
Certifying Fairness of Probabilistic Circuits

Nikil Roashan Selvam1, Guy Van den Broeck1, YooJung Choi2*

1 Computer Science Department, University of California, Los Angeles
2 School of Computing and Augmented Intelligence, Arizona State University

nikilrselvam@cs.ucla.edu, guyvdb@cs.ucla.edu, yj.choi@asu.edu

Abstract

With the increased use of machine learning systems for deci-
sion making, questions about the fairness properties of such
systems start to take center stage. Most existing work on al-
gorithmic fairness assume complete observation of features at
prediction time, as is the case for popular notions like statisti-
cal parity and equal opportunity. However, this is not sufficient
for models that can make predictions with partial observation
as we could miss patterns of bias and incorrectly certify a
model to be fair. To address this, a recently introduced notion
of fairness asks whether the model exhibits any discrimination
pattern, in which an individual—characterized by (partial) fea-
ture observations—receives vastly different decisions merely
by disclosing one or more sensitive attributes such as gender
and race. By explicitly accounting for partial observations, this
provides a much more fine-grained notion of fairness. In this
paper, we propose an algorithm to search for discrimination
patterns in a general class of probabilistic models, namely
probabilistic circuits. Previously, such algorithms were limited
to naive Bayes classifiers which make strong independence
assumptions; by contrast, probabilistic circuits provide a uni-
fying framework for a wide range of tractable probabilistic
models and can even be compiled from certain classes of
Bayesian networks and probabilistic programs, making our
method much more broadly applicable. Furthermore, for an
unfair model, it may be useful to quickly find discrimination
patterns and distill them for better interpretability. As such, we
also propose a sampling-based approach to more efficiently
mine discrimination patterns, and introduce new classes of pat-
terns such as minimal, maximal, and Pareto optimal patterns
that can effectively summarize exponentially many discrimi-
nation patterns.

1 Introduction
Machine learning systems are increasingly being used for
critical decision making in a variety of areas ranging from
education and health care, to financial lending and recidi-
vism prediction (Chouldechova 2017; Berk et al. 2018; Datta,
Tschantz, and Datta 2015; Henderson et al. 2015). Conse-
quently, there has been growing interest and concern about
the fairness properties of these methods. In particular, biases
in the training data and model architecture can result in cer-
tain individuals or groups receiving unfavorable treatment

*This work was performed while YC was at UCLA.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based on some sensitive attributes such as gender and race.
Naturally, various notions of fairness and ways to enforce
them have been proposed (Barocas and Selbst 2016; Dwork
et al. 2012; Hardt, Price, and Srebro 2016; Nabi and Shpitser
2018; Madras et al. 2018; Salimi et al. 2019).

In this paper, we investigate the fairness properties of prob-
abilistic models that represent joint distributions over the de-
cision/prediction variable as well as the features. Such models
are ubiquitous in decision-making systems for various real-
world applications (Koller and Friedman 2009; Sonnenberg
and Beck 1993; Griffiths et al. 2010). In particular, they can
be used to make classifications by inferring the probability of
the class given some observations. Thus, by handling classifi-
cations as inference tasks, they can naturally handle missing
features at prediction time.

While many existing work on algorithmic fairness assume
that predictions are always made with complete observations
of features, this fails to analyze the behavior of a model—in
particular, its fairness—when making decisions with miss-
ing features. On the other hand, the notion of discrimination
pattern (Choi et al. 2020) explicitly aims to address fairness
of decisions made with partial information. Specifically, it
refers to an individual or a group of individuals, characterized
by some partial assignments to the features, who may see
a significant discrepancy in the prediction after additionally
disclosing some sensitive attributes. While the complete ob-
servation case is also covered, it is merely a special case of
discrimination patterns which in fact take into account all
possible partial observation of features. As we show later, a
model that is deemed fair according to popular notions such
as disparate impact can still exhibit hundreds of discrimina-
tion patterns, when considering missing features.

This fine-grained notion leads to new challenges in certi-
fying fairness, as there are now exponentially many patterns
of unfairness to check and analyze. Thus, our first key con-
tribution is to introduce special classes of discrimination
patterns—minimal, maximal, and Pareto optimal patterns—
which can “summarize” a large number of patterns. The set
of these summary patterns are often far smaller than the set of
all discrimination patterns, making them great targets to find
in a model in order to discover and understand its unfairness.

The next contributions we make are algorithms to find
discrimination patterns. The existing algorithm is limited to
naive Bayes models, which make strong assumptions that

may not suit real-world data. On the other hand, our pro-
posed methods can be applied to a more general class of
models, namely probabilistic circuits (PCs) (Choi, Vergari,
and Van den Broeck 2020), which have demonstrated compet-
itive performance in various density estimation tasks (Dang,
Vergari, and Van den Broeck 2022; Liu, Mandt, and Van den
Broeck 2022; Peharz et al. 2020). These are a family of prob-
abilistic models that support tractable inference, encompass-
ing arithmetic circuits (Darwiche 2003), sum-product net-
works (Poon and Domingos 2011), and-or graphs (Dechter
and Mateescu 2007), probabilistic sentential decision dia-
grams (Kisa et al. 2014), and more. Some classical graphical
models—such as those with bounded treewidth (Chow and
Liu 1968) and their mixtures (Meila and Jordan 2000)—as
well as certain kinds of probabilistic programs (Holtzen, Van
den Broeck, and Millstein 2020) can even be compiled into
PCs, and thus can benefit from our proposed methods.

We propose a search-based algorithm that can find all dis-
crimination patterns (or a special subset of them) in a PC or
otherwise certify that there exists none and thus the PC is fair.
Moreover, we introduce a sampling-based method, which
can no longer prove the non-existence of discrimination pat-
terns, but can far more efficiently find many of them in a
PC, provided that they exist. Through empirical evaluation
on three benchmark datasets, we demonstrate that our search
algorithm is able to find all discrimination patterns while only
traversing a fraction of the space of possible patterns. Further-
more, we show that the sampling-based approach is indeed
significantly faster in pattern mining, while still returning
similar summary patterns as the exact approach.

2 Discrimination Patterns

Notation We denote random variables by uppercase letters
(X) and their assignments by lowercase letters (x). We use
bold uppercase (X) and lowercase letters (x) for sets of vari-
ables and their assignments, respectively. The set of possible
values of X is denoted by val(X). D denotes a binary deci-
sion variable, and we use d to refer to the assignment to D
that represents a favorable decision (e.g. a loan approval). We
assume that a set of discrete (categorical) variables Z are used
to make decisions. Furthermore, a subset of variables S ⊂ Z
are designated as sensitive attributes, which are protected
characteristics such as race or gender.

The notion of a discrimination pattern was introduced to
study fairness of decisions made given partial observations
of features. They are particularly relevant for probabilistic
models which can naturally handle missing value predictions,
treating each prediction as an inference problem to compute
the probability of a decision given some observations.

Definition 1 (Discrimination patterns (Choi et al. 2020)).
Let P be a probability distribution over D ∪ Z, and x and
y be joint assignments to X ⊆ S and Y ⊆ Z \X, respec-
tively. For some threshold δ ∈ [0, 1], we say x and y form a
discrimination pattern w.r.t. P and δ if:

|P (d | x,y)− P (d | y)| > δ.

We refer to the LHS as the discrimination score of pattern
x,y, denoted by ∆(x,y).

Intuitively, a discrimination pattern corresponds to an indi-
vidual (or a group of individuals sharing the same attributes)
who would see a significant difference in the probability of
getting a favorable decision, just by disclosing some sensitive
information. Clearly, we want to avoid such scenarios; thus,
the model is said to be δ-fair iff it exhibits no discrimination
patterns with respect to δ.

2.1 Relation to Other Fairness Notions

Before we describe our main contributions, let us briefly
discuss how discrimination patterns relate to some other no-
tions of fairness in the literature. Many prominent fairness
definitions—such as statistical/demographic parity (SP), dis-
parate impact (DI), and equalized odds (EO)—fall under the
notion of group fairness, which aims to equalize certain quan-
tities across demographic groups (Feldman et al. 2015; Hardt,
Price, and Srebro 2016). While these definitions assume that
predictions are made given complete observation of features,
discrimination patterns account for fairness of decisions made
with partial information, providing a more fine-grained no-
tion of fairness. For instance, by definition a discrimination
pattern of the form (s, ∅) means that |P (d | s)− P (d)| > δ,
which implies a violation of statistical parity. That is, a δ-fair
model satisfies statistical parity for some threshold that de-
pends on δ, while the converse does not hold. On the other
hand, discrimination patterns formed by complete assign-
ments can be interpreted as a violation of individual fair-
ness (Dwork et al. 2012); we refer to Choi et al. (2020) for
detailed examples.

Various methods have been proposed to verify different
notions of fairness (Galhotra, Brun, and Meliou 2017; Bel-
lamy et al. 2018), including those that utilize probability
distributions (Albarghouthi et al. 2017; Bastani, Zhang, and
Solar-Lezama 2019; Ghosh, Basu, and Meel 2021, 2022).
However, they often make simplifying assumptions such as
conditional independence between attributes, making it chal-
lenging to scale these methods to probabilistic circuits which
are more general as we will show later. More importantly,
verifying properties such as DI and SP is not sufficient if we
wish to certify fairness according to discrimination patterns.

To illustrate this on real-world data, we learn PCs on the
COMPAS dataset before and after fair data repair by Feldman
et al. (2015). We use different degrees of data repair (con-
trolled by parameter λ), yielding PCs with varying levels of
fairness according to the above-mentioned standard notions
(Table 1). While the learned PCs would be certified as fair
according to verifiers using metrics such as DI, SP, and EO,
they may still exhibit discrimination patterns. For instance,
many learned models in Table 1 satisfy SP with ϵ < 0.02 and
EO with ϵ = 0, but still exhibit hundreds of discrimination
patterns with scores δ > 0.05, some as high as 0.22.

That is, discrimination patterns enable a more fine-grained
auditing of fairness. However, even a simple classifier could
exhibit a large number of discrimination patterns, thereby

1DI = 1− mins P(d|s)
maxs P(d|s)

, SP= maxs P(d | s)−mins P(d | s),

SP (1 variable) = maxs P(d | s)−mins P(d | s) for a single s,

EO = max{maxs P(d̂ | sd)−mins P(d̂ | sd),maxs P(d̂ | sd)−

mins P(d̂ | sd)} .

Table 1: Different metrics of fairness1for PCs on the COM-
PAS dataset before and after fair data repair (Feldman et al.
2015).

Original λ= .5 λ= .9 λ= .95 λ= .99 λ=1

DI 0.187 0.063 0.017 0.020 0.015 0.023
SP 0.183 0.061 0.016 0.019 0.014 0.022
SP (1 variable) 0.055 0.015 0.002 0.001 0.001 0.001
EO 0.752 0.000 0.000 0.000 0.000 0.000
Disc. Patt. (0.05) 3866 1320 488 659 894 578
Disc. Patt. (0.1) 1761 311 11 64 74 34
Highest Disc. Score 0.372 0.208 0.112 0.225 0.176 0.123

making it hard for domain experts and users to examine
them effectively. For instance, a naive Bayes classifier with
7 features for the COMPAS data2 was shown to have more
than 2,000 discrimination patterns (Choi et al. 2020); this
is clearly not scalable for interpretation. Thus, we propose
new classes of discrimination patterns that can be used as
representatives for a large number of patterns, thereby being
more amenable for interpretations.

2.2 Summarizing Patterns

A natural way to choose the most “interesting” patterns may
be by ranking them by their discrimination scores, and fo-
cusing on a few instances that are the most discriminatory.
While it may be useful to study the most problematic patterns
and address them, they do not necessarily provide insight
into other discrimination patterns that exist. Instead, we pro-
pose the notion of maximal and minimal patterns that can
summarize groups of patterns, namely their extensions and
contractions. An extension of a pattern (x,y), denoted by
(x′,y′) ⊃ (x,y), can be generated by adding an assignment
to the pattern: that is, x ⊆ x′, y ⊆ y′, and either x⊂x′ or
y⊂y′. Conversely, (x,y) is called a contraction of (x′,y′).

Definition 2 (Maximal patterns). Let Σ denote a set of dis-
crimination patterns w.r.t. a distribution P and threshold δ.
The set of maximal patterns Σmax ⊆ Σ consists of all pat-
terns (x,y) ∈ Σ that are not a complete assignment (i.e.
Z \ (X ∪Y) ̸= ∅) and:

∀(x′,y′) ⊃ (x,y), (x′,y′) ̸∈ Σ.

In other words, a maximal pattern is a discrimination pat-
tern such that none of its extensions are discrimination pat-
terns. As the name suggests, an extension of a maximal pat-
tern cannot also be maximal, because by definition it will
not be a discrimination pattern. Hence, an individual with
attributes x and y who may see a discrimination in the de-
cision by disclosing their sensitive information would no
longer receive such treatment if they additionally share other
features, whatever their values may be. This notion is nicely
complemented by the following notion of minimal patterns.

Definition 3 (Minimal patterns). Let Σ denote a set of dis-
crimination patterns w.r.t. a distribution P and threshold δ.
The set of minimal patterns Σmin ⊆ Σ consists of all patterns

2https://github.com/propublica/compas-analysis

(x,y) ∈ Σ such that:

∀ (x′,y′) ⊃ (x,y), (x′,y′) ∈ Σ

and ∀ (x′′,y′′) ⊂ (x,y) s.t. x′′ ̸= ∅, (x′′,y′′) ̸∈ Σ.

That is, we say a discrimination pattern is minimal if all
of its extensions and none of its contractions are discrimi-
natory. Thus, a single minimal pattern can be interpreted as
representing a large set of discrimination patterns—more pre-
cisely, whose size is exponential in the number of unobserved
features. For example, suppose Z = {X,Y, U} are binary
features with S = {X}, and let ({X=1}, {Y =0}) be a min-
imal pattern. Then its valid contraction—i.e. ({X=1}, {})—
is not a discrimination pattern; while all of its extensions—i.e.
({X=1}, {Y =0, U=0}) and ({X=1}, {Y =0, U=1})—
are discriminatory. Note that by definition a minimal pattern
cannot be a maximal pattern, and vice versa.

As a case study, we train a probabilistic model3 on the
COMPAS dataset, which exhibits 7445, 2338, and 1164 dis-
crimination patterns for δ = 0.01, 0.05, and 0.1 respectively.
On the other hand, this model has 170, 74, and 0 maximal
patterns, and only 103, 10, and 1 minimal patterns, for re-
spective values of threshold δ. Interestingly, we observe that
among the 74 maximal patterns for δ = 0.05, none of them
includes an assignment to the variable regarding ‘supervision
level’, suggesting that there are many instances where an
individual would not see an unfair prediction if the supervi-
sion level is additionally known. Moreover, remarkably, the
single minimal pattern in the case of δ = 0.1 can represent
512 patterns (its extensions) out of 1164 total discrimination
patterns in the model.4

Another important consideration when studying discrimi-
nation patterns is their probability. Recall that each pattern
(x,y) represents a group of people sharing the attributes x
and y. Then the probability P (x,y) corresponds to the pro-
portion of the population that could be affected. Even though
any unfairness is equally undesirable for minority groups (i.e.
lower probability) as it is for majority groups, patterns that
are so specific and have exceedingly low probability would
not be as insightful or even relevant when auditing a model
for real-world fairness concerns. To address this, patterns can
be ranked by their divergence score, which takes into account
the probability of a pattern as well as its discrimination score.

Definition 4 (Divergence score (Choi et al. 2020)). Let P be
a probability distribution over D ∪ Z and δ some threshold
in [0.1]. Further suppose x and y are joint assignments to
X ⊆ S and Y ⊆ Z \X, respectively. Then the divergence
score of (x,y) is:

min
Q

DKL (P ∥ Q) s.t. ∆(x,y) ≤ δ,

P (d, z) = Q(d, z), ∀ z ̸⊃ x ∪ y

where DKL (P ∥ Q) =
∑

d,z P (d, z) log(P (d, z)/Q(d, z)).

Informally, it aims to quantify how much the distribution
P needs to be changed in order to remove the discrimination

3See Section 5 for details of the trained model.
4The minimal pattern is where x = {Not Married} and y =

{Low–Medium Supervision Level}.

pattern (x,y). Thus, the patterns with highest divergence
scores would tend to have both high discrimination score
as well as high probability. In fact, we could summarize
all existing discrimination patterns in a model by explicitly
constructing a set of patterns with the following behavior: one
cannot increase the discrimination score without decreasing
the probability, and vice versa.

Definition 5 (Pareto optimal patterns). Let Σ denote a set of
discrimination patterns w.r.t. a distribution P and threshold δ.
The set of Pareto optimal patterns ΣPO ⊆ Σ consists of the
patterns (x,y) ∈ Σ such that:

∀(x′,y′) ∈ Σ \ {(x,y)},

∆(x,y) > ∆(x′,y′) or P (x,y) > P (x′,y′).

Pareto optimal patterns can be a very effective way to study
fairness of a probabilistic model, as it significantly reduces
the number of discrimination patterns one would examine.
For example, the model trained on the COMPAS with 2388
and 1164 discrimination patterns w.r.t. δ = 0.05 and 0.1,
respectively, has only 38 and 28 Pareto optimal patterns. That
is, for δ = 0.1, each of the 1164 − 28 = 1136 patterns has
discrimination score and probability that are both dominated
by those of some Pareto optimal pattern.

In the following sections, we discuss how to find discrimi-
nation patterns in probabilistic circuits, as well as generating
the summaries in the form of maximal, minimal, and Pareto
optimal patterns.

3 Finding Discrimination Patterns in

Probabilistic Circuits

We now describe our algorithm to find discrimination pat-
terns, if there exists any, or certify that there are none. As dis-
cussed in Section 2.2, the probability of a pattern corresponds
to the proportion of the affected subpopulation, according
to the probabilistic model. Therefore, a meaningful analysis
of discrimination patterns depends on how well the model
captures the population distribution. For instance, the exist-
ing algorithm to discover discrimination patterns assumes
naive Bayes classifiers, which make strong independence
assumptions and are generally too restrictive to fit real-world
distributions. We instead consider a more expressive type of
probabilistic models, called probabilistic circuits.

3.1 Probabilistic Circuits

A probabilistic circuit is a directed acyclic graph (DAG) with
parameters, in which inner nodes can either be sum or product
nodes, and input nodes are associated with simple univariate
distributions (often indicator functions in the case of discrete
variables). Moreover, each edge (n, c) between a sum node n
and its child c is associated with a parameter θn,c > 0. A PC
C over random variables X recursively defines a probability
distribution over X as follows:

n(x) =











fn(x) if n is a leaf node
∏

c∈ch(n) c(x) if n is a product
∑

c∈ch(n) θn,c · c(x) if n is a sum

× ×

[D=1] [D=0]

×× × ×

X Y X Y

θ1 θ2

Figure 1: A PC over variables {D,X, Y }

Here, ch(n) denotes the set of children of an inner node n.
Then the distribution P defined by a PC is exactly P (x) =
n(x) where n is the root of the PC.

A key strength of PCs is that they allow tractable inference
of certain probabilistic queries, based on which structural
properties are satisfied by the circuit. The first inference task
we need is computing conditional probabilities, which is
required to get the discrimination score (Definition 1) of a
pattern. Moreover, we would also like to compute probabili-
ties of patterns—that is, marginal probabilities given some
partial observations. PCs support efficient marginal and con-
ditional inference if they satisfy two structural properties
called smoothness and decomposability. A PC is smooth if
for every sum node its children include exactly the same set
of variables, and it is decomposable if for every product node
its children depend on disjoint sets of variables (Darwiche
and Marquis 2002). Given these properties, computing any
marginal probability can be done through a single feedfor-
ward evaluation of the PC, thus taking linear time in the size
of the circuit. Hence, we will assume smooth and decompos-
able PCs throughout this paper.

Let us quickly remark on the wide applicability of prob-
abilistic circuits and subsequently our pattern mining algo-
rithm which takes PCs and inputs. First, both the structure
and parameters of PCs can be learned to fit the data, and in
a wide range of tasks, they were shown to achieve compet-
itive and state-of-the-art performance (Dang, Vergari, and
Van den Broeck 2022; Liu, Mandt, and Van den Broeck
2022; Peharz et al. 2020; Li et al. 2021). In addition, as
mentioned previously, they can be compiled efficiently from
bounded-treewidth graphical models, and thus we can apply
the following search algorithm on such models as well.

3.2 Search Algorithm

To certify whether a distribution defined by a probabilistic
circuit is δ-fair, we search for discrimination patterns in the
PC. If the search concludes without finding any pattern, then
we know that the PC is δ-fair; otherwise, we return all or
some of the discrimination patterns selected according to one
of the criteria discussed in Section 2.

More precisely, we adopt a branch-and-bound search ap-
proach. Algorithm 1 outlines the pseudocode of our search
algorithm. At each search step, it checks whether the current
assignments form a discrimination pattern, and explores ex-
tensions by recursively adding variable assignments. Note

Algorithm 1 SEARCH-DISC-PATT(x,y,E)

Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of discrimination patterns Σ
Data: current pattern (x,y)← ({}, {}); excluded variables

E← {}
1: Σ← {}
2: for each z ∈ val(Z) for some Z ∈ Z \ (X∪Y ∪E) do
3: if Z ∈ S then
4: if ∆(x ∪ {z},y) > δ then
5: Σ← Σ ∪ {(x ∪ {z},y)}

6: if UB(x ∪ {z},y,E) > δ then
7: Σ←Σ∪SEARCH-DISC-PATT(x∪{z},y,E)

8: if ∆(x,y∪{z}) > δ then Σ← Σ∪{(x,y∪{z})}
9: if UB(x,y ∪ {z},E) > δ then

10: Σ← Σ ∪ SEARCH-DISC-PATT(x,y ∪ {z},E)

11: if UB(x,y,E ∪ {Z}) > δ then
12: Σ← Σ ∪ SEARCH-DISC-PATT(x,y,E ∪ {Z})

13: return Σ

that while we mainly present the algorithm that returns all
discrimination patterns, we can easily tweak it to return the
top-k most discriminating patterns: by keeping a running
list of top-k patterns and using the k-th highest score as the
threshold instead of δ.

As there are exponentially many potential patterns, we rely
on a good upper bound to effectively prune the search tree. In
particular, we use the following as our bound UB(x,y,E):

max{
∣

∣

∣
max
u

P (d | x,y,u)−min
u

P (d | y,u)
∣

∣

∣
, (1)

∣

∣

∣
min
u

P (d | x,y,u)−max
u

P (d | y,u)
∣

∣

∣
} (2)

where U can be any subset of Z \ (X ∪Y ∪ E)—in other
words, the remaining variables to extend the current pattern.
The core component of above bound is maximizing or min-
imizing the conditional probability of the form P (d | y,u)
over the values of some U for a given y. We now show how
such optimization can be done tractably for certain classes of
probabilistic circuits.

We use two key observations, expressed by the following
lemmas.5

Lemma 1. Let P be a distribution over D ∪ Z and x a joint
assignment to X ⊆ Z. Also denote V = Z \X. Then for
any U ⊆ Z \X the following holds:

max
u∈val(U)

P (d | x,u) ≤ max
v∈val(V)

P (d | x,v)

That is, to maximize a conditional probability given some
(partial) assignments for a set of free variables, it suffices to
consider only the complete assignments to those variables.
Analogously, this statement holds for minimization as well,
with the direction of inequality reversed.

Lemma 2. Let P be a distribution over D ∪ Z, x an assign-
ment to X ⊆ Z, and U ⊆ Z \X. Then,

argmax
u∈val(U)

P (d | x,u) = argmax
u∈val(U)

P (x,u | d)

P (x,u | d)
.

5Complete proofs of lemmas can be found in the appendix.

Combining these observations, we see that the upper
bound in Equation (1) can be computed easily if we can
efficiently maximize and minimize quantities of the form

P (x,u | d)/P (x,u | d). In fact, we derive an algorithm
with worst-case quadratic time complexity (in the size of the
circuit) for PCs that satisfy additional structural constraints.
Deferring the algorithmic details and proof of correctness to
the appendix, here we instead provide high-level insights to
these additional tractability conditions. First, Vergari et al.
(2021) shows the necessary structural conditions (called com-
patibility and determinism) such that the quotient of two PCs
can be computed tractably and represented as another circuit
representation that allows for linear-time optimization (Choi
and Darwiche 2017). Then all we need is to represent the

conditional distributions P (Z | d) and P (Z | d) as two PCs
satisfying those conditions. If the decision variable D appears
at the top of the PC over D ∪ Z as illustrated in Figure 1,
then the two subcircuits rooted at each child of the root node
exactly corresponds to the conditional distributions given D.
For instance, the PCs rooted at the orange and green sum
nodes in Figure 1 correspond to the conditional distributions
P (X,Y | D=1) and P (X,Y | D=0), respectively.

Furthermore, we can similarly search for top-k patterns
ranked by their divergence scores. Choi et al. (2020) provides
an upper bound on divergence score that once again requires
efficiently maximizing/minimizing conditional probability of
extensions. Thus, given the kinds of PC structure described
above, we can also compute a non-trivial bound and extend
the branch-and-bound search approach in a straightforward
manner to mine divergence patterns in PCs as well.

Lastly, we briefly discuss how to obtain the special types
of discrimination patterns introduced in Section 2.2. We can
make a small tweak to the search algorithm to keep track of
the Pareto front of discrimination patterns found so far in each
search step. Concretely, we maintain an ordered container
storing the probability and discrimination score in increasing
order of the former and decreasing order of the latter. Simi-
larly, finding the set of maximal patterns is almost identical to
searching for all discrimination patterns. In particular, when
exploring a pattern in the search tree, we declare it to be
maximal if no extension of it can be a discrimination pattern,
determined by the quadratic-time upper bound on discrimina-
tion score. For minimal patterns, we derive a sub-quadratic
time algorithm to examine a set of patterns and recover the
minimal ones; see appendix for details.

4 Discrimination Pattern Mining by Sampling

Certifying that there exists no discrimination pattern, among
exponentially many possible assignments, is a very hard prob-
lem. In real-world settings, one may simply be interested in
quickly studying examples of unfairness that may be present
in the model. In fact, this is the goal for many existing fair-
ness auditing tools (Saleiro et al. 2018): to find patterns of
bias (potentially using different fairness definitions) for the
developer or user to examine. Hence, we introduce efficient
sampling-based methods to mine discrimination patterns in
PCs. While these methods cannot necessarily certify a model
to be δ-fair, they can very quickly find a large number of

Algorithm 2 SAMPLE-DISC-PATTERNS(C,Z)

Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of sampled discrimination patterns Σ

1: Σ← {}
2: repeat ▷ generate samples until timeout
3: (x,y)← ({}, {})
4: while |x|+ |y| < n do
5: for (x′,y′) ∈ extensions(x,y)) do
6: ▷ each extension by a single variable
7: if ∆(x′,y′) > δ then Σ← Σ ∪ {(x′,y′)}

8: (x,y)← sampleweight:∆(x′y′)(extensions(x,y))

9: until timeout
10: return Σ

patterns, as we will later show empirically.

Our proposed approach is summarized in Algorithm 2.
At a high level, each run of the sampling algorithm starts
from an empty assignment xy and incrementally adds one
attribute at a time until a complete assignment is obtained.
The attribute to be added (or more precisely the immediate
extension to be explored) at each step is sampled at random
with a likelihood proportional to the discrimination score of
the resulting assignment. Any assignment explored along the
way with a sufficiently high discrimination score is added to
our set of patterns. Intuitively, at any assignment, we use the
discrimination score of its immediate extension as a heuristic
for its extensions being discrimination patterns.

Algorithm 2 is the base of our proposed sampling algo-
rithm. We also derive a more sophisticated algorithm with
memoization between samples and control over exploration
versus exploitation at different stages of sampling. At a high
level, we maintain an estimator at each assignment corre-
sponding to the expected discrimination score of an exten-
sion and backtrack at the end of each sampling run to update
the estimates before the next run. We refer the reader to the
appendix for details regarding the same. Observe that the
sampling algorithm is computationally inexpensive overall
as the only circuit evaluations that need to be performed are a
few feed-forward evaluations (linear time) to compute condi-
tionals at each assignment explored. Lastly, it is worth noting
that after the discrimination patterns have been sampled, we
can utilize similar techniques as described in Section 3.2 to
efficiently summarize them through minimal, maximal, and
Pareto optimal patterns.

5 Empirical Evaluation

We evaluate our discrimination pattern mining algorithms on
three datasets: COMPAS which is used for recidivism predic-
tion and the Adult (Dua and Graff 2017) and Income (Ding
et al. 2021) datasets for predicting income levels. As pre-
processing, we remove redundant features and features with
unique values, and discretize numerical values. We learn a
PC from each dataset using the STRUDEL algorithm (Dang,
Vergari, and Van den Broeck 2022), which returns determin-
istic and structured decomposable PCs as required by our

Table 2: Dataset statistics (number of examples, number of
sensitive features S, non-sensitive features N) and speedup
of top-k search v.s. naive enumeration, in terms of the fraction
of search space explored.

Disc. Divergence
Dataset Size S N k δ=0.1 δ=0.01 δ=0.05 δ=0.10

COMPAS 48834 4 3
1 2.73x 2.17x 1.40x 1.16x
10 2.68x 1.85x 1.26x 1.10x
100 2.52x 1.46x 1.13x 1.04x

Income 195665 2 6
1 1.22x 1.50x 1.32x 1.13x
10 1.20x 1.40x 1.26x 1.08x
100 1.13x 1.31x 1.15x 1.02x

Adult 32561 4 9
1 1.32x 24.20x 16.72x 10.88x
10 1.31x 20.44x 14.75x 9.82x
100 1.29x 16.10x 11.87x 8.40x

search algorithm.6 All experiments were run on an Intel(R)
Xeon(R) CPU E5-2640 (2.40GHz).

With regards to empirical comparison with existing work
in literature, it is worth emphasizing that efficiently mining
discrimination patterns has only been possible so far for naive
Bayes (Choi et al. 2020) which makes strong assumptions,
and our method is (to the best of our knowledge) the first
method to extend this to a much more general class of models,
namely PCs. Furthermore, other existing fairness verifiers
in literature as discussed in Section 2.1 are not able to find
discrimination patterns: they only verify a weaker fairness
properties such as statistical parity. Hence, in this section, we
evaluate our exact and approximate methods against the only
available baseline of naive enumeration, and against each
other to clearly test comparative efficiency.

5.1 Exact Search

We first evaluate the efficiency of our branch-and-bound
search algorithm to find discrimination patterns. As our ap-
proach is the first non-trivial method that does not require
naive Bayes assumption, we see whether it is more efficient
than a naive solution that enumerates all possible patterns. We
mine the top-k patterns for two ranking heuristics (discrimi-
nation and divergence score), three values of k (1, 10, 100),
and three threshold values δ (0.01, 0.05, 0.1). Table 2 reports
the speedup in terms of the proportion of the search space vis-
ited by our algorithm compared to the naive approach. Note
that only the settings in which δ=0.1 for ranking by discrim-
ination score are reported, because the results are identical
for smaller values of δ. We observe that pruning is effective,
resulting in consistent speedup, including some significant
improvement in performance as high as 24x speedup in the
case of mining top-k divergence patterns on the Adult dataset.

Moreover, note that our method computes an upper bound
at every search step, which has a worst-case quadratic time
complexity. However, we see that pruning the search space
still improves the overall run time of the algorithm, even with
this extra computation. For example, our method explores
a little less than half the search space for top-k discrimina-
tion patterns with δ = 0.1 on the COMPAS dataset, and it

6Link to pre-processed data, trained models, and code:
https://github.com/UCLA-StarAI/PC-DiscriminationPatterns.

7 Acknowledgments

We thank the reviewers for their thoughtful feedback towards
improving this paper. This work was funded in part by the
DARPA Perceptually-enabled Task Guidance (PTG) Program
under contract number HR00112220005, NSF grants #IIS-
1943641, #IIS-1956441, #CCF-1837129, Samsung, CISCO,
a Sloan Fellowship, and a UCLA Samueli Fellowship.

References

Albarghouthi, A.; D’Antoni, L.; Drews, S.; and Nori, A. V.
2017. FairSquare: Probabilistic Verification of Program Fair-
ness. 1(OOPSLA).

Barocas, S.; and Selbst, A. D. 2016. Big data’s disparate
impact. Calif. L. Rev., 104: 671.

Bastani, O.; Zhang, X.; and Solar-Lezama, A. 2019. Proba-
bilistic Verification of Fairness Properties via Concentration.
3(OOPSLA).

Bellamy, R. K. E.; Dey, K.; Hind, M.; Hoffman, S. C.; Houde,
S.; Kannan, K.; Lohia, P.; Martino, J.; Mehta, S.; Mojsilovic,
A.; Nagar, S.; Ramamurthy, K. N.; Richards, J.; Saha, D.;
Sattigeri, P.; Singh, M.; Varshney, K. R.; and Zhang, Y. 2018.
AI Fairness 360: An Extensible Toolkit for Detecting, Under-
standing, and Mitigating Unwanted Algorithmic Bias.

Berk, R.; Heidari, H.; Jabbari, S.; Kearns, M.; and Roth,
A. 2018. Fairness in criminal justice risk assessments:
The state of the art. Sociological Methods & Research,
0049124118782533.

Choi, A.; and Darwiche, A. 2017. On Relaxing Determinism
in Arithmetic Circuits. In Proceedings of the Thirty-Fourth
International Conference on Machine Learning (ICML).

Choi, Y.; Farnadi, G.; Babaki, B.; and Van den Broeck, G.
2020. Learning fair naive bayes classifiers by discovering
and eliminating discrimination patterns. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
10077–10084.

Choi, Y.; Vergari, A.; and Van den Broeck, G. 2020. Proba-
bilistic Circuits: A Unifying Framework for Tractable Proba-
bilistic Models.

Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big data, 5(2): 153–163.

Chow, C. K.; and Liu, C. N. 1968. Approximating discrete
probability distributions with dependence trees. IEEE Trans-
actions on Information Theory.

Dang, M.; Vergari, A.; and Van den Broeck, G. 2022. Strudel:
A Fast and Accurate Learner of Structured-Decomposable
Probabilistic Circuits. International Journal of Approximate
Reasoning, 140: 92–115.

Darwiche, A. 2003. A Differential Approach to Inference in
Bayesian Networks. Journal of the ACM, 50(3): 280–305.

Darwiche, A.; and Marquis, P. 2002. A knowledge compi-
lation map. Journal of Artificial Intelligence Research, 17:
229–264.

Datta, A.; Tschantz, M. C.; and Datta, A. 2015. Automated
experiments on ad privacy settings: A tale of opacity, choice,

and discrimination. Proceedings on privacy enhancing tech-
nologies, 2015(1): 92–112.

Dechter, R.; and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artif. Intell., 171(2-3): 73–106.

Ding, F.; Hardt, M.; Miller, J.; and Schmidt, L. 2021. Retiring
adult: New datasets for fair machine learning. Advances in
Neural Information Processing Systems, 34.

Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory.

Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012. Fairness through awareness. In Proceedings of the
3rd innovations in theoretical computer science conference,
214–226. ACM.

Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and Removing
Disparate Impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’15, 259–268. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450336642.

Galhotra, S.; Brun, Y.; and Meliou, A. 2017. Fairness Test-
ing: Testing Software for Discrimination. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2017, 498–510. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450351058.

Ghosh, B.; Basu, D.; and Meel, K. S. 2021. Justicia: A
Stochastic SAT Approach to Formally Verify Fairness. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(9): 7554–7563.

Ghosh, B.; Basu, D.; and Meel, K. S. 2022. Algorithmic
Fairness Verification with Graphical Models. Proceedings of
the AAAI Conference on Artificial Intelligence, 36(9): 9539–
9548.

Griffiths, T. L.; Chater, N.; Kemp, C.; Perfors, A.; and Tenen-
baum, J. B. 2010. Probabilistic models of cognition: explor-
ing representations and inductive biases. Trends in Cognitive
Sciences, 14(8): 357 – 364.

Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of oppor-
tunity in supervised learning. In Advances in neural informa-
tion processing systems, 3315–3323.

Henderson, L.; Herring, C.; Horton, H. D.; and Thomas,
M. 2015. Credit Where Credit is Due?: Race, Gender, and
Discrimination in the Credit Scores of Business Startups. The
Review of Black Political Economy, 42(4): 459–479.

Holtzen, S.; Van den Broeck, G.; and Millstein, T. 2020.
Scaling Exact Inference for Discrete Probabilistic Programs.
Proc. ACM Program. Lang. (OOPSLA).

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic Sentential Decision Diagrams. In Pro-
ceedings of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR).

Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.

Li, W.; Zeng, Z.; Vergari, A.; and Van den Broeck, G. 2021.
Tractable Computation of Expected Kernels. In Proceedings

of the 37th Conference on Uncertainty in Aritifical Intelli-
gence (UAI).

Liu, A.; Mandt, S.; and Van den Broeck, G. 2022. Lossless
Compression with Probabilistic Circuits. In International
Conference on Learning Representations (ICLR).

Madras, D.; Creager, E.; Pitassi, T.; and Zemel, R. 2018. Fair-
ness Through Causal Awareness: Learning Latent-Variable
Models for Biased Data. arXiv preprint arXiv:1809.02519.

Meila, M.; and Jordan, M. I. 2000. Learning with mixtures of
trees. Journal of Machine Learning Research, 1(Oct): 1–48.

Nabi, R.; and Shpitser, I. 2018. Fair inference on outcomes. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Peharz, R.; Lang, S.; Vergari, A.; Stelzner, K.; Molina, A.;
Trapp, M.; Van den Broeck, G.; Kersting, K.; and Ghahra-
mani, Z. 2020. Einsum Networks: Fast and Scalable Learning
of Tractable Probabilistic Circuits. In Proceedings of the 37th
International Conference on Machine Learning (ICML).

Poon, H.; and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In 2011 IEEE International Con-
ference on Computer Vision Workshops (ICCV Workshops),
689–690. IEEE.

Saleiro, P.; Kuester, B.; Hinkson, L.; London, J.; Stevens,
A.; Anisfeld, A.; Rodolfa, K. T.; and Ghani, R. 2018. Ae-
quitas: A bias and fairness audit toolkit. arXiv preprint
arXiv:1811.05577.

Salimi, B.; Rodriguez, L.; Howe, B.; and Suciu, D. 2019.
Interventional fairness: Causal database repair for algorithmic
fairness. In Proceedings of the 2019 International Conference
on Management of Data, 793–810.

Sonnenberg, F. A.; and Beck, J. R. 1993. Markov models in
medical decision making: a practical guide. Medical decision
making, 13(4): 322–338.

Vergari, A.; Choi, Y.; Liu, A.; Teso, S.; and Van den Broeck,
G. 2021. A Compositional Atlas of Tractable Circuit Op-
erations for Probabilistic Inference. In Advances in Neural
Information Processing Systems 35 (NeurIPS).

A Proofs of Lemmas

Lemma 1. Let P be a distribution over D ∪ Z and x a joint
assignment to X ⊆ Z. Also denote V = Z \X. Then for
any U ⊆ Z \X the following holds:

max
u∈val(U)

P (d | x,u) ≤ max
v∈val(V)

P (d | x,v)

Proof. Consider any U ⊂ Z \X and W /∈ U. It suffices to
show that

∀u ∈ val(U), P (d | x,u) ≤ max
w∈val(W)

P (d | x,u, w),

as the lemma then follows via a simple inductive argument.
Denote val(W) = {w1, w2, . . . , wn}. To show that there is
at least one w ∈ val(W) such that P (d | x,u) ≤ P (d |
x,u, w) for any u, we will show that P (d | x,u) > P (d |
x,u, wi) for i = 1, . . . , n − 1 implies that P (d | x,u) <
P (d | x,u, wn). First, for all i ≤ n− 1 we have:

P (d | x,u) > P (d | x,u, wi)

=⇒ P (d,x,u)P (x,u, wi) > P (x,u)P (d,x,u, wi).

By taking the sum of both sides of the above inequality, we
get:

n−1
∑

i=1

P (d,x,u)P (x,u, wi) >

n−1
∑

i=1

P (x,u)P (d,x,u, wi)

=⇒ P (d,x,u)P (x,u)−
n−1
∑

i=1

P (x,u)P (d,x,u, wi)

> P (d,x,u)P (x,u)−
n−1
∑

i=1

P (d,x,u)P (x,u, wi)

=⇒
P (d,x,u)−

∑n−1
i=1 P (d,x,u, wi)

P (x,u)−
∑n−1

i=1 P (x,u, wi)
>

P (d,x,u)

P (x,u)

=⇒ P (d | x,u, wn) > P (d | x,u)

Lemma 2. Let P be a distribution over D ∪ Z, x an assign-
ment to X ⊆ Z, and U ⊆ Z \X. Then,

argmax
u∈val(U)

P (d | x,u) = argmax
u∈val(U)

P (x,u | d)

P (x,u | d)
.

Proof. Since P (d | x,u) = P (d,x,u)

P (d,x,u)+P (d,x,u)
=

1
1+P (d,x,u)/P (d,x,u)

, we obtain that

argmax
u∈val(U)

P (d | x,u) = argmin
u∈val(U)

P (d,x,u)

P (d,x,u)

= argmax
u∈val(U)

P (d,x,u)

P (d,x,u)
= argmax

u∈val(U)

P (x,u | d)

P (x,u | d)
.

Algorithm 3 Best Ratio with Evidence: BR(n,m)

Input: deterministic and compatible PCs n and m over Z;
an assignment x ∈ val(X) for X ⊂ Z

Output: maxu∈val(U) n(x,u)/m(x,u) where U = Z \X
1: if n,m are leaf nodes then
2: if supp(n)∩ supp(m) ̸= ∅ and n(x) ̸= 0,m(x) ̸= 0

then
3: BR(n,m)← 1
4: else
5: BR(n,m)← 0

6: else if n,m are product nodes then

7: BR(n,m)←
∏|ch(n)|

i=1 BR(ni,mi)
8: else ▷ n,m are sum nodes
9: BR(n,m) ← maxni∈ch(n),mj∈ch(m)

θi
θj

BR(ni,mj)

B Computing Upper Bounds

B.1 Discrimination Score

Here we describe our algorithm to compute the upper bound
on discrimination score (Section 3.2). Recall that we need
to maximize or minimize quantities of the form P (x,u |
d)/P (x,u | d) over values of U = Z \X for some given
evidence x ∈ val(X). The pseudocode of our algorithm to
maximize such ratio is given in Algorithm 3. Again, we as-
sume that the root of the PC is effectively a decision node on
D, and thus its children represent the conditional distributions

P (z | d) and P (z | d). Hence we can run Algorithm 3 by
giving those two children nodes as inputs. Moreover, we can
easily tweak the algorithm to minimize the ratio, by changing
Line 9 to return the minimum over non-zero values of the
recursive calls if they exist, or zero otherwise.

The algorithm assumes PCs that satisfy two structural con-
straints: determinism and compatibility. A circuit is determin-
istic if the children of every sum node have disjoint supports
(denoted by supp(n)). In other words, for every complete
assignment z, at most one of the children nodes will have a
non-zero output. In addition, two circuits are compatible if
they are: (1) smooth and decomposable; and (2) any pair of
product nodes, one from each circuit, that are defined over
the same set of variables decompose the variables in the same
way. We refer the readers to (Vergari et al. 2021) for a more
detailed discussion of compatibility.

Proof of Correctness. We proceed via induction. For the
leaves, as they are compatible, by definition their supports are
either identical or completely disjoint. Thus, the maximum
ratio is 1, 0, or undefined (we also propagate 0 in this case).

Next, consider two compatible product nodes. As they de-
compose the variables identically, we can order their children
nodes such that n(z) =

∏

i ni(zi) and m(z) =
∏

i mi(zi),
where ni and mi are over the same set of variables Zi. Let

us write Ui = U ∩ Zi and Xi = X ∩ Zi. Then, we have:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)

∏

i ni(xi,ui)
∏

i mi(xi,ui)

=
∏

i

max
ui∈val(Ui)

ni(xi,ui)

mi(xi,ui)
,

leading to Line 7 in Algorithm 3.
Finally, consider two deterministic sum nodes. Then for

any z, at most one children each of n and m would evaluate
non-zero values. That is, the sum nodes can effectively be
treated as maximization nodes: e.g. n(z) =

∑

i ni(z) =
maxi ni(z). Moreover, among all pairs of children ni,mj ,
the ratio ni(z)/mj(z) for any fixed z would be non-zero for
at most one pair (again, we treat the ratio that is undefined as
0). Therefore, we have:

n(z)

m(z)
=

∑

i ni(z)
∑

j mj(z)
=

maxi ni(z)

maxj mj(z)
= max

i,j

ni(z)

mj(z)
.

Thus, we can break down the maximization as the following,
corresponding to Line 9:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)
max
i,j

ni(x,u)

mj(x,u)

= max
i,j

max
u∈val(U)

ni(x,u)

mj(x,u)
.

B.2 Divergence Score

Choi et al. (2020) gives the following upper bound on the
divergence scores of extensions of an assignment (x,y):

P (d,x,y) log
maxz|=xy P (d | z)

minz|=y P (d | z)

+ P (dxy) log
maxz|=xy P (d | z)

minz|=y P (d | z)
,

where z |= xy denotes a complete assignment to Z that
agrees with x and y on their assignments to variables in X
and Y, respectively.

Observe that this upper bound once again requires efficient
maximization and minimization of conditional probability
of extensions. Thus, Algorithm 3 allows us to leverage this
upper bound and straightforwardly extend our exact search
algorithm to mine divergence patterns as well.

B.3 Relative Discrimination Score

We define discrimination patterns using an absolute differ-
ence in conditional probabilities, but one may wish to charac-
terize discrimination using a quantity that is proportional to
the initial prediction probability. For instance, a prediction
that goes from 0.15 to 0.05 after disclosing the sensitive at-
tributes could be seen as more problematic than one that goes
from 0.8 to 0.7, but they would have the same discrimination
score. We can alternatively define a score based on relative
difference as the following.

Definition 6 (Relative Degree of Discrimination). Let P
be a probability distribution over D ∪ Z, and x and y be
joint assignments to X ⊆ S and Y ⊆ Z \X, respectively.
The relative discrimination score of pattern x,y, defined as

∆′(x,y) = P (d|x,y)
P (d|y) .

We can mine discrimination patterns under this notion as
well, by using a similar approach to derive the upper bound.
That is, to get an upper bound on the relative discrimination
score, we independently minimize/maximize P (d | x,y)
and P (d | y) over extensions, as described in Section 3.2
and Appendix B.1.

C Discussion of Summary Patterns

The summary patterns are motivated theoretically as a means
to capture the most interesting discrimination patterns to ML
practitioners for performing quick and efficient audits. For
instance, maximal and minimal patterns are intended to be a
succinct way of explaining away exponentially many patterns
or the lack thereof. Pareto optimal patterns attempt to account
for probability of a pattern in addition to its discrimination
score.

To help the reader appreciate the quality of these patterns,
in Section 2.2 we provide concrete examples of maximal and
minimal patterns for model on the COMPAS dataset. For
instance, a single minimal pattern (δ = 0.1) was able to rep-
resent and hence explain away 512 patterns (its extensions)
out of 1164 total discrimination patterns in the model. In this
case, the minimal pattern was x = {Not Married} and y =
{Low–Medium Supervision Level}. This tells us that no mat-
ter what other features are observed, the corresponding group
of people would experience unfair treatment from the model;
that is, minimal patterns identify the root of discrimination
by representing exponentially many patterns. This sort of
succinct information is clearly helpful to an ML practitioner
auditing the model for fairness. As another example, recall
that if xy is a maximal pattern, then no extension of it is a
pattern. Hence, an individual with attributes x and y who
may see a discrimination in the decision by disclosing their
sensitive information would no longer receive such treatment
if they additionally share other features. On a PC trained on
COMPAS, we observe that among the 74 maximal patterns
for δ = 0.05, none of them includes an assignment to the vari-
able regarding ‘supervision level’, suggesting that there are
many instances where an individual would not see an unfair
prediction if the supervision level is additionally known.

Our proposed summary patterns are a first attempt to cap-
ture a small subset of patterns that would be most helpful to
practitioners, and we leave it to future work to explore other
possible types of summaries.

D Recovering Minimal Patterns

Suppose we are given a set of patterns Σ. While a trivial
algorithm to extract minimal patterns is quadratic in the num-
ber of patterns, we can recover the minimal patterns in time
O
(

P ·N2 + PNlog(PN)
)

, where P is the number of po-

tential patterns and N = |Z|. Note that this is particularly of
interest when the number of patterns is very large.

First, we pre-process the patterns to identify candidate
minimal patterns, which are patterns all of whose extensions
are also patterns. Note that we get this for for free in the
case of exact search with minor modifications. Consider the
poset of all possible assignments xy ordered by inclusion.
We traverse this graph in level order, while maintaining a
queue of nodes to visit and a set of assignments that we do
not want to visit S. At the beginning of each level, we expand
the nodes in S. Then, for each node in the queue for the
current level that is not in S, if it is a candidate minimal
pattern, we mark it as minimal, and add all its children to S.
Otherwise, we add every child not in S to the queue for the
next level.

E Sampling with Memoization

At a high level, there are key two additions to Algorithm 2 in
Algorithm 4.

First, the weights to sample from immediate extensions
are no longer merely their discrimination scores. Instead, we
maintain an estimator Φ(x,y) at each assignment correspond-
ing to the expected discrimination score of an extension of
(x,y) (not just the immediate extensions by a single variable).
Φ(x,y) is initialized as the discrimination score for every
assignment x,y. After each sampling run (which refers to the
complete extension path taken from the empty assignment
({}, {}) to a complete assignment), we backtrack to update
Φ(x,y) with our new information about average score of
pattern encountered on the path after that assignment. More
precisely, one can think of Φ(xy) as tracking the average
discrimination score of a path of extensions from (x,y), av-
eraged over all extension paths explored so far. Observe that
in contrast to Algorithm 2, consecutive sampling runs are
no longer independent, and later runs have a more informed
heuristics for exploring the search space.

Second, at any particular assignment (x,y), the extensions
are no longer directly sampled in proportion to Φ(x,y). In-
stead, we instead introduce a power factor of Γ(x,y) =
(

1 + |x|+|y|
n

)

as a heuristic for how strongly we wish to ad-

here to our estimator in picking our path. One can view this as
a control for exploration versus exploitation as Γ(x,y) varies
from 1 to 2. Intuitively, we are more open to exploration
early on in our path as given a target pattern (x′,y′), there
are initially exponentially many paths to reach it. However,
we prefer to exploit our estimator Φ(x,y) as the number of
extension paths to (x′,y′) reduces later in the sampling run.
We note that this is particularly of significance in settings
where the number of variables (and consequently the search
space) is large, as for most practical purposes we are inter-
ested in quickly finding the most interesting patterns, and not
necessarily interested in exploring the search space to extract
all possible patterns.

F Time Complexity

• The time complexity of the upper bound routine (Algo-
rithm 3) is O

(

|C|2
)

where |C| is the size of the circuit.

• Algorithm 1 is a branch and bound search, with the worst-
case time complexity O (Search Space * Upper Bound

Computation) = O
(

2n ∗ |C|2
)

, where n is the number
of attributes.

• Algorithm 4 (and its basic version Algorithm 2) is a sam-
pling based approach which is run till timeout. Each sam-
ple is extremely efficient because for each attribute that
we add in our construction, we only need to perform a
few feed-forward evaluations of the circuit for computing
marginals, which is linear time in the size of the circuit,
resulting in a time complexity of O(n ∗ |C|)

G Additional Experimental Results

First, we report the log likelihood and number of nodes in
the PCs learnt in our experiments (Table 5). In addition, in
Table 6, we report an extended version of the results reported
in Table 4. In particular, we compare the number and scores
of patterns found by exact search and Algorithm 4 with a
fixed timeout in various settings (dataset, type of score, and
threshold). We find that Algorithm 4 consistently outperforms
exact search in both number of patterns found and score of
highest pattern found across different settings.

Table 5: Log likelihood and number of nodes in learnt PCs
for various datasets

Dataset Log likelihood Number of nodes

Compas -192194.49 89
Income -201072.99 119
Adult -974185.15 291

Algorithm 4 SAMPLE-DISC-PATTERNS(C,Z)

Input: a PC C over variables D ∪ Z and a threshold δ
Output: a set of sampled discrimination patterns Σ

1: Σ← {}
2: Φ(x,y)← ∆(x,y) ∀xy
3: σ(x,y)← 1 ∀xy
4: repeat ▷ generate samples until timeout
5: (x,y)← ({}, {})
6: p← []
7: while |x|+ |y| < n do
8: for (x′,y′) ∈ extensions(x,y)) do ▷ extensions by a single variable
9: if ∆(x′,y′) > δ then Σ← Σ ∪ {(x′,y′)}

10: (x,y)← sample
weight:Φ(x,y)(1+

|x|+|y|
n)(extensions(x,y))

11: p← p+ (x,y)

12: for (x,y) ∈ reversed(p)) do ▷ update estimates

13: t←
Σn

i=|x|+|y|Φ(p[i])

n−|x|−|y|

14: σ(x,y)← σ(x,y) + 1

15: Φ(x,y)← Φ(x,y)·(σ(x,y)−1)+t
σ(x,y)

16: until timeout
17: return Σ

Table 6: Number of patterns and highest score of pattern found by exact search and sampling.

Score Delta Exact Sampling

Discrimination 0.01 584 980
0.05 347 751

0.1 210 347

Divergence 0.01 586 1186
0.05 577 1644

Score Delta Exact Sampling

Discrimination 0.01 0.2236 0.2226
0.05 0.2236 0.2230

0.1 0.2236 0.2230

Divergence 0.01 0.0015 0.0071
0.05 0.0002 0.0009

(a) COMPAS dataset with a 3 second timeout

Score Delta Exact Sampling

Discrimination 0.01 953 2236
0.05 209 1090

0.1 3 225

Divergence 0.01 840 2366
0.05 818 2179

Score Delta Exact Sampling

Discrimination 0.01 0.1076 0.1658
0.05 0.1076 0.1658

0.1 0.1076 0.1658

Divergence 0.01 0.0046 0.0100
0.05 0.0004 0.0023

(b) Income dataset with a 5 second timesout

Score Delta Exact Sampling

Discrimination 0.01 42467 127855
0.05 37167 113763
0.1 30982 99578

Divergence 0.01 35792 133780
0.05 35292 130232

Score Delta Exact Sampling

Discrimination 0.01 0.6725 0.6935
0.05 0.6725 0.6871

0.1 0.6725 0.6844

Divergence 0.01 0.0317 0.2125
0.05 0.0162 0.1098

(c) Adult dataset with a 600 second timeout

