
Understanding the Distillation Process

from Deep Generative Models to Tractable Probabilistic Circuits

Xuejie Liu * 1 Anji Liu * 2 Guy Van den Broeck 2 Yitao Liang 3 4

Abstract

Probabilistic Circuits (PCs) are a general and

unified computational framework for tractable

probabilistic models that support efficient com-

putation of various inference tasks (e.g., comput-

ing marginal probabilities). Towards enabling

such reasoning capabilities in complex real-world

tasks, Liu et al. (2022) propose to distill knowl-

edge (through latent variable assignments) from

less tractable but more expressive deep genera-

tive models. However, it is still unclear what

factors make this distillation work well. In this

paper, we theoretically and empirically discover

that the performance of a PC can exceed that of its

teacher model. Therefore, instead of performing

distillation from the most expressive deep genera-

tive model, we study what properties the teacher

model and the PC should have in order to achieve

good distillation performance. This leads to a

generic algorithmic improvement as well as other

data-type-specific ones over the existing latent

variable distillation pipeline. Empirically, we out-

perform SoTA TPMs by a large margin on chal-

lenging image modeling benchmarks. In partic-

ular, on ImageNet32, PCs achieve 4.06 bits-per-

dimension, which is only 0.34 behind variational

diffusion models (Kingma et al., 2021).

1. Introduction

Developing Tractable Probabilistic Models (TPMs) that are

capable of performing various inference tasks (e.g., com-

puting marginals) is of great importance as they enable a

wide range of downstream applications such as constrained

generation (Peharz et al., 2020a; Correia et al., 2020), causal

*Equal contribution 1Department of Automation, Tsinghua Uni-
versity, P.R. China 2Computer Science Department, University
of California, Los Angeles, USA 3Institute for Artificial Intelli-
gence, Peking University, P.R. China 4Beijing Institute for General
Artificial Intelligence (BIGAI). Correspondence to: Xuejie Liu
<liebenxj@gmail.com>.

Preprint.

B
it
s-
p
er
-d
im

en
si
o
n
(b
p
d
)

LVD Design Choices

MAE +

K-means

VQ-VAE +

K-means

VQ-VAE +

dynamic

clustering

4.0

4.1

4.2

4.3

4.4

4.5

MAE: Masked-

Autoencoder

(He et al., 2022)

VQ-VAE: Vector-

Quantized VAE

(van den Oord et

al., 2017)
4.07

4.32

4.41

ImageNet32

4.6

Figure 1. Different design choices in the LVD pipeline lead to

drastically different performance (lower is better) on ImageNet32.

All LVD-learned PCs have ∼200M parameters.

inference (Wang & Kwiatkowska, 2022), and data compres-

sion (Liu et al., 2021). Probabilistic Circuits (PCs) (Choi

et al., 2020) refer to a class of TPMs with similar representa-

tions, including Sum-Product Networks (Poon & Domingos,

2011), and-or search spaces (Marinescu & Dechter, 2005),

and arithmetic circuits (Darwiche, 2002). To take full ad-

vantage of the attractive inference properties of PCs, a key

challenge is to improve their modeling performance on com-

plex real-world datasets.

There have been significant recent efforts to scale up and

improve PCs from both algorithmic (Correia et al., 2022;

Shih et al., 2021; Dang et al., 2022; Peharz et al., 2020b) and

architectural (Peharz et al., 2020a; Dang et al., 2021) per-

spectives. In particular, Liu et al. (2022) propose the Latent

Variable Distillation (LVD) pipeline that uses less-tractable

yet more expressive Deep Generative Models (DGMs) to

provide extra supervision to overcome the suboptimality

of Expectation-Maximization (EM) based PC parameter

learners. With LVD, PCs are able to achieve competitive

performance against some widely used DGMs on challeng-

ing datasets such as ImageNet32 (Deng et al., 2009).

However, despite its great potential, we have a limited un-

derstanding of when and how LVD leads to better modeling

performance. As a result, the success of existing instantia-

tions of the LVD pipeline relies heavily on trial and error.

For example, as shown in Figure 1, modeling performance

varies significantly as we change the DGM or the strategy

to obtain supervision from them, even when the size of the

PCs are similar.

This work aims to demystify the LVD pipeline and provide

practical design guidelines for image data. By interpret-

a
rX

iv
:2

3
0
2
.0

8
0
8
6
v
1

[c

s.
L

G
]

 1
6
 F

e
b
 2

0
2
3

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

ing LVD from a variational inference perspective, we show

that the performance of LVD-learned PCs is not necessarily

upper bounded by their teacher DGMs. This is in sharp con-

trast with distilling knowledge from a large neural network

to a smaller one, where the training performance typically

degrades (Gou et al., 2021). Therefore, instead of trying to

use the SoTA DGM to perform LVD, we should focus on a

more fundamental question: what properties of the teacher

DGM would lead to better performance of LVD-learned

PCs? Although there is still no definite answer, we iden-

tify practical design guidelines that lead to expressive yet

compact PCs.

Following the guidelines, we observe a general deficit in the

existing LVD pipeline. Specifically, due to the mismatch be-

tween the discrete latent variable assignments requested by

PCs and the continuous neural representations, a one-shot

discretization method is often used. However, this causes

significant information loss and leads to degraded modeling

performance. To overcome this problem, we propose a pro-

gressive growing algorithm to leverage feedback from the

PC to perform dynamic clustering, thus minimizing the per-

formance loss caused by discretization. Progressive grow-

ing is also able to exploit reusable sub-structures, which

leads to compact yet expressive PCs. Together with several

image-specific design choices derived from the guidelines,

we are able to out-perform SoTA TPMs by a large mar-

gin on three challenging image-modeling datasets: CIFAR

(Krizhevsky et al., 2009) and two down-sampled ImageNet

datasets (Deng et al., 2009). In particular, we achieve 4.06

bits-per-dimension on ImageNet32, which is better than

some intractable Flow models and VAEs such as Glow

(Kingma & Dhariwal, 2018) and only 0.34 less than the

SoTA diffusion-based DGM (Kingma et al., 2021).

2. Background

This section introduces PCs (Sec. 2.1) and the Latent Vari-

able Distillation (LVD) pipeline (Sec. 2.2).

2.1. Probabilistic Circuits

Probabilistic circuits (PCs) are a broad class of TPMs that

characterize probability distributions as deep computation

graphs. The syntax and semantics of PCs are as follows.

Definition 1 (Probabilistic Circuits). Represented as a pa-

rameterized directed acyclic computation graph (DAG), a

PC p(X) defines a joint distribution over a set of random

variables X by a single root node nr. The nodes in the

DAG are divided into three types of computational units:

input, sum, and product. Notably, each leaf node in the

DAG serves as an input unit, while an inner node can be

subdivided into a sum unit or a product unit according to

its mechanism for combining child distributions. In the

forward path, every inner node receives inputs from its chil-

dren (denoted in(n)) and computes outputs, thus encoding

a probability distribution pn in a recursive fashion:

pn(x) :=











fn(x) if n is an input unit,
∑

c∈in(n) θn,c · pc(x) if n is a sum unit,
∏

c∈in(n) pc(x) if n is a product unit,

where fn(x) is a univariate probability distribution (e.g.,

Gaussian, Categorical), and θn,c represents the parameter

corresponding to edge (n, c) in the DAG. Intuitively, a sum

unit models a weighted mixture of its children’s distribu-

tions, which requires all its edge parameters to be non-

negative and sum up to one, i.e.,
∑

c∈in(n) θn,c = 1, θn,c ≥
0. And a product unit encodes a factorized distribution over

its children. Finally, a PC represents the distribution en-

coded by its root node nr. Additionally, we assume w.l.o.g.

that a PC alternates between the sum and product layers

before reaching its inputs.

The ability to answer numerous probabilistic queries (e.g.,

marginals, entropies, and divergences) (Vergari et al., 2021)

exactly and efficiently distinguishes PCs from various deep

generative models. Such ability is typically interpreted as

tractability. To guarantee PCs’ tractability, certain structural

constraints have to be imposed on their DAG structure. For

instance, smoothness together with decomposability ensure

that a PC can compute arbitrary marginal probabilities in

linear time w.r.t. its size, which is the number of edges in its

DAG. These are properties of the variable scope φ(n) of PC

unit n, that is, the variable set comprising all its descendent

input nodes.

Definition 2 (Decomposability). A PC is decomposable if

for every product unit n, its children have disjoint scopes:

∀c1, c2 ∈ in(n) (c1 6= c2), φ(c1) ∩ φ(c2) = ∅.

Definition 3 (Smoothness). A PC is smooth if for every

sum unit n, its children have the same scope:

∀c1, c2 ∈ in(n), φ(c1) = φ(c2).

2.2. Latent Variable Distillation

Despite the recent breakthroughs in developing efficient

computational frameworks for PCs (Dang et al., 2021;

Molina et al., 2019), exploiting the additional expres-

sive power of large-scale PCs remains extremely challeng-

ing. Abundant empirical evidence has attributed this phe-

nomenon to the failure of existing EM-based optimizers to

find good local optima in the large and hierarchically nested

latent space of PCs (Peharz et al., 2016), which is defined

by the hierarchically distributed sum units in their DAGs

Latent Variable Distillation (LVD) overcomes the afore-

mentioned bottleneck by providing extra supervision to

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

PC optimizers through semantic-aware latent variable (LV)

assignments, which are acquired from less tractable yet

more expressive deep generative models (Liu et al., 2022).

Specifically, LVD operates by first materializing some/all

LVs in the PC. That is, transforming the original PC p(X)
into p(X,Z) whose marginal distribution over X stays un-

changed, i.e., p(X) =
∑

z p(X,Z=z).

Next, deep generative models (DGMs) are used to induce

semantic-aware assignments of LVs Z for every training

sample x∈Dtrain, leading to an augmented dataset Daug :=
{(x, z) : x∈Dtrain}. This LV induction step can be done in

various ways and with different DGMs. For example, in Liu

et al. (2022), Z is obtained by clustering the latent features

produced by a Masked Autoencoder (He et al., 2022).

Finally, the augmented dataset Daug is used to maximize a

lower bound of the log-likelihood, as shown on the right-

most term:
N
∑

i=1

log p
(

x
(i)
)

:=

N
∑

i=1

log
∑

z

p
(

x
(i), z

)

,

≥

N
∑

i=1

log p
(

x
(i), z(i)

)

.

(1)

After training with the augmented dataset, we can obtain

the target distribution p(X) by marginalizing out Z, which

can be done in linear (w.r.t. size of the PC) time (Choi

et al., 2020). The PC can then be finetuned with the original

dataset to improve performance further.

The success of LVD is primarily attributed to its ability to

simplify the size and depth of PCs’ deeply nested latent

variable spaces (Peharz et al., 2016). Specifically, after LV

materialization, supervision of the LVs can be provided by

DGMs, and EM-based PC parameter learners are only re-

sponsible for inferring the values of the remaining implicitly

defined LVs. Since the DGMs guide PC learning through

their provided LV assignments, we refer to them as teacher

models and the PCs as student models.

3. Characterizing Performance Gaps in LVD

Although LVD has demonstrated its potential to boost the

performance of large PCs, its effectiveness depends strongly

on the design choice of materialized LVs and how they

are induced from external sources. Specifically, as shown

in Figure 1, a bad design choice will lead to significantly

worse performance, while a good one can further close the

performance gap with SoTA intractable DGMs. Therefore,

a crucial yet unanswered question concerning LVD is: what

are the design principles for the LV induction process to

achieve good modeling performance?

We provide a preliminary answer to this question by char-

LVD gap

L
o
g
-lik

elih
o
o
d

Variational gap

ELBO of the teacher DGM:

Log-likelihood of the student PC:

LVD objective:

?

Ez∼qφ(·|x)[log pθ(x|z)]−DKL(qφ(z|x) || pθ(z))

Ez∼qφ(·|x)[log ppc(x|z)]−DKL(qφ(z|x) || ppc(z))

Ez∼ppc(·|x)[log ppc(x|z)]−DKL(ppc(z|x) || ppc(z))

Figure 2. Performance difference of the teacher DGM (top-right)

and the student PC (top-left) is characterized by the relative signif-

icance between the variational gap and the LVD gap.

acterizing the performance differences between the teacher

DGM and the student PC via variational inference (VI),

which is the mathematical foundation of various DGMs

such as VAEs (Kingma & Welling, 2013) and Diffusion

models (Ho et al., 2020). Consider a latent variable model

pθ(x) :=
∑

z pθ(x|z)pθ(z). Instead of directly maximiz-

ing the log-likelihood log pθ(x), which could be infeasible,

VI proposes to also learn a variational posterior qφ(z|x) and

maximize the following evidence lower bound (ELBO) of

the log-likelihood:

Ez∼qφ(·|x) [log pθ(x|z)]−DKL (qφ(z|x)‖pθ(z)) . (2)

Consider a PC ppc(x) :=
∑

z ppc(x|z)ppc(z) defined on

the same X and Z as above. The ultimate goal of LVD is

to distill knowledge from pθ(x) to ppc(x) to maximize the

PC’s log-likelihood.

A natural way to achieve this is to use qφ(z|x) as the vari-

ational posterior for the PC. This leads to the following

ELBO objective:

Ez∼qφ(·|x)[log ppc(x|z)]−DKL(qφ(z|x)‖ppc(z)) . (3)

Although written in different forms, this ELBO objective is

equivalent to Equation (1) up to a constant factor indepen-

dent of the PC, (see Appx. A for a rigorous elaboration). In-

tuitively, qφ(z|x) is treated as the external model to induce

LV assignments z for every training sample x. Therefore,

we call Equation (3) the LVD objective.

The LVD objective provides a bridge to characterize the

difference between the performance of the teacher DGM

(Eq. (2)) and the log-likelihood of the student PC. Specifi-

cally, as shown in the Figure 2, the performance gap between

the teacher DGM and the LVD objective, termed the LVD

gap, characterizes the performance loss of LVD. However,

the final performance difference between the teacher DGM

and the student PC can be much less than the LVD gap.

Specifically, thanks to the tractability of PC, ppc(z|x) can

be obtained in closed form. Therefore, the variational gap

between the LVD objective and the PC’s log-likelihood can

be closed “for free” right after ppc(x|z) and ppc(z) are

trained by the LVD objective. That is, as demonstrated

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

ture of cluster-conditioned PCs p(x z). Instead of assigning

every sum unit an LV (as they represent mixture distribu-

tions), we group them according to their variable scopes

(cf. Sec. 2.1), and assign every LV to a particular scope.

Specifically, since the children of the sum units with every

scope φ are all product units with the same scope, we can

assign each child product unit a unique discrete value. Take

the PC in Figure 3 as an example, we choose to materialize

two LVs Z1 and Z2 w.r.t. the scopes φ1 := X2 X3 and

φ2 := X4 X5 , respectively. After LV materialization, we

obtain two sub-PCs representing the cluster-conditioned

distributions p(x2 x3 z1) and p(x4 x5 z2), respectively.

Specifically, the child product node ni (i 1 2 3)

with scope φ1 represents p(x2 x3 Z1 = i). Therefore,

p(x2 x3 z1) is represented by the three-headed PC high-

lighted in the dashed blue box.

We proceed to describe the proposed progressive growing

algorithm that overcomes the suboptimality of the afore-

mentioned one-shot discretization method. The algorithm

takes as input a dataset Dtrain accompanied with contin-

uous neural embeddings, defined as D := (x h) : x
Dtrain h= gφ(x) . Having materialized a LV Z that cor-

responds to scope X, the algorithm also takes an initial

cluster-conditioned PC p(x z) as input. We assume Z ini-

tially takes a single value (i.e., all samples in Dtrain belong

to the same cluster), and thus p(x z) is represented by a

single-headed PC.

Given a predefined number of clusters, denoted K, progres-

sive growing aims to learn both a discretization function

that maps every h into a cluster index i [K], and a K-

headed PC representing p(x Z = i) (i [K]). This is

done by iteratively dividing D into more clusters and cor-

respondingly learning the structure and parameters of the

cluster-conditioned PCs. Specifically, as illustrated in Fig-

ure 5, progressive growing operates by repeating four main

steps, which are detailed in the following.

Step 1: Training PC with Labeled Dataset. In this

stage, we have access to a clustering function λk that maps

every h to an index in [k], where 1≤k≤K is the current

number of clusters, and a k-headed PC with the ith head

encoding p(x Z = i). We train the PC by maximizing the

conditional log-likelihood specified by D and λm:

maximize
ϕ

∑

(x,h)∈D

log pϕ(x Z = λk(h)) (4)

where are the parameters of the PC. We optimize Equa-

tion (4) with the standard mini-batch EM algorithm (Peharz

et al., 2020a; Choi et al., 2021). Hyperparameters are de-

tailed in Appx. B. To learn a compact yet expressive PC,

we apply the pruning algorithm proposed by Dang et al.

(2022) after the parameter learning phase. This results in

significantly smaller PCs with negligible performance loss.

Step 2: Re-assigning Cluster Indices. As hinted by the

suboptimality of the one-step discretization method, cluster

indices assigned by λk may not fully respect the PC p(x z).
That is, since λk is obtained by clustering neural represen-

tation h, some samples x assigned to cluster i could be

better modeled by pϕ(x Z= j) (j = i) trained in the pre-

vious step. To mitigate this problem, we leverage feedback

from the PC to re-assign cluster indices. Specifically, as

demonstrated in Figure 5, the cluster index of sample x is

re-labeled as z := argmaxi∈[k] p(x Z = i). Function λk is

modified correspondingly to reflect this change.

As we will elaborate more in the following steps, this re-

labeling process allows us to escape from poorly assigned

clusters in past iterations, and is crucial to the effectiveness

of progressive growing.

Step 3: Selecting Clusters to Grow. As suggested by its

name, progressive growing operates by iteratively expand-

ing the number of clusters in Z. To improve the overall

performance of the cluster-conditioned PC (i.e., Eq. 4), we

select clusters with low average log-likelihood to be further

divided. Specifically, as illustrated in Figure 5, we first

compute the average log-likelihood for each cluster i [k]:

LLi :=
1

ji

∑

x∈Di

log p(x Z = i)

where Di := x : (x h) D λk(h) = i . We then select

a subset of clusters based on LLi
k
i=1 and the number of

samples belonging to every cluster. See Appx. B for detailed

design choices.

Step 4: Growing PC and Re-clustering Data. Suppose

the previous step selects a set of cluster indices I for grow-

ing. The goal of this step is to expand these � clusters

into M new clusters (M > �). Under the hood, we need

to re-cluster the corresponding subset of samples as well

as apply structure modifications to the PC to fit the new

clusters. Both procedures are described in the following.

To ensure that the structure and parameters of the multi-

headed PC are still relevant to the cluster assignments λk

after the reclustering step, a natural approach is to perform

hierarchical growing and clustering to the PC and the dataset,

respectively. Specifically, for each selected cluster i I,

we use K-means to cluster the samples belonging to the ith

cluster into n clusters, and create n−1 new PC root units

for the added clusters based on pϕ(x Z = i). We use a

slightly modified approach to re-cluster training samples for

all � clusters simultaneously. Specifically, we first select

the subset of samples (x h) belonging to clusters in I . We

then run K-means to cluster the neural representations h

into K clusters, with the first � cluster centers initialized

to be the centers of the clusters in I. λk is then updated to

reflect the new cluster assignments. In this way, the first

� new clusters are still relevant to the corresponding PC

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

Algorithm 1 Grow Multi-Headed PCs

1: Input: A dataset D={(x(i),z(i))}Ni=1, where z(i)∈ [k] is the

cluster index of x(i); a k-headed PC p
2: Output: A new multi-headed PC p′

3: Compute Fn(D) for every PC unit n

4: G← {n : Fn(D) ≥ ε}, where ε is a predefined threshold

5: old2new← dict() . Maps n to a pair of (new) nodes

6: foreach n traversed in postorder do . Child before parent

7: ch1,ch2←{old2new[c][0]}c∈in(n),{old2new[c][1]}c∈in(n)

8: if n isa input unit then

9: old2new[n]← (n, copy(n)) if n ∈ G else (n, n)
10: elif n isa product unit then

11: old2new[n]← (
⊗

(ch1),
⊗

(ch2))
12: elif n ∈ G isa sum unit then

13: old2new[n]← (
⊕

(ch1, ch2),
⊕

(ch1, ch2))
14: elif n 6∈ G isa sum unit then

15: old2new[n]← (
⊕

(ch1, ch2), None)
16: return A multi-head PC with root nodes

{old2new[n] : n is a root node in p}

pϕ(x Z= i) (i I).

In order to represent the newly-added clusters, the structure

of the PC needs to be modified to contain M− � additional

root/head units to represent p(x Z = i) (i k+1 k+
M − �). A simple strategy would be to directly copy all

descendent units of M − � existing root units for the new

clusters. However, this will significantly increase the size

of the cluster-conditioned PC, rendering the progressive

growing algorithm highly inefficient. Moreover, it rules

out the possibility to reuse sub-circuits that are useful for

modeling x conditioned on different z, seriously limiting

the PC’s expressive power at any particular size.

To mitigate this problem, we propose a structure growing

operator that only copies the most important substructure for

describing a distribution. By introducing additional edges

between the original and copied sub-circuit, the PC can learn

to share structures that can be used to describe p(x z) for

various z. At the heart of the growing algorithm is a statistic

termed flow that measures the generative significance of

a node/edge w.r.t. a sample x (Dang et al., 2022; Liu &

Van den Broeck, 2021), defined as follows.

Definition 4 (Circuit flow). For a PC p(X) and a sample

x, the circuit flow for every PC unit n, denoted Fn(x), is

defined recursively as follows (out(n) denotes the set of

parent units of n): first, Fn(x) = 1 if n is the root unit;

next, if n is a product unit, we have

Fn(x) :=
∑

m∈out(n)

θm,n · pn(x)

pm(x)
· Fm(x);

otherwise (n is a sum or input unit), the flow is defined by

Fn(x) :=
∑

m∈out(n)
Fm(x)

Intuitively, flow Fn(x) quantifies the “contribution” of unit

n to the log-likelihood of x. Figure 4 demonstrates an

example PC-sample pair with likelihoods labeled on top

of every node. Nodes and edges with relatively high flows

are labeled red. Note that high node likelihood does not

guarantee high flow, which is illustrated by n1 and n2: they

both have high likelihoods, but only n1 has high flow. For

a dataset D, Fn(D) :=
∑

x∈D Fn(x) measures the total

contribution of n to the samples in D.

Recall that our goal is to expand the current k-headed PC

to have M − � additional root units to encode p(x Z = i)
(i k+1 k+M− �), respectively. To achieve this,

we first extend Definition 4 for multi-headed PC. Specifi-

cally, while the recurrent definition of the inner nodes re-

main unchanged, for the ith root node, we set the flow to 1
if x is assigned to cluster i by λm and 0 otherwise.

The proposed growing operator is shown in Algorithm 1.

It consists of two main parts: in lines 3-4, circuit flow is

used to choose a subset of “important” (i.e., nodes with flow

higher than a predefined threshold) nodes to be grown; in

lines 5-15, the PC is modified in a way that only the selected

nodes are duplicated, while other parts are kept unchanged.

In our use case, since we want to modify the sub-circuit cor-

responds to the � chosen clusters, we invoke Algorithm 1

with the subset of samples whose cluster indices are in I.

According to the definition of flows, the returned PC will

have k + � heads since the � chosen root nodes will be

duplicated by the algorithm, while all other nodes will not.

Progressive growing alternates between the four steps de-

scribed above until we have expanded the number of clusters

to a predefined value K. Therefore, the parameters of the

multi-headed PC grown by step #4 will be updated in step

#1 of the algorithm’s next iteration.

In summary, the data re-clustering process in step 4 ensures

that the cluster assignments respect the neural representa-

tion, and the cluster assigning process in step 2 leads to

well-fitted cluster-conditioned PCs.

5. Closing the LVD Gap for Image Data

Using image data as an example, this section demonstrates

how the general guidelines for narrowing the LVD gap in-

troduced in Section 3 can be specialized to practical design

choices. Throughout this paper, we adopt Vector Quan-

tized Variational Autoencoders (VQ-VAEs) (van den Oord

et al., 2017; Razavi et al., 2019) as the teacher model. In

the following, we first briefly introduce VQ-VAE. We then

proceed to describe the design choices we make to better

align the modeling assumptions of pθ(x z) (resp. pθ(z))
and ppc(x z) (resp. ppc(z)).

As shown in Figure 6, VQ-VAE consists of an encoder that

produces a feature map, and a decoder that reconstructs the

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

Table 1. Density estimation performance of Tractable Probabilistic Models (TPMs) and Deep Generative Models (DGMs) on three

natural image datasets. Reported numbers are test set bit-per-dimension (bpd), specifically, we report mean bpds and respective standard

deviations over three runs. Bold indicates the best bpd (smaller is better) among all three TPMs. Best TPM w/o LVD represents the best

performance over three TPMs: HCLT, RAT-SPN, and EiNet.

Dataset
TPMs DGMs

LVD-PG (ours) LVD Best TPM w/o LVD Glow RealNVP BIVA VDM

ImageNet32 4.06±0.01 4.38 4.82 4.09 4.28 3.96 3.72

ImageNet64 3.80±0.07 4.12 4.67 3.81 3.98 - 3.40

CIFAR 3.87±0.00 4.37 4.61 3.35 3.49 3.08 2.65

Encoder Decoder

eMe3e2e1

···

Codebook

e7

e42

e13

e19

Figure 6. Illustration of the VQ-VAE model.

input image using the feature map. Different from many

other DGMs, the latent feature map of VQ-VAEs is con-

structed by a codebook with M vectors representing M

codes. Specifically, the latent embedding at each position

must be a vector from the codebook. Since every latent

code in the feature map corresponds to a patch of the in-

put image, we materialize an LV Zi for each position in

the latent feature map, and define the corresponding image

patch as Xi. Denote Z := Zi i, likelihood of an image

x can be computed as p(x) =
∑

z p(z)
∏

i p(xi zi). For

every Zi, we can learn p(xi zi) from the patches xi and

the corresponding continuous feature vectors hi produced

by VQ-VAE using the progressive growing algorithm de-

tailed in the previous section. The generated discretization

function can then be used to generate z = zi i for every

training sample, and is used to train p(z).

However, in the above treatment, there are mismatches be-

tween the modeling assumptions made by VQ-VAE and

the PC. First, since the latent feature map produced by VQ-

VAE uses the same codebook at all locations, the cluster-

conditioned distributions for different patches should be

homogeneous. That is, for every discretization function λ

and sample pair (x h), we have i j [Z],

p(Xi = x Zi = λ(h)) ≈ p(Xj = x Zj = λ(h))

To reflect this inductive bias, instead of learning p(x zi) for

every i [Z] independently, we aggregate their respective

training samples and learn a single cluster-conditioned distri-

bution, which is then applied to every image patch. That is,

we do parameter tying between different cluster-conditioned

distributions. This not only decreases the number of param-

eters of the PC, but also allows us to use much more data to

train better cluster-conditioned distributions.

Another modeling assumption mismatch comes from the

conditional independence between Xi and X Xi given Zi

assumed by the PC. The convolutional decoder of a VQ-

VAE breaks this assumption as xi can correlate to other

patches given zi. To mitigate this mismatch, we use an

independent decoder where zi is the only source of infor-

mation used to generate xi. Although this will degrade the

performance of VQ-VAE, as demonstrated in Section 3, the

performance of LVD-learned PC can surpass the teacher

model. And the primary goal of LVD is to find an initial

set of parameters that can be optimized by the EM algo-

rithm to good local optima. We will proceed to show this

phenomenon in Section 6.1.

6. Experiments

This section first empirically verify the theoretical findings

in Section 3 (Sec. 6.1). We then move on to evaluate our

method on image modeling benchmarks (Sec. 6.2).

6.1. Analyzing Performance Gaps in LVD

We empirically investigate the finding in Section 3 that the

log-likelihood of the student PC can surpass the ELBO of

the teacher DGM. Specifically, we consider an instantia-

tion of the LVD pipeline and empirically compute the three

ELBOs shown in Figure 2. For ease of computation, we

use VQ-VAE as the teacher model and one-shot K-means

discretization strategy to train a PC on Imagenet32. The

resulting ELBO of the teacher DGM is −2493 (Fig. 2 top-

right), while the LVD objective is −2499 (Fig. 2 bottom).

Therefore, the LVD gap is 5, which matches the extreme

case mentioned in Section 4 (i.e., the student almost per-

fectly simulates the teacher). Hence the PC becomes a

tractable instantiation of the teacher DGM. Thanks to PC’s

traceability, we are able to close the variational gap for free

and obtain a PC with log-likelihood −2317, leading to a

student PC better than the teacher DGM.

6.2. Image Modeling Benchmarks

We evaluate the proposed algorithmic improvements to the

LVD pipeline on three natural image benchmarks: CIFAR

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

b
p
d

ImageNet32

b
p
d

ImageNet64

parameters# parameters

parameters

b
p
d

LVD-PG (ours)

LVD (Liu et al., 2022)

Best TPM w/o LVD

CIFAR

“bpd” stands for bits-per-

dimension.

Figure 7. Comparison of image modeling performance. LVD-PG

outperforms all baselines with similar sizes by a large margin.

(Krizhevsky et al., 2009) and two down-sampled ImageNet

(ImageNet32 and ImageNet64) (Deng et al., 2009).

Baselines. We compare the proposed method, termed

LVD with Progressive Growing (LVD-PG) against four

TPM baselines: LVD (Liu & Van den Broeck, 2021), Hid-

den Chow-Liu Tree (HCLT) (Liu & Van den Broeck, 2021),

Random Sum-Product Network (RAT-SPN) (Peharz et al.,

2020b), and Einsum Network (EiNet). These baselines

cover most of the recent endeavors on scaling up and im-

proving the expressiveness of TPMs. Moreover, to evaluate

the performance gap with less tractable DGMs, we further

compare LVD-PG with the following flow-based models

and variational autoencoders: Glow (Kingma & Dhariwal,

2018), RealNVP (Dinh et al., 2016), BIVA (Maaløe et al.,

2019) and Variational Diffusion Models (VDM) (Kingma

et al., 2021). Implementation details of the baselines can be

found in Appx. C.

Empirical insights. We start by comparing our perfor-

mance with other TPM models. As shown in Figure 7,

for all benchmarks, LVD-PG consistently outperforms the

previous approaches by a large margin. In particular, on

CIFAR, a ∼12M LVD-PG model is much better than a ∼
800M PC trained by LVD; on ImageNet32, a ∼20M PC

trained by LVD-PG also obtains significant performance

gain compared to a ∼800M PC trained by original LVD.

This indicates that proper design choices can further exploit

LVD’s potential to train expressive yet compact PCs, thus

significantly boosting the performances of large PCs.

Next, we compare the performance achieved by LVD-PG

with the three adopted DGM baselines. Notably, as demon-

strated in Table 1, our approach enables PCs to outperform

all DGMs except the SoTA VDM on ImageNet64, and on

ImageNet32, LVD-PG is only inferior to BIVA with a 0.1

bpd gap and VDM with a 0.34 bpd gap.

Ablation studies. To evaluate the effect of the progressive

growing algorithm proposed in Section 4 and the image-

data-specific modifications (such as using an “independent

decoder” in VQ-VAE) elaborated in Section 5, we do an

ablation analysis by training two other PCs without either

component, respectively. Both PCs have similar model sizes

as the SoTA PC trained with LVD-PG on ImageNet32 (∼
260M parameters). Specifically, compared to the SoTA

LVD-learned PC with 4 06 bpd, the LVD-learned PC with-

out progressive growing only achieves 4 12 bpd, while the

performance of the LVD-learned PC with convolutional

decoder degrades to 4 18 bpd.

7. Related work

There have been significant recent efforts to scale up and

improve the expressiveness of PCs. Many works focus

on constructing expressive yet compact initial PC struc-

tures (Rahman et al., 2014; Adel et al., 2015; Rooshenas

& Lowd, 2014), while others aim for an iterative structure

learning process that gradually increases model capacity

(Di Mauro et al., 2021; Dang et al., 2020; Liang et al., 2017).

These methods have led to significant performance gains on

various density estimation datasets such as MNIST-family

datasets.

However, improving the PC structure alone does not seem

to offer too much performance gain on real-world high-

dimensional datasets such as natural images and text. To-

wards solving this problem, there have been many recent

endeavors to explore different ways of combining PCs with

neural networks (NNs) to obtain tractable while expressive

hybrid models. For example, Conditional SPNs (Shao et al.,

2022) harness the expressive power of NNs to learn expres-

sive conditional density estimators; HyperSPNs (Shih et al.,

2021) use NNs to regularize the parameters of PCs; Correia

et al. (2022) learn continuous mixtures of PCs with the help

of continuous latent-space models represented by NNs.

A key to the above successes in scaling up PCs is the

development of computation frameworks and easy-to-use

libraries that make training large-scale PCs highly effi-

cient. Specifically, EiNet (Peharz et al., 2020a) and SPFlow

(Molina et al., 2019) leverage well-developed deep learning

packages such as PyTorch (Paszke et al., 2019) to imple-

ment various inference and parameter learning procedures,

and Juice.jl (Dang et al., 2021) implement custom kernels

to better handle sparse PCs.

8. Conclusion

This paper aims to demystify the latent variable distillation

process from intractable Deep Generative Models (DGMs)

to tractable Probabilistic Circuits (PCs). We discover both

theoretical and empirical evidence that the performance of

the student PC can exceed that of the teacher DGM, where

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

the performance gain originates from the tractability of PCs

that closes a variational gap “for free”. Following this varia-

tional interpretation of the distillation technique, we further

propose algorithmic improvements that lead to significant

performance gain over SoTA TPMs. It also outperforms

several intractable DGM baselines.

References

Adel, T., Balduzzi, D., and Ghodsi, A. Learning the struc-

ture of sum-product networks via an svd-based algorithm.

In UAI, pp. 32–41, 2015.

Choi, Y., Vergari, A., and Van den Broeck, G.

Probabilistic circuits: A unifying framework

for tractable probabilistic models. UCLA. URL:

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf, 2020.

Choi, Y., Dang, M., and Van den Broeck, G. Group fairness

by probabilistic modeling with latent fair decisions. In

Proceedings of the 35th AAAI Conference on Artificial

Intelligence, Feb 2021.

Correia, A. H., Peharz, R., and de Campos, C. Joints in

random forests. In Proceedings of the 34th International

Conference on Neural Information Processing Systems,

pp. 11404–11415, 2020.

Correia, A. H., Gala, G., Quaeghebeur, E., de Campos,

C., and Peharz, R. Continuous mixtures of tractable

probabilistic models. arXiv preprint arXiv:2209.10584,

2022.

Dang, M., Vergari, A., and Broeck, G. Strudel: Learning

structured-decomposable probabilistic circuits. In Inter-

national Conference on Probabilistic Graphical Models,

pp. 137–148. PMLR, 2020.

Dang, M., Khosravi, P., Liang, Y., Vergari, A., and Van den

Broeck, G. Juice: A julia package for logic and probabilis-

tic circuits. In Proceedings of the 35th AAAI Conference

on Artificial Intelligence (Demo Track), Feb 2021.

Dang, M., Liu, A., and Van den Broeck, G. Sparse prob-

abilistic circuits via pruning and growing. In Advances

in Neural Information Processing Systems 35 (NeurIPS),

dec 2022.

Darwiche, A. A logical approach to factoring belief net-

works. In Proc. 8th Int. Conf. on Principles of Knowledge

Representation and Reasoning (KR-02), 2002.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern

recognition, pp. 248–255. Ieee, 2009.

Di Mauro, N., Gala, G., Iannotta, M., and Basile, T. M.

Random probabilistic circuits. In Uncertainty in Artificial

Intelligence, pp. 1682–1691. PMLR, 2021.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-

mation using real nvp. In International Conference on

Learning Representations, 2016.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge

distillation: A survey. International Journal of Computer

Vision, 129(6):1789–1819, 2021.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,

R. Masked autoencoders are scalable vision learners. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 16000–16009, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-

bilistic models. Advances in Neural Information Process-

ing Systems, 33:6840–6851, 2020.

Kingma, D. P. and Dhariwal, P. Glow: generative flow

with invertible 1× 1 convolutions. In Proceedings of the

32nd International Conference on Neural Information

Processing Systems, pp. 10236–10245, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Varia-

tional diffusion models. In Advances in Neural Informa-

tion Processing Systems, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. Technical report, 2009.

Liang, Y., Bekker, J., and Van den Broeck, G. Learning the

structure of probabilistic sentential decision diagrams. In

Proceedings of the 33rd Conference on Uncertainty in

Artificial Intelligence (UAI), 2017.

Liu, A. and Van den Broeck, G. Tractable regularization of

probabilistic circuits. In Advances in Neural Information

Processing Systems 34 (NeurIPS), dec 2021.

Liu, A., Mandt, S., and Van den Broeck, G. Lossless com-

pression with probabilistic circuits. In International Con-

ference on Learning Representations, 2021.

Liu, A., Zhang, H., and Broeck, G. V. d. Scaling up prob-

abilistic circuits by latent variable distillation. arXiv

preprint arXiv:2210.04398, 2022.

Maaløe, L., Fraccaro, M., Liévin, V., and Winther, O. Biva:

a very deep hierarchy of latent variables for generative

modeling. In Proceedings of the 33rd International Con-

ference on Neural Information Processing Systems, pp.

6551–6562, 2019.

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

Marinescu, R. and Dechter, R. And/or branch-and-bound

for graphical models. In IJCAI, pp. 224–229, 2005.

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subra-

mani, P., Di Mauro, N., Poupart, P., and Kersting, K.

Spflow: An easy and extensible library for deep prob-

abilistic learning using sum-product networks. arXiv

preprint arXiv:1901.03704, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance

deep learning library. Advances in neural information

processing systems, 32, 2019.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. On

the latent variable interpretation in sum-product networks.

IEEE transactions on pattern analysis and machine intel-

ligence, 39(10):2030–2044, 2016.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,

Trapp, M., Van den Broeck, G., Kersting, K., and Ghahra-

mani, Z. Einsum networks: Fast and scalable learning of

tractable probabilistic circuits. In Proceedings of the 37th

International Conference on Machine Learning (ICML),

jul 2020a.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X.,

Trapp, M., Kersting, K., and Ghahramani, Z. Random

sum-product networks: A simple and effective approach

to probabilistic deep learning. In Uncertainty in Artificial

Intelligence, pp. 334–344. PMLR, 2020b.

Poon, H. and Domingos, P. Sum-product networks: A new

deep architecture. In 2011 IEEE International Conference

on Computer Vision Workshops (ICCV Workshops), pp.

689–690. IEEE, 2011.

Rahman, T., Kothalkar, P., and Gogate, V. Cutset networks:

A simple, tractable, and scalable approach for improving

the accuracy of chow-liu trees. In Machine Learning and

Knowledge Discovery in Databases: European Confer-

ence, ECML PKDD 2014, Nancy, France, September 15-

19, 2014. Proceedings, Part II 14, pp. 630–645. Springer,

2014.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating

diverse high-fidelity images with vq-vae-2. Advances in

neural information processing systems, 32, 2019.

Rooshenas, A. and Lowd, D. Learning sum-product net-

works with direct and indirect variable interactions. In

International Conference on Machine Learning, pp. 710–

718. PMLR, 2014.

Shao, X., Molina, A., Vergari, A., Stelzner, K., Peharz, R.,

Liebig, T., and Kersting, K. Conditional sum-product

networks: Modular probabilistic circuits via gate func-

tions. International Journal of Approximate Reasoning,

140:298–313, 2022.

Shih, A., Sadigh, D., and Ermon, S. Hyperspns: Com-

pact and expressive probabilistic circuits. In Advances in

Neural Information Processing Systems, 2021.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neu-

ral discrete representation learning. In Proceedings of

the 31st International Conference on Neural Information

Processing Systems, pp. 6309–6318, 2017.

Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den Broeck,

G. A compositional atlas of tractable circuit operations

for probabilistic inference. In Advances in Neural Infor-

mation Processing Systems 34 (NeurIPS), dec 2021.

Wang, B. and Kwiatkowska, M. Symbolic causal infer-

ence via operations on probabilistic circuits. In NeurIPS

2022 Workshop on Neuro Causal and Symbolic AI (nCSI),

2022.

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

A. Equivalence Between the Two LVD Formulations

Consider a sample x. Suppose its LV assignment z is generated by qφ(z x). Then Equation (1) can be written as:

Ez∼qφ(z|x)[log ppc(x z)] = Ez∼qφ(z|x) [log (ppc(x z)ppc(z))]

= Ez∼qφ(z|x)[log ppc(x z)] + Ez∼qφ(z|x)

[

log

(

ppc(z)

qφ(z x)
qφ(z x)

)]

= Ez∼qφ(z|x)[log ppc(x z)]−DKL (qφ(z x) ppc(z)) + Ez∼qφ(z|x)[log qφ(z x)]

The first two terms of the last equation are the LVD objective shown in Equation (3). Since the last term is independent with

the PC, we conclude that Equations (1) and (3) are equivalent up to a constant factor independent with the PC.

B. Details of the Progressive Growing Algorithm

Training PC with Labeled Dataset. For the cluster-conditioned distribution, we adopt multi-head HCLTs with hidden

size 16 and run mini-batch EM optimization with batch size 256. The learning rate anneals linearly from 0.1 to 0.01 for 50

epochs.

Selecting Clusters to Grow. The cluster set I selected to grow initiates with an empty set, then we choose the cluster

with the smallest LL and push all samples belonging to this cluster into I successively until its capacity reaches a certain

threshold. In our experiments, the threshold is fixed to be 40% of the total number of samples.

Additional Details. Given D := (x h) :x Dtrain h=gφ(x) , we first use K-means to pre-cluster the training samples

into N1 outer clusters based on their continuous neural embeddings. Then we apply the progressive growing algorithm

to grow each outer cluster up to N2 inner clusters, which initiates with a single-head HCLT. Specifically, when N1 equals

one, the pipeline is equivalent to growing clusters from scratch, and the smaller total cluster number N1 ×N2 typically

corresponds to smaller PCs. Empirically we vary N1 from 50 to 400 and adjust N2 from 20 to 3 accordingly. On the three

image benchmarks: Imagenet32, Imagenet64 and CIFAR10, the (N1,N2) adopted by our SoTA LVD-learned PC are (400,4),

(320,4), and (100,4), respectively.

C. Implementation Details of the Baselines

To ensure a fair comparison, we implement HCLT and RAT-SPN with the Julia package Juice.jl (Dang et al., 2021) and adopt

the original PyTorch implementation of EiNet. For all TPMs, we train a series of models with their number of parameters

ranging from ∼1M to ∼100M and tune hyperparameters accordingly. Finally, we choose the best model among these TPM

baselines as the Best TPM w/o LVD. We also report the best performance of each TPM in the following table.

Dataset HCLT EiNet RAT-SPN

ImageNet32 4.82 5.63 6.90

ImageNet64 4.67 5.69 6.82

CIFAR 4.61 5.81 6.95

