
limits the size of data structures that can be represented
reliably [30], [193].

Conceptually, one should think of the memory in hyper-
vectors as the working memory or working registers, hold-
ing the data relevant during an ongoing computation.
In contrast, the role of long-term memory for an HD-/VSA-
based system can be fulfilled by, e.g., a large capacity
associative content-addressable memory that might store
hypervectors of data structures [37], [194]. Currently, this
idea is being investigated by the community [195].

The limitation of the working memory in HD/VSA has
interesting parallels to the limitation of the human working
memory. For data structures of limited size, there are guar-
antees for exact reconstruction [193]. However, transcend-
ing the theoretical bound for exact reconstruction, the
data representation becomes lossy, with error rates being
theoretically predictable [30]. HD/VSA representations of
data structures in the lossy regime have been shown to
reproduce some properties of the human working memory.
For example, the recall of a sequence in an HD/VSA,
as described in Section IV-A5, can reproduce the perfor-
mance of humans remembering sequences [120], [122].
Furthermore, the modeling of memorizing sequences with
HD/VSA was linked to the neuroscience literature in [125].
It is not immediately clear how this capturing of the
limitations of human memory might be beneficial in engi-
neering applications. The way biological working memory
coarsens its content and gradually degrades might be an
important feature of cognition whose benefits are not yet
fully appreciated. However, for applications that require
guarantees for exact reconstruction, the dimensionality of
hypervectors needs to be specified at the design stage,
which makes it a limitation for situations where the data
structures to be represented can be of highly varying
sizes.

3) Flow Control: HD/VSA implementations of algo-
rithms generally rely on existing non-HD/VSA mechanisms
for flow control. This is reasonable in systems where
the aim is to use HD/VSA to implement conventional
computing approaches. This case can be seen more as a
way of extending conventional computing with HD/VSA.
However, if we are modeling biological systems, we should
not be using non-HD/VSA conventional computing flow
control. Moreover, from the efficiency point of view, when
using emerging hardware, it might not be desirable to
have a conventional processing unit for flow control. For
these reasons, it is important to develop methodologies
for flow control that would use native HD/VSA primitives.
In our opinion, this is possible. However, to date, the efforts
in this direction are quite limited. There was an attempt
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in [196] to define a model of a biological system with
HD-/VSA-based control. Two other related efforts are [41],
which presented a proposal for a stack machine and, [58],
proposing a processor with instructions specified in the
form of hypervectors.

B. HD/VSA as a Framework for Computing With
Emerging Hardware

HD/VSA was originally proposed in cognitive neuro-
science as a model for symbolic reasoning with distrib-
uted representations. More recently, it has been shown
that HD/VSA can formulate subsymbolic computations, for
example, in machine learning tasks.

Here, we proposed that HD/VSA provides a computing
framework within the algorithmic level of Marr’s frame-
work [19] for linking abstract computation and emerging
hardware levels. The algorithmic formalism of HD/VSA
(with few exceptions) is the same for all of its variants.
Thus, HD/VSA enables a model-independent formulation
of computational primitives. At the same time, HD/VSA
also provides a seamless interface between algorithms and
hardware. In Section V-A, we illustrated how different
HD/VSA models can connect to specific types of emerging
hardware. Moreover, in Section IV-B, we demonstrated
how HD/VSA can be used for computing in superposition.
This feature extends HD/VSA beyond the conventional
computing architectures, and we foresee that, together
with algorithms that leverage computing in superposition,
such as resonator networks [76], [77] (see Section III-C1),
it will pave the way towards efficient solutions of nontrivial
combinatorial search problems (see examples in [148]
and [197]).

Another interesting aspect of computing with hyper-
vectors is that it occupies a realm between digital and
analog computing. After each computation step in a digital
computer, all vector components are pulled to one of the
possible digital states (bits). This individual discretization
of each component avoids error accumulation. Conversely,
an analog computer is supposed to implement an ana-
log dynamical system to predict its future states. Any
deviation between the dynamical system to be analyzed
and its computer implementation (e.g., noise) leads to
uncontrollable error accumulation in analog computers.
HD/VSA operations leverage analog operations on vectors
without discretization. However, discretization takes place
on the entire vector level when a resultant hypervector
is matched with the entries in the item memory. Thus,
HD/VSA can leverage (potentially very) noisy dynamics
in the high-dimensional state space of emerging hardware
while still protecting against error accumulation.

Despite all the promising aspects mentioned above, the
practicability of the HD/VSA computing framework for
emerging computing hardware is yet to be thoroughly
quantified. An important future direction is to develop
a systematic methodology to quantitatively measure and
compare side-by-side the efficiency of different computing
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Table 1 Qualitative Assessment of HD/VSA Capabilities Compared to
Conventional Computing and Neural Networks

Conventional Neural
computing/AI  networks HDC/VSA
Distributed representation X 4 4
Learning from data X v 4
Symbolic computing with
variables and binding 7 X 7
'To]'erance to X 9 v/
device imperfections
Transparency v X v

frameworks on concrete hardware. In this article, we con-
centrated on the question of how HD/VSA enables the
construction of varied algorithmic primitives and, there-
fore, could be a possible candidate framework in such a
comparison.

1) Alternative Frameworks: HD/VSA constitutes a com-
puting framework that provides an algebraic language for
formulating algorithms and, at the same time, links the
computation to distributed states on hardware. Table 1
compares the qualitative properties of HD/VSA as a com-
puting framework to conventional computing and neural
networks.

There is a tradeoff between how general a frame-
work is in terms of computation and how closely it is
linked to implementation. A general purpose framework
typically requires a full sealing between implementation
and computation, such as, for example, the conventional
computing architecture. Conversely, a framework that is
well matched to implementation, and can, therefore, effi-
ciently leverage the hardware, is typically of quite special
purpose. We argue that the tradeoff HD/VSA provides
between generality and linking to implementation, which
is ideal for emerging hardware. In particular, it seam-
lessly provides implementations of algorithms that lever-
age distributed representations and parallel operations,
and can tolerate noise and imprecision [43]. Of course,
HD/VSA is not the only framework candidate for emerg-
ing hardware; alternative approaches include probabilis-
tic computing [198], sampling-based computing [199],
computing by assemblies of neurons [200], and dynamic
neural fields [201]. For example, in neuromorphic comput-
ing, the dynamic neural field is an alternative computing
framework that could support fully symbolic operations.
In fact, dynamic neural fields and HD/VSA might comple-
ment each other by combining the real-time dynamics of
dynamic neural fields with the computational power and
scalability of HD/VSA. The detailed comparison between
these approaches and HD/VSA is, however, outside the
scope of this article. Nevertheless, in our opinion, HD/VSA
is the most transparent approach in structuring com-
putation and the most general with regard to different
types of hardware. In terms of formulating algorithms
and computational primitives, HD/VSA offers a common
language, independent of a particular HD/VSA model.
For the desired computation on given hardware, one of
the many existing HD/VSA models can provide the most
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advantageous implementation in terms of energy and time
efficiency.

There is currently a plethora of collective-state com-
puting approaches emerging, such as compressed sens-
ing, Bloom filters, and reservoir computing, all relying
on distributed representations [169]. These approaches
are rather disjoint and typically focus on special purpose
computing applications. HD/VSA has been shown to be
able to formalize different types of collective-state com-
puting, including reservoir computing [28], [30], Bloom
filters [78], compressed sensing [59], randomized ker-
nels [102], [150], and extreme learning machines/random
vector functional link networks [29]. Thus, we see
HD/VSA as a promising candidate framework for providing
a “lingua franca” for collective-state computing.

APPENDIX A

ON TURING COMPLETENESS

OF HD/VSA

It is practical to have a collection of primitives for com-
mon data structures. However, these primitives alone do
not provide us with a quantification of the theoretical
capabilities of using HD/VSA as a computing framework.
Of course, it is desirable that a computing framework
for emerging hardware be able to (in theory, at least)
execute any algorithm. For example, in [202] that pro-
posed a system hierarchy for neuromorphic computing,
it has been emphasized that Turing completeness is an
essential property for an abstraction model that is used at
the algorithmic level. Therefore, in this section, we sketch
ways of demonstrating that HD/VSA is computationally
universal by exemplifying how they (with some assump-
tions) can be used to emulate systems that have already
been proven to be Turing complete. While computing in
superposition is likely to be the most interesting feature of
operating with HD/VSA, computational universality is still
a critical property to study as it characterizes the general
computational power of a system. It is worth noting that,
among HD/VSA researchers, there is a general agreement
that HD/VSA is computationally universal, but, to the best
of our knowledge, this has not been shown yet. There-
fore, here, we make two proposals toward demonstrating
their universality: by implementing a Turing machine and
by emulating an elementary cellular automaton, which
is also known to be Turing complete [203]. Note that,
while these proposals might not be tight enough to be
qualified as formal proof, we believe that the following
directions are the most promising ways to make such
proof.

A. Implementation of Turing Machines With
HD/VSA

Since there are a number of small Turing machines
known to be universal [204], we first focus on demon-
strating how HD/VSA can be used as a part of an imple-
mentation of such a machine. In order to do so, we present

Table 2 Table of Behavior of (2, 4) Turing Machine

A B
0| 2LA | 3RA
1| 3LB | 2LB
2| 3LA | ORB
31 3LA | 1RB

how HD/VSA representations are used to map a table of
behavior [204] and execute the machine.

The presented implementation could be used to realize
any Turing machine, but, for the sake of compactness,
we exemplify the implementation with a (2, 4) Turing
machine, which has two states (A and B) and four symbols
(0, 1, 2, and 3). The table of the behavior of a (2, 4) Turing
machine is presented in Table 2. For a given combination of
the current state and the tape’s content, it provides which
symbol should be written to the current cell, the next state
of the machine, and the direction for the head’s movement.

1) HD/VSA Implementation of the Table of Behavior:
We use the MAP model described above. In order to
represent the table of the behavior of a Turing machine,
we first create two item memories populated with random
hypervectors. One item memory stores the states, e.g.,
in the case of a (2, 4) Turing machine, it includes only
two hypervectors for states A and B (denoted as a and b),
respectively. Another item memory stores hypervectors for
symbols. Since the considered machine uses only four
symbols, four hypervectors, 0, 1, 2, and 3, are sufficient.
These item memories are used to construct a hypervector
for each combination of states and symbols. The hypervec-
tor is constructed by applying the binding operation on the
hypervectors for a state and a symbol.

Eight hypervectors corresponding to all possible combi-
nations form a basis for constructing a third, heteroasso-
ciative, item memory, i.e., the memory where the address
and content parts store different hypervectors. The het-
eroassociative item memory can implement any table of
behavior by using the bound pair of state and symbol
as input to the memory and issuing hypervectors, which
should be used as the tape content, head’s move, and next
state as an output. Table 3 presents the heteroassociative
item memory for the table of the behavior of (2, 4) Turing
machine. Thus, three item memories constitute the static

Table 3 Heteroassociative Item Memory Implementing (2, 4) Turing
Machine

Address (input) | Content (output)
Tape content Next State | Head’s move
a®0 2 a L
a0l 3 b L
a®2 3 a L
a®3 3 a L
bo©0 3 a R
bo1 2 b L
b®2 0 b R
boO3 1 b R
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Fig. 10. [Illustration of the current state of the machine and its
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Fig. 11. Updated state and tape of the machine after the previous

state as in Fig. 10.

part of the system, which is generated only once at the
initialization. At this point, it is worth making a note that,
in addition to the standard assumptions about unlimited
time and memory resources, there is an extra assumption
about the heteroassociative item memory. In particular,
it should be guaranteed to behave correctly in the absence
of external errors. Practically, it means that the address
part of the heteroassociative item memory should not
have repeated entries. Even for moderate dimensionality
of hypervectors, the chance of such an event is low, but,
if this happens, the issue is solved by the regeneration of
the item memories.

2) HD-/VSA-Based Tape: The other part of the system is
dynamic and includes the location for storing a hypervec-
tor for the current state, the tape, and the current position
of the head. Fig. 10 presents an example of the dynamic
part of the system. In the case of using HD/VSA, the tape
can be seen as a matrix where each column corresponds
to the hypervector of a symbol. In order to make the
next step, the machine has to read the hypervector of
the current state (b in Fig. 10) and the hypervector of the
symbol at the current location of the head (0 in Fig. 10).
The result of binding of these hypervectors b ® 0 is used
as an input to the heteroassociative memory. The output of
the memory indicates that hypervector a should be written
to the current state; the tape’s content is changed to 3,
and the head should be moved to the right of the current
location. The updated state is shown in Fig. 11. In such
a manner, the system could operate on the tape for the
required number of computational steps. In summarizing,
the proposed implementation of a Turing machine uses
basic elements of HD/VSA, such as hypervectors, item
memories, and the binding operation; however, it also
includes few parts that go beyond HD/VSA, namely, con-
trol of head movements and unlimited memory tape.

3) Scaling HD/VSA Implementation: Since the proposed
implementation of a Turing machine does not make use
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of the superposition operation, there is no crosstalk noise
being introduced to the computations, which, in turn,
means that, in the absence of external noise, the emula-
tion behaves in a deterministic way. Thus, even tiny 3-
D vectors can be used to construct the heteroassociative
item memory with unique entries. Nevertheless, since one
of the arguments in favor of HD/VSA is their built-in
tolerance to errors, it is interesting to observe the behav-
ior of the emulation in the presence of external noise.
We performed simulations where the external noise was
added to the tape by randomly flipping signs of a fraction
of hypervector components. Fig. 12 presents the average
dimensionality of hypervectors required to make at least
10° error-free updates of the emulated Turing machine

[¢)]
o
o

oy
o
o

5]
o
o

N
o
o

100

Dimensionality of hypervectors

0.15 0.2 0.25

Bit Error Rate

0.05 0.3

Fig. 12. Average dimensionality of hypervectors required to make
at least 10? error-free updates of the emulated (2, 4) Turing
machine when the hypervectors representing symbols on the tape
were subject to external bit flips. The BER was in the range [0.05,
0.30] with a step of 0.05. The results were computed from ten
simulation runs with random initializations of hypervectors in the
item memories and random bit flips added at every update of the
machine.
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when the hypervectors representing symbols on the tape
were subject to external bit flips. The bit error rate (BER)
varied in the range [0.05, 0.30] with a step of 0.05.
The starting dimensionality of hypervectors was 2*. If the
error in emulation was happening in less than 10° steps,
then the dimensionality was increased by 10%. The results
demonstrate that the proposed implementation can reli-
ably emulate the Turing machine given adequate resources
(i.e., the dimensionality of hypervectors). Naturally, in the
presence of external noise, more resources are needed to
obtain the error-free execution of the machine. Neverthe-
less, an important observation is that the implementation
works with imprecise noisy representations. Moreover, the
robustness of the implementation comes at no cost in
terms of design, as the same algorithm is being used for
any amount of noise, and the only cost to be paid is the
increased size of the system.

B. Emulation of Cellular Automaton With HD/VSA

Since HD/VSA is designed to create vector represen-
tations of symbolic structures, when identifying a Turing
complete system suitable for emulation with HD/VSA,
it is also natural to choose a highly structured system
that uses a small finite alphabet of symbols. We think
that an elementary cellular automaton is one example of
such a system. Since the elementary cellular automaton
with rule 110 is known to be Turing complete [203],
we would like to demonstrate how HD/VSA can be used
in emulating this rule. In order to do so, we first revisit the
elementary cellular automaton concept. Next, we present
an HD/VSA algorithm for mapping and executing an ele-
mentary cellular automaton. Thus, we literally follow the
roadmap from [203]: “the automaton itself is so simple
that its universality gives us a new tool for proving that
other systems are universal.” Finally, we explore how
the proposed implementation is scaling with respect to
the size of the initial grid state of an elementary cellu-
lar automaton, the dimensionality of hypervectors, and
the amount of noise present during the computations.
The major point of the latter is that, even for a large
amount of noise, the implementation can perfectly emu-
late the elementary cellular automaton given sufficiently
large dimensionality of hypervectors, which is a nice
property as robustness is achieved without modifying the
design.

1) Elementary Cellular Automata: An elementary cellular
automaton is a discrete computational model consisting of
a 1-D grid of cells [205]. Each cell can be in one of a finite
number of states (two—for the elementary automaton).
States of cells evolve in discrete time steps according to
a fixed rule. The state of a cell at the next computational
step depends on its current state and the states of its
neighbors. The computations performed by an elementary
cellular automaton are local. The new state of a cell is
determined by the previous states of the cell itself and its
two neighboring cells (left and right). Thus, only three cells

S .
0 0]

| (.
ke e 0
Fig. 13. Assignment of new states for a center cell when the

cellular automaton uses rule 110. A hollow cell corresponds to a zero
state, while a shaded cell marks one state.

are involved in a computation step, i.e., for binary states,
there are in total 2> = 8 combinations. A rule assigns states
for each of the eight combinations. Fig. 13 presents all
combinations and the corresponding states for rule 110.

2) HD/VSA Algorithm for Emulating an Elementary Cellu-
lar Automaton With the Rule 110: We use the MAP model
described above. In order to represent an elementary cel-
lular automaton with rule 110, we first create two item
memories populated with random hypervectors. One item
memory stores the finite alphabet, i.e., it includes only
two hypervectors, for one and zero (denoted as 1 and
0, respectively). Another item memory stores hypervec-
tors for positions. Since an elementary cellular automaton
relies only on a cell in focus and its immediate neighbors,
then three hypervectors, 1 (left), ¢ (center), and r (right),
are sufficient. These item memories are used to construct a
hypervector for each combination of states in three consec-
utive cells. The hypervector is constructed by applying the
superposition operation on the bound pairs of a positional
hypervector and an alphabet hypervector. In other words,
the current states in three consecutive cells are represented
as a set of unordered pairs. For example, for 010, the
corresponding compound hypervector is constructed as

hoio =1004+c01+ro0].

All eight compound hypervectors form a basis for con-
structing a heteroassociative item memory, which can
implement any elementary rule by using the compound
hypervectors as input to the memory, and issuing either
1 or 0 (determined by the rule) as an output. Table 4

Table 4 Heteroassociative ltem Memory Implementing Rule 110

Address (input) Content (output)
hij1=101+co1+rol 0
hiio=1014+c¢c®14+re0 1
higi =101+c0+rol 1
higo=101+c¢c®0+r©0 0
hp11 =100+coO1+rol 1
ho1o=100+cO1+r®0 1
hoo1 =100+c®0+roe1 1
hooo =100+¢c®0+r®0 0

Vol. 110, No. 10, October 2022 | PROCEEDINGS OF THE IEEE 1563

Authorized licensed use limited to: RISE Research Institutes of Sweden. Downloaded on October 20,2022 at 07:21:55 UTC from IEEE Xplore. Restrictions apply.



Kleyko et al.: Vector Symbolic Architectures as a Computing Framework for Emerging Hardware

presents the heteroassociative item memory for the rule
110. Thus, three item memories constitute the static part
of the system, which is generated only once at the initial-
ization.

The other part of the system performs computations for
a given initial grid state of length [ at time ¢ = 0. The
initial grid state is mapped to a compound hypervector
(denoted as ag). The mapping is done by applying the
superposition operation on all hypervectors representing
the states of cells at all positions. Position j in the grid is
represented by applying the permutation operation j times
to the hypervector corresponding to a state at position j.
Thus, this representation corresponds to the mapping of a
sequence with the superposition operation. For example,
if the initial grid state is 10101, then the representation of
the state at the fifth position is p°1, while the compound
hypervector for the initial grid state is

ao = [p'1+p°0+p°1+p'0+ p°1].

Given ag, the next step is to compute a; or, in general,
a;;1 given ay.

First, a,,; is initialized to be an empty hypervector.
Next, for each position j ranging from 1 to I, we do the
following (this step can be either serial or parallel).

1) Approximately recover the state at 5 and its neighbors
ash=[10p 0 Va,+copa +rop Utha,].

2) Use h as the query to the heteroassociative item
memory. The memory returns the content (i.e., 0 or
1) for the address closest to h in terms of dot product.
The returned content is denoted as v;.

3) Modify a,;1 with v; as a, .1+ = p'v;.

Finally, apply the majority rule on a;11: a;+1 = [a¢+1],
so that it becomes bipolar. In such a manner, the system
could iterate through the grid for the required number of
computational steps.

Last but not least, it is worth explicating that the
proposed implementation assumes parts that go beyond
HD/VSA. First, the full computational system has its con-
trol architecture that is responsible for initializing the grid
state and running the for-loop, which can be seen as a
recurrent connection, required for constructing a,, 1. The
second part that is assumed here to be the same as in
the standard implementation of a cellular automaton is the
circuit determining when to stop the computation. We have
not focused on this circuit as our main goal here was
to demonstrate how to evolve HD/VSA representations to
perform cellular automaton computations.

3) Scaling HD/VSA Emulation: It is known that com-
pound hypervectors can be used to retrieve their compo-
nents (see Section III-C); however, there is a limit on the
number of components, which can be stored in a com-
pound hypervector without losing the ability to recover
the components [30]. The rule of thumb is that, for larger
hypervector dimensionalities, more components can be
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Fig. 14. Average error rate after 100 computational steps of the
elementary cellular automaton against the dimensionality of
hypervectors (N = 2l e [10,17]) for several different lengths of the
grid (1=2, i e [5,10]). The results were computed from

100 simulation runs with random initializations of hypervectors in
the item memories. The initial grid states were also randomized.

recovered from a compound hypervector. For the task of
emulating an elementary cellular automaton, it is impor-
tant that h is similar enough to the correct state hyper-
vector in the item memory. Otherwise, we will introduce
errors to the computations being emulated, which is highly
undesirable. When constructing h, the main source of noise
is the crosstalk noise from other cell states stored in as.
Therefore, in order to avoid errors in the computations,
the dimensionality of hypervectors should depend on the
length of the grid: the longer the grid, the larger the
dimensionality is required for robustly querying the item
memory.®

Fig. 14 presents the empirical results for a range of [
and N values. The curves depict the average error rate
after 100 computational steps of the elementary cellular
automaton. Note that the errors occurring at the earlier
computational steps will most likely propagate to the
successive steps. The length of the grid, I, varied as 2°,
i € [5,10], while the dimensionality of hypervectors, N,
varied as 2%, i € [10,17]. Thus, the results demonstrate
that HD/VSA can perfectly emulate the elementary cellular
automaton with a grid of a certain length, given adequate
resources (i.e., the dimensionality of hypervectors).

Note that Fig. 14 presented the results for the case
when hypervectors did not include any external noise.
Since one of the arguments in favor of HD/VSA is their
built-in tolerance to errors, it is interesting to observe
the behavior of the emulation in the presence of external
noise. External noise was added by randomly flipping a
fraction of components in at, but it was still assumed that

SIn principle, it should be possible to analytically find the minimal
dimensionality of hypervectors for robustly emulating the grid of the
given length.
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Fig. 15. Average error rate after 100 computational steps of the
elementary cellular automaton against the dimensionality of
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i € [2,5]) for the length of the grid | = 32. The results were computed
from 100 simulation runs with random initializations of hypervectors
in the item memories. The initial grid states were also randomized.

the control architecture functions without errors. Fig. 15
presents the average error rate after 100 computational
steps of the elementary cellular automaton in the presence
of external noise. The BER, p, varied as 27¢, i € [2,5]. The
length of the grid was fixed to I = 32.

The results demonstrate that, naturally, in the presence
of external noise, more resources are needed to obtain
error-free emulation. Nevertheless, an important observa-
tion is that the HD-/VSA-based system works with impre-
cise noisy representations. Moreover, the robustness of the
system comes at no cost in terms of design, as the same
algorithm is used in both cases, and the only cost to be
paid is the increased size of the system.

4) Studies Related to Computational Universality of
HD/VSA: Studying the computational universality of a
particular computing framework is important for under-
stating the ultimate theoretical limitations of computing
hardware using this framework. For example, Siegelmann
and Sontag [206] have shown that recurrent neural net-
works are computationally universal; Perez et al. [207]
have shown the universality of modern transformer and
Neural GPU networks. Since HD/VSA can express some
recurrent neural networks [28], studying their universality
by leveraging the existing results for neural networks is a
possible direction of research. We, however, followed ear-
lier approaches that showed that neural network-like sys-
tems can implement Turing machines [208]. In Appendix
A-A and Appendix A-B, we sketched how HD/VSA can be
used in implementations of a small Turing machine [204]
and a universal elementary cellular automaton with the
rule 110 [203].

Recently, Kwisthout and Donselaar [209] emphasized
the need for a formal machine model for novel neuromor-
phic hardware in order to develop a computational com-
plexity theory for neuromorphic computations. This is an

important direction of research for understanding the full
potential of emerging hardware. They argued, however,
that, in order to encompass the computational abilities
of neuromorphic hardware, one will likely need to define
an entirely new computing theory framework. Their study
has proposed to use spiking neural networks (shown to
be Turing complete [210]) because, similar to HD/VSA,
they are suitable for co-located computation and memory,
and massive parallelism—which is not the case for the
conventional computing architecture.

In addition to the demonstration of universality,
an important practical question is how a complete com-
putational architecture should look like. This is still an
open question. A proposal has been sketched in [58],
which featured an HD-/VSA-based processor where both
data and instructions were represented as hypervectors.
There is another approach known as tensor product vari-
able binding, which is closely related to HD/VSA. For
example, tensor product variable binding can also be
used to represent data structures in distributed represen-
tations [211]. The study [50] has demonstrated how to
implement push, pop, and the Lisp primitives CAR and
CDR with tensor product variable binding, while Dolan and
Smolensky [212] have demonstrated how to implement a
production system. An HD-/VSA-based model, which was
positioned as a general-purpose neural controller playing
a role analogous to a production system, was proposed
in [196].

Another relevant result is a demonstration of the fea-
sibility of implementing fluid construction grammars with
HD/VSA [213]. Even though fluid construction grammars
have not been shown to be universal, it is a powerful and
interesting approach for both cognitive and evolutionary
linguistics. Knight et al. [213] proposed a vision similar to
the one presented in Fig. 1. They suggest that HD/VSA
can be seen as a “virtual machine” that can have different
(independent) physical implementations, such as an indi-
rect mapping to spiking neurons [170] or direct mapping
of operations with analog/digital implementations [16].

APPENDIX B

SUMMARY OF VECTOR-SYMBOLIC
SPACE AND OPERATIONS

A. Key Components

This appendix presents excerpts from Section III pro-
viding a summary of HD/VSA. The key components of all
HD/VSA are given as follows:

1) high-dimensional space (e.g., bipolar);

2) orthogonality;

3) similarity measure (e.g., dot product (a, b));

4) seed representations (e.g., random i.i.d. vectors);

5) operations on representations.

There are three key operations in HD/VSA:

1) binding (denoted as ®, implemented as component-
wise multiplication (Hadamard product) in the MAP
model);
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2) superposition (denoted as +, implemented as com- the superposition hypervector) is similar to each
ponentwise addition, enclosed in [...] when thresh- of its argument hypervectors, i.e., the dot product
olded); between z and a or b is considerably greater than 0,

3) permutation (denoted as p, e.g., rotation of coordi- (z,a) > 0, and (z,b) > 0.
nates). 3) Superposition is commutative: a+ b =b + a.

In the following, we present the properties of the imple-  4) Thresholded superposition is approximately associa-

mentations of these operations for the MAP HD/VSA
model [54]. Here, we enumerate the properties assuming
that the seed hypervectors are bipolar.

B. Properties of the Binding Operation

The binding operation has the following properties:

tive: [[a+ b] +c] = [a+ [b+ ¢]].

D. Properties of the Permutation Operation

The permutation operation has the following properties:

iy

Permutation is invertible: p~!(p(a)) = a.

o ) 2) Permutation distributes over both binding and super-
1) Binding is commutative: a©b =b® a. position: p(a ® b) = p(a) ® p(b) and p(a + b) =
2) Binding distributes over superposition: ¢ ® (a + b) = p(a) + p(b).
¢ @ a' + C.Qb' ) ) ) 3) Similar to the binding operation, a random permuta-
3) Binding is invertible: (a ©b) © b = a (bipolar b is tion p results in a vector that is dissimilar to the argu-
self-inverse); the inverse operation is called releasing ment hypervector: (p(a),a) ~ 0; hence, permutation
or ul?binfiing. o is a “randomizing” operation.
4) Binding is associative: (a©b)©ec=ao (bo o). 4) Permutation preserves similarity: (p(a),p(b)) =
5) The result of binding is dissimilar to each of its (a,b). -
argument hypervectors: ((a © b),a) = ((a©® b),b) =
0; hence, binding is a “randomizing” operation. Acknowledgment
6) Binding preserves similarity: ((c®a), (c©b)) = (a,b). The authors thank members of the Redwood Center

C. Properties of the Superposition Operation
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The superposition operation has the following also like to thank Ross W. Gayler and Sohum Datta for
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1) Superposition is invertible: (a + b) + (—b) = a; for article. Finally, they would like to thank three anonymous

thresholded superposition: ([[a + b] + (—b)],a) > 0.
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