This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Perceptron Theory Can Predict the Accuracy of
Neural Networks

Denis Kleyko™, Member, IEEE, Antonello Rosato™, Member, IEEE, Edward Paxon Frady,
Massimo Panella™, Senior Member, IEEE, and Friedrich T. Sommer

Abstract— Multilayer neural networks set the current state of
the art for many technical classification problems. But, these
networks are still, essentially, black boxes in terms of analyzing
them and predicting their performance. Here, we develop a
statistical theory for the one-layer perceptron and show that
it can predict performances of a surprisingly large variety of
neural networks with different architectures. A general theory
of classification with perceptrons is developed by generalizing
an existing theory for analyzing reservoir computing models
and connectionist models for symbolic reasoning known as
vector symbolic architectures. Our statistical theory offers three
formulas leveraging the signal statistics with increasing detail.
The formulas are analytically intractable, but can be evaluated
numerically. The description level that captures maximum details
requires stochastic sampling methods. Depending on the network
model, the simpler formulas already yield high prediction accu-
racy. The quality of the theory predictions is assessed in three
experimental settings, a memorization task for echo state net-
works (ESNs) from reservoir computing literature, a collection of
classification datasets for shallow randomly connected networks,
and the ImageNet dataset for deep convolutional neural networks.
We find that the second description level of the perceptron theory
can predict the performance of types of ESNs, which could not
be described previously. Furthermore, the theory can predict
deep multilayer neural networks by being applied to their output
layer. While other methods for prediction of neural networks
performance commonly require to train an estimator model,
the proposed theory requires only the first two moments of
the distribution of the postsynaptic sums in the output neurons.
Moreover, the perceptron theory compares favorably to other
methods that do not rely on training an estimator model.

Manuscript received 17 September 2021; revised 1 September 2022 and
10 November 2022; accepted 8 January 2023. The work of Friedrich
T. Sommer was supported by the National Institutes of Health (NIH) under
Grant RO1-EB026955. The work of Denis Kleyko was supported in part by
the European Union’s Horizon 2020 Research and Innovation Program within
the Marie Sklodowska—Curie under Grant 839179, in part by the Defense
Advanced Research Projects Agency’s (DARPA) VIP (Super-HD Project) and
AIE (HyDDENN Project) Programs, and in part by the Air Force Office of
Scientific Research (AFOSR) under Grant FA9550-19-1-0241. The work of
Friedrich T. Sommer and Denis Kleyko was supported in part by the Intel’s
THWAI Program. (Corresponding author: Denis Kleyko.)

Denis Kleyko is with the Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA 94720 USA, and also with
the Intelligent Systems Laboratory, Research Institutes of Sweden, 164 40
Kista, Sweden (e-mail: denis.kleyko@ri.se).

Antonello Rosato and Massimo Panella are with the Department of Informa-
tion Engineering, Electronics and Telecommunications, University of Rome
“La Sapienza”, 00184 Rome, Italy.

Edward Paxon Frady is with the Neuromorphic Computing Laboratory, Intel
Labs, Santa Clara, CA 95054 USA.

Friedrich T. Sommer is with the Redwood Center for Theoretical Neuro-
science, University of California at Berkeley, Berkeley, CA 94720 USA, and
also with the Neuromorphic Computing Laboratory, Intel Labs, Santa Clara,
CA 95054 USA.

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2023.323738]1.

Digital Object Identifier 10.1109/TNNLS.2023.3237381

Index Terms— Accuracy prediction, deep neural networks,
hyperdimensional computing, perceptron theory, reservoir com-
puting, vector symbolic architectures.

I. INTRODUCTION

UE to its ability to provide data-driven solutions to

many previously unsolved problems, machine learning
is rapidly changing many areas of our life. At the same time,
there is growing demand from society [1], [2] to provide trans-
parency and interpretability of machine learning solutions.
For artificial neural networks (ANNS), this requires a deeper
understanding of their underlying principles. There are many
different approaches to this problem, for example, discovering
and characterizing structure and dynamics emerging during
the training phase, such as geometrical structures of the clas-
sifier [3], a classification behavior called shortcut learning [4],
or information content about input against training class [5].
Another important avenue for understanding ANNs is through
studying large ANNs in transfer learning tasks [6]. This can
reveal to what extent input—output mappings are just memo-
rized wholesale, in contrast to the input being dissected for
specific parts that should elicit a particular output. To provide
the transparency of ANN computations, it is crucial to analyze
the decisions in trained ANNs and to predict and explain the
quality of decisions. One avenue to assess the decision quality
is to build models that can predict ANN’s performance [7], [8],
[9].") The most recent works [8], [9] train another estimator
ANN to perform the prediction.

Here, we propose an alternative approach for predicting
the expected accuracy on classification problems for different
trained networks, including deep networks, as well as echo
state networks (ESNs) [10]. Our approach does not require
training another ANN; rather it is based on the theory of
the simple one-layer perceptron, which can describe the last
layer of the ANN. The perceptron theory generalizes an earlier
theory [11], proposed for hyperdimensional computing or,
synonymously, vector symbolic architectures (HD/VSA) and
ESNs with unitary recurrent connections.

The perceptron theory presented here includes formulas for
three different levels of prediction accuracy. Building on the
original formulation [11], we propose two novel formulas
that, under certain conditions, yield predictions with higher
accuracy than the original theory. All formulas leverage the
first two moments of the statistics of the postsynaptic sums at
the output neurons, but differ in how coarsely the multivariate
distribution is approximated. The new formula with the high-
est prediction accuracy captures correlations among dendritic
sums of neurons, which makes it hard to evaluate numerically.
The formulas for lower prediction accuracy neglect such

'In the scope of this study, by performance, we refer to ANN’s empirical
accuracy measured on the test data for the corresponding classification
problem. Interchangeably, the term “actual accuracy” is also used when
appropriate.

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6032-6155
https://orcid.org/0000-0002-4371-5925
https://orcid.org/0000-0002-9876-1494
https://orcid.org/0000-0002-6738-9263

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

correlations and can be easily evaluated numerically. The
neglecting of correlations introduces a bias to the predictions,
which, however, can be removed empirically.

To assess the quality of the predicted accuracies and
to demonstrate their effectiveness in interpreting ANNS,
we applied the theory was in three experimental settings. First,
in Section IV-A, we applied it to a type of ESN that was not
described by the earlier theory [11]. Second, in Section IV-B,
we used a collection of classification datasets with shallow
randomly connected ANNs exploring two strategies of training
the perceptron. Third, in Section IV-C, we evaluated the accu-
racies of 15 deep convolutional ANNs (CNNs) trained on the
ImageNet dataset. The results show high correlation between
the actual accuracies and the predictions. Thus, the proposed
theory identifies critical features for predicting and comparing
performances of networks with different architectures. This not
only helps to gain a deeper understanding of the principles at
work, but also has practical implications. For example, for a
particular task, the theory can be used to select the best suited
network from a set of pretrained networks.

II. RELATED WORK IN PREDICTING ANN PERFORMANCE
Investigations on how to analyze and predict the classifica-
tion performance of ANNs go back to several decades [7],
[12], [13]. Recent interest in this topic has been in the
context of network architecture search (NAS) [14], [15], [16],
i.e., studying the design space of a network and the search
strategies in that space [16]. Another domain where prediction
performance is crucial is knowledge distillation (KD) [17], and
the related studies on how to enhance the performance of sim-
pler models by leveraging more complex ones [18], [19]. The
topic is also relevant for explaining and interpreting the overall
learning mechanism in multilayer networks [20], including
efforts on visualizations deciphering deep networks [21].
Here, we particularly build on earlier work on how to
predict accuracy, either based on the weights in the ANN [8],
[22] or based on the activations of the different layers [9].
Unterthiner et al. [8] trained estimators, which were able to
reasonably rank the classification performance of a plethora of
CNNs. DeChant et al. [9] trained a “meta network™ to predict
the correctness of an ANN on an individual input data sample,
by using the activations in the hidden layers. The results of
these studies, as well as [23], support our approach to bisect
ANNSs into a transformation and a readout perceptron stages.
In [8], it was observed that parameters of the last fully con-
nected weight layer (i.e., readout perceptron) were among the
most informative and frequently used ones. DeChant et al. [9]
reported that for predicting network accuracy, the activations
of the last hidden and output layer were the most useful.
While most of the previous work on performance prediction
relies on training an estimator model (e.g., an elementary
regressor or another ANN), in the context of NAS, there is a
demand for maximally reducing computational expenses asso-
ciated with the search [24] that, in turn, stimulates explorations
of simple metrics that do not require training an estimator
model. A recent study [25] has empirically investigated several
such metrics. Curiously, while some of the investigated metrics
have been proposed in the NAS context [26], most of the
metrics have appeared first in the context of ANNSs’ pruning
and compression [27], [28], [29], [30]. It is worth noting that
the principal motivation for developing these metrics is in their
practical usage for the abovementioned applications. In con-
trast, here, we develop a statistical theory that relies on only a

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

few assumptions with the aim of deepening our understanding
of the principles at work in ANNs and without employing
any estimator model, which would add yet another black box.
In contrast, here, we develop a statistical theory that relies
on only a few assumptions, but does not employ an estimator
model, which yet adds another black box. Thus, potentially,
our statistical approach can provide novel insights for explain-
ing the quality of ANNs’ decisions, such as the possibility to
compare networks with different architectures using only the
weights of their last layers (see Section IV-C6 for details).

Another interesting approach was introduced recently
in [22]. It does not rely on training an estimator model. Instead,
statistical metrics are computed solely from the weights of
the ANN and, thus, provide a single score to characterize the
trained ANN. In contrast, the complete formulation of the
perceptron theory needs access to both the ANN’s weights
and the activation patterns in the last hidden layer to estimate
two moments of the statistics of the postsynaptic sums (see
Section IV-C6). We compared the methods in Section IV-C7
on predicting networks with different architectures, showing
that the perceptron theory provides higher quality than the
methods from [22] as well as the most performing metric
from [25].

III. PERCEPTRON THEORY

The perceptron network is the ancestor of all modern
ANNs. A perceptron is a simple artificial neuron introduced
by Rosenblatt [31], in which inputs are weighted by synapses,
added linearly, and converted to a binary output by a threshold
transfer function. Classification problems can be naturally
mapped to a network of parallel perceptrons (often referred
to as one-layer perceptron) in which each perceptron neuron
is responsible for detecting a match between the input and
one of the classes. The best match of a given input can
be determined by adaptively changing the threshold value
in all perceptrons [32]. Alternatively, one can replace the
original perceptron transfer function by a graded transfer
function, such as sigmoid or rectified linear unit, so that
the output vector of the network still contains graded match
information for the different classes. One can also replace the
individual neural transfer functions by a global mechanism
for maximum detection among all neurons [33], for example,
using winner-take-all competition [34], [35], [36]. Note that
maximum detection was not discussed in the original works
of Rosenblatt. However, for solving classification problems
with multiple classes, such a mechanism is required and
was introduced early on; see, e.g., [33] for a natural gen-
eralization of the original perceptron with the winner-take-
all mechanism for the case of multiple classes. Conversely,
modern ANNs use graded neural transfer functions, which
enables maximum detection on the output vector of the net-
work. Thus, the analysis of classification with a perceptron-
like neural network layer has to take maximum detection
into account, and it should be based on signal detection
theory [37].

A. Perceptron Theory in the Literature

Curiously, but understandably given the lack of universality
of the one-layer perceptron [38], one cannot find the theory
of perceptron classification in textbooks. However, this theory
has been developed piece by piece in the context of under-
standing more complicated networks, such as the formation
of separable sensory representations [39], symbolic reasoning

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 3

in HD/VSA? [51], and some types of ESNs? [11]. These
studies demonstrated that complicated neural computations,
involving recurrent circuitry and nonlinear stages, can be
successfully dissected into two stages: a transformation of
input data samples to a new N-dimensional space and a one-
layer perceptron that reads out the transformations of input
data to classes or network outputs.

In the one-layer perceptron, the synaptic weights are a linear
transformation of the inputs to the postsynaptic sums of the
neurons. The classification is correct if the postsynaptic sum
is the largest in the neuron that corresponds to the actual
class of the input data sample. To date, the most complete
version of a Gaussian theory of the perceptron was presented
in [11]. By generalizing signal detection theory [37] and
building on earlier work on how Gaussian distributions can
be transformed [52], the work in [11] shows that if the
input data sample belongs to one of D classes, then the
predicted accuracy (denoted by a), i.e., the probability that
the perceptron output (class,,.) is the correct class (class;),
is given by

a := p(classq,¢ = classing)

©odx 2|: (Ur Mh_ﬂr)]D_l
= e 2" | o —x + —— . (D)
/—oo A/ 27 op oy,

Here, ®(x) is the cumulative Gaussian; i, and o;, denote
the mean and standard deviation of the postsynaptic sum
of the output neuron that corresponds to the correct class;
i, and o, denote the mean and standard deviation of the
postsynaptic sum for all other neurons. The formula describes
the performance of all flavors of HD/VSA models [40], [51],
[53], [54], [55], [56], [57] and also describes some variants of
ESNs [58], [59].

B. Novel Contribution to Perceptron Theory

Intuitively, (1) computes the probability that for any given
value x of the postsynaptic sum in the output neuron that
represents the correct class, the postsynaptic sums in all other
neurons are smaller than x. Note that (1) makes three strong
assumptions about the distributions of the postsynaptic sums.

1) The distributions are normal.
2) The distributions for “distractor” classes are all the same.
3) The distributions for different classes are independent.

For analyzing HD/VSA models, these assumptions are justi-
fied, because information is represented by normalized pseu-
dorandom vectors, and the symbolic operations in HD/VSA
conserve pseudorandomness and norm. Furthermore, these
models do not have weights that are learned from data.
When predicting the accuracy with weights learned from input
distributions, for example, in ESNs or ANNs, some of these
assumptions will be violated.

2For readers interested but not familiar with HD/VSA, we would like to
recommend the tutorial-like article [40], which is probably one of the best
starting points facilitating the entrance to the area. There is also a detailed
treatment of the basics of the area that can be found in [41] and, more
recently, in a two-part comprehensive survey [42], [43]. When it comes to
specific aspects of the area, [44] can be consulted for representation of data
structures, while for similarity-preserving representations and applications to
classification problems, [45], [46], [47] and [48], [49], [50] can be looked
into, respectively. For specific aspects, such as representation of data struc-
tures, similarity-preserving representations, and applications to classification
problems, we recommend consulting [44]; [45], [46], and [47]; and [48] and
[49], respectively.

3Please refer to Appendix A, which introduces a minimalistic variant of
ESN as well as provides additional references.

We generalize (1) in two steps and demonstrate that the gen-
eralization can predict a broader variety of ANN architectures.
Our first step of generalization of (1) is to drop assumption
2) and compute individual predicted accuracies for each class
ief{l,2,...,D}

a; := p(classqye = i|classinp, = 1)
© dy 7(%#2,')2 D-1
= e Q(x, puj05). (2
/—oo 2o H e

j=1j#i

Here, p and o denote vectors representing the first two
moments (mean and standard deviation) of the statistics of the
postsynaptic sums for all classes. The assumptions for (2) to
hold are reduced to 1) and 3).

Our second generalization is to drop assumption 3); that is,
we allow the postsynaptic sums for different neurons to be
correlated according to a multivariate normal distribution*

a; 1= p(classoyr = i|classin, = 1)

:/ dxl/ldxz---/ldeN(x,u,E) 3)

where NV (x, i,) is the multivariate normal distribution with
the full covariance matrix ¥ replacing the variance vector
o for independent Gaussians in (2); see Appendix A for
connection between (2) and (3). The assumptions for (3) to
hold are reduced to 1).

To aggregate the individual class accuracies in a into the
overall prediction, we form the expectation over all D classes

D
S ta 4

where f; is the prior probability of the ith class in the data.
Recall that vector a stores predicted accuracies for all D
individual classes where the predictions are obtained according
to one of the above formulations of the perceptron theory
[see (1)—-(3)]. This single prediction score characterizes the
accuracy of the network for the whole classification task.
The prior probability of each class f; is estimated using the
frequency of the ith class labels in the empirical samples of the
data, such as the training or test ones. The predicted accuracy
can be compared with the actual accuracy of the network.

IV. EXPERIMENTS
A. Predicting the Performance of ESNs

First, we test our generalized perceptron theory on predict-
ing an ESN performance in the trajectory association task [41].
In Fig. 1, we compare two ESNs with different readout
perceptrons.’ The synapses of one perceptron (blue line) are
set to the centroids of inputs of the different classes (codebook-
based). The synapses in the other perceptron (red line) have
been optimized with linear regression (regression-based). The
average predicted accuracy for the both versions is plotted in
Fig. 1 as a function of the delay of the input occurred in the
sequence of input vectors.

The solid lines depict empirical accuracies. The dotted lines
are the predictions by theory in (1)—(3), using the statistics
reported in Fig. 13 of Appendix A. The original formulation
in (1) correctly describes the experimental performance of

4We assume that the correct class is always in the first position of x
(i.e., x1). This is done just for convenience to make the writing of the next
integrals in (3) more straightforward.

SPlease see Appendix A for the detailed description of the experiment and
the types of ESNs being used.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

I3
®

Accuracy

)

7 Regression-based empirical; D=2
~ -Regression-based analytical using (3); D=2
----- Regression-based analytical using (1); D=2
0.6 — Codebook-based empirical; D=2
~ -Codebook-based analytical using (3); D=2
----- Codebook-based analytical using (1); D=2
—Codebook-based empirical; D=3; Different amplitudes
0.5 — -Codebook-based analytical using (2); D=3; Different amplitudes.
----- Codebook-based analytical using (1); D=3; Different amplitudes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Delay, steps

Fig. 1. Accuracy of the ESN against delay for the case of codebook-based
and regression-based readout perceptrons. The following values for the ESN
parameters were used: N = 100, D = 2 (for red and blues lines) or D = 3
(for black lines), k = 4. The length of test sequences was 10 000. All reported
values were averaged over 50 simulations with pseudorandom codebooks.

the perceptron with centroid filters but overestimates the
performance of the perceptron with regression filters (i.e.,
it has some bias). The bias occurs, because (1) neglects the
correlation between the linear filters of the regression-based
readout, visible in Fig. 13 (right) of Appendix A. Fig. 1
(dashed lines) depicts the predictions by (3), and the accuracies
of both networks are predicted correctly.

The predictions obtained using (2) are omitted, because they
did not differ from the predictions obtained using (1) when
D = 2. To see differences between these two formulations,
we run another experiment with D = 3 and a perceptron
with centroid filters where the inputs had different amplitudes
(black solid line). For this experiment, (1) (black dotted line)
overestimated the accuracy, while (2) (black dashed line)
provided accurate predictions.®

B. Predicting the Performance of Shallow Networks

We also applied the theory in (2) to shallow feedforward
randomly connected ANNs [60], which are similar to ESNs
without the recurrent connections. The evaluation was done
on a collection of the classification tasks where the data are
provided in the form of the extracted features. In particular,
the reported results are based on 121 real-world classification
datasets obtained from the UCI Machine Learning Repos-
itory [61]. The considered collection of datasets has been
initially analyzed in a large-scale comparison study of different
classifiers, and the interested readers are kindly referred to the
original work [62] for more details. The only preprocessing
step was to normalize features in the range [0, 1].

For the sake of brevity, here, we do not go into the details
of the transformation stage. The interested readers are kindly
referred to [63]. In essence, the transformation resembles
Random Vector Functional Link (RVFL) networks [60], which
is a particular variation of shallow feedforward randomly
connected ANNs. Moreover, it is very similar to the known
approaches of using HD/VSA for classification [48], [64], [65],
[66], [67], [68], [69], [70].

The search of the hyperparameters for each dataset has
been done according to [62] using the grid search over
A (regularization parameter), N, and k (activation function
parameter). N varied in the range [50, 1500] with step 50;
A varied in the range 2!71%31 with step 1, and « varied in the
set of {1, 3, 5, 7}. The obtained optimal hyperparameters were
used to estimate the cross-validation accuracy on all datasets.

SWe also studied the perceptron theory predictions for a synthetic binary
classification problem in the case of nonindependent distributions of postsy-
naptic sums in Appendix B.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Similar to Section IV-A, we considered two ways of forming
the perceptron. The first way is common in HD/VSA. It forms
a linear filter as a centroid of a class by simply superimposing
all transformations of input data for this class. The perceptron
then is simply the collection of all the centroids. Formally,
let us assume that the transformations for all training data
are stored in the matrix X, and the corresponding class labels
are stored in the ground-truth vector y; then, the centroid for
the ith class (denoted as W;) is obtained as the sum of the
corresponding transformations in X

W= > X, (5)
J.y /=i
In addition, it is common to normalize each centroid to unit
norm
W
. (6)
W:ll2
The second way is common in shallow feedforward ran-
domly connected ANNs. The perceptron is the result of the
ridge regression, which uses the transformations of training
data and the ground-truth class labels to obtain the optimal
values of the perceptron W as follows:

W=Y'XX"X+AD"! (7)

where I denotes the identity matrix, A is a regularization
parameter used in the ridge regression, and Y is the one-
hot representation of the ground truth from y. Thus, the
main difference between the considered approaches in forming
the perceptrons is that the regression filters are obtained
using the optimization procedure, while the centroid filters are
nonparametric.

Across the datasets, the average cross-validation accuracy
for the perceptron with centroid filters was 0.70, while that
for the perceptron with regression filters was 0.80. The Pear-
son correlation coefficient between the obtained results was
0.80. It is clear that the perceptrons obtained from the ridge
regression usually outperformed the ones with the centroids.

Fig. 2 (top) presents the cross-validation accuracies against
their corresponding predicted accuracies for the perceptron
with centroid filters. The top-left panel in the figure corre-
sponds to the case when the statistics for (2) was obtained from
the training data. The top-right panel in the figure corresponds
to the case when the statistics for (2) was obtained from the test
data. The Pearson correlation coefficient between the accuracy
and the predicted accuracy calculated from the statistics for
the training data was 0.79, while that of the test data was
0.90. The usage of the statistics for the test data improved the
quality of the predictions. The reduced correlation for the case
when the statistics for the training data was used is expected
and happens due to the “leakage” of the data. Since the same
data samples are used to both form the perceptron and to
estimate the statistics of the postsynaptic sums, the obtained
estimates might differ significantly from the ones observed for
previously unseen data samples (i.e., test data).

Fig. 2 (bottom) presents the cross-validation accuracies
against their corresponding predicted accuracies for the per-
ceptron with regression filters. The Pearson correlation coeffi-
cient between the actual accuracy and the predicted accuracy
for the statistics from the training data was 0.47, while that
for the test data was 0.97. Similar to the results for the
perceptron with centroid filters, the usage of the statistics
for the test data improved the quality of the predictions.
The difference, however, was that the predicted accuracies

i

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 5

Train data statistics

Test data statistics

I % @

Accuracy
s

03 04 05 0.6 0.7 0.8 09 1 0.3 0.4 05
Predicted Accuracy

08 09 1

Accuracy
o o

03 04 05 0.6 0.7 0.8 0.9 1 03 04 05 06 0.7 0.8 0.9 1
Predicted Accuracy Predicted Accuracy

Fig. 2. Cross-validation accuracy against the predicted accuracy where the
predicted accuracy for individual classes was calculated according to (2). Each
point corresponds to a dataset. Top: perceptron with centroid filters. Bottom:
perceptron with regression filters.

from the training data statistics did not correlate well with
the accuracies. The most likely explanation is that in the
case of the ridge regression, the perceptron is calculated to
maximize the accuracy on the training data. As a side effect,
the statistics of the postsynaptic sums is too promising, and so
many networks are predicted to achieve high accuracy on the
test data. Other notable differences were that compared to the
perceptron with centroid filters, the errors and bias are smaller
for the ridge regression with test data statistics. For instance,
after removing the bias, the mean value of the absolute error
was 0.03 for the perceptron with regression filters, while for
the perceptron with centroid filters, it was 0.12.

Thus, the main finding here is the sequent: for both
perceptrons with centroid and regression filters, the theory
in (2) introduced some bias, but the Pearson correlation coeffi-
cients between the predictions and the actual accuracies were
high: 0.90 and 0.97, respectively. These differences should
be attributed to the effect of the assumptions used in (2).
Section IV-C3 will elaborate more on this topic.

C. Predicting the Performance of Deep CNNs

1) Deep ANNs in Terms of Transformation and Perceptron
Stages: In the remainder, we will apply the perceptron theory
described in Section III on deep ANNs. To apply the theory,
we dissect the holistic functionality of a deep network into
two parts: a multilayer transformation stage and a single-
layer classification by a perceptron as depicted in Fig. 3.
It is not very common to look at ANNs this way, but, for
example, a recent work [3] has used the same dissection
to study the terminal phase of the training. Note that this
dissection is conceptual, and it affects neither training nor
inference processes. This bipartite view suggests that most
of the network is doing a transformation, i.e., produces a
useful representation of an input data sample. As we will
see below, a similar conceptual dissection can be applied if
the transformation stage includes convolutional layers (i.e.,
CNNGs) or recurrent connections (i.e., RNNs), as long as the
last hidden layer and the output later are densely connected.
Finally, note that using the final outcomes of the multilayer
transformation stage (i.e., activations of the last hidden layer)
does not mean that any information about the network is lost,
because obtaining these activations requires propagating the
activity through all the layers that precede the last hidden one
[see Fig. 3 (dashed rectangle)].

2) Setup: Here, we describe the results of experiments with
a set of well-known deep CNNs, which were pretrained on the

Hidden

Input Hidden

1
ayer _

2%
32
wx 1

A

P3
£

e 4
-
%

7y
%4

25,
N
SFIe
et
X,
Dy

Xe
1%

Input data, x
e OrS SISO
ofelelelele
e s,
£ ‘uonorpaid

RN

-—— = -]
Transformation to/ Readout/TT;irlable Postsynaptic

linear filter sum

N-dimensional space perceptron

Fig. 3. Dissecting the functionality of an ANN into multilayer transformation
and perceptron stages. The figure indicates components of the network by the
terms used in this article.

ImageNet dataset [71]. The ImageNet dataset arose from Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC).
Currently, it is one of the well-established benchmarks in the
object category classification and detection. ImageNet includes
D = 1000 classes corresponding to different object categories,
which makes it hard to preform well on this task. The
training data of ImageNet include over 14 million images. The
validation set from ILSVRC 2012 challenge has 50 000 images
in total; exactly 50 images per each class.

In the experiments below, 15 pretrained deep CNNs were
used: AlexNet [72], GoogLeNet [73], ResNet-18, ResNet-50,
ResNet-101 [74], VGG-16, VGG-19 [75], ShuffleNet [76],
MobileNet-v2 [77], DenseNet-201 [78], Inception-v3 [79],
Inception-ResNet-v2 [80], Xception [81], NASNet-Mobile,
and NASNet-Large [82]. The actual accuracy of the deep
CNNs was assessed using the validation set from ILSVRC
2012 challenge. Blue solid lines in the figures below are the
lines fit to the results.

For each network, we first saved the weight matrix cor-
responding to the connections between the last hidden layer
and the output layer. Recall that in our interpretation, this
weight matrix (i.e., readout perceptron) is treated as a set
of D linear filters, where, for each class, the linear filter
is the corresponding N-dimensional vector. Second, for all
networks, we have also obtained the activations of the last
hidden layer for each image in the ILSVRC 2012. Recall
that these activations are seen as the results of the multilayer
transformation stage of the network. All linear filters and the
last hidden layer activations of a particular class were used
to calculate the postsynaptic sums. Note that in cases when
it is easier to obtain the statistics in the form of activations
of ANN’s last layer, they can be used to directly compute the
required statistics. The resultant matrix was used as a data
sample to estimate moments of probability density functions,
which are involved in calculating the predicted accuracy a; for
that class.

3) Predictions According to (2): We compared the actual
accuracy of each network against its predicted accuracy, where
the predicted accuracies for individual classes were calculated
according to (2) and then aggregated into a single prediction
[Fig. 4 (left)].” The results were mixed. On the one hand, the
Pearson correlation coefficient between the actual accuracies
and the predicted accuracies was 0.93, indicating a high
similarity between the actual and predicted accuracies. Also,
the Kendall’s t correlation coefficient measuring the quality
of the ranking of the networks performances was 0.86, which
is rather high. For instance, it is worth noting here that if

"In practice, it was averaging as in the ILSVRC 2012 each class has the
same number of images, so f; = 1/D = 1073,

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
0.9
0.85
NAS|
08 Inception-Re; el—:/z <
DenseNet-20 i
ResNet-101o * |ncep§io),§?3 tion
0.75 - ResNet-50¢ .
VGG-19VGG-1 . NASNet-Mobile
0.7 R L MobileNet-v2
- esNet-18 ¢
9
<
5065 ShuferNet.
0
o
<
0.6
0.55- o AlexNet
0.5
0.45
0.4
0.4 0.5 0.6 0.7 0.8 0.9
Predicted Accuracy
Fig. 4.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

0.9 T
0.85
NASNet-Larg
Inception-ResNet-v.
0.8
DenseNet-201 Xception
ResNet-101, Inception-v3
0.75 - ResNet=50% <NASNet-Mobile |
VGG-19 °
07 ResNet-18, 16 MopileNet-v2
>
9
©
g 0.65 ShuferNes
o
<
0.6

0.55 - & AlexNet

0.5

0.4 0.5 0.6 0.7 0.8 0.9
Predicted Accuracy

Accuracy of 15 deep CNNs on the ILSVRC 2012 validation dataset against the predicted accuracy. Left: individual predicted accuracies were

calculated according to (2). Right: individual predicted accuracies were calculated similar to (2) but using the kernel distributions (Pearson correlation

coefficient was 0.94).

* ShuffleNet

01 *ResNet-18

*GooglLeNet

.
ResNet-101
0.05

DenseNet-201"

MobileNet-v2*

Inception-v3

005 Xoeptiort Inception-ResNet-v2

Difference between accuracy and prediction score

NASNet-Large® [ASNet-Mobile

-0.1
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01

Average correlation coefficient

0.015 0.02 0.025

Fig. 5. Difference between the accuracy and the predicted accuracy for
15 deep CNNs against the average Pearson correlation coefficient in the
covariance matrices. The predicted accuracies were calculated according
to (2).

one would just use the number of flops for each network
(which is a meaningful information for deep CNNs) as the
performance prediction, these correlation coefficients are only
0.50 and 0.49, respectively. On the other hand, however, there
are obvious issues with the predicted accuracies. First, there is
a clear bias in the predicted accuracies. Second, single points
deviate noticeably from the fit linear trends. For example, even
after compensating for bias, the largest error was observed for
AlexNet, where the predicted accuracy overestimated the accu-
racy by 0.05; the mean value of the absolute error was 0.02.

One possible explanation of these prediction errors is that
assumption 1) in (2) is violated, the assumption that the postsy-
naptic sums are distributed normally. We quantified the effect
of this assumption by using nonparametric kernel density
estimation for the probability density functions and then cal-
culated the predicted accuracy in the same way as in (2). The
accuracies predicted with the kernel estimation [Fig. 4 (right)],
indeed, differ somewhat from the ones depicted in the left
panel. However, dropping the assumption of Gaussianity did
not significantly reduce the error in predicted accuracies. The
strong bias was still present, and the deviations of the points
from the fit line were still nonnegligible. The mean value of
the absolute error after compensating the bias was at 0.02.

In Section IV-C7.a, we also provide the predictions produced
by other prediction methods.

The next natural step was to investigate the effect of
assumption 3) that the distributions of individual postsynaptic
sums are all independent.

4) On Removing Bias Introduced by (2): Since (2) does not
take into account the covariance matrix, it is worth checking
whether some information contained in the covariance matrix
itself is able to explain the bias introduced by the predicted
accuracies. Fig. 5 depicts the difference between the observed
accuracy and the predicted accuracy against the average value
of Pearson correlation coefficients in the covariance matrices
of each network. We see that the difference closely follows the
average values of Pearson correlation coefficients for different
networks. In particular, the Pearson correlation coefficient
between the differences and the average Pearson correlation
coefficients was —0.95. Thus, at least for the ImageNet
dataset, we can conclude that it is possible to use the average
Pearson correlation coefficient to predict whether the predicted
accuracy is too optimistic or too pessimistic about the actual
accuracy.

Morevoer, since it is hard to conclude much from only
15 datapoints, we used ImageNet to create subproblems with
smaller numbers of classes. In our experiments, the sub-
problem of a given size was generated by randomly choos-
ing (without replacement) the classes to be included in the
subproblem. The following sizes of subproblems were used
{2,4,8,16, 32,64, 128, 256, 512, 768}. For each network and
for each subproblem size, 40 different subproblems were
evaluated.

Each panel in Fig. 6 (left) corresponds to a deep CNN.
Each point corresponds to a subproblem with the size of
the subproblem represented by color. First of all, we see
that each network develops its own bias, which is in line
with the bias present in Fig. 4 (left). This suggests that
assuming independence between distributions of postsynaptic
sums of output neurons caused a noticeable bias effect on the
predicted accuracies. Moreover, the error between the actual
and predicted accuracies caused by the bias was increasing
with the size of the subproblem. However, what is aston-
ishing is that the Pearson correlation coefficients between
the actual and predicted accuracies were almost exactly
one for individual networks (the lowest one was 0.99 for

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 7

AlexNet: 0.997 ShuffleNet: 0.997 .
[y’ 5

1

1

GoogLeNet: 0.996

o
®

Accuracy
Accuracy
o
®

o
3

Accuracy

o
by
o
o
o
3

S
o
Y

S

06 08 1 06 08 1 06 08 106 08
Predicted Accuracy
VGG-16: 0.996

o
IS

Predicted Accuracy
VGG-19: 0.996

Predicted Accuracy
, NASNet-Mobile: 0.989

Accuracy
4
®
Accuracy
o
®
Accuracy
4
®

Accuracy
o
B ®

0.7 07 , 0.7 , 07 /
067 0.6 067 067
06 0.8 1 06 08 1 06 0.8 1 06 0.8
Predicted Accuracy Predicted Accuracy Predicted Accuracy Predicted Accuracy

1 DenseNet-201: 0.996

ResNet-18: 0.997

Predicted Accuracy
ResNet-50: 0.996

o7 o 0.65
s 768
087 coret 06
106 08 1

1 Inception-v3: 0.989 ion: 0.992

Accuracy
Accuracy
Accuracy
Accuracy

i 0.7 i 0. s 0.77
0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 07 0.8 0.9
Predicted Accuracy Predicted Accuracy Predicted Accuracy

Fig. 6.

ResNet-v2: 0.991

Predicted Accuracy

) MobileNet-v2: 0.994’;

: /7 0.9
067
1 06 08 1 0.85

Predicted Accuracy
| ResNet-101:0.99 08

©an

0.75 NASNet-Mobile,,
.16 MobileNet-v2,

. 32

Accuracy
o
®
2
Accuracy
)
2

/ . 128
, 256

Predicted Accuracy
1 NASNet-Large: 0.988

05 055 06 065 07 075 08 08 09
Predicted Accuracy

Accuracy
N

107 08 09 1

Predicted Accuracy

Accuracy of 15 deep CNNs on the ILSVRC 2012 validation dataset against the predicted accuracy. Left: subproblems of different sizes randomly

sampled from ImageNet. The predicted accuracies for individual classes were calculated according to (2). Color of point indicates the size of the subproblems.
Title for each panel states network’s name and the Pearson correlation coefficient. Right: predicted accuracies of networks were calculated according to (2)

and then compensated using the lines from the left panel.

1

0.95 - *
0.9 - R
. L]
o oo
3’0-85 o e © AlexNet according to (2)
g + AlexNet according to (3)
8 * GooglLeNet according to (2)
< 08 + GooglLeNet according to (3) B
Xception according to (2)
Xception according to (3)
0.75 - ¢ Inception-ResNet-v2 according to (2) |

+ Inception-ResNet-v2 according to (3)
ShuffleNet according to (2)
ShuffleNet according to (3)

* NASNet-Large according to (2)

+ NASNet-Large according to (3)

—ref

0.7 -

0.65 1 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Prediction score
Fig. 7. Accuracy of six deep CNNs against the predicted accuracy for the

subproblems of size 4. The predicted accuracies for individual classes were
calculated either according to (2) or (3).

NASNet-Large). This is another implicit indication that the
assumption of normal distribution is not critical for predicting
accuracy. Moreover, the lines fit for each network can now be
used to compensate the corresponding predicted accuracies in
Fig. 4 (left). For the compensated predicted accuracies against
the actual accuracies, the Pearson correlation coefficient was
0.998 [Fig. 6 (right)]. We also noticed that the compensations
based on the subproblems on individual networks have almost
removed bias and unsystematic deviations between the accu-
racies. The compensated predicted accuracies overestimate the
actual accuracies to a lesser degree than that depicted in
Fig. 4; e.g., the largest error (overestimated) was 0.02 for
NASNet-Mobile.

5) Predictions According to (3): The results in Fig. 6 (right)
are encouraging from the point that the compensated predicted
accuracies nearly perfectly corresponded to the accuracies.
Obviously, the Kendall’s T correlation coefficient was 1.00.
On the other hand, in order to make the compensation, it is

necessary to observe the accuracies of smaller subproblems,
which is highly undesirable from the practical applicability
point of view. The solution to this problem is to get rid
of the independence assumption by calculating the predicted
accuracies according to (3). This approach, however, has its
own complications, as the numerical integration of (3) is
challenging, even for the moderate number of classes. Thus,
to demonstrate that (3) addresses the bias issue, we have
performed another experiment. We selected the subproblems
from ImageNet where the size of the subproblem was fixed to
four classes. Different from the previous experiment, we first
randomly chose 10000 subproblems and calculated both the
actual and predicted accuracies using (2). Then, we hand-
picked 25 most challenging subproblems choosing the ones
whose predicted accuracies calculated using (2) resulted in
large errors. For these subproblems, we used both formulas,
(2) and (3), to predict the accuracies (see Fig. 7). For the
considered networks, there was no bias in the predictions cal-
culated according to (3), which is an empirical demonstration
that (3) can predict a wider range of network architectures.

As Fig. 7 suggests, calculating the predicted accuracies
with (3) should address the problem of bias introduced by (2).
However, the numerical integration for problems with many
classes, such as ImageNet, is not tractable. We partially
circumvented this problem by using a Monte Carlo approach
for sampling from the estimated distributions. The results
obtained with the Monte Carlo approach (see Fig. 8) were
quite obviously better than the ones obtained with (2). The
Pearson correlation coefficient was 0.98, and the Kendall’s t
correlation coefficient was 0.92. Another nice outcome was
that the points were arranged on a line (dashed line) parallel
to the line of perfect correspondence (solid line); i.e., all
the predictions slightly overestimated the actual accuracies by
a constant offset. This offset just comes from the fact that
one should use the normalization constant in our estimations,
which Monte Carlo sampling does not provide.

Fig. 9 presents the results of applying the same sampling
approach to different sizes of subproblems randomly formed
from ImageNet. Overall, we still see the same trend as in
Fig. 8, i.e., that the predicted accuracies were approximately
offset from the line of perfect correspondence by a constant

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

» " e Xception
et-20‘1, 7 *Inception-v3
et-50,, 7 ResNet-101 X
L, * NASNet-Mobile
GG-19 4 *MobileNet-v2
> ® VGG-16

. *ResNet-18

Accuracy
©
3
6]

0.65 - o “GoogLeNet |
0.6
0.55 - J
05 - : : :
0.5 0.6 0.7 0.8 0.9 1

Predicted Accuracy

Fig. 8. Accuracy of 15 deep CNNs against the predicted accuracy. The
predicted accuracies were calculated according to (3) using Monte Carlo
sampling.

| Sub-problem size: 32

f Sub-problem size: 64

1 Sub-problem size: 128

5.(1.95
g
3 09
]

8
0.5

=
©

*+ AlexNet

+ ShuffieNet
GoogleNet

* ResNeti8

* MobileNet-v2

Accuracy
14
®

. # VGG-16
: : ‘ + VGG-19
8 Predioted 2ocurac 8 Predicteq accurac Predicted acuracy, |+ NASNet:Mobile
Sub-problem size: %56 Sub-problem size: 512 Sub-problem size: 768 * ResNet-50
1 0 1 > "+ ResNet-101
- | _~"",. + DenseNet-201
g v <"+ Inception-v3
Xception

o

1 0.7

©
©

g L I
8 s + Inception-ResNet-v2
308 s - NASNet-Large

& e ref

Accuracy
>
&

o
S

0s 05"
0.

.6 038 1 6 0.8 1 .6 0.8 1
Predicted accuracy Predicted accuracy Igredicted accuracy

Fig. 9. Accuracy of 15 deep CNNs against the predicted accuracy. Each
panel corresponds to a fixed size of a subproblem. The predicted accuracies
were calculated according to (3) using Monte Carlo sampling.

(dashed lines). The difference is more noticeable with the
decreased size of a subproblem, which indicates the increased
importance of normalization constants.

6) Predicted Accuracy From the Readout Perceptron Only:
One interesting question to the proposed theory is: how well
could it work if given only the readout perceptron but no
activations of the last hidden layer? Quite surprisingly, as we
will see below, it was possible to achieve a 7 correlation
coefficient of 0.71 by computing the predicted accuracy only
from the readout perceptrons, without any access to the
transformations of input data samples.

Intuitively, a possible way to calculate the required statistics
(i.e., p and o) would be to use linear filters themselves
in place of the hidden layer activations. The issue with
this approach, however, is that the postsynaptic sums to
linear filters themselves are much higher than that of the
hidden layer activations from real data, since in reality, the
activations of the hidden layer will never match perfectly
their corresponding linear filters, which means that realistic
postsynaptic sums are lower. Thus, this situation presents the
case when we obtain the maximally possible postsynaptic
sum, which is not expected in reality where hidden layer
activations will not be the exact copies of the corresponding
linear filter. Therefore, the predicted accuracies calculated in
this way are nearly 1. A possible way to mitigate this issue
is to disturb the linear filters by adding some white noise
to them. The noisy versions of a particular linear filter are
used in place of activations of the last hidden layer by the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Correlation coefficient

06 | ‘ ‘ :
o 5 10 15 20 25 30 35
Noise level, dB
Fig. 10. Solid line depicts the mean Pearson correlation coefficients for

15 deep CNNs between their accuracy and the predicted accuracies calculated
using only the perceptron when disturbing the linear filters with white noise
for different level of noise. The bars depict standard deviations. The dashed
line depicts standard deviations of the predicted accuracies normalized by the
largest value.

samples of the corresponding class. The postsynaptic sums
are calculated using the original linear filters and their noisy
versions. The obtained postsynaptic sums are used to estimate
the required statistics for u and o. Thus, the white noise
added to the linear filters acts as a way to obtain surrogates
of the actual statistical distribution of the data.

We have made the experiments for different levels of
noise. In a single experiment, each linear filter was disturbed
50 times. The disturbed versions were used as the hidden layer
activations for linear filter’s class. Fig. 10 (solid line) reports
the mean Pearson correlation coefficients between the actual
accuracy and the predicted accuracies obtained from surrogate
statistics from ten experiments for each level on noise. The
results suggest that either high or low noise levels did not result
in high correlation, but there was a window between 8 and
17 dB where the correlation peaked getting as high as 0.66.

A natural question to ask would be: how to know which
level of noise to use for obtaining the highest correlation? We
think that it could be identified in a straightforward manner; we
use two observations to do so. First, we expect that different
networks have somewhat different accuracy. Second, we know
that the best value of noise is somewhere in between the
extremes. That is because when the noise is too high the
predicted accuracies of all the networks would vanish to a
random guess while when the noise is too low the predicted
accuracies would saturate at one, as explained above. Using
these observations, we expect that the best level of noise
should result in the largest dispersion of the predicted accura-
cies, which can be simply measured by the standard deviation
of the predicted accuracies. Fig. 10 (dashed line) depicts mean
(across ten experiments) and standard deviations for each level
of noise. As we can see from comparing this curve with
the curve for the Pearson correlation coefficients, both curves
peaked approximately in the same window between 8 and
17 dB. Thus, when choosing the level of noise corresponding
to the largest standard deviation, we expect to get close to
the peak in the Pearson correlation coefficient. The absence
of a clear peak might be interpreted as the indication that the
accuracy of all the networks is so close to each other that
we cannot discriminate between them using only information
about the perceptron.

Finally, we can use the obtained predicted accuracies in
order to rank networks using the Kendall’s 7 correlation
coefficient to measure the quality of the ranking. The largest

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 9

Average log Frobenius Norm

5,08 DenseNet-201 Inception-v3 4
8] *ResNet;101 Mk
8 s R Net-50 Mobil eNet-v2 NASNet-Mobile,
307 ResNet-18° VGG-T9°LG-16
GooglLeNet
8 ShuffleNet”
= 0.6 J
[} ® AlexNet
Fos |
0.4 s . . . _
0.6 0.8 1 12.2 1.4 1.6
(log [[W/[%)
0.9 Average Weighted Alpha
>, 0.8 [DenseNet-201 JInception-v3 1
19 ° - _Mobi
© 07 ResNet-10 « ResNet-50 obiIgNeta/%SNASNet Mobile ,
8 . ResNet-18 > VGG~
[&] GooglLeNet .
© ShuffleNet
= 0.6
(0] ® AlexNet
Fos
0.4 ! ! ! !
0 1 2 3 4 5
a

Fig. 11.
using full sets of networks’ weights.

mean 7 was 0.71, which is not a perfect ranking (v = 1),
but it is far better than random ranking (r = 0). Perhaps
not surprisingly, these results are not as good as the results
obtained for real hidden layer activations, but they still suggest
that the perceptron itself contains rich information about
possible performance of a network, which is in line with
the observations in [8]. For predictions obtained from the
readout perceptron by other estimation methods, please refer
to Section IV-C7.b.
7) Existing Prediction Methods for ANNs: This section
provides the sense on how the predictions produced by the
perceptron theory compare to predictions by other existing
methods. As indicated in Section II, most of the related meth-
ods rely on training estimator models. While these methods
are useful in applications, such as NAS, they hardly provide
novel insights into the principles underlying ANNs. Notably,
however, there are recent studies [22], [25] that do not require
any training of the estimator model, similar to our perceptron
theory case. Therefore, we compared our results to several
metrics proposed in [22] and to the best performing metric
in [25]. All the metrics proposed in [22] are based on the
weights of the trained ANN. While the investigation in [25]
was concerned with searching for simple “zero-cost” metrics
that would release the computational burden of performing
NAS where the metrics were inspired from the literature
related to ANNs’ weights pruning [27], [29], [30]. For the sake
of brevity, we omit the details of calculating the considered
metrics, but refer to the corresponding equations in [22]
and [25]:
1) average log Frobenius norm (denoted as (log ||W||§);
see (3) in [22]);

2) average log spectral norm (denoted as (log ||W||§o); see
(4) in [22]);

3) average weighted alpha (denoted as &; see (10) in [22]);

4) average log o-norm (denoted as (log ||X||%); see (11)
in [22]);

5) synflow; see (1) in [25].

Average log Spectral Norm

0.9
>, 0.8 [DenseNet-201 Jnception-v3 1
8] L ResNet-50 | i
o ResNet-107 > 19, GG ';‘g\SNet Mobile ,
50.7¢ MobileNet-v2 R.es AT 4
8 GooglLeNet .
© Shuffl
To6; uffleNet
3 .

AlexNet

Fos

04" : . .

0.5 1 15
2
(log |[IWII%,)

0.9 Average log a-Norm
>, 0.8 [DenseNet-201 Jnception-v3 i
5} ® - NASNet-Mobile
I ResNet= MObI;ResNet 50 VGG-19 .

0.7 v 1
a3 ResNet-18 *,
o GooglLeNet °
© ShuffleNet
= 0.6
[} ® AlexNet
Fos

044 ! . : : ! .

0 1 2 3 4 5 6
(log [IX[12)

Accuracy of 12 deep CNNs on the ILSVRC 2012 validation dataset against the prediction metrics from [22]. The prediction metrics were obtained

Among the metrics considered in [25], we use synflow,
since it was empirically demonstrated to perform most consis-
tently across all the alternatives. A small peculiarity was that
we found that using log(synflow) significantly improved
Pearson’s r, so it was used to report the results. Since not
all of the networks considered in this study were available in
the software distribution for reproducing [22], in the experi-
ments below, we limited the ANNs to the subset of 12 deep
CNNs (Xception, NASNet-Mobile, and NASNet-Large were
excluded).

a) Predictions obtained from complete networks: First,
to provide the comparison to the perceptron theory predictions
reported in Figs. 4 and 8, we obtained the metrics using full
sets of weights for each ANN. Fig. 11 presents the results
where each panel corresponds to a metric. Table I¥ summa-
rizes the quality of predictions in terms of two correlation
coefficients used above that were calculated with the actual
accuracies: Pearson’s r and Kendall’s . Besides the statistical
metrics from [22] and synflow, the table also reports the
coefficients for the corresponding predictions (i.e., excluding
three CNNs mentioned above) obtained for the perceptron
theory according to (2) (see Fig. 4) and (3) (see Fig. 8).

Among the statistical metrics from [22], the average log
spectral norm had the best Pearson’s r, which is consistent
with the original study. It is also worth pointing out that
synflow outperformed all the metrics from [22], which
might not be that surprising given that it was empirically
shown to be performing well in the scenario that requires
ranking of ANNs. Nevertheless, when this result is compared
with the perceptron theory, we observe decent improvement
in the quality of predictions in favor of the perceptron theory.
It should be also noted that the above experiment used
networks with different architectures; e.g., Martin et al. [22]

8Strictly speaking, the Pearson correlation coefficients for all metrics
from [22] are negative. However, for the sake of presentation clarity, their
absolute values are reported. The same note applies to the results reported in
Table 1I.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Average log Frobenlus Norm

0.8 Ind?)tlon -v3 DenseNet 201
esN t 1
5 s i
£ 0.7 K" ResNet-18 1
3] ®GoogLeNet
] VGG-19 ShuffleNet®
P06} J
|_
°AlexNet
05— : : : :
5 10 15 20 25
2
(log [|[W{|)
Average Welghted Alpha
0.8 ce'?tuw v3 01
%esN’ f’(gfz
e ResN
§ N ob‘?el{YI? vke
5 0.7 M |
o \ ®GooglLeNet
8 vaea19 ShuffleNet °
2067 1
'_
“AlexNet
0.5 ! ' '
5 10 15 20 25

[e%

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Average log Spectral Norm

0.8
'"cepﬂgﬂs‘é et-201
'NASNetS 3
§ ot NP eNet-v2
5 0.7 VGG- 19 ®ResNet-18
8 ®GooglLeNet
© ShuffleNet
et
8 0.6
'_
'AIexNet
0.5 '
1 2 3 4 5
2
(log [|[W]IZ.)
0.8 Average log a-Norm
. nception-
dfesNet 10 enseNet- 201
-RgsN et-50
> NASNet-Mobile
8 07.° obileNet-v2
S 0N " ¥ResNet-18
5} \ ®GooglLeNet
8 VGG-19 ShuffleNet ®
=
?06"
'_
® AlexNet
0.5 L L L Il L
5 10 15 20 25

(log [IX[[3)

Fig. 12. Accuracy of 12 deep CNNs on the ILSVRC 2012 validation dataset against the prediction metrics from [22]. The prediction metrics were obtained

using only the weights of the readout perceptrons.

TABLE I TABLE 11
QUALITY OF PREDICTIONS OBTAINED FROM THE COMPLETE NETWORKS QUALITY OF PREDICTIONS OBTAINED FROM
Method Source | Pearson’s r | Kendall’s 7 THE READOUT PERCEPTRONS
Average log Frobenius norm [22] 0.43 0.42 Method Source | Pearson’s » | Kendall’s 7
Average log spectral norm [22] 0.65 0.42 Average log Frobenius norm [22] 0.25 0.09;
Average weighted alpha [22] 0.52 0.52 Average log spectral norm [22] 0.31 0.30
Average log a-norm [22] 0.48 0.52 Average weighted alpha [22] 0.26 0.06
log synflow [25] 0.66 0.71 Average log a-norm [22] 0.25 0.09
Perceptron theory, Eq. (2) our 0.90 0.79 [Perceptron theory, Eg.) | our [0.66] 0.61 |
Perceptron theory, Eq. (3) our 0.98 0.88

indicated that their metrics should be used with caution when
comparing networks with different architectures. To us, the
results in Table I are an indicator that to be able to achieve
high quality of predictions among different architectures, and
the knowledge of statistics of the postsynaptic sums might be
an essential information.

b) Predictions obtained from readout perceptrons: To
be consistent with the setup of Section IV-C6, we obtained
the statistical metrics when using only the corresponding
readout perceptrons (synflow was not considered here).
These results are presented in Fig. 12; each panel corresponds
to a metric. Similar to Table I, Table II reports the overall
quality of predictions where the results for the perceptron
theory were obtained according to the methodology described
in Section IV-C6. As it could be seen from the table, similar
to the previous experiment, the perceptron theory provided
much higher quality of predictions. Notably, the results of the
perceptron theory in Table II are comparable to those of the
statistical methods from the previous experiment (see Table I).
Finally, it is also worth emphasizing that in this experiment’s
setup, all the methods (including the perceptron theory) formed
the predictions without the access to the activations of the
last hidden layer (i.e., only a subset of network’s weights was
used), which suggests that in the case of different architectures,
the perceptron theory is competitive with the state-of-the-art
methods.

V. DISCUSSION

A. Summary of Results

We present a theory for classification with one-layer percep-
trons, which is general in the sense that it applies to networks
formed by any learning rule or optimization procedure. The
curious fact that the theory for perceptrons, the earliest ANN
models [31], cannot be found in textbooks might be due
to the lack of universality of one-layer perceptrons as a
general function approximator [38]. Here, we trace the late
and gradual development of a general perceptron theory, which
occurred in the context of neuroscience [39] and more complex
neural networks [11], [39]. The presented perceptron theory
generalizes the earlier versions and, thus, is applicable to a
wider variety of neural networks that contain a perceptron-
like output layer.

We first verified that our formulation of the perceptron
theory (3) can accurately predict the performance of ESNs,
even with the readout perceptron optimized by linear regres-
sion, the case that could not be treated with the previous
formulation of the theory [11]. Next, we investigated the
application of the perceptron theory to shallow and deep
networks. The empirical evaluation of the predicted accu-
racy was performed on numerous classification datasets with
shallow networks and on ImageNet with more than a dozen
deep neural network architectures. In both cases, we observed
high correlation between predicted and actual accuracies even
when assumptions in the theory definition (Section III) were
violated, for example, independence of postsynaptic sum

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 11

distributions for different classes or Gaussianity. However,
neglecting dependencies introduced a bias to the predicted
accuracies (Section IV-C3), which can be mitigated empiri-
cally (Section IV-C4). Alternatively, we also offer a general
formulation in (3) that takes the dependencies into account.
One might argue that a theory that predicts accuracies based
on the activations in the last hidden layer is not useful, because
the accuracies could be computed directly by going through
the last layer. Note, however, that the theory does not require
the activations explicitly, and it only requires some low-order
statistical moments of the postsynaptic sums in the output
neurons, which can be cheaply collected during the execution
time. In addition, the theory also identifies the low-order
statistical moments of the postsynaptic sums as essential for
determining the accuracy of the network.

B. Applications and Future Directions

We foresee the following applications of this study.

1) The proposed perceptron theory is applicable to any
network architecture with perceptron-like output layer.
Thus, the potential application range goes far beyond
the network architectures we have investigated in this
article.

2) The proposed theory enables ranking of networks with
different architectures for a particular task by accessing
only low-order statistical moments of the postsynaptic
sums in the output neurons, which is important as it
avoids a common issue of data privacy.

3) A more advanced application of our theory is for
comparing networks without having any access to the
data or the transformation stage of the network. Our
experiments showed that the results are less accurate,
but maybe still sufficient as the first filtering step in a
multistage evaluation process for granting access to the
data only to the most promising networks.

4) Finally, our approach can not only predict classification
accuracies but also be extended to estimate probabilities
of observing a certain vector of postsynaptic sums in the
output layer. This estimation can potentially be used to
detect adversarial examples and other outliers.

The presented results suggest several novel directions for
future investigation. One interesting question is whether the
perceptron theory could be used to design more efficient or
faster training algorithms, perhaps by using the theoretical
predictions for identifying classes that need more training.
Another obvious research direction is efficient numerical
evaluation of the theory formulas. It would be interesting
to compare existing methods for numerical multidimensional
integration in their ability to evaluate the more precise formu-
lation in (3) for larger number of classes.

APPENDIX A
ANALYZING SHORT-TERM MEMORY IN ESNS
The theory in [11] was developed for studying the short-
term memory of distributed representations in such models as
HD/VSA® and recurrent randomly connected networks within
reservoir computing (e.g., ESNs [58]).!0 In particular, here,

9A comprehensive two-part survey of HD/VSA is available in [42] and
[43].

107t s worth noting here that HD/VSA and reservoir computing have
multiple points of connection. There is both a direct connection that has
been drawn in [11] and [83] as well as an implicit connection via cellular
automata computations [84], [85], [86] that have also been found useful within
HD/VSA [87], [88], [89], [90].

we consider the trajectory association task [41], [91], [92] (see
below) as one of the ways of studying the short-term memory
of a simplified version of the ESN [83]. The ability to form and
use the short-term memory is a key enabler for many HD/VSA
use cases, such as representation of data structures [93],
[94], [95], [96], [97], processing of strings [98], [99], [100],
[101], and communications [102], [103], [104]. Below, we will
introduce the trajectory association task together with the
simplified version of the ESN. We kindly refer readers to [59]
for a step-by-step tutorial on applying ESNs; to [105] for a
broader overview of the area; and to [106] for the aspects of
physical realization.

The trajectory association task has two stages: memorization
and recall. At the memorization stage, at every time step m,
the ESN stores a symbol s(m) from the sequence of symbols
s to be memorized. The number of unique symbols (i.e.,
alphabet size) is denoted as D. The symbols are represented
using N-dimensional random bipolar dense vectors stored in
the codebook @ € {—1, 1}¥*P Thus, at every time step m,
the ESN is presented with the corresponding N-dimensional
vector @y, which is added to the hidden layer of the ESN
(x € ZN*1). The state of the hidden layer at time step m
[denoted as x(m)] is updated as follows:

x(m) = fe(p(x(m — 1)) + Psim))

where x(m — 1) is the previous state of the hidden layer at time
step m — 1; p denotes the permutation operation (e.g., circular
shift to the right), which acts as a simple variant of a recurrent
connectivity matrix; f,(x) is a clipping function—nonlinear
activation function, which keeps the values of the hidden layer
in the limited range using a threshold value « as follows:

—K, x<-—K

felx) =

X, —K <X <K
K, X > kK.

In practice, the value of « regulates the recency effect of
the ESN.

At the recall stage, the ESN uses the content of its hidden
layer x(m) as the query vector to retrieve the symbol stored d
steps ago, where d denotes the delay. In the experiments below,
the range of the delays varied between O and 25. The recall is
done by using the readout perceptron for particular d, which
contains one N-dimensional vector (linear filter) per each
symbol. The readout perceptron is denoted as W¢ e RP*N,
and the recall is done as follows:

§(m — d) = argmax(W9x(m))

where arg max(-) returns the symbol with the highest postsy-
naptic sum among the output neurons for the chosen delay
W¢ value and the given hidden layer state x(m).

Let us consider two approaches of forming the readout
perceptron. First, it can be constructed as done usually in
HD/VSA from the codebook @ and the reverse permutation
by d

W= p~ (7). (8)

The advantage of this approach is that no training is required
to obtain the readout perceptron.

An alternative approach, which is more native for ESNs,
is to obtain WY via solving a linear regression on a given
training sequence and the corresponding states of the hidden
layer. The advantage of this approach is that, as we have seen

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12
M tandard deviatit lati fficient
04 lean 04 Standal leviation 02 Correlation coefficient
—Codebook-based: 4,
0.35 — Regression-based: 4, 009 /N ZA- o M
~ ~Codebook-based: , f 0
03 — -Regression-based: i 008
0.25 02
o.o7 —Codebook-based: o,
b 0.06 |—Regreesion-based: o, 04 —Codebook-based
0.15 : = -Codebook-based: o, : —Regression-based
005 ~ -Regression-based: 7,
0.1 -0.6
0.05 0.04
----- ———————— -0.8
[003 ===
-0.05 0.02 -1
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Delay, steps Delay, steps Delay, steps
Fig. 13. Statistics extracted for the case of codebook-based and regres-

sion-based perceptrons. The following values for the ESN parameters were
used: N = 100, D = 2, and « = 4. The length of test sequences was
10000. All reported valued were averaged over 50 simulations with random
codebooks.

in Fig. 1 in the main text, it has higher accuracy than the
codebook-based approach.

While it is straightforward to simulate the presented network
and obtain the accuracies for different values of d empirically,
predicting the accuracy analytically given only the parameters
(N, D, d, and «) is challenging. Nevertheless, [11] has
proposed a solution to this problem when the perceptron is
based on the codebook as in (8). The solution includes two
components. The first one is the equation for calculating the
predicted accuracies a (i.e., the expected accuracy)

a = p(s(m —d) =8(m —d))

i (D (x, pr, 0,)) P! ©)

/ © dx .
—00 \/E oy
where w, and oj, denote the mean and standard deviation of the
postsynaptic sum (i.e., dot product) between x(m) and the row
of WY (i.e., linear filter) corresponding to the correct symbol
s(m — d), while u, and o, denote the mean and standard
deviation of the postsynaptic sum for all other symbols in
the codebook. Note that (9) is equivalent to (1) in the main
text. Moreover, (9) is a special case of (2) where for all
symbols in the codebook other than the correct symbol the
same W, and o, are assumed, that is, because the codebook-
based perceptron uses ®, where representations for different
symbols are random, and therefore, for large N, they are quasi-
orthogonal to each other. Due to this fact, we know that the
expected value of p, is 0 and that of o, is (N« (k + 1)/3)1/2.
However, the values of w; and o;, depend on the given values
of d and «; therefore, the second component of the solution
determines them (please refer to [11, Egs. (2.44)-(2.47)]).

It is also worth mentioning that (3) is the generalization
of (2), because once we assume that X is diagonal (i.e.,
variables in x are independent), (3) can be simplified to (2) as
follows:

[e’e} X1 X1
a; =/ / / pX, 1, X)dxy, - - dx;

—00 J —00 —00

[ere] X|

/ P(Xl)dxl/ p(Xz)dXz--~/ p(Xp)dxg

:/ p(xls ﬂl,al)dX]CD(X], MZ?GZ)"'(I)(XU I’LLvaL)

o0

00 L
= / P&y, o)dx [0, . 0)).

oo j=2

Note that in the case of the regression-based perceptron,
one cannot assume the independence of linear filters in the
perceptron. Therefore, currently, there is no way of analytically

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Predicted Accuracy (1)

Fig. 14. Actual accuracy of a synthetic datasets for different Pearson
correlation coefficients and predicted accuracy calculated assuming that the
correlation between classes is zero, i.e., according to (1)/(2)/(9), which are all
the same for D = 2.

estimating w;, U, oy, and o, for the regression-based percep-
tron. Nevertheless, these values could be estimated empirically
using the simulations. Fig. 13 presents uj, u,, o, and o,
for different values of d for both regression-based (red color)
and codebook-based (blue color) perceptrons.'! Notice, that
there are several important differences between the statistics
observed for different perceptrons. First, w;, for the regression-
based perceptron is higher than that of the codebook-based
perceptron; however, for both perceptrons, pu; is decreasing
with the increased delay, which is expected. Second, both oy,
and o, are much lower in the case of the regression-based
perceptron. Both facts should positively affect the accuracy.
Third, there is a strong negative correlation between the linear
filters in the regression-based perceptron. As it was shown in
Fig. 1 in the main text, the presence of correlation hindered
the applicability of (9), but the use of (3) allowed getting the
correct accuracy.

Finally, let us explain how the original problem: analysis of
trajectory association with ESN relates to predicting the accu-
racy of a neural network. First, in the case of classification,
we do not assume delay, so we can safely say that d = 0. Sec-
ond, the activation of the last hidden layer of a neural network
corresponds to the hidden layer activity in the considered ESN.
Note, however, that there is no guarantee that these activations
are noisy versions of the entries of some fixed random matrix,
as the activations come from (usually continuous) real data.
Finally, the weights of the output layer of a neural network
are more similar to the regression-based perceptron than to the
codebook-based perceptron, because they are obtained through
an optimization procedure (e.g., error backpropagation). This
implicitly explains the bias observed in Fig. 4 when using (2)
to calculate the predicted accuracy. Recall, that in Fig. 4,
we have observed both underestimation and overestimation
of the empirical accuracy, while in Fig. 1, we have observed
only the overestimation. Therefore, in Section B, we will study
the effect of the correlation on the results produced by (2)
or (1)/(9).

APPENDIX B
EFFECT OF CORRELATIONS
In Fig. 1 in the main text, we have seen that even in
the case of two symbols (or two classes), the presence of

Since the regression-based and codebook-based perceptrons might have
different norms, Fig. 13 was obtained using cosine similarities instead of
postsynaptic sums. Obviously, the usage of the cosine similarity does not affect
neither the accuracy nor the applicability of (9) to the estimated statistics.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 13

correlation might result in inaccuracies between the predicted
accuracy and the actual accuracy. Nevertheless, using (1)/(9)
or (2) to calculate the predicted accuracy is tempting, because,
numerically, it is a simple task compared with (3). Therefore,
one interesting question is whether it is possible to compensate
bias introduced by (1)/(9) or (2) without the need of, e.g.,
calculating the accuracies on subproblems as in Fig. 6.

In order to study this, we created a synthetic binary clas-
sification problem (D = 2), assuming that the mean value
of postsynaptic sums of the incorrect class is 0, while that
of the correct class is a parameter. It was also assumed
that postsynaptic sums distributions of both classes have the
same standard deviation, which is also a parameter. Finally,
the postsynaptic sum distributions can correlate with each
other positively or negatively, and their Pearson correlation
coefficient is a parameter. Note that when there is no correla-
tion between the classes, we can perfectly use (1)/(9) or (2)
for the given mean and standard deviation values. We can
also use (1)/(9) or (2) even when there is a correlation, but
in this case, the predicted accuracy would differ from the
actual accuracy. In order to see the effect of the correlation
between classes on the accuracy, we simulated many cases for
different values of correlation, mean, and standard deviation.
Fig. 14 depicts the results. As we can see, there is a highly
nonlinear relation among the predicted accuracy, the Pearson
correlation coefficient, and the empirical accuracy. Qualita-
tively, we expect that in the case of a negative correlation,
the accuracy will be lower than the predicted accuracies
[see Fig. 1 (red lines)] and vice versa in the case of the
positive correlation. However, it seems hard to make more
quantitative correction without making a lookup table like
structure, which would interpolate the expected accuracy value
for the given correlation and predicted accuracy. While this
is possible to do for the binary classification problems, this
solution becomes inadequate for larger values of D, because
we would have to deal with many interactions in the covariance
matrix, which cannot be simply stored as a compact lookup
table.

REFERENCES

[11 N. A. Smuha, “The EU approach to ethics guidelines for trustworthy
artificial intelligence,” Comput. Law Rev. Int., vol. 20, no. 4, pp. 97-106,
Aug. 2019.

[2] Preparing for the Future of Artificial Intelligence, Executive Office of
the President National Science and Technology Council Committee on
Technology, Washington, DC, USA, 2016.

[3] V. Papyan, X. Y. Han, and D. L. Donoho, “Prevalence of neural collapse
during the terminal phase of deep learning training,” Proc. Nat. Acad.
Sci. USA, vol. 117, no. 40, pp. 24652-24663, Oct. 2020.

[4] R. Geirhos et al., “Shortcut learning in deep neural networks,” Nature
Mach. Intell., vol. 2, no. 11, pp. 665-673, Nov. 2020.

[5] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

[6] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[71 M. Egmont-Petersen, J. L. Talmon, J. Brender, and P. McNair, “On the
quality of neural net classifiers,” Artif. Intell. Med., vol. 6, no. 5,
pp. 359-381, Oct. 1994.

[8] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. Tolstikhin, “Pre-
dicting neural network accuracy from weights,” 2020, arXiv:2002.11448.

[9] C. DeChant, S. Han, and H. Lipson, “Predicting the accuracy of neural
networks from final and intermediate layer outputs,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2019, pp. 1-6.

[10] H. Jaeger, “Long short-term memory in echo state networks: Details of
a simulation study,” School Eng. Sci., Jacobs Univ., Bremen, Germany
Tech. Rep., 27, 2012.

[11] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence
indexing and working memory in recurrent neural networks,” Neural
Comput., vol. 30, no. 6, pp. 1449-1513, 2018.

[12] R. Féraud and F. Clérot, “A methodology to explain neural network
classification,” Neural Netw., vol. 15, no. 2, pp. 237-246, Mar. 2002.

[13] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. Miiller, “How to explain individual classification decisions,”
J. Mach. Learn. Res., vol. 11, no. 6, pp. 1803-1831, 2010.

[14] B. Deng,J. Yan, and D. Lin, “Peephole: Predicting network performance
before training,” 2017, arXiv:1712.03351.

[15] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, and
A. C. I. Malossi, “TAPAS: Train-less accuracy predictor for architecture
search,” in Proc. 33rd AAAI Conf. Artif. Intell. (AAAI), vol. 33, 2019,
pp. 3927-3934.

[16] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1-21, 2019.

[17] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural
architecture search using performance prediction,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2018, pp. 1-19.

[18] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “FitNets: Hints for thin deep nets,” 2014, arXiv:1412.6550.

[19] A. Dhurandhar, K. Shanmugam, R. Luss, and P. A. Olsen, “Improving
simple models with confidence profiles,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2018, pp. 10296-10306.

[20] G. Montavon, W. Samek, and K.-R. Miiller, “Methods for interpreting
and understanding deep neural networks,” Digit. Signal Process., vol. 73,
pp. 1-15, Feb. 2018.

[21] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014,
pp- 818-833.

[22] C. H. Martin, T. Peng, and M. W. Mahoney, “Predicting trends in the
quality of state-of-the-art neural networks without access to training or
testing data,” Nature Commun., vol. 12, no. 1, pp. 1-13, Jul. 2021.

[23] E. Hoffer, 1. Hubara, and D. Soudry, “Fix your classifier: The marginal
value of training the last weight layer,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1-11.

[24] D. Zhou et al.,, “EcoNAS: Finding proxies for economical neural
architecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11396-11404.

[25] M. S. Abdelfattah, A. Mehrotra, L. Dudziak, and N. D. Lane, ‘“Zero-
cost proxies for lightweight NAS,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2021, pp. 1-17.

[26] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture
search without training,” in Proc. Int. Conf. Mach. Learn. (ICML), 2021,
pp. 7588-7598.

[27] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot network
pruning based on connection sensitivity,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019, pp. 1-15.

[28] J. Turner, E. J. Crowley, M. O’Boyle, A. Storkey, and G. Gray, “Block-
Swap: Fisher-guided block substitution for network compression on a
budget,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1-15.

[29] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” in Proc. Int. Conf. Learn. Repre-
sent. (ICLR), 2020, pp. 1-11.

[30] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 6377-6389.

[31] F. Rosenblatt, “The perceptron—A perceiving and recognizing automa-
ton,” Cornell Aeronaut. Lab., Buffalo, NY, USA, Tech. Rep., 85-460-1,
1957.

[32] F. Rosenblatt, “Principles of neurodynamics. Perceptrons and the theory
of brain mechanisms,” Cornell Aeronaut. Lab., Buffalo, NY, USA,
Tech. Rep. VG-1196-G-8, 1961.

[33] K. Steinbuch and U. A. W. Piske, “Learning matrices and their applica-
tions,” IEEE Trans. Electron. Comput., vol. EC-12, no. 6, pp. 846-862,
Dec. 1963.

[34] S. Amari and M. A. Arbib, “Competition and cooperation in neural
nets,” in Systems Neuroscience. New York, NY, USA: Academic, 1977,
pp. 119-165.

[35] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Netw., vol. 1, no. 1, pp. 17-61, 1988.

[36] W. Maass, “On the computational power of winner-take-all,” Neural
Comput., vol. 12, no. 11, pp. 2519-2535, 2000.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

W. Peterson, T. Birdsall, and W. Fox, “The theory of signal detectabil-
ity,” Trans. IRE Prof. Group Inf. Theory, vol. 4, no. 4, pp. 171-212,
Sep. 1954.

M. Minsky and S. A. Papert, Perceptrons: An Introduction to Compu-
tational Geometry. Cambridge, MA, USA: MIT Press, 1969.

B. Babadi and H. Sompolinsky, “Sparseness and expansion in sensory
representations,” Neuron, vol. 83, no. 5, pp. 1213-1226, Sep. 2014.

P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139-159, Oct. 2009.

T. A. Plate, Holographic Reduced Representations: Distributed Repre-
sentation for Cognitive Structures. Stanford, CA, USA: Center for the
Study of Language and Information, 2003.

D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey
on hyperdimensional computing aka vector symbolic architectures, part
I: Models and data transformations,” ACM Comput. Surveys, vol. 55,
no. 6, pp. 1-40, Jul. 2023.

D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on
hyperdimensional computing aka vector symbolic architectures, part II:
Applications, cognitive models, and challenges,” ACM Comput. Surveys,
vol. 55, no. 6, pp. 140, Aug. 2022.

D. Kleyko et al., “Vector symbolic architectures as a computing
framework for emerging hardware,” Proc. IEEE, vol. 110, no. 10,
pp. 1538-1571, Oct. 2022.

D. A. Rachkovskij, S. V. Slipchenko, E. M. Kussul, and T. N. Baidyk,
“Sparse binary distributed encoding of scalars,” J. Autom. Inf. Sci.,
vol. 37, no. 6, pp. 12-23, 2005.

E. Paxon Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and
F. T. Sommer, “Computing on functions using randomized vector rep-
resentations,” 2021, arXiv:2109.03429.

E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and F. T. Sommer,
“Computing on functions using randomized vector representations (in
brief),” in Proc. Neuro-Inspired Comput. Elements Conf. (NICE), 2022,
pp. 115-122.

A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for
combined learning and classification of ExG signals,” Proc. IEEE,
vol. 107, no. 1, pp. 123-143, Jan. 2019.

D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey,
“Classification and recall with binary hyperdimensional computing:
Tradeoffs in choice of density and mapping characteristics,” [EEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 5880-5898,
Dec. 2018.

L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circuits Syst. Mag., vol. 20, no. 2, pp. 30-47,
Jun. 2020.

T. A. Plate, “Holographic reduced representations,” IEEE Trans. Neural
Netw., vol. 6, no. 3, pp. 623-641, May 1995.

D. B. Owen, “A table of normal integrals,” Commun. Stat.-Simul.
Comput., vol. 9, no. 4, pp. 389419, 1980.

A. Rahimi et al.,, “High-dimensional computing as a nanoscalable
paradigm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 9,
pp. 2508-2521, Sep. 2017.

S. I. Gallant and T. W. Okaywe, “Representing objects, relations, and
sequences,” Neural Comput., vol. 25, no. 8, pp. 2038-2078, 2013.

D. Kleyko, E. Osipov, A. Senior, A. I. Khan, and Y. A. Sekercioglu,
“Holographic graph neuron: A bioinspired architecture for pattern
processing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6,
pp. 1250-1262, Jun. 2017.

D. A. Rachkovskij, “Representation and processing of structures with
binary sparse distributed codes,” IEEE Trans. Knowl. Data Eng., vol. 13,
no. 2, pp. 261-276, Mar. 2001.

E. P. Frady, D. Kleyko, and F. T. Sommer, “Variable binding for
sparse distributed representations: Theory and applications,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Sep. 3, 2021, doi:
10.1109/TNNLS.2021.3105949.

H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2003,
pp. 593-600.

M. LukoSeviceus, “A practical guide to applying echo state networks,”
Neural Networks: Tricks of the Trade (Lecture Notes in Computer Sci-
ence), vol. 7700. Berlin, Germany: Springer, Aug. 2012, pp. 659-686.
B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE
Trans. Neural Netw., vol. 6, no. 6, pp. 1320-1329, Nov. 1995.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]

[83]

D. Dua and C. Graff, “UCI machine learning repository,” School
Inf. Comput. Sci., Univ. California, Irvine, 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
J. Mach. Learn. Res., vol. 15, pp. 3133-3181, Jan. 2014.

D. Kleyko, M. Kheffache, E. P. Frady, U. Wiklund, and E. Osipov,
“Density encoding enables resource-efficient randomly connected neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8,
pp. 3777-3783, Aug. 2021.

E. M. Kussul, L. M. Kasatkina, D. A. Rachkovskij, and D. C. Wunsch,
“Application of random threshold neural networks for diagnostics of
micro machine tool condition,” in Proc. IEEE Int. Joint Conf. Neural
Netw. IEEE World Congr. Comput. Intell. (IJCNN), vol. 1, May 1998,
pp. 241-244.

A. Goltsev and D. Rachkovskij, “Combination of the assembly neural
network with a perceptron for recognition of handwritten digits arranged
in numeral strings,” Pattern Recognit., vol. 38, no. 3, pp. 315-322,
Mar. 2005.

O. J. Risdnen and J. P. Saarinen, “Sequence prediction with sparse
distributed hyperdimensional coding applied to the analysis of mobile
phone use patterns,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 9, pp. 1878-1889, Sep. 2015.

D. Kleyko, E. Osipov, and D. A. Rachkovskij, “Modification of holo-
graphic graph neuron using sparse distributed representations,” Proc.
Comput. Sci., vol. 88, pp. 39-45, Oct. 2016.

D. Kleyko, E. Osipov, N. Papakonstantinou, and V. Vyatkin, “Hyperdi-
mensional computing in industrial systems: The use-case of distributed
fault isolation in a power plant,” IEEE Access, vol. 6, pp. 30766-30777,
2018.

C. Diao, D. Kleyko, J. M. Rabaey, and B. A. Olshausen, “Generalized
learning vector quantization for classification in randomized neural
networks and hyperdimensional computing,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2021, pp. 1-9.

P-C. Huang, D. Kleyko, J. M. Rabaey, B. A. Olshausen, and P. Kanerva,
“Computing with hypervectors for efficient speaker identification,” 2022,
arXiv:2208.13285.

O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2012, pp. 1097-1105.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An
extremely efficient convolutional neural network for mobile devices,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848-6856.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261-2269.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell. (AAAI), 2017, pp. 4278-4284.
F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251-1258.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697-8710.

D. Kleyko, E. P. Frady, M. Kheffache, and E. Osipov, “Integer echo
state networks: Efficient reservoir computing for digital hardware,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 4, pp. 1688-1701,
Apr. 2022.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2021.3105949

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KLEYKO et al.: PERCEPTRON THEORY CAN PREDICT THE ACCURACY OF NEURAL NETWORKS 15

[84] O. Yilmaz, “Machine learning using cellular automata based feature
expansion and reservoir computing,” J. Cellular Automata, vol. 10,
nos. 5-6, pp. 435472, 2015.

O. Yilmaz, “Symbolic computation using cellular automata-based

hyperdimensional computing,” Neural Comput., vol. 27, no. 12,

pp. 2661-2692, 2015.

N. McDonald, “Reservoir computing & extreme learning machines using

pairs of cellular automata rules,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), May 2017, pp. 2429-2436.

D. Kleyko and E. Osipov, “No two brains are alike: Cloning a hyper-

dimensional associative memory using cellular automata computations,”

in Biologically Inspired Cognitive Architectures (BICA) (Advances in

Intelligent Systems and Computing), vol. 636. Cham, Switzerland:

Springer, 2017, pp. 91-100.

M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of

dense binary hyperdimensional computing: Rematerialization of hyper-

vectors, binarized bundling, and combinational associative memory,”

ACM J. Emerg. Technol. Comput. Syst., vol. 15, no. 4, pp. 1-25,

Oct. 2019.

D. Kleyko, E. P. Frady, and F. T. Sommer, “Cellular automata can reduce

memory requirements of collective-state computing,” IEEE Trans. Neu-

ral Netw. Learn. Syst., vol. 33, no. 6, pp. 2701-2713, Jun. 2022.

A. Menon et al., “Efficient emotion recognition using hyperdimensional

computing with combinatorial channel encoding and cellular automata,”

Brain Informat., vol. 9, no. 1, pp. 1-13, Dec. 2022.

M. Hersche, S. Lippuner, M. Korb, L. Benini, and A. Rahimi, “Near-

channel classifier: Symbiotic communication and classification in high-

dimensional space,” Brain Informat., vol. 8, no. 1, pp. 1-15, Dec. 2021.

D. Kleyko et al., “Efficient decoding of compositional structure in

holistic representations,” Neural Comput., 2023.

D. A. Rachkovskij, “Some approaches to analogical mapping with

structure sensitive distributed representations,” J. Exp. Theor. Artif.

Intell., vol. 16, no. 3, pp. 125-145, 2004.

D. A. Rachkovskij and S. V. Slipchenko, “Similarity-based retrieval with

structure-sensitive sparse binary distributed representations,” Comput.

Intell., vol. 28, no. 1, pp. 106-129, 2012.

E. Osipov, D. Kleyko, and A. Legalov, “Associative synthesis of finite

state automata model of a controlled object with hyperdimensional

computing,” in Proc. 43rd Annu. Conf. IEEE Ind. Electron. Soc.,

Oct. 2017, pp. 3276-3281.

D. Kleyko, A. Rahimi, R. W. Gayler, and E. Osipov, “Autoscaling Bloom

filter: Controlling trade-off between true and false positives,” Neural

Comput. Appl., vol. 32, no. 8, pp. 3675-3684, Apr. 2020.

T. Yerxa, A. Anderson, and E. Weiss, “The hyperdimensional stack

machine,” in Proc. Cogn. Comput., 2018, pp. 1-2.

D. V. Pashchenko, D. A. Trokoz, A. I. Martyshkin, M. P. Sinev, and

B. L. Svistunov, “Search for a substring of characters using the theory

of non-deterministic finite automata and vector-character architecture,”

Bull. Electr. Eng. Informat., vol. 9, no. 3, pp. 1238-1250, Jun. 2020.

D. Kleyko, E. Osipov, and R. W. Gayler, “Recognizing permuted words

with vector symbolic architectures: A Cambridge test for machines,”

Proc. Comput. Sci., vol. 88, pp. 169-175, Dec. 2016.

[100] A. Joshi, J. T. Halseth, and P. Kanerva, “Language geometry using
random indexing,” in Proc. Int. Symp. Quantum Interact. (QI), 2016,
pp. 265-274.

[101] D. A. Rachkovskij and D. Kleyko, “Recursive binding for similarity-
preserving hypervector representations of sequences,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2022, pp. 1-8.

[102] D. Kleyko, N. Lyamin, E. Osipov, and L. Riliskis, “Dependable MAC
layer architecture based on holographic data representation using hyper-
dimensional binary spatter codes,” in Multiple Access Communications
(Lecture Notes in Computer Science), vol. 7642. Berlin, Germany:
Springer, 2012, pp. 134-145.

[103] H.-S. Kim, “HDM: Hyper-dimensional modulation for robust low-
power communications,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1-6.

[104] R. Guirado, A. Rahimi, G. Karunaratne, E. Alarcon, A. Sebastian, and
S. Abadal, “Wireless on-chip communications for scalable in-memory
hyperdimensional computing,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2022, pp. 1-8.

[105] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3,
pp. 127-149, Aug. 2009.

[106] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Netw., vol. 115, pp. 100-123, Jul. 2019.

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

(98]

[991

Denis Kleyko (Member, IEEE) received the B.S.
degree (Hons.) in telecommunication systems and
the M.S. degree (Hons.) in information systems from
the Siberian State University of Telecommunications
and Information Sciences, Novosibirsk, Russia, in
2011 and 2013, respectively, and the Ph.D. degree
in computer science from the Luleda University of
Technology, Lulea, Sweden, in 2018.

He is currently a Post-Doctoral Researcher on a
joint appointment between the Redwood Center for
Theoretical Neuroscience, University of California
at Berkeley, Berkeley, CA, USA, and the Intelligent Systems Laboratory,
Research Institutes of Sweden, Kista, Sweden. His current research interests
include machine learning, reservoir computing, and vector symbolic architec-
tures/hyperdimensional computing.

Antonello Rosato (Member, IEEE) received the
M.S. degree (Hons.) in telecommunication engi-
neering and the Ph.D. degree in information and
communications technologies from the University of
Rome “La Sapienza,” Rome, Italy, in 2015 and 2019,
respectively.

He is currently a Research Fellow with the Uni-
versity of Rome “La Sapienza.” His current research
interests include machine learning techniques for the
analysis of complex behaviors, randomized neural
networks, distributed training algorithms, and hyper-
dimensional computing systems.

Edward Paxon Frady received the B.S. degree in
computation and neural systems from the California
Institute of Technology (Caltech), Pasadena, CA,
USA, in 2008, and the Ph.D. degree in neuroscience
from the University of California at San Diego,
La Jolla, CA, USA, in 2014.

He is currently a Research Lead with the Neuro-
morphic Computing Laboratory, Intel Labs, Santa
Clara, CA, USA. His research interests include
neuromorphic engineering, vector symbolic archi-
tectures/hyperdimensional computing, and machine
learning.

Massimo Panella (Senior Member, IEEE) received
the five-year Laurea degree (Hons.) in electronic
engineering and the Ph.D. degree in information and
communication engineering from the University of
Rome “La Sapienza,” Rome, Italy, in 1998 and 2002,
respectively.

He is currently a Full Professor of electrical
engineering and computational intelligence with the
University of Rome “La Sapienza.” His research
interests include computational intelligence and
quantum computing for the modeling, optimization,
and control of real-world systems, namely, the use of neural networks,
fuzzy logic, evolutionary algorithms, and quantum circuits for solving both
supervised and unsupervised learning problems, for time series analysis, and
for the general processing of signals and data.

Friedrich T. Sommer received the Diploma degree
in physics from the University of Tiibingen,
Tiibingen, Germany, in 1987, the Ph.D. degree from
the University of Diisseldorf, Diisseldorf, Germany,
in 1993, and the Habilitation degree in computer sci-
ence from Ulm University, Ulm, Germany, in 2002.
He is currently an Adjunct Professor with the Red-
wood Center for Theoretical Neuroscience, Univer-
sity of California at Berkeley, Berkeley, CA, USA,
and a Researcher with the Neuromorphic Computing
Laboratory, Intel Labs, Santa Clara, CA, USA. His
research interests include neuromorphic engineering, vector symbolic archi-
tectures/hyperdimensional computing, and machine learning.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 17,2024 at 05:47:53 UTC from IEEE Xplore. Restrictions apply.

