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Abstract

Numerous neuro-symbolic approaches have re-

cently been proposed typically with the goal of

adding symbolic knowledge to the output layer of

a neural network. Ideally, such losses maximize

the probability that the neural network’s predic-

tions satisfy the underlying domain. Unfortu-

nately, this type of probabilistic inference is often

computationally infeasible. Neuro-symbolic ap-

proaches therefore commonly resort to fuzzy ap-

proximations of this probabilistic objective, sac-

rificing sound probabilistic semantics, or to sam-

pling which is very seldom feasible. We ap-

proach the problem by first assuming the con-

straint decomposes conditioned on the features

learned by the network. We iteratively strengthen

our approximation, restoring the dependence be-

tween the constraints most responsible for de-

grading the quality of the approximation. This

corresponds to computing the mutual informa-

tion between pairs of constraints conditioned on

the network’s learned features, and may be con-

strued as a measure of how well aligned the gra-

dients of two distributions are. We show how

to compute this efficiently for tractable circuits.

We test our approach on three tasks: predicting

a minimum-cost path in Warcraft, predicting a

minimum-cost perfect matching, and solving Su-

doku puzzles, observing that it improves upon

the baselines while sidestepping intractability.

1 Introduction

Neural networks have been established as excellent feature

extractors, managing to learn intricate statistical features
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from large datasets. However, without a notion of the sym-

bolic rules underlying any given problem domain, neural

networks are often only able to achieve decent label-level

accuracy, with a complete disregard to the structure jointly

encoded by the individual labels. These structures may en-

code, for example, a path in a graph, a matching of users to

their preferences, or even the solution to a Sudoku puzzle.

Neuro-symbolic approaches (De Raedt et al., 2020) hope

to remedy the problem by injecting into the training pro-

cess knowledge regarding the underlying problem domain,

e.g. a Sudoku puzzle is characterized by the uniqueness

of the elements of every row, column, and 3 × 3 square.

This is achieved by maximizing the probability allocated

by the neural network to outputs satisfying the rules of the

underlying domain. Computing this quantity is, in general,

a #P-hard problem (Valiant, 1979), which while tractable

for a range of practical problems (Xu et al., 2018; Ahmed

et al., 2022c), precludes many problems of interest.

A common approach is to side step the hardness of com-

puting the probability exactly by replacing logical operators

with their fuzzy t-norms, and logical implications with sim-

ple inequalities (Medina Grespan et al., 2021; van Krieken

et al., 2020). This, however, does not preserve the sound

probabilistic semantics of the underlying logical statement:

equivalent logic statements no longer correspond to the

same set of satisfying assignments, to different probability

distributions, and consequently, vastly different constraint

probabilities. On the other hand, obtaining a Monte Carlo

estimate of the probability (Ahmed et al., 2022a) is infea-

sible in exponentially-sized output spaces where the valid

outputs represent only a sliver of the distribution’s support.

In this paper, starting from first principles, we derive a

probabilistic approach to scaling probabilistic inference for

neuro-symbolic learning while retaining the sound seman-

tics of the underlying logic. Namely, we start by assuming

that the probability of the constraint decomposes, condi-

tioned on the network’s learned features. That is, we as-

sume the events encoded by the logical formula to be mu-

tually independent given the learned features, and there-

fore, joint probability factorizes as a product of probabili-

ties. This generalizes the prolific assumption that the prob-
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abilities of the variables are mutually-independent condi-

tioned on the network’s learned features (Mullenbach et al.,

2018; Xu et al., 2018; Giunchiglia and Lukasiewicz, 2020)

to events over arbitrary number of atoms. This reduces

the (often intractable) problem of probabilistically satisfy-

ing the constraint, the validity of a Sudoku puzzle, to the

(tractable) problem of probabilistically satisfying the in-

dividual local constraints, e.g. the uniqueness of the el-

ements of a row, column, or square. This, however, in-

troduces inconsistencies: an assignment that satisfies one

constraint might violate another, leading to misaligned gra-

dients. More precisely, for each pair of constraints, we are

interested in the penalty incurred, in terms of modeling er-

ror, by assuming the constraints to be independent when

they are in fact dependent, conditioned on the features

learned by the neural network. This corresponds exactly

to the conditional mutual information, a quantity notori-

ously hard to calculate. We give an algorithm for tractably

computing the conditional mutual information, given that

our constraints are represented as circuits satisfying certain

structural properties. Training then proceeds, where we in-

terleave the process of learning the neural network, with

the process of semantic strengthening, where we iteratively

tightening our approximation, using the neural network to

guide us to which constraints need to be made dependent.

We test our approach on three different tasks: predict-

ing a minimum-cost path in a Warcraft terrain, predict-

ing a minimum-cost perfect matching, as well as solv-

ing Sudoku puzzles, where we observe that our approach

greatly improves upon the baselines all for a minuscule in-

crease in computation time (our experiments are capped

at 2-3, and 7 seconds per iteration for Warcraft min-

cost path, MNIST perfect matching, and Sudoku, respec-

tively), thereby sidestepping the intractability of the prob-

lem. Our code is publiclt available at github.com/UCLA-

StarAI/Semantic-Strengthening.

2 Problem Statement and Motivation

We will start by introducing the notational choices used

throughout the remainder of the paper, followed by a moti-

vation of the problem.

We write uppercase letters (X , Y ) for Boolean variables

and lowercase letters (x , y) for their instantiation (Y = 0
or Y = 1). Sets of variables are written in bold upper-

case (X, Y), and their joint instantiation in bold lowercase

(x, y). A literal is a variable (Y ) or its negation (¬Y ).

A logical sentence (α or β) is constructed from variables

and logical connectives (∧, ∨, etc.), and is also called a

(logical) formula or constraint. A state or world y is an in-

stantiation to all variables Y. A state y satisfies a sentence

α, denoted y |= α, if the sentence evaluates to true in that

world. A state y that satisfies a sentence α is also said to

be a model of α. We denote by m(α) the set of all models

of α. The notation for states y is used to refer to an assign-

ment, the logical sentence enforcing the assignment, or the

binary output vector capturing the assignment, as these are

all equivalent notions. A sentence α entails another sen-

tence β, denoted α |= β, if all worlds that satisfy α also

satisfy β.

A Probability Distribution over Possible Structures

Let α be a logical sentence defined over Boolean variables

Y = {Y1, . . . ,Yn}. Let p be a vector of probabilities for

the same variables Y, where pi denotes the predicted prob-

ability of variable Yi and corresponds to a single output of

the neural network. The neural network’s outputs induce a

probability distribution P (·) over possible states y of Y:

P (y) =
∏

i:y|=Yi

pi

∏

i:y|=¬Yi

(1− pi). (1)

Semantic Loss The semantic loss (Xu et al., 2018) is a

function of the logical constraint α and a probability vector

p. It quantifies how close the neural network comes to sat-

isfying the constraint by computing the probability of the

constraint under the distribution P (·) induced by p. It does

so by reducing the problem of probability computation to

weighted model counting (WMC): summing up the mod-

els of α, each weighted by its likelihood under P (·). It,

therefore, maximizes the probability mass allocated by the

network to the models of α

P (α) = Ey∼P [1{y |= α}] =
∑

y|=α

P (y). (2)

Taking the negative logarithm recovers semantic loss.

Computing the above expectation is generally #P-hard

(Valiant, 1979): there are potentially exponentially many

models of α. For instance, there are 6.67 × 1021 valid

9 × 9 Sudokus (Felgenhauer and Jarvis, 2005), where as

the number of valid matchings or paths in a n × n grid

grows doubly-exponentially in the grid size (Strehl, 2001).

A common approach resorts to relaxing the logical state-

ments, replacing logical operators with their fuzzy t-norms,

and implications with simple inequalities, and come in dif-

ferent flavors: Product (Rocktäschel et al., 2015; Li and

Srikumar, 2019; Asai and Hajishirzi, 2020), Gödel (Min-

ervini et al., 2017), and Łukasiewicz (Bach et al., 2017),

which differ only in their interpretation of the logical oper-

ators. Medina Grespan et al. (2021) offer a comprehensive

theoretical, and empirical, treatment of the subject matter.

While attractive due to their tractability, t-norms suffer

from a few major drawbacks. First, they lose the precise

meaning of the logical statement, i.e. the satisfying and un-

satisfying assignments of the relaxed logical formula dif-

fer from those of the original logical formula. Second, the

logic is no longer consistent, i.e. logical statements that
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m(α)
y

p(y |x)

(a) Setting where satisfying assignments
are only fraction of distribution support.

m(α)
y

p(y |x)

(b) A network allocating most of proba-
bility mass to satisfying assignments.

(c) Distributions over empty entries of
Sudoku row and col modeled separately.

Figure 1: Estimating the probability of a constraint using sampling can fail when, (a) the set of satisfying assignments

represents only a minuscule subset of the distribution’s support, or, (b) when the network already largely satisfies the con-

straints, and consequently, we are very unlikely to sample very low-probability assignments violating the constraint. Using

product t-norm, (c), to model the probability of satisfying constraints reduces the problem to satisfying the constraints

locally, which can often lead to conflicting probabilities, and therefore, conflicting gradients. Here, e.g., according to the

distribution over the Sudoku row, 3 is the likely value of the cell in grey, where as, according to the distribution over the

Sudoku column, 4 is the likely value.

are otherwise equivalent correspond to different truth val-

ues, as the relaxations are a function of their syntax rather

than their semantics. Lastly, the relaxation sacrifices sound

probabilistic semantics, unlike other approaches (Xu et al.,

2018; Manhaeve et al., 2018) where the output probability

corresponds to the probability mass allocated to truth as-

signments of the logical statement, the output probability

has no sound probabilistic interpretation (Medina Grespan

et al., 2021).

A slightly more benign relaxation (Rocktäschel et al.,

2015) only assumes that, for a constraint α = β1∧ . . .∧βn,

a neural network f(·), and an input x, the events βi are

mutually independent conditioned on the features learned

by the neural network. That is, the probability of the con-

straint factorizes as P (α | f(x)) = P (β1 | f(x)) × . . . ×
P (βn | f(x)). This recovers the true probabilistic seman-

tics of the logical statement when β1, . . . , βn are over dis-

joint sets of variables, i.e. ∀i,j vars(βi) ∩ vars(βj) = ∅
for i ̸= j and can otherwise be thought of as a tractable

approximation, the basis of which is the neural network’s

ability to sufficiently encode the dependencies shared be-

tween the constraints, rendering them conditionally inde-

pendent given the learned features. That is assuming the

neural network makes almost-deterministic predictions of

the output variables given the embeddings. However, even

assuming the true function being learned is deterministic,

there is still the problem of an imperfect embedding giving

probabilistic predictions whereby clauses are dependent.

The above relaxation reduces the intractable problem of

satisfying the global constraint to the tractable problem of

satisfying the local constraints, and can therefore often lead

to misaligned gradients. Consider cell (1, 1) of the Sudoku

in Figure 1. Consider the two constraints asserting that the

elements of row 2 and that the elements of column 2 are

unique, and assume the probability distribution induced by

the network over row and column assignments are as shown

in Figure 1, right. This leads to opposing gradients for cell

(1, 1): On the one hand, the gradient from maximizing the

probability of the column constraint pushes it to 2, whereas

the gradient from maximizing the probability of the row

constraint pushes it to 4. The problem here stems from

modeling as independent two constraints that are strongly

coupled, so much so that the value of one determines the

value of the other.

Recently, Ahmed et al. (2022a) proposed using sampling

to obtain a Monte Carlo estimate of the probability of the

constraint being satisfied. This offers the convenience of

specifying constraints as PyTorch functions, as well as

accommodating non-differentiable elements in the train-

ing pipeline of the constraint, especially in cases where

the training pipeline includes non-differentiable elements.

However, when problems are intractable, this is often ac-

companied by a state space that is combinatorial in size,

meaning that the probability of sampling a valid structure

drops precipitously as a function of the size of the state

space, making it near impossible to obtain any learning sig-

nal, as almost all the sampled states will necessarily violate

our constraint. The same applies when the constraint is al-

most satisfied, meaning we never sample low-probability

assignment that violate the constraint.

That is not to mention the downfalls of gradient estimators:

the gradient estimator employed by Ahmed et al. (2022a)

is the REINFORCE gradient estimator, which while unbi-

ased in the limited of many samples, exhibits variances that

makes it very hard to learn. Even gradient estimators that

do not exhibit this problem of variance, trade off variance

for bias, making it unlikely to obtain the true gradient.
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3 Semantic Strengthening

We are interested in an approach that, much like the ap-

proaches discussed in Section 2 is tractable, but retains

sound probabilistic semantics, and yields a non-zero gra-

dient when the constraint is locally, or globally, violated.

Let our constraint α be given by a conjunctive normal form

(CNF), α = β1 ∧ . . .∧βn. We start by assuming that, for a

neural network f(·), and an input x, the clauses βi are mu-

tually independent conditioned on the features learned by

the neural network i.e. the probability of the constraint fac-

torizes as P (α |f(x)) = P (β1 |f(x))× . . .×P (βn |f(x)),
where the probability of each of the clauses, P (βi), can be

computed tractably. This recovers the true probabilistic se-

mantics of the logical statement when β1, . . . , βn are over

disjoint sets of variables, i.e. ∀i,j vars(βi) ∩ vars(βj) = ∅
for i ̸= j, and can otherwise be thought of as a tractable

approximation, the basis of which is the neural network’s

ability to sufficiently encode the dependencies shared be-

tween the constraints, rendering them conditionally inde-

pendent given the learned features, again, assuming the true

function is deterministic, with no inherent uncertainty.

The above approximation is semantically sound in the

sense that, the probability of each term P (βi) accounts for

all the truth assignment of the clause βi. It is also guaran-

teed to yield a semantic loss value of 0, and therefore a zero

gradient if and only if all the clauses, βi, are satisfied.

However, as discussed in Section 2, training the neural net-

work to satisfy the local constraints can often be problem-

atic: two dependent constraints assumed independent can

often disagree on the value of their shared variables lead-

ing to opposing gradients. If we are afforded more compu-

tational resources, we can start strengthening our approxi-

mation by relaxing some of the independence assumptions

made in our model.

3.1 Deriving the Criterion

The question then becomes, which independence assump-

tions to relax. We are, of course, interested in relaxing the

independence assumptions that have the most positive im-

pact on the quality of the approximation. Or, put differ-

ently, we are interested in relaxing the independence as-

sumptions for which we incur the most penalty for assum-

ing, otherwise dependent constraints, to be independent.

For each pair of constraints βi and βj , for all i ̸= j, this cor-

responds to the Kullback-Leibler divergence of the prod-

uct of their marginals from their joint distribution, and is a

measure of the modeling error we incur, in bits, by assum-

ing the independence of the two constraints

DKL

(

P(X,Y )∥PX · PY

)

(3)

where X and Y are Bernoulli random variables, X ∼
P (βi), Y ∼ P (βj), and (X,Y ) ∼ P (βi, βj), for all i, j

such that i ̸= j. Equation (3) equivalently corresponds to

the mutual information I(X;Y ) given by

I(X;Y ) = E(X,Y )

[

log
P(X,Y )(X,Y )

PX(X) · PY (Y )

]

, (4)

between the random variables X and Y , or the measure of

dependence between them. Intuitively, mutual information

captures the information shared between X and Y : it mea-

sures how much knowing one reduces about the uncertainty

of the other. When they are independent, then knowing one

does not give any information about the other, and there-

fore the mutual information is 0. At the other extreme, one

is a deterministic function of the other, and therefore, the

mutual information is maximized and equals to their en-

tropy. Note that the expectations in both Equation (3) and

Equation (4) are over the joint distribution P(X,Y ).

We would be remiss, however, to dismiss the features

learned by the network, as they already encode some of

the dependencies between the constraints, affording us the

ability to make stronger approximations. That is, we are

interested in the mutual information between all pairs of

constraints βi, βj conditioned on the neural network’s fea-

tures. Let D be our data distribution, and Z be a random

variable distributed according to D, we are interested in

computing

I(X;Y | Z) = EZ

[

E(X,Y )|Z

[

log
P (x, y | z)

P (x | z) · P (y | z)

]]

(5)

= EZ

[

1
∑

x=0

1
∑

y=0

P (x, y | z)

[

log
P (x, y | z)

P (x | z) · P (y | z)

]

]

,

(6)

where, as is common place, we estimate the outer expecta-

tion using Monte Carlo sampling from the data distribution.

Perhaps rather surprisingly, not withstanding the expecta-

tion w.r.t the data distribution, the quantity in Equation (5)

is hard to compute. This is not only due to the intractability

of the probability, which as we have already stated is #P-

hard in general, but also due to the hardness of conjunction,

in general. Loosely speaking, one could have constraints βi

and βj for which the probability computation, P (βi) and

P (βj) is tractable, yet computing P (α), where once again

α = βi ∧ βj , is hard (Shen et al., 2016; Khosravi et al.,

2019). Intuitively, the hardness of conjunction comes from

finding the intersection of the satisfying assignments with-

out enumeration. We formalize this in Section 3.3.

3.2 The Semantic Strengthening Algorithm

For the purposes of this section, we will assume we

can tractably compute the conditional mutual information

in Equation (5), and proceed with giving our Semantic
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about tractable representations.

Logical Circuits More formally, a logical circuit is a di-

rected, acyclic computational graph representing a logical

formula. Each node n in the DAG encodes a logical sub-

formula, denoted [n]. Each inner node in the graph is ei-

ther an AND or an OR gate, and each leaf node encodes a

Boolean literal (Y or ¬Y ). We denote by in(n) the set of

n’s children, that is, the operands of its logical gate.

Structural Properties As already alluded to, circuits en-

able the tractable computation of certain classes of queries

over encoded functions granted that a set of structural prop-

erties are enforced. We explicate such properties below.

A circuit is decomposable if the inputs of every AND gate

depend on disjoint sets of variables i.e. for α = β ∧ γ,

vars(β) ∩ vars(γ) = ∅. Intuitively, decomposable AND

nodes encode local factorizations over variables of the

function. For simplicity, we assume that decomposable

AND gates always have two inputs, a condition that can

be enforced on any circuit in exchange for a polynomial in-

crease in its size (Vergari et al., 2015; Peharz et al., 2020).

A second useful property is smoothness. A circuit is

smooth if the children of every OR gate depend on the

same set of variables i.e. for α =
∨

i βi, we have that

vars(βi) = vars(βj) ∀i, j. Decomposability and smooth-

ness are a sufficient and necessary condition for tractable

integration over arbitrary sets of variables in a single pass,

as they allow larger integrals to decompose into smaller

ones (Choi et al., 2020).

Furthermore, a circuit is said to be deterministic if, for any

input, at most one child of every OR node has a non-zero

output i.e. for α =
∨

i βi, we have that βi ∧ βj = ⊥ for all

i ̸= j. Similar to decomposability, determinism induces a

recursive partitioning of the function, but over the support,

i.e. satisfying assignments, of the function, rather than the

variables. Determinism, taken together with smoothness

and decomposability, allows us to tractably compute the

probability of a constraint (Darwiche and Marquis, 2002).

What remains, is to show that we can tractably conjoin two

constraints. Conjoining two decomposable and determin-

istic circuits is NP-hard if we wish the result to also be de-

composable and deterministic, which as we mentioned is

a requirement for tractable probability computation (Dar-

wiche and Marquis, 2002; Shen et al., 2016; Khosravi

et al., 2019). To guarantee the tractability of the probabil-

ity computation of the conjoined constraint, we will, there-

fore, need to introduce one last structural property, namely

the notion of compatibility between two circuits (Vergari

et al., 2021). Two circuits, c1 and c2 over variables Y

are said to be compatible if (1) they are smooth and de-

composable, and (2) any pair of AND nodes, n ∈ c1 and

m ∈ c2 with the same scope over Y can be rearranged to

be mutually compatible and decompose in the same way

i.e. vars(n) = vars(m) =⇒ vars(ni) = vars(mi), and ni

and mi are compatible, for some arrangement of the inputs

ni and mi of n and m. A sufficient condition for compat-

ibility is that both c1 and c2 share the exact same hierar-

chical scope partitioning (Vergari et al., 2021), sometimes

called a vtree or variable ordering (Choi et al., 2020; Pipat-

srisawat and Darwiche, 2008). Intuitively, the two circuits

should share the order in which they factorize the function

over its variables. Figure 2 shows an example of smooth,

decomposable, deterministic and compatible circuits.

At a high level, there exist off-the-shelf compilers utilizing

SAT solvers, essentially through case analysis, to compile

a logical formula into a tractable logical circuit. We are ag-

nostic to the exact flavor of circuit so long as the properties

outlined herein are respected. In our experiments, we use

PySDD1 – a Python SDD compiler (Darwiche, 2011; Choi

and Darwiche, 2013).

Now that we have shown that we can tractably compute

the probabilities P (β1), P (β2) and P (α), we can utilize

the law of total probability (c.f. Figure 2) to compute the

remaining probabilities, and therefore, the mutual informa-

tion. Our algorithm is shown in Algorithm 1.

4 Related Work

There has been increasing interest in combining neural

learning with symbolic reasoning, a class of methods that

has been termed neuro-symbolic methods, studying how to

best combine both paradigms in a bid to accentuate their

positives and mitigate their negatives. The focus of many

such approaches has therefore been on making probabilis-

tic reasoning tractable through first-order approximations,

and differentiable, through reducing logical formulas into

arithmetic objectives, replacing logical operators with their

fuzzy t-norms, and implications with inequalities (Kimmig

et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019;

Pryor et al., 2022).

Diligenti et al. (2017) and Donadello et al. (2017) use first-

order logic to specify constraints on outputs of a neural

network. They employ fuzzy logic to reduce logical for-

mulas into differential, arithmetic objectives denoting the

extent to which neural network outputs violate the con-

straints, thereby supporting end-to-end learning under con-

straints. More recently, Xu et al. (2018) introduced seman-

tic loss, which circumvents the shortcomings of fuzzy ap-

proaches, while supporting end-to-end learning under con-

straints. More precisely, fuzzy reasoning is replaced with

exact probabilistic reasoning, by compiling logical formu-

lae into structures supporting efficient probabilistic queries.

Liu et al. (2023) use semantic loss to simultaneously learn a

neural network and extract generalized logic rules. Differ-

1https://github.com/wannesm/PySDD
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ent from other neural-symbolic methods that require back-

ground knowledge and candidate logical rules, they aim to

induce task semantics with minimal priors.

Another class of neuro-symbolic approaches have their

roots in logic programming. DeepProbLog (Manhaeve

et al., 2018) extends ProbLog, a probabilistic logic pro-

gramming language, with the capacity to process neural

predicates, whereby the network’s outputs are construed as

the probabilities of the corresponding predicates. This sim-

ple idea retains all essential components of ProbLog: the

semantics, inference mechanism, and the implementation.

Manhaeve et al. (2021) attempts to scale DeepProbLog by

considering only the top-k proof paths. In a similar vein,

Dai et al. (2018) combine domain knowledge specified as

purely logical Prolog rules with the output of neural net-

works, dealing with the network’s uncertainty through re-

vising the hypothesis by iteratively replacing the output of

the neural network with anonymous variables until a con-

sistent hypothesis can be formed. Bošnjak et al. (2017)

present a framework combining prior procedural knowl-

edge, as a Forth program, with neural functions learned

through data. The resulting neural programs are consistent

with specified prior knowledge and optimized with respect

to data.

There has recently been a plethora of approaches ensuring

consistency by embedding the constraints as predictive lay-

ers, including semantic probabilistic layers (SPLs) (Ahmed

et al., 2022b), MultiplexNet (Hoernle et al., 2022) and HM-

CCN (Giunchiglia and Lukasiewicz, 2020). Much like se-

mantic loss (Xu et al., 2018), SPLs maintain sound prob-

abilistic semantics, and while displaying impressive scala-

bility to real world problems, but might struggle with en-

coding harder constraints. SIMPLE (Ahmed et al., 2023)

proposes an SPL for the k-subset distribution, to be used

as a latent space to induce a distribution over features, for

which they derive a low-bias, low-variance gradient esti-

mator. MultiplexNet is able to encode only constraints in

disjunctive normal form, which is problematic for gener-

ality and efficiency as neuro-symbolic tasks often involve

an intractably large number of clauses. HMCCN encodes

label dependencies as fuzzy relaxation and is the current

state-of-the-art model for hierarchical mutli-label classifi-

cation (Giunchiglia and Lukasiewicz, 2020), but, similar to

its recent extension (Giunchiglia and Lukasiewicz, 2021),

is restricted to a certain family of constraints. Daniele et al.

(2022) discusses how to enforce the consistency for fuzzy

relaxations with general formulas.

5 Experimental Evaluation

We evaluated our approach, semantic strengthening, on

several neuro-symbolic tasks, namely Warcraft minimum-

cost path finding, minimum-cost perfect matching of

MNIST digits, as well as the task of training neural net-

works to solve Sudoku puzzles. The challenge with all of

the above tasks, when looked at through a neuro-symbolic

lens, is the vastness of the state space: as previously men-

tioned, there are 6.6 × 1021 valid 9 × 9 Sudokus, and the

number of valid matchings, or paths in a grid grows doubly-

exponentially in the grid size—simply too much to enu-

merate. Even approaches like semantic loss which rely on

circuit approaches to exploit the local structure in the prob-

lem, essentially through caching solutions to repeated sub-

problems, do not scale to large instances of these tasks.

As has been established in previous work (Xu et al., 2018;

Ahmed et al., 2022c,b), label-level accuracy, or the accu-

racy of predicting individual labels is very often a poor in-

dication of the performance of the neural network, and is

often uninteresting in neuro-symbolic settings, where we

are rather more interested in the accuracy of our predicted

structure object exactly matching the ground truth, e.g., is

the prediction a shortest path?, a metric which we denote

“Exact” in our experiments, as well as the accuracy of pre-

dicting objects that are consistent with the constraint, e.g.,

is the prediction a valid path?, a metric which we denote

“Consistent” in our experiments. Note that, unlike the other

two tasks, for the case of Sudoku, these measures are one

and the same: a valid Sudoku has a single unique solution.

In all of our experiments, we compare against two base-

lines: a neural network, whose architecture we specify in

the corresponding experimental section, and the same neu-

ral network augmented with product t-norm, where we as-

sume the independence of constraints throughout training.

Warcraft Shortest Path We evaluate our approach, se-

mantic strengthening, on the challenging task of predicting

the minimum-cost path in a weighted grid imposed over

Warcraft terrain maps. Following Pogančić et al. (2020),

our training set consists of 10, 000 terrain maps curated us-

ing the Warcraft II tileset. Each map encodes an underlying

grid of dimension 12 × 12, where each vertex is assigned

a cost depending on the type of terrain it represents (e.g.

earth has lower cost than water). The shortest (minimum

cost) path between the top left and bottom right vertices is

encoded as an indicator matrix, and serves as label. Fig-

ure 3 shows an example input presented to the network and

the input with an annotated shortest path as a groundtruth.

Presented with an image of a terrain map, a convolutional

neural network—similar to Pogančić et al. (2020), we use

ResNet18 (He et al., 2016)—outputs a 12× 12 binary ma-

trix indicating a set of vertices. Note that the minimum-cost

path is not unique: there may exist several paths sharing the

same minimum cost, all of which are considered to be cor-

rect by our metrics. Table 1 shows our results.

We observe that incorporating constraints into learning im-

proves the accuracy of predicting the optimal path from

44.80% to 50.40%, and the accuracy of predicting a valid

path from 56.90% to 63.20%, as denoted by the “Ex-
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proach, semantic strengthening, greatly improves upon the

baseline, as well as product t-norm, improving the accuracy

from 16.80% and 22.10% to 28.00%.

6 Conclusion

In conclusion, we proposed semantic strengthening, a

tractable approach to neuro-symbolic learning, that re-

mains faithful to the probabilistic semantic of the distribu-

tion defined by the neural network on a given constraint.

Semantic strengthening starts by assuming the indepen-

dence of the clauses in a given constraint, thereby reduc-

ing the, often intractable, problem of satisfying a global

constraint, to the tractable problem of satisfying individual

local constraints. It uses a principled criterion, conditional

mutual information, to determine, and relax any unjustified

independence assumptions most detrimental to the quality

of our approximation. We have shown that we are able

to greatly improve upon the baselines on three challenging

tasks, where semantic strengthening was able to increase

the accuracy and consistency of the model’s predictions.
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