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Abstract

Tree-shaped graphical models are widely used

for their tractability. However, they unfortunately

lack expressive power as they require commit-

ting to a particular sparse dependency structure.

We propose a novel class of generative models

called mixtures of all trees: that is, a mixture over

all possible (nn−2) tree-shaped graphical models

over n variables. We show that it is possible to

parameterize this Mixture of All Trees (MoAT)

model compactly (using a polynomial-size repre-

sentation) in a way that allows for tractable likeli-

hood computation and optimization via stochastic

gradient descent. Furthermore, by leveraging the

tractability of tree-shaped models, we devise fast-

converging conditional sampling algorithms for

approximate inference, even though our theoret-

ical analysis suggests that exact computation of

marginals in the MoAT model is NP-hard. Em-

pirically, MoAT achieves state-of-the-art perfor-

mance on density estimation benchmarks when

compared against powerful probabilistic models

including hidden Chow-Liu Trees.

1 INTRODUCTION

Probabilistic graphical models (PGMs) have been exten-

sively studied due to their ability to exploit structure in com-

plex high-dimensional distributions and yield compact repre-

sentations. The underlying graph structure of these models

typically dictates the trade-off between expressive power

and tractable probabilistic inference. On one end of the spec-

trum lie tree-shaped graphical models including Chow-Liu

trees (Chow and Liu, 1968), where the underlying graph is a

spanning tree T = (V,E) on n vertices. Tree distributions

allow for efficient sampling and exact inference on a variety
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of queries such as computing marginals (Pearl, 1988; Dar-

wiche, 2003) and are widely used in practice (Zhang and

Poon, 2017). However, by committing to a single sparse de-

pendency structure (by choice of spanning tree) their expres-

sive power is limited. On the other end of the spectrum, we

have densely connected graphical models such as Markov

random fields (MRFs) (Koller and Friedman, 2009; Rabiner

and Juang, 1986), Bayesian networks (Pearl, 1988), and

factor graphs (Loeliger, 2004), which excel at modelling

arbitrarily complex dependencies (Mansinghka et al., 2016),

but do so at the cost of efficient computation of marginal

probabilities. This spectrum and the underlying tradeoff

extends beyond graphical models to generative models at

large. For instance, deep generative models like variational

autoencoders (VAEs) (Maaløe et al., 2019) are extremely

expressive, but do not support tractable inference.

In this work, we propose a novel class of probabilistic mod-

els called Mixture of All Trees (MoAT): a mixture over all

possible (nn−2) tree-shaped MRFs over n variables; e.g.,

MoAT represents a mixture over 10196 components when

modeling joint distributions on 100 variables. Despite the

large number of mixture components, MoAT can be com-

pactly represented by O(n2) parameters, which are shared

across the tree components. The MoAT model strikes a new

balance between expressive power and tractability: (i) it

concurrently models all possible tree-shaped dependency

structures, thereby greatly boosting expressive power; (ii) by

leveraging the tractability of the spanning tree distributions

and the tree-shaped MRFs, it can not only tractably compute

normalized likelihood but also efficiently estimate marginal

probabilities via sampling. In addition, as a fixed-structure

model, MoAT circumvents the problem of structure learning,

which plagues most probabilistic graphical models.

This paper is organized as follows. Section 2 defines the

MoAT model and shows the tractability of exact (normal-

ized) likelihood computation despite the presence of super-

exponentially many mixture components. In Section 3, we

discuss the MoAT model’s parameterization and learning,

and demonstrate state-of-the-art performance on density es-

timation for discrete tabular data. Next, in Section 4, we

discuss the tractability of marginals and MAP inference in

MoAT and prove hardness results. Finally, we view MoAT

as a latent variable model and devise fast-converging impor-
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tance sampling algorithms that let us leverage the extensive

literature on inference in tree distributions.

2 MIXTURES OF ALL TREES

In this section, we propose mixture of all trees (MoAT)

as a new class of probabilistic models. We first introduce

tree-shaped Markov random fields (MRFs) and define the

MoAT model as a mixture over all possible tree distributions

weighted by the spanning tree distribution. Then, we demon-

strate how to tractably compute normalized likelihood on

the MoAT model.

2.1 Mixture of Tree-shaped Graphical Models

A tree-shaped MRF with underlying graph structure

G(V,E) represents a joint probability distribution PrG over

n random variables X = X1, · · · , Xn by specifying their

univariate and pairwise marginal distributions. Specifically,

assuming G is a tree with vertex set V = {1, · · · , n}, we

associate with each edge (u, v) ∈ E a pairwise marginal

distribution Puv(Xu, Xv) and each vertex u a univariate

marginal distribution Pv(Xv). Assuming that Puv and Pv

are consistent, then the normalized joint distribution PrG is

given by Meilă et al. (2000):

PrG(x) =

∏

(u,v)∈E Puv(xu, xv)
∏

u∈V Pv(xv)deg v−1
, (1)

where x=(x1, · · · , xn) denotes assignment to X and deg v
denotes the degree of v in G; see Pr1(X1, X2, X3) in Fig-

ure 1 as an example tree-shaped MRF.

Despite the tractability of tree-shaped MRFs, they suffer

from the problem of limited expressive power. To improve

the expressive power, prior works propose to learn mixtures

of tree models (Anandkumar et al., 2012; Meilă et al., 2000),

where they focus on simple mixtures of a few trees, and pro-

pose EM algorithms for parameter and structure learning.

This idea, however, suffers from several limitations. Firstly,

while it is known how to optimally pick a single tree distri-

bution with respect to the training data via the Chow-Liu

algorithm (Chow and Liu, 1968), no known closed form

solution exists for picking the optimal set of tree distribu-

tions as mixture components from the super-exponentially

many possible choices for spanning trees. Secondly, by

having a small fixed number of (even possibly optimal) mix-

ture components, the model forces us to commit to a few

sparse dependency structures that might not be capable of

capturing complex dependencies anyway.

Though mixture of trees model becomes more expressive as

more tree structures are included, the number of parameters

increases with the number of mixture components, which

seem to suggest that a mixture over a large number of tree

components is infeasible. Despite this, we propose the mix-

ture of all trees model (MoAT), a polynomial-size represen-

tation for the mixture over all possible (super-exponentially

many) tree-shaped MRFs.

Formally, we define:

PrMoAT(x) =
1

Z

∑

T∈ST(Kn)

(

∏

e∈T

we

)

PrT (x) (2)

where Kn denotes the complete graph on n vertices, ST(G)
denotes the set of spanning trees of a connected graph G,

and Z is the normalization constant. Each mixture com-

ponent is a tree-shaped MRF PrT weighted by
∏

e∈T we,

that is, product of the edge weights of the tree. Note that

we define the weight of each tree to be proportional to its

probability in the spanning tree distribution (Borcea et al.,

2009), which is tractable, allowing for efficient likelihood

computation on MoAT (Section 2.2.)

Though a MoAT model represents a mixture over super-

exponentially many tree-shaped MRFs, the number of pa-

rameters in MoAT is polynomial-size due the the parameter

sharing across its mixture components. Specifically, all

tree-shaped MRFs PrT (x) share the same univariate and

pair-wise marginals (i.e., Pu(xu) and Puv(xu, xv)); in ad-

dition, each edge in the graph Kn is parameterized by a

positive weight wuv . To summarize, a MoAT model over n

variables has O(n2) parameters.

Figure 1 shows an example MoAT model over 3 binary

random variables X1, X2, X3, for which there are 3 possible

spanning trees. Note that each of the mixture components

(tree distributions) share the same set of marginals, but

encode different distributions by virtue of their different

dependency structures.

For example, for the distribution represented in Figure 1,

PrMoAT(X1 = 1, X2 = 0, X3 = 1)

=
1

Z

∑

T∈ST(Kn)

(

∏

e∈T

we

)

T (x)

=
1

2× 3 + 3× 6 + 6× 2
× [

(

2× 3×
0.5× 0.3

0.7

)

+

(

2× 6×
0.5× 0.2

0.6

)

+

(

3× 6×
0.2× 0.3

0.5

)

]

By Cayley’s formula (Chaiken and Kleitman, 1978), the

number of spanning trees increases super-exponentially with

respect to the number of random variables, thus preventing

us from evaluating them by enumeration.

2.2 Tractable Likelihood for MoAT

Despite a super-exponential number (nn−2) of mixture com-

ponents, we show that computing (normalized) likelihood

on MoAT is tractable. Our approach primarily leverages the

tractability of spanning tree distributions and their compact
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tions/assumptions on the range of these values. We dedicate

the rest of this subsection to establishing the same, while

deferring most technical proof details to the appendix.

Theorem 1. Computation of semiring queries on the MoAT

model is NP-hard.

Proof. To prove the hardness of semiring queries, we pro-

ceed by a reduction from the subset spanning tree prob-

lem (denoted SST), which we define below.

Lemma 2. Define SST as the following decision problem:

given a connected graph G = (V,E) and a subset K ⊂ V

of the vertices, decide if there exists a spanning tree of G

whose leaves are exactly K. SST is NP-hard.

Consider an arbitrary connected graph G = (V,E) on

|V | = n ≥ 3 vertices and a subset of vertices K ⊂ V .

Set MoAT likelihood function parameters on n binary ran-

dom variables X = {X1, X2, . . . , Xn} (corresponding to

the vertices of G) as follows:

• 0 < ϵ < 1

• we =

{

1, e = {i, j} ∈ E

0, otherwise

• val(Xi) = {0, 1}.

• Pv(0) = ϵ, Pv(1) = −1 for all v ∈ V .

• Puv(α, β) =











ϵ, α = β = 0

0, α = β = 1

−ϵ, otherwise

One can intuitively interpret an assignment of 1 as corre-

sponding to labelling a node as a leaf, and 0 as marking it

as unknown. The univariate and pairwise marginals have

been carefully chosen to ensure that any tree assigns higher

probability to assignments where all the nodes assigned 1
are leaves in the tree and lower probabilities to assignments

where one or more nodes that are assigned 1 are actually

internal nodes. In fact, for any tree, there exists a likelihood

separation of ϵ between assignments that agree on the leaves

and those that do not. By assigning 1 to all the variables in

K ⊂ V and 0 to others, and by choosing a sufficiently small

ϵ, we can now effectively use the MoAT likelihood as an

indicator for the presence of an spanning tree whose leaves

are a superset of K. More impressively, we can exactly

count the number of spanning trees that satisfy the desired

property, and we formalize the same in the following lemma.

Lemma 3. Let x be a complete assignment, and denote by

ONES(x) the set of variables are are set to 1 in x. Denote by

|x| the value |ONES(x)| and LEAVES(T ) the set of leaves

of a spanning tree T . Let k be the number of spanning trees

T of G with ONES(x) ⊆ LEAVES(T ). Then,

{

k
ϵn−2 ≤ Z · p(x) ≤ k

ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x|%2 = 1

See appendix for proof.

Corollary 1. Let ϵ < 1
2n+1·nn−2 . The number of

spanning trees T with K ⊆ LEAVES(T ) is given by
∣

∣⌊Z · ϵn−2 · p(x)⌉
∣

∣, where xi = 1 if and only if i ∈ K

(that is, x is the assignment that assigns 1 to all the variables

in K and 0 to all the other variables), ⌊x⌉ denotes the closest

integer to x.

Proof. Let k be the number of spanning trees T with K ⊆
LEAVES(T ). When |x|%2 = 0, k ≤ Zϵn−2p(x) ≤ k +
ϵnn−2 ≤ k + 1

2n+1 . Thus,
∣

∣⌊Zϵn−2p(x)⌉
∣

∣ = k as desired.

An analogous proof holds for the case of |x|%2 = 1.

Note that Puv

PuPv

≥ 0, and hence the sign of p(x) depends

solely on the parity of |x|. Thus, we can leverage the

inclusion-exclusion formula to count spanning trees T with

K = LEAVES(T ) using expressions for number of span-

ning trees T with K ⊆ LEAVES(T ) given by Corollary 1.

Lemma 4. The number of spanning trees T with K =
LEAVES(T ) is given by

∣

∣⌊Zϵn−2f(e)⌉
∣

∣.

Proof Sketch. From the inclusion-exclusion formula we

obtain that the number of spanning trees T with K =
LEAVES(T ) (upto sign) is given by

∑

K⊆L

(−1)|L|
∑

T∈ST(G)

1(L ⊆ LEAVES(T ))

=
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

(−1)|x|
∣

∣⌊Zϵn−2p(x)⌉
∣

∣

= ⌊Zϵn−2
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

p(x)⌉

= ⌊Zϵn−2f(e)⌉

We now obtain that there exists a spanning tree T with

K = LEAVES(T ) if and only if
∣

∣⌊Zϵn−2f(e)⌉
∣

∣ > 0. This

completes the reduction from SST, as desired.

It is worth re-emphasizing the strength of this hardness

result in the context of marginal computation, in that it elim-

inates all marginal inference algorithms that are agnostic to

parameter values (which is, to the best of our knowledge,

all possible known exact marginal inference techniques in

literature). This opens up an interesting question about new

classes of marginal computation algorithms that are not

parameter-value agnostic.
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4.2 On the Hardness of MAP Inference

In this section, we prove that maximum-a-posteriori (MAP)

inference (i.e., computing the most likely assignment) for

the MoAT model is NP-hard via a reduction from the 3-

coloring problem (Lovász, 1973).

Theorem 2. MAP inference for MoAT is NP-hard.

Proof. Consider an arbitrary connected graph G = (V,E)
on |V | = n vertices. Build a MoAT model M on n discrete

random variables X = {X1, X2, . . . , Xn} (corresponding

to the vertices of G) as follows:

• we =

{

1, e = {i, j} ∈ E

0, otherwise

• val(Xi) = {R,G,B}.

• Pv(R) = Pv(B) = Pv(G) = 1
3 for all v ∈ V .

• Puv(α, β) =

{

0, α = β
1
6 , α ̸= β

Observe that the weights define a uniform distribution over

all possible spaninng trees of G. Furthermore, the univariate

marginals Pv and pairwise marginals Puv are consistent and

define a valid tree distribution.

Next, observe that a complete assignment x to X corre-

sponds to a coloring of the original graph G. It is easy to

check that for any particular spanning tree T,

T (x) =

{

1
3×2n−1 , x is a valid 3-coloring of the tree

0, otherwise

Now, we show that x is a valid 3 coloring of the given graph

G if and only if M(x) = 1
3×2n−1 .

Firstly, if x is a valid 3-coloring of G, then no pair of adja-

cent vertices in G are assigned the same color. Hence, the

probability assigned to x by any of the spanning trees of G

is 1
3×2n−1 . Hence,

M(x) =
1

Z

∑

T∈ST(G)

(

∏

e∈T

we

)
∏

(u,v)∈T Puv (xu, xv)
∏

v∈V Pv (xv)
deg v−1

=
1

3× 2n−1





1

Z

∑

T∈ST(G)

(

∏

e∈T

we

)



 =
1

3× 2n−1

Conversely, if x is not a valid 3-coloring of G, then there

exist at least one pair of neighboring vertices in G which

share the same color. Now, any spanning tree that contains

the corresponding edge (which always exists) would assign

zero likelihood to x and M(x) be strictly less than 1
3×2n−1 .

Thus, the graph is 3-colorable if and only if the global MAP

state of M has a probability of 1
3×2n−1 .

5 EFFICIENT APPROXIMATE

INFERENCE

Unlike usual mixture models, all mixture components in

MoAT are close to maximum likelihood on the entire dataset

(owing to their consistent univariate and pairwise marginals),

but are just sufficiently different enough to model complex

dependencies. In this section, we explore how this key obser-

vation combined with the tractability of tree-shaped models

lets us devise fast-converging algorithms for approximate

inference on MoAT.

5.1 MoAT as a Latent Variable Model

Interestingly, the MoAT model yields itself to being inter-

preted as a latent variable model in an extremely natural

way with clear semantics. Defining Y to be the latent ran-

dom variable with val(Y ) = ST(G), one can view MoAT

as a distribution over {Y,X1, X2, ..., Xn}, where Y mod-

els the choice of spanning tree, and inference of the form

PrMoAT(x) amounts to marginalizing out the latent vari-

able Y . More precisely,

PrMoAT(x)=
∑

T∈ST(G)

(
∏

e∈T we

)

Z
·

∏

(u,v)∈T Pruv (xu, xv)
∏

v∈V Pv (xv)
deg v−1

=
∑

y∈val(Y )

P (y) · P (x | y)

It is worth emphasizing the distinctiveness of this charac-

terization. Typically in latent variable models, the latent

variables act as higher dimensional features over some sub-

set of the variables. However, for the MoAT model, the

latent variable controls the sparse dependency structure that

is enforced across the same set of variables.

5.2 Efficient Importance Sampling on MoAT

Exact marginals and conditionals are provably tractable

on tree distributions owing to classic techniques such as

variable elimination. Consequently, tree distributions are ex-

tremely amenable to efficient conditional sampling (Koller

and Friedman, 2009). We show that MoAT, a mixture over

tree distributions, also supports effective conditional sam-

pling even though our theoretical analysis (Section 4.1)

suggests that even computation of marginals in MoAT is

NP-hard.

Importance Sampling Revisiting the view of MoAT as a

latent variable model P (Y,X), we arrive at a very natural

choice of proposal distribution Q(Y,X) that leads to an

efficient importance sampling algorithm (Tokdar and Kass,

2010). For evidence e, (and abusing notation to have x refer

to an assignment to the unobserved variables) we have that:

Q(y,x | e)

= P (y)P (x | ye) ≈ P (y | e)P (x | ye) = P (y,x | e)
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A Complete Proofs

This is section, we present lemmas whose proofs were deferred to the appendix.

Lemma 1. For any distribution Pr(·) over binary random variables X1, . . . , Xn, there exists a set of parameters (i.e., pv
and puv) in our hypothesis space such that Pr(Xu) = Pu(Xu) and Pr(Xu, Xv) = Puv(Xu, Xv) for all 1 ≤ u, v ≤ n; i.e.,

the univariate and pair-wise marginals of Pr are the same as Pu and and Puv .

Proof. Pick MoAT parameters pv = Pr(Xv = 1) and puv = Pr(Xu = 1, Xv = 1). By construction, the summation

constraints are satisifed. Thus, it suffices to check that all the univariate and pairwise marginals are non-negative. For

any v ∈ V , we have that P (Xv = 1) = pv ∈ [0, 1]. Then P (Xv = 0) = 1 − pv ∈ [0, 1] as desired. Further, for

every {u, v} ∈
(

V
2

)

, P (Xu = 1, Xv = 0) = pu − puv, P (Xu = 0, Xv = 1) = pv − puv, and P (Xu = 0, Xv = 0) =
1−puv−(pu−puv)−(pv−puv) = puv−(pu+pv−1) ≥ 0 since P (Xu = 1, Xv = 1) ∈ [max(0, pu+pv−1),min(pu, pv)]
Hence, the univariate and pair-wise marginals of Pr are the same as Pu and and Puv , as desired.

.

Lemma 2. Define SST as the following decision problem: given a connected graph G = (V,E) and a subset K ⊂ V of the

vertices, decide if there exists a spanning tree of G whose leaves are exactly K. SST is NP-hard.

Proof. We proceed via reduction from HAMILTONIAN− PATH. Observe that a spanning tree with exactly two leaves is a

Hamiltonian path between the two leaves. Given G = (V,E), we iterate over all pairs of vertices {i, j}, and query the SST

oracle for the existence of spanning tree with K = {i, j}. Then, G has a Hamiltonian path if and only if there exists at least

one pair of vertices for which the decision of the SST oracle is YES.

Lemma 3. Let x be a complete assignment, and denote by ONES(x) the set of variables are are set to 1 in x. Denote by |x|
the value |ONES(x)|. Denote by LEAVES(T ) the set of leaves of a spanning tree T . Let k be the number of spanning trees

T of G with ONES(x) ⊆ LEAVES(T ). Then,

{

k
ϵn−2 ≤ Z · p(x) ≤ k

ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x| |%2 = 1

Proof. We will compute the values of the MOAT likelihood function p for any complete assignment x.

• Case 1: ONES(x) ⊆ LEAVES(T )

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





=

∣

∣

∣

∣

∣

∣

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





∣

∣

∣

∣

∣

∣

· (−1)|x|

(Since Puv

Pu·Pv

≥ 0 and Pv(xv) < 0 ⇐⇒ xv = 1)

=

∣

∣

∣

∣

∣

∏

(u,v)∈E w(u,v)Puv (xu, xv)
∏

v∈V Pv (xv)
deg v−1

∣

∣

∣

∣

∣

· (−1)|x|

=

∣

∣

∣

∣

∣

∏

(u,v)∈E ϵ
∏

v∈V ϵdeg v−1

∣

∣

∣

∣

∣

· (−1)|x|

=

∣

∣

∣

∣

∣

∏

(u,v)∈E ϵ
∏

v∈V ϵdeg v−1

∣

∣

∣

∣

∣

· (−1)|x|

=

∣

∣

∣

∣

ϵn−1

ϵ2n−3

∣

∣

∣

∣

· (−1)|x|

=
1

ϵn−2
· (−1)|x|

• Case 2: ONES(x) ̸⊆ LEAVES(T )
In this case γ ≥ 1 internal nodes (nodes with degree more than one) are assigned a value of 1. Then similarly,
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– If |x|%2 = 0, we obtain that

0 ≤

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





=

∣

∣

∣

∣

∣

∣

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∏

(u,v)∈E ϵ
∏

v∈V Pv (xv)
deg v−1

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

ϵn−1

ϵ2n−4

∣

∣

∣

∣

≤
1

ϵn−3

– If |x|%2 = 1, we obtain that

0 ≥

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





=−

∣

∣

∣

∣

∣

∣

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





∣

∣

∣

∣

∣

∣

=−

∣

∣

∣

∣

∣

∏

(u,v)∈E ϵ
∏

v∈V Pv (xv)
deg v−1

∣

∣

∣

∣

∣

≥−

∣

∣

∣

∣

ϵn−1

ϵ2n−4

∣

∣

∣

∣

≥−
1

ϵn−3

As the maximum number of spanning trees on a graph with n vertices is nn−2, we obtain the desired bounds:
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• If |x|%2 = 0, we obtain that

Z · p(x) =
∑

T∈ST(G)

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





=
∑

T∈ST(G)
K⊆LEAVES(T )

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





+
∑

T∈ST(G)
K ̸⊆LEAVES(T )

(

∏

v∈V

Pv (xv)

)





∏

(u,v)∈E

w(u,v) ·
Puv(xu, xv)

Pu(xu) · Pv(xv)





≥
∑

T∈ST(G)
K⊆LEAVES(T )

1

ϵn−2
+

∑

T∈ST(G)
K ̸⊆LEAVES(T )

0

≥
k

ϵn−2

Similarly Z · p(x) ≤
∑

T∈ST(G)
K⊆LEAVES(T )

1

ϵn−2
+

∑

T∈ST(G)
K ̸⊆LEAVES(T )

1

ϵn−3

≤
k

ϵn−2
+

nn−2

ϵn−3

• If |x|%2 = 1, we similarly obtain that

Z · p(x) ≤
−k

ϵn−2

Z · p(x) ≥
−k

ϵn−2
+

−nn−2

ϵn−3

Thus,

{

k
ϵn−2 ≤ Z · p(x) ≤ k

ϵn−2 + nn−2

ϵn−3 , |x|%2 = 0
−k
ϵn−2 + −nn−2

ϵn−3 ≤ Z · p(x) ≤ −k
ϵn−2 , |x| |%2 = 1

as desired.

Lemma 4. The number of spanning trees T with K = LEAVES(T ) is given by
∣

∣⌊Zϵn−2f(e)⌉
∣

∣.

Proof. Since the number of spanning trees T with K ⊆ LEAVES(T ) is given by
∣

∣⌊Z · ϵn−2 · p(x)⌉
∣

∣, from the inclusion-

exclusion formula we obtain that the number of spanning trees T with K = LEAVES(T ) (upto sign) is given by

∑

K⊆L

(−1)|L|
∑

T∈ST(G)

1(L ⊆ LEAVES(T ))

=
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

(−1)|x|
∣

∣⌊Zϵn−2p(x)⌉
∣

∣

=
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

⌊Zϵn−2p(x)⌉
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Let {x} = |x− ⌊x⌉|. Since the {Z · ϵn−2 · p(x)} ≤ ϵ · nn−2 for all x, we obtain that

∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

{Z · ϵn−2 · p(x)}

≤2n · ϵ · nn−2

<2n ·
1

2n+1 · nn−2
· nn−2

<
1

2

Thus, we obtain that the number of spanning trees T with K = LEAVES(T ) is given by

∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

⌊Z · ϵn−2 · p(x)⌉

=⌊
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

Z · ϵn−2 · p(x)⌉

=⌊Z · ϵn−2 ·
∑

val(z1)

∑

val(z2)

. . .
∑

val(zk)

p(x)⌉

=⌊Z · ϵn−2 · f(e)⌉

B Parameterization for Categorical Variables

Consider the MoAT pairwise marginal matrix P
(ku×kv)
uv defined by Puv[i][j] = P (Xu = i,Xv = j).

B.1 Relation to Doubly Stochastic Matrices

This MoAT pairwise marginal matrix is closely related to the class of matrices called doubly stochastic matrices, where all

the entries are between 0 and 1 and the rows and columns sum to 1. Recall that for the MoAT pairwise marginal matrix,

we similarly require that the rows and columns sum to the corresponding univariate marginals. The set of k × k doubly

stochastic matrices (often referred to as the Birkhoff polytope) lies in a (k − 1)× (k − 1) affine subspace of Rk×k, and to

the best of our knowledge there is no known valid and fully general parameterization for this class of matrices that allows

for unconstrained optimization. Similarly, the pairwise marginal matrices which are uniquely defined by the values Puv[i][j]
for (i, j) ∈ {1, 2, · · · , k − 1} × {1, 2, · · · , k − 1}, also lie in a (k − 1) × (k − 1) affine subspace of Rk×k, and there is

unfortunately, to the best of our knowledge, no known valid and fully general parameterization for this class of matrices that

allows for unconstrained optimization.

However, we instead propose a valid parameterization of MoAT pairwise marginal matrices that is not fully general, but has

min(ku, kv)− 1 free parameters (as opposed to a fully general paramterization with (ku − 1)× (kv − 1) parameters) that

can be learnt in an unconstrained manner.

B.2 Proposed MoAT Parameterization

First we consider the case of square pairwise marginal matrices P
(k×k)
uv . We define it inductively, defining a parameterization

for the first l × l submatrix of Puv (denoted Pl)for l ∈ [2, k]. One can interpret this a defining a parameterization for the

marginal distribution P (Xu ∈ [1, l], Xv ∈ [1, l]), in a way that preserves the relative proportion of univariate marginals.

• Base case (l = 2):

This is identical to having binary random variables Xu and Xv with the following univariate marginals.

– P2(Xu = 1) = P (Xu=1)
P (Xu=1)+P (Xu=2)
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– P2(Xu = 2) = P (Xu=2)
P (Xu=1)+P (Xu=2)

– P2(Xv = 1) = P (Xv=1)
P (Xv=1)+P (Xv=2)

– P2(Xv = 2) = P (Xv=2)
P (Xv=1)+P (Xv=2)

The matrix can be parameterized by a single parameter λ2 = P2(Xu = 1, Xv = 1) as shown in Lemma 1.

• Inductive case (l >= 3):

Assume we have have a parameterization for first (l − 1) × (l − 1) submatrix Pl−1 of Puv. Pick λl ∈

[max(0,
∑

l−1

t=1
P (Xu=t)

∑
l

t=1
P (Xu=t)

+
∑

l−1

t=1
P (Xv=t)

∑
l

t=1
P (Xv=t)

− 1),min(
∑

l−1

t=1
P (Xu=t)

∑
l

t=1
P (Xu=t)

,
∑

l−1

t=1
P (Xv=t)

∑
l

t=1
P (Xv=t)

)].

Then, define Pl as follows:

Pl[i][j] =



























λl × Pl−1[i][j], i < l, j < l
P (Xu=i)

∑
l

t=1
P (Xu=t)

− λl ×
P (Xu=i)

∑
l−1

t=1
P (Xu=t)

, i < l, j = l

P (Xv=j)
∑

l

t=1
P (Xv=t)

− λl ×
P (Xv=j)

∑
l−1

t=1
P (Xv=t)

, i = l, j < l

1−
∑

l−1

t=1
P (Xu=t)

∑
l

t=1
P (Xu=t)

−
∑

l−1

t=1
P (Xv=t)

∑
l

t=1
P (Xv=t)

+ λl, i = l, j = l

By choice of λl, all the entries of this matrix are non-negative. It now suffices to check that the univariate marginals are

in proportion.

– For i < l,

Pl(Xu = i) =

l
∑

j=1

Pl[i][j]

=

l−1
∑

j=1

Pl[i][j] + Pl[i][l]

=

l−1
∑

j=1

(λl × Pl−1[i][j]) +
P (Xu = i)

∑l

t=1 P (Xu = t)
− λl ×

P (Xu = i)
∑l−1

t=1 P (Xu = t)

=
P (Xu = i)

∑l

t=1 P (Xu = t)

as desired.

– For i = l,

Pl(Xu = l) =

l
∑

j=1

Pl[l][j]

=

l−1
∑

j=1

Pl[l][j] + Pl[l][l]

=

l−1
∑

j=1

(

P (Xv = j)
∑l

t=1 P (Xv = t)
− λl ×

P (Xv = j)
∑l−1

t=1 P (Xv = t)

)

+ 1−

∑l−1
t=1 P (Xu = t)

∑l

t=1 P (Xu = t)
−

∑l−1
t=1 P (Xv = t)

∑l

t=1 P (Xv = t)
+ λl

=
l−1
∑

j=1

(

P (Xv = j)
∑l

t=1 P (Xv = t)

)

+ 1−

∑l−1
t=1 P (Xu = t)

∑l

t=1 P (Xu = t)
−

∑l−1
t=1 P (Xv = t)

∑l

t=1 P (Xv = t)

=1−

∑l−1
t=1 P (Xu = t)

∑l

t=1 P (Xu = t)

=
P (Xu = l)

∑l

t=1 P (Xu = t)
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as desired.

– By symmetry, the desired results hold for Pl(Xv = j) for all 1 ≤ j ≤ l.

Observe that since
∑k

t=1 P (Xu = t) = 1, Pk(Xu = t) = P (Xu = t) for all 1 ≤ t ≤ k. Similarly, Pk(Xv = t) =
P (Xv = t) for all 1 ≤ t ≤ k. Thus, Pk is the desired k × k MoAT pairwise marginal matrix, with learnable parameters

λ2 · · ·λk.

Lastly, observe that this parameterization generalizes to non-square matrices too. Without loss in generality, assume P is

ku × kv with ku < kv . First, we can parameterize the first 2× kv − ku − 2 submatrix by a single parameter. Then, we can

add ku − 2 scaling parameters λi as in the case of the square matrix to obtain a parameterization for the whole matrix. Note

that the total number of free parameters in this parameterization is min(ku, kv)− 1.

C Experimental Setup

All experiments were performed on Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz. For the experiments on the Twenty

Dataset density estimation benchmark, the MoAT model is trained with two sets of hyperparameters: (1) for the datasets

with < 500 random variables, the model is trained with batch size = 1024 and learning rate = 0.05 and (2) for the datasets

with ≥ 500 random variables, the model is trained with batch size = 64 and learning rate = 0.01. All models are trained for

50 epochs with early stopping: the test log-likelihood corresponding to the epoch with the best validation log-likelihood is

reported. The total training time for all datasets takes roughly a day on one NVIDIA RTX A5000 gpu. Complete code and

datasets for all the experiments can be found at https://github.com/UCLA-StarAI/MoAT.
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