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We investigate the task of retrieving information from compositional dis-
tributed representations formed by hyperdimensional computing/vector
symbolic architectures and present novel techniques that achieve new
information rate bounds. First, we provide an overview of the decoding
techniques that can be used to approach the retrieval task. The techniques
are categorized into four groups. We then evaluate the considered tech-
niques in several settings that involve, for example, inclusion of exter-
nal noise and storage elements with reduced precision. In particular, we
find that the decoding techniques from the sparse coding and compressed
sensing literature (rarely used for hyperdimensional computing/vector
symbolic architectures) are also well suited for decoding information
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1160 D. Kleyko et al.

from the compositional distributed representations. Combining these de-
coding techniques with interference cancellation ideas from communica-
tions improves previously reported bounds (Hersche et al., 2021) of the
information rate of the distributed representations from 1.20 to 1.40 bits
per dimension for smaller codebooks and from 0.60 to 1.26 bits per di-
mension for larger codebooks.

1 Introduction

Hyperdimensional computing (Kanerva, 2009) also known as vector sym-
bolic architectures (HD/VSA; Gayler, 2003) allows the formation of rich,
compositional, distributed representations that can construct a plethora of
data structures (Demidovskij, 2021; Kleyko, Davies et al., 2022). Although
each individual field of a data structure is encoded in a fully distributed
manner, it can be decoded (and manipulated) individually. This decoding
property provides the remarkable transparency of HD/VSA, in stark con-
trast to the opacity of traditional neural networks (Shwartz-Ziv & Tishby,
2017). For example, decoding of distributed representations enables the
tracing (or explanation) of individual results. It even led to the proposal of
HD/VSA as a programming framework for distributed computing hard-
ware (Kleyko, Davies et al., 2022). However, there are capacity limits on
the size of data structures that can be decoded from fixed-sized distributed
representations, and these limits depend on the decoding techniques used.
Here, we characterize different techniques for decoding information from
distributed representations formed by HD/VSA and provide empirical re-
sults on the information rate, including results for novel decoding tech-
niques. The reported results are interesting from a theoretical perspective,
as they exceed the capacity limits previously thought to hold for distributed
representations (Frady et al., 2018; Hersche et al., 2021). From a practical
perspective, many applications of HD/VSA hinge on efficiently decoding
information stored in distributed representations, including, communica-
tions (Guirado et al., 2022; Hsu & Kim, 2020; Jakimovski et al., 2012; Kim,
2018; Kleyko et al., 2012) and distributed orchestration (Simpkin et al., 2019).
The problem of decoding information from distributed representations
has similarities to information retrieval problems in other areas, such as
in communications, reservoir computing, sparse coding, and compressed
sensing. Here, we describe how techniques developed in these areas can be
applied to HD/VSA. This study makes the following major contributions:

» Ataxonomy of decoding techniques suitable for retrieval from repre-
sentations formed by HD/VSA

* A comparison of 10 decoding techniques on a retrieval task

A qualitative description of the trade-off between the information ca-
pacity of distributed representations and the amount of computation
the decoding requires
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* Improvements on the known bounds on information capacity for dis-
tributed representations of data structures (in bits per dimension)
(Frady et al., 2018; Hersche et al., 2021).

The article is structured as follows. Section 2 introduces the approaches
suitable for decoding from distributed representations. The empirical eval-
uation of the introduced decoding techniques is reported in section 3. The
findings are discussed in section 4.

Readers interested in further background for HD/VSA are encouraged
to read appendix A.1. To evaluate the considered decoding techniques, we
consider the case of an n-dimensional vector, y, that represents a sequence
of symbols s of length v. The symbols are drawn randomly from an alphabet
of size D. Symbols are represented by n-dimensional random bipolar vec-
tors that are stored in the codebook @. The permutation and superposition
operations are used to form y from representations of sequence symbols
®,,. We then use the decoding techniques to construct §, a reconstruction
of s using y and the codebook ®. Further details on the encoding scheme
are in appendix A.2. We evaluate the quality of § based on accuracy and
information rate; further details are provided in appendix A.3.

2 Decoding Techniques

In this section, we survey decoding techniques for retrieving sequence sym-
bols (denoted as §) from their compositional distributed representation y
(see appendix A.2 for a detailed problem formulation). The decoding tech-
niques can be taxonomized into two types, selective (section 2.1) and com-
plete (section 2.2). In selective decoding, a query input selects a particular
field in the data structure, which is then decoded individually. Conversely,
in complete decoding, all fields of the data structure are decoded simultane-
ously. In the following sections, we introduce concrete decoding techniques
pertaining to the two different types. The taxonomy of these decoding tech-
niques and their relationships are summarized in Figure 1.

2.1 Techniques for Selective Decoding. In techniques for selective de-
coding, a query input selects a particular field of the data structure rep-
resented by a distributed representation (vector y). The content of the
selected data field §; is then decoded. In techniques for selective decod-
ing, information about the field i of the query in the data structure is trans-
lated into a readout matrix (denoted as W°U(i) € [D x n]), which is then
used for decoding the data field. We adopt here the term readout matrix
from the reservoir computing literature (Lukosevicius & Jaeger, 2009). In
reservoir computing, many readout matrices can be specified for a sin-
gle distributed representation depending on the task. In the framework of
HD/VSA, the different readout matrices correspond to queries of different
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Figure 1: The taxonomy of decoding techniques surveyed and investigated.
Techniques for selective decoding require two steps: (1) the transformation of
the query vector to select a particular field and (2) a simple feedforward matrix-
vector multiplication, followed by argmax (see section 2.1). In contrast, tech-
niques for complete decoding (see section 2.2) do not retrieve a single field but
rely on iterative procedures that are computationally more intensive. Ellipses
indicate that there are additional techniques within a group that are not consid-
ered here.

fields in the data structure represented by the compositional distributed
representation y.

Once the readout matrices are known, a prediction for symbol in position
i is computed as

8 = arg max(W°"(i)y),

where arg max(-) returns the symbol with the highest dot product. Thus, se-
lective techniques make their predictions by choosing a symbol correspond-
ing to a row in W°u(i) that has the highest dot product with y. Below, we
consider two ways of forming WO (7).

2.1.1 Codebook Decoding. Codebook decoding is the simplest technique
for selectively decoding § from y. It corresponds to a matrix-vector multi-
plication between the query high-dimensional vector (also known as a hy-
pervector) such as y and the algorithm’s codebook, a matrix containing all
hypervectors representing symbols. Here, the codebook @ € {—1, 1}"*P
stores atomic n-dimensional random independent and identically dis-
tributed (i.i.d.) bipolar hypervectors assigned to D unique atomic sym-
bols of the alphabet. Because this technique of decoding is omnipresent in
HD/VSA, we call it “Codebook decoding.” Further, we use a permutation
with a long cycle length, denoted as p'(-) to bind a symbol with its position
in the sequence (see details in appendix A.2). For example, to represent the
ith position, the corresponding entry of the codebook @, can be permuted
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v — i times. Then the readout matrix for the symbol at position i in the se-
quence is constructed as

Wout(i) — po—i(q)T). (21)

Note that an equivalent way to decode is by applying an inverse permuta-
tion operation (denoted as p~') v — i times to y without permuting ®:

§ = argmax (o (@ ")y) = argmax (&7~ (y)). (22)

This formulation is more practical, as only a single vector (rather than a ma-
trix) is being permuted. Finally, it is worth noting that the performance of
Codebook decoding could be predicted analytically using the methodolo-
gies from Frady et al. (2018). This point was confirmed in our experiments
that follow (see Figures 2 to 5), where the gray dashed lines depicting the
analytical predictions closely match our experiments.

2.1.2 Linear Regression Decoding. Note that the hypervectors in @ are not
perfectly orthogonal to each other. Therefore, Codebook decoding benefits
from adjustments based on the expected covariance matrix of hypervectors
interacting in y (denoted as C):

WoU (i) = (1 pr (@) 2.3)

The readout matrix in equation 2.3 does not differ much from the one in
equation 2.1 used for Codebook decoding, yet it substantially improves the
information rate for small D (section 3.1). Nevertheless, this technique does
not seem to be widely known within the HD/VSA literature; hence, this
study aims at placing it on the map for those in the area. We will abbreviate
this technique as “LR decoding.”

For the considered transformation (see equation A.3 in section A.2), C
can be calculated analytically (Frady et al., 2018) as

- LI 1 .
C=2 r® (51) P @) +
i=1

£33 o) (5) @, 4

i=1 j=1;j#i

where I € [D x D] is the identity matrix while J € [D x D] is the unit ma-
trix. Note that compared to Codebook decoding, LR decoding incurs ad-
ditional computational costs for obtaining C~! and computing W°u!(i) that
scale with 7, D, and, ». In general, however, the covariance-based readout
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matrix cannot be computed analytically. Therefore, the standard practice in
the randomized neural networks literature (Kleyko et al., 2021; Lukosevi-
cius & Jaeger, 2009; Scardapane & Wang, 2017) is to collect some training
data and use minimum mean squared error to estimate the optimal values
of the readout matrix by solving a linear regression (LR) problem.

2.2 Techniques for Complete Decoding. Since hypervectors in ® and
their permuted versions are not completely orthogonal, summing them in
y produces cross-talk noise that degrades the result of the selective de-
coding. There are techniques for attempting the complete decoding of the
data structure, for example, by first selectively decoding all fields of the
data structure and then using the decoding results to remove cross-talk
noise introduced by other fields and repeating the selective decoding. We
overview three kinds of techniques: feedback based, least absolute shrink-
age and selection operator (LASSO), and hybrid (combining elements of
both).

Prior to introducing the techniques for complete decoding, we can make
an interesting observation by reconsidering the transformation used to form
a sequence’s compositional hypervector y (see equation A.3). Similar to
readout matrices for Codebook decoding in equation 2.1, we can make v
permuted versions of the codebook ® and concatenate them horizontally
into one large codebook (denoted as A € [n x vD]) as

A=[p""(@), 0" H(®)..... 0 (®). p°(®)]. (2.5)

Next, we can form a vector x € [vD x 1] that will contain the concatenation
of D-dimensional one-hot encodings of symbols in the original sequence s
(denoted as os,):

x=[05T1,0T N (2.6)

S27 TSy

Note that multiplication of A by x is now equivalent to equation A.3:
Ax=y=) p"7(®s). (2.7)
i=1

In this formulation, the complete decoding can be seen as an optimization
problem of finding %X for given A and y such that

X = min ||Ax — yll2. (2.8)

Below, we consider several approaches to solving equation 2.8.
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2.2.1 Feedback-Based Techniques. The key idea of feedback-based tech-
niques is to leverage initial predictions § (obtained, e.g., with one of the
selective techniques from section 2.1) to remove cross-talk noise in the de-
coding of one field by subtracting the hypervectors for all (or some) other
fields in y. Similar ideas for such a feedback mechanism have been de-
veloped in other fields of research and referred to as “explaining away,”
“interference cancellation,” or “peeling decoding.” We consider two
feedback-based decoding techniques: explaining-away feedback (EA) and
matching pursuit with explaining away.

Explaining away. To reduce the cross-talk noise in decoding one field i of
the data structure, this technique constructs the corresponding hypervector
from the decoding predictions of all other data fields and subtracts it from
y. Under the assumption that most of the decoding predictions § are correct,
this subtraction significantly reduces cross-talk for decoding the data field
i. Formally, this can be written as

YD =y— > p"7(®). 2.9)

j=1 ji

The hypervector (i) with reduced cross-talk noise is then used with the
corresponding readout matrix W°"!(i) to revise the prediction for the ith
position of §:

8 = arg max(W°™ (i)§(i)). (2.10)

This process is repeated iteratively until either the predictions in § stop
changing or the maximum number of iterations (denoted as r) is reached.
We consider two variants of EA using the two variants of selective decoding
described above: Codebook EA and LR EA.

Matching pursuit with explaining away. One issue with EA is that when
many of the decoding predictions in § are wrong, the subtraction adds
rather than removes noise. One possibility to counteract this problem is
by successively subtracting individual decoded fields in the hypervector,
starting with the ones for which the confidence of the correct decoding
is highest. As a confidence measure for selective decoding, we choose the
cosine similarity between the (residual) hypervector and the best, appropri-
ately permuted, matching codebook entry. A confidence score is calculated
as the difference between the highest and the second-highest cosine simi-
larities. Intuitively, we expect that a high confidence score should correlate
with the decoding result being correct.

Using a technique for selective decoding for all positions, we choose the
decoding result in position ¢ with the highest confidence score and remove
this prediction 8, from the compositional hypervector y:

y=y—p""(®s). (2.11)
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From now on, the prediction for position c is fixed, and we assume that ¥
stores only v — 1 symbols.! The new hypervector § can be used with EA
to make new predictions for the remaining » — 1 symbols. Then we choose
the most confident prediction among these v — 1 symbols, fix the predic-
tion, remove it from ¥, and repeat the EA decoding for the remaining v — 2
symbols. In such a manner, the decoding proceeds successively until com-
plete. This type of confidence-based EA is similar to matching pursuit (MP),
a well-known greedy technique for sparse signal approximation (Mallat
& Zhang, 1993). In a step of MP, the best matching codebook element is
weighted with the dot product between signal and codebook element to ex-
plain as much as possible of the signal. The next MP step continues on the
residual. Essentially, equation 2.11 is also the residual of an MP approxima-
tion. However, the goal here is to explain away an element of the hypervec-
tor representing one field of the data structure. As the encoding procedure
weights all used codebook elements with a value of one, the weight chosen
in the residual is also one. Similar to the case of EA, we investigate MP de-
coding with the two variants of selective decoding: Codebook MP and LR
MP.

2.2.2 LASSO Techniques. The formulation in equation 2.8 can be con-
ceptualized as trying to infer a solution simultaneously (i.e., trying to de-
code the whole data structure at once). Note that this problem formulation
is a relaxed version of the original task, as it does not take into account
the constraint that there is only one nonzero component within each D-
dimensional segment of X. We can simply impose this constraint and form
§ from X by assigning §; to the position of the highest component of the ith
D-dimensional segment of .

Another way to think about the constraint above is that it is as if we
have prior knowledge that X has only » nonzero components. This means
that the density of X should be 1/D so the expected solution becomes quite
sparse even for moderately large values of D. Therefore, the problem in
equation 2.8 can be treated as the sparse inference procedure used in the
areas of sparse coding (Olshausen & Field, 1996) and compressed sensing
(Donoho, 2006). Thus, the natural choice for techniques to solve equation
2.8 should come from an arsenal of methods developed within the sparse
coding/compressed sensing literature. The most common approach to do
so is via a well-known LASSO regression (Tibshirani, 1996) that adds L1
norm regularization to equation 2.8,

X = min [Ax —yll> + Allx1, (212)

"Note that it is still important to keep track of the original positions in the sequence
due to the use of position-dependent permutations.
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where A is a standard hyperparameter denoting the importance of the L1
regularization term. Coordinate descent (CD) and gradient descent algo-
rithms are investigated for solving the LASSO. CD is implemented by
Pedregosa et al. (2011; CD decoding) and the fast iterative shrinkage-
thresholding algorithm (FISTA, FISTA decoding; Beck & Teboulle, 2009) is
used for gradient descent.

2.2.3 Hybrid Techniques. Hybrid techniques combine primitives from the
previous techniques as indicated by the dashed arrows in Figure 1. Al-
though there is no fixed recipe for combining techniques, we show that
one particularly powerful technique is in combining CD or FISTA decoding
and LR decoding with MP (CD/LR MP and FISTA /LR MP). In these tech-
niques, either CD or FISTA decoding is used every time when the current
most confident prediction is explained away from y according to equation
2.112 while LR EA decoding is used to improve CD’s or FISTA’s predictions
for the symbols that are not yet fixed.

3 Empirical Evaluation

In the experiments, we focus on three settings for the decoding:

* Decoding in the absence of external noise (section 3.1)
* Decoding in the presence of external noise (section 3.2)
* Decoding from storage elements with limited precision (section 3.3).

Before going into the results of evaluation, we briefly repeat the notations
introduced so far because we will be using them intensively below. y is an
n-dimensional vector that represents a sequence s of v symbols where the
symbols are chosen from an alphabet of size D whose representations are
stored in the codebook ®. A hypervector of an ith symbol in s is denoted by
®,, while the reconstructed sequence is denoted as §.

3.1 Noiseless Decoding. We begin by comparing the surveyed decod-
ing techniques in section 2 in a scenario when no external noise is added to
y. This follows the setup of Hersche et al. (2021), which previously reported
the highest information rate of HD/VSA in bits per dimension that could
be achieved in practice. In the experiments in Hersche et al. (2021), n was
set to 500 (see appendix B, which reports the effect of 11); D was chosen from
{5, 15, 100}, and v varied between 0 and 300 (we used 400 for D = 5). The
results of the experiments for the techniques from section 2 are presented
in Figure 2. In Hersche et al. (2021), only the first 4 out of 10 techniques
(see the legend in Figure 2) compared here® were considered. The best

iCD or FISTA decoding is also used to make the initial predictions from the original y.
It also reported a “soft-feedback” technique that we do not report here due to its high
similarity to EA.
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Figure 2: The decoding accuracy, information rate, and computational com-
plexity against sequence length v for three different codebook sizes D. No exter-
nal noise was added to y. The upper panels depict accuracy, the middle panels
correspond to information rate, and the lower panels show complexity in terms
of floating point operations. The reported results are averages obtained from
20 randomly initialized codebooks. Ten random sequences were simulated for
each codebook per each v. In the upper panels, bars depict 95% confidence in-
tervals, the thin dashed black lines indicate the corresponding random guess at
1/D, and gray dashed lines correspond to analytical predictions for Codebook
decoding.

information rate (see the definition in equation A.7 in section A.3.2)
achieved in Hersche et al. (2021), was approximately 1.20, 0.85, and 0.60 bits
per dimension for D equal to 5, 15, and 100, respectively. The key takeaway
from Figure 2 is the improvement over previously achieved information
rates. The new highest results for information rate are 1.40 (17% improve-
ment), 1.34 (58% improvement), and 1.26 (110% improvement) bits per di-
mension for D equal to 5, 15, and 100, respectively.

Note that for all values of D, the highest information rate was obtained
with the hybrid techniques. This matches the fact that the LASSO tech-
niques alone demonstrated high-fidelity (i.e., close to perfect) regimes of de-
coding accuracy (see the definition in equation A.4 in section A.3.1), longer
than the ones obtained with the selective techniques.

For selective techniques, the observations are consistent with previous
reports (Frady et al., 2018; Hersche et al., 2021) where LR decoding (red
solid lines) improves over Codebook decoding (blue solid lines) for small
values of D (e.g., D = 5), but the improvement diminishes as D increases
(see the right-most panels in Figure 2).
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As for feedback-based techniques, it is clear that EA (dashed lines) ex-
tended the high-fidelity regime for the corresponding selective techniques.
At the same time, there was a critical value of the accuracy of a selective
technique, after which the accuracy of EA reduced drastically (since incor-
rect predictions added noise rather than removing it). The use of MP (dot-
ted lines) partially alleviated this issue, as the cross-talk noise was removed
symbol after symbol. This resulted in even longer high-fidelity regimes and
a more gradual transition from the high-fidelity to the low-fidelity regimes
(where performance was near chance).

In order to compare the computational complexity of different tech-
niques, we measured the average number of floating point operations
(flops) per decoding of a symbol using the PAPI (Performance Application
Programming Interface) library (Terpstra et al., 2010) (see Figure 2, lower
panels). Not surprisingly, selective techniques (especially Codebook decod-
ing) were the cheapest to compute.* The key observation to make, however,
is that the techniques that provided the highest information rate (e.g., the
hybrid techniques) also required the largest number of computations.® This
observation suggests that there is a trade-off between the computational
complexity of a decoding technique and the amount of information it can
decode from a distributed representation. As an example, we can consider
techniques using EA (dashed lines) and MP (dotted lines). We already noted
that the use of MP noticeably improves the high-fidelity regime. However,
there is a computational price to be paid for the improvement since EA in-
volves up to vr repetitions (grows linearly with v) of some selective decod-
ing while MP using EA as a part of its algorithm requires up to v (v + 1)r/2
repetitions (grows quadratically with »), which contributes substantially to
the computational complexity (see the corresponding curves in the lower
panels in Figure 2).

3.2 Noisy Decoding. In the previous experiment, no external noise was
added to y. However, in many scenarios, distributed representations are
exposed to noisy environments—for example, during data transmission.
Therefore, it is worth investigating the behavior of the considered decod-
ing techniques in the presence of noise. We performed the experiments with
the same setup as in the previous experiment using additive white gaussian

*Out of full fairness, we should note that we have not included the one-time cost of
computing C for techniques that used LR decoding, which would surely add to the al-
ready reported costs.

The values reported in Figure 2 assume that the whole sequence needs to be decoded.
In the case when only a single symbol of the sequence should be decoded, the gap between
selective and complete decoding techniques will be even larger since the techniques for
complete decoding would need to decode the whole sequence anyway, while the tech-
niques for selective decoding would be able to decode an individual field without access-
ing the other ones.
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Figure 3: The decoding accuracy and information rate against the amount
of external noise added to y. The upper panels depict accuracy, while the
lower panels correspond to information rate. For each value of D, the value
of v was chosen such that the coding rate »log,(D)/n would be approxi-
mately 0.5. The reported results are averages obtained from 20 randomly ini-
tialized codebooks. Ten random sequences were simulated for each codebook
per each value of Eb/NO. In the upper panels, bars depict 95% confidence in-
tervals, thin dashed black lines indicate the corresponding random guess at
1/D, and gray dashed lines correspond to analytical predictions for Codebook
decoding.

noise (AWGN). In order to account for the varying magnitude of y, the nor-
malized signal-to-noise ratio (known as Eb/NO) was used to regulate the
amount of noise being added to y as

V=y+e¢, (3.1)

where ¢ is an n-dimensional vector with AWGN that is randomly sam-
pled for the given signal-to-noise ratio. The signal-to-noise ratio for a cho-
sen Eb/N0 was computed as Eb/NO + 10 log;, (v log,(D)/n), and the power
of the signal was (y?). The noisy version of y, §, was an input for all the
decoding techniques. Figure 3 reports the results. Note that for this ex-
periment, we have considered an additional decoding technique, labeled
“Tree search” (with magenta solid lines). It was introduced in Hsu and Kim
(2020), where the problem of decoding individual symbols from the super-
position hypervector was formulated as an optimization problem (similar
to the LASSO techniques) but instead using a tree-based search to itera-
tively decode each symbol. Instead of concatenating one-hot encodings of
symbols into a single vector to do the joint optimization according to equa-
tion 2.12, the technique in Hsu and Kim (2020) searches individual symbols
one by one and keeps track of K best candidates for each symbol. We im-
plemented the tree-based search with the universal sorting, keeping K = 2
best candidates at each step.
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In Figure 3, for each value of D, the value of v was chosen to match
the information rate of 0.5 bits per dimension. Clearly, if the amount of
added noise was too high, the accuracies were down to random guess val-
ues (1/D) so no information was retrieved; hence, the information rate was
zero. Once signal-to-noise improved, each decoding technique reached its
highest accuracy matching the corresponding noiseless value (see Figure 2).
The tree-based search included in the comparison, as expected, performed
better than the EA-based techniques but slightly worse than the hybrid
techniques. Also, with the increased value of D (see the right-most pan-
els), the difference in the performance of different techniques during the
transition from the low-fidelity regime to the high-fidelity regime was not
significant. This was, however, not the case for lower values of D, where the
first thing to notice was that Codebook decoding was the first technique to
demonstrate accuracies that were higher than the random guesses 1/D. As
a consequence, feedback-based techniques using Codebook decoding also
performed well; for example, the Codebook MP decoding was either on a
par with or better than the CD/LR MP decoding. Thus, it is useful to keep
in mind that in some scenarios, rather simple decoding techniques might
be still worthwhile in terms of both performance and computational cost.

3.3 Decoding with Limited Precision. Before, we assumed that the su-
perposition operation used when forming y was linear. A practical disad-
vantage of this assumption is that for large values of v, a possible range of
values of y is also large, making it expensive to store y. Therefore, it is prac-
tical to consider limiting the precision of components of y. Since y consists
of only integer values, a clipping function that is commonly used in neural
networks (Frady et al., 2018; Kleyko et al., 2019, 2021) is a simple choice to
keep the values of components of y in a limited range that is regulated by
a threshold value (denoted as «):

—K Y =-—K

fiy)=13vy —K>Y>kK. (3.2)

K Y=«

Thus, when using the clipping threshold «, the values of f, (y) will be inte-
gers in the range between —« and «. In this case, each neuron can be rep-
resented using only log, (2« + 1) bits of memory. For example, when x = 3,
there are seven unique values that can be stored with just three bits.

In order to investigate the effect of the limited precision, we used the
clipping function with the following values of « € {1, 3, 7, 15, 31, 63, 127,
255, 511} that approximately required [2 : 10] bits of storage per dimension,
respectively. The results are reported in Figure 4, where the upper panels
show the accuracy, and the middle and the lower panels depict the infor-
mation rate in bits per dimension and bits per storage bits, respectively. The
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Figure 4: The decoding accuracy and information rate against the limited pre-
cision used to store y. The top panels depict accuracy, the middle panels corre-
spond to the information rate in bits per dimension, and the bottom panels show
the information rate in information bits per storage bits. The reported results
are averages obtained from 20 randomly initialized codebooks. Ten random se-
quences were simulated for each codebook per each memory size. In the upper
panels, bars depict 95% confidence intervals, thin dashed black lines indicate
the corresponding random guess at 1/D, and gray dashed lines correspond to
analytical predictions for Codebook decoding.

values of v for each D were chosen to match their peaks of the information
rate as observed in Figure 2. In order to account for the effect of the reduced
scaling due to the use of the clipping function, the clipped representations
were rescaled by a constant factor, which was estimated analytically based
on v and «, to match the power of the original representations.

First, it is clear that making the superposition operation to be nonlinear
was detrimental for some of the decoding techniques. This is particularly
true for EA techniques that performed worse than their corresponding se-
lective techniques. EA was so sensitive to the use of the clipping function as
it is based on the assumption that the superposition operation to form y is
linear. The other techniques, however, managed to get close to their infor-
mation rate in bits per dimension (middle panels in Figure 4; see the middle
panels in Figure 2) once k was sufficiently large. We could also see that the
best information rate in information bits per storage bits (lower panels) was
achieved for the smallest value of « that allowed reaching the maximum of
the information rate in bits per dimension. Note also that for larger values
of D, the information rate in information bits per storage bits was higher.
This is the case as for lower values of D the peak in the information rate was
observed for higher values of v that in turn means a large range of values
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of y and, hence, larger values of « to preserve most of the range. Finally, it
is worth noting that the second smaller peak in the information rate in in-
formation bits per storage bits was observed for the smallest value of x =1,
where the selective techniques were the best option. This is expected since
the range is so limited that neither feedback-based nor LASSO techniques
can benefit from it.

4 Discussion

4.1 Summary of the Study. In this article, we have focused on the
problem of retrieving information from compositional distributed repre-
sentations obtained using the principles of HD/VSA. To the best of our
knowledge, this is the first attempt to survey, categorize, and quantitatively
compare decoding techniques for this problem. Our taxonomy reveals that
decoding techniques from other research areas can be utilized, such as
reservoir computing, sparse signal representation, and communications.
In fact, some of the investigated techniques were not used previously in
HD/VSA but improved the information rate bounds beyond the state-
of-the-art. We also introduced a novel decoding technique: matching
pursuit with explaining away (see section 2.2.1). It should be noted that the
experiments in this study used the multiply-add-permute model. While
we showed before (Frady et al., 2018; Schlegel et al., 2022) that for Code-
book decoding some HD/VSA models are more accurate (e.g., Fourier
holographic reduced representations model; Plate, 1995a), this observation
should not affect the consistency of relative standing of the considered
decoding techniques when evaluated on models other than multiply-add-
permute. Our decoding experiments explored three different encoding
scenarios: the hypervector formed by plain linear superposition, linear
superposition with external noise, and lossy compression of linear super-
position using component-wise clipping. The standard decoding technique
in HD/VSA, Codebook decoding, was in all scenarios outperformed by
other techniques. Nevertheless, it combines decent decoding performance
with other advantages: absence of free parameters that require tuning
and the lowest computational complexity. In the first scenario of linear
superposition with no external noise, LASSO techniques performed excep-
tionally well. In other scenarios, high noise, or compression with strong
nonlinearity (see Figure 4), the assumptions in the optimization approach
(see equation 2.12) are violated and, accordingly, the performance is worse
than with simpler techniques. Notably, in our experiments, the hybrid
decoding techniques combining LASSO techniques with matching pursuit
with explaining away advanced the theory of HD/VSA by improving the
information rate bounds of the distributed representations reported before
in Frady et al. (2018) and Hersche et al. (2021) by at least 17%. However,
this improvement comes at the price of performing several orders of
magnitude more operations compared to the simplest selective techniques
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(see the lower panels in Figure 2, which highlight the trade-off between the
computational complexity and information rate).

4.2 Related Work.

4.2.1 Randomized Neural Networks and Reservoir Computing. Decoding
from distributed representations can be seen as a special case of function
approximation, which connects it to randomized neural networks and
reservoir computing (Scardapane & Wang, 2017). As we highlighted in sec-
tion 2.1.2, this interpretation allows learning a readout matrix for each po-
sition in a sequence from training data. This technique was introduced to
HD/VSAin Frady et al. (2018), which has also shown that when distributed
representations are formed according to (equation A.3), the readout matri-
ces do not have to be trained; they can be computed using the covariance
matrix from (equation 2.4).

4.2.2 Sparse Coding (SC) and Compressed Sensing (CS). As indicated in
section 2.2.2, the task of retrieving from equation A.3 can be framed as
sparse inference procedure used within SC (Olshausen & Field, 1996) and
CS (Donoho, 2006). Within the HD/VSA literature, this connection was
first made in Summers-Stay et al. (2018) for decoding from sets and in
Frady, Kleyko, and Sommer (2023) for sets and sequences. Similar to SC
and CS, LO sparsity is more desirable than L1 sparsity since the sparse
vector, x € {0, 1}*P, is composed of variables that are exactly zero and one.
In general, optimization of the LO penalty is a hard problem. Optimization
with the L1 penalty thresholds small values, leading to a sparse vector with
many variables being zero. Efficient algorithms exist for optimization of
the L1 penalty, which provides a practical technique for performing sparse
inference.

4.2.3 Communications. The problem of decoding individual messages
from their superposition as in equation A.3 is the classic multiple access
channel (MAC) problem in communications. The capacity region, which
specifies the achievable rates for all users given their signal-to-noise ratios,
has been fully characterized (Cover, 1999). It is known that the capacity re-
gion of an MAC can be achieved by code-division-multiple access (CDMA),
where separate codes are used by different senders and the receiver decodes
them one by one. This so-called successive interference cancellation (onion
peeling) is the key idea used for Codebook decoding with EA. Understand-
ing how close the performance of the decoder is to the capacity will provide
us insights for improving decoder design in the future.

Within HD/VSA, the decoding with inference cancellation (EA) was in-
troduced in Kim (2018) that proposed to combine forward error correction
and modulation using the Fourier holographic reduced representations
model (Plate, 1995a). Similar to the results reported here, the main
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motivation for using inference cancellation was that it significantly im-
proved the quality of decoding compared to Codebook decoding. Later
Hersche et al. (2021) introduced the so-called soft-feedback technique,
similar to MP; it makes use of the prediction’s confidence. Another im-
provement on top of EA was the tree-based search (Hsu & Kim, 2020). It out-
performed EA-based techniques with the caveat that the complexity of the
tree-based search grows exponentially with the number of branches, so only
the Kbest candidates for each symbol were retained (Hsu & Kim, 2020). This
imposes a trade-off between decoding accuracy and computation/time
complexity. It is also prone to errors when several candidates share the same
score.

Another development within communications that is very similar to the
retrieval task considered here is sparse superposition codes (SSC; Barron
& Joseph, 2010). SSCs are capacity-achieving codes with a sparse block
structure that are closely related to SC (Olshausen & Field, 1996) and CS
(Donoho, 2006). SSC decoding algorithms are like those studied in this
work, such as L1 minimization, successive interference cancellation, and
approximate belief propagation techniques. Future work should investigate
SSC constructed from the encoding and decoding strategies from this work.

4.2.4 Related Work within HD/VSA Literature. Besides the work men-
tioned above that has been connecting the task of retrieving from dis-
tributed representations formed by HD/VSA to tasks within other areas,
work has also studied the Codebook decoding technique. Early analytical
results on the performance of Codebook decoding with real-valued hyper-
vectors were given in Plate (2003). For the case of dense binary hypervec-
tors, an important step for obtaining the analytical results is in estimating an
expected Hamming distance between the compositional hypervector and
a symbol’s hypervector (see, e.g., expressions in Kanerva, 1997; Kleyko,
Gayler et al., 2020; Mitrokhin et al., 2019). Further steps for the dense bi-
nary/bipolar hypervectors were presented in Gallant and Okaywe (2013),
Kleyko et al. (2017), and Rahimi et al. (2017). The performance in the case
of sparse binary hypervectors (Rachkovskij, 2001) was analyzed in Kleyko
et al. (2018). The most general and comprehensive analytical studies of the
performance of Codebook decoding for different HD/VSA models were re-
cently presented in Frady et al. (2018) and Kleyko, Rosato et al. (2023) while
other recent studies (Clarkson et al., 2023; Thomas et al., 2021) have pro-
vided theoretical bounds of several HD/VSA models in other scenarios.
Some recent empirical studies of the capacity of HD/VSA can be also found
in Mirus et al. (2020) and Schlegel et al. (2022).

Finally, it is worth noting that the problem formulation considered here
is very similar to the trajectory association task that was proposed in Plate
(1992) and can be used to study the memory capacity of recurrent neural
networks (see, Danihelka et al., 2016; Frady et al., 2018).
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4.3 Future Work. In this study, we have surveyed the key ideas and
techniques to solve the retrieval task. There are, however, more specific
techniques to try, as well as other angles for looking at the problem. A possi-
bility for future work is to compare the computation complexity and decod-
ing accuracy of different LASSO techniques. Some other techniques that we
have not simulated but are worth exploring include MP with several itera-
tions, genetic algorithms for refining the best current solution, and LASSO
solving for a range of values of 1 (see Summers-Stay et al., 2018, for some
experiments within HD/VSA).

While in this study, we have fixed the formation of distributed represen-
tations (see equation A.3), it is expected that the choice of the transformation
of input data can affect the performance of the decoding techniques. For in-
stance, as we saw in Figure 2, working with smaller codebooks leads to in-
creased information rates. Another notable example of importance of input
transformation are fountain codes (MacKay, 2005), where the packet distri-
bution can be optimized to minimize the probability of error. Therefore, in
future work, we also plan to consider other transformations to distributed
representations that we did not consider here.

Appendix A: Background

A.1 Vector Symbolic Architectures. In this section, we provide a sum-
mary from Kleyko, Davies et al. (2022) to briefly introduce HD/VSA
(Gayler, 2003; Kanerva, 2009)° using the multiply-add-permute (MAP)
model (Gayler, 2003) to showcase a particular HD/VSA realization. It is
important to keep in mind that HD/VSA can be formulated with different
types of vectors, namely, those containing real (Gallant & Okaywe, 2013;
Plate, 1995a), complex (Plate, 1995a), or binary entries (Frady, Kleyko, &
Sommer, 2023; Kanerva, 1997; Laiho et al., 2015; Rachkovskij, 2001). The
HD/VSA model has these key components:

» High-dimensional space (e.g., integer; n denotes the dimensionality)

* Pseudo-orthogonality (between two random vectors in this high-
dimensional space)

* Similarity measure (e.g., dot (inner) product or cosine similarity)

» Atomic representations (e.g., random i.i.d. high-dimensional vectors,
also known as hypervectors)

+ Item memory storing atomic hypervectors and performing autoasso-
ciative search

» Operations on hypervectors

In MAP (Gayler, 2003), the atomic hypervectors are bipolar random vec-
tors, where each vector component is selected randomly and independently

*See Kleyko, Rachkovskij et al. (2022, 2023) for a comprehensive survey of HD/VSA.
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from {—1, +1}. These random i.i.d. atomic hypervectors can serve to repre-
sent “symbols” in HD/VSA (i.e., categorical objects), since such vectors are
pseudo-orthogonal to each other (due to the concentration of measure phe-
nomenon) and thus are treated as dissimilar.

Additionally, each HD/VSA model defines three key operations used
to manipulate atomic hypervectors; we specify their implementations in
MAP:

* Superposition, also known as bundling (denoted as +; implemented
as component-wise addition possibly followed by some normaliza-
tion function)

* Permutation (denoted as p; implemented as a rotation of compo-
nents)

*+ Binding (denoted as ©; implemented as component-wise multiplica-
tion, also known as Hadamard product; not used in this article)

HD/VSA models also need to define a similarity measure between two
vector representations. For this purpose, we will use dot product and cosine
similarity that are computed for two hypervectors a and b as

a'b (A1)
and
a'b
’ (A2)
llall2l[bll2
respectively; || - ||, denotes L2 norm of a hypervector.

A.2 Problem Formulation. In this section, we present a transformation
(i.e., an encoding scheme) that is used to form distributed representations
for this study. It is worth noting that the use of HD/VSA operations al-
lows forming compositional distributed representations for a plethora of
data structures such as sets (Kanerva, 2009; Kleyko, Rahimi et al., 2020), se-
quences (Hannagan et al., 2011; Kanerva, 2009; Thomas et al., 2021), state
machines (Osipov et al., 2017; Yerxa et al., 2018), hierarchies, predicate re-
lations (Gallant, 2022; Plate, 2003; Rachkovskij, 2001), and so on. (Consult
Kleyko, Davies et al., 2022, for a detailed tutorial on representations of these
data structures.)

To focus on decoding techniques, we use only one simple but com-
mon transformation for representing a symbolic sequence of length v. A
sequence (denoted as s—e.g., s = (a, b, ¢, d, ¢)) is assumed to be generated
randomly. Symbols constituting the sequence are drawn from an alphabet
of finite size D, and the presence of each symbol in any position of the se-
quence is equiprobable.
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In order to form a distributed representation of a sequence, first we need
to create an item memory, ® (we call it the codebook) that stores atomic
n-dimensional random i.i.d. bipolar dense hypervectors corresponding to
symbols of the alphabet,” thus, ® € {—1, 1}"*P. The hypervector of the ith
symbol in s will be denoted as ®s,. It should be noted that in HD/VSA, it
is a convention to draw hypervectors” components randomly unless there
are good reasons to make them correlated (see Frady, Kleyko, Kymn et al.,
2021; Frady et al., 2022). The presence of correlation will, however, reduce
the performance of the decoding techniques because their signal-to-noise
ratio will be lower and, thus, the decoding becomes harder.

For sequence transformations, there is a need to associate a symbol’s hy-
pervector with a symbol’s position in the sequence. There are several ap-
proaches to do so; we use one that relies on the permutation operation
(Frady et al., 2018; Kanerva, 2009, 2019; Kleyko et al., 2016; Plate, 1995b;
Sahlgren et al., 2008). The idea is that before combining the hypervectors of
sequence symbols, the position i of each symbol is associated by applying
some fixed permutation v — i times to its hypervector® (e.g., p*(®.) for the
sequence above).

The last step is to combine the sequence symbols into a compositional
hypervector (denoted as y) representing the whole sequence. We do it us-
ing the superposition operation. For the sequence above, the compositional
hypervector is

y = p*(®a) + 0°(®p) + p*(Bc) + p' (Ra) + (D).

In general, a given sequence s of length v is represented as
y =)= 0" (@y). (A3)
i=1

Note that a transformation of the sequence similar to the one in equation A.3
can be obtained by assigning » random bipolar hypervectors (one for each
unique position) and using the binding operation on the corresponding hy-
pervectors to represent the association between a symbol and its position.
However, we do not report the experiments on such a representation since
in terms of decoding performance, it is equivalent to that in equation A.3. In
this study, we also assume that the superposition operation is linear unless
noted otherwise (see section 3.3), that is, that no normalization operation is
applied to the result of equation A.3.

"For simplicity, we assume that the symbols are integers between 0 and » — 1. This
notation makes it more convenient to introduce the decoding techniques in section 2.

It is worth pointing out that the reverse order of applying successive powers of a
permutation can be used as well.
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The problem of decoding from compositional distributed representation
y is formulated as follows: for given v, ®, and y, the task is to provide a
reconstructed sequence (denoted as §) such that § is as close as possible to
the original sequence s.

A.3 Performance Metrics. In this section, we introduce two perfor-
mance evaluation metrics used in this study to assess the quality of the
reconstructed sequence .

A.3.1 Accuracy of the Decoding. For the decoding of a sequence’s sym-
bols from its compositional distributed representation y, the accuracy of
the correct decoding (denoted as a) is a natural metric to characterize the
performance of a decoding technique. Since the superposition operation
used in this study is linear, the accuracy of decoding symbols in different
positions of the sequence is the same, and so there is no need to compute
separate accuracies for different positions. The accuracy is computed em-
pirically over g randomly generated sequences, using the predictions in the
reconstructed sequence § (obtained by some decoding technique) and the
original sequence s: as an average ratio of symbols, which were decoded
correctly,

L gy _ g0
a= @ > Z[slm =", (A4)

n=1 i=1

where [-] is the indicator function set to one when the symbols match and
to zero otherwise. Note that since symbols in sequence s are equiprobable,
the accuracy of a random guess is 1/D.

A.3.2 Information Decoded from Distributed Representation. The accuracy is
an intuitive performance metric for the task of sequence decoding and al-
lows characterizing performance of various decoding techniques. Its disad-
vantage, however, is that the accuracy also depends on the dimensionality
of representation, 1, size of the codebook, D, and number of symbols in the
sequence, v. In order to, for example, study the effect of these parameters
on distributed representation, it is convenient to use a single scalar metric
characterizing the quality of decoding that would take into account par-
ticular values of , D, and v. For this purpose, we use the total amount of
information decoded per a dimension of representation. The amount of in-
formation decoded for a single symbol (denoted as Isymp) is calculated using
the corresponding accuracy and size of the codebook as’

’We do not go into the detailed derivation of this equation here. Refer to section 2.2.3
in Frady et al. (2018) for details.
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Isymp(a, D) = alog,(Da) + (1 — a)log, (%(1 — a)) . (A.5)

Note that when the accuracy equals that of a random guess (1/D), the
amount of decoded information would be zero. The total amount of infor-
mation decoded from the distributed representation is calculated as a sum
of information extracted for all symbols:

v

Lot = ZIsymb(av D) = Dlsymb(a7 D) (A6)

i=1

Finally, since Ii+ does not account for the dimensionality of representation,
it makes sense to consider the amount of decoded information per a single
dimension:

Iiim = —. (A7)
n

Thus, Igin corresponds to an information rate that is a relative measure in
bits per dimension that accounts for all three parameters n, D, and v and
can be used for a fair comparison of various transformations using different
choices of these parameters.

Appendix B: Additional Experiments against the Dimensionality
of Representations

In the main text, the dimensionality of representations was fixed to n = 500.
While it is well known (Frady et al., 2018) that with the increased dimen-
sionality the decoding accuracy will also increase, it is still worth demon-
strating this effect empirically within the experimental protocol on this
study. To do so, we hand-picked four decoding techniques from the con-
sidered groups: Codebook, LR MP, CD, and CD/LR MP. The techniques
were evaluated using the values of n from {128, 256, 512, 1024, 2048}. For
each codebook size, the choice of » was made qualitatively based on Fig-
ure 2 choosing various relative performance gaps (at n = 500) between the
techniques. The results are reported in Figure 5, where the upper panels de-
pict the accuracy, and the lower panels show the information rate. There are
no surprising observations about Figure 5. Eventually, given a sufficient di-
mensionality, each technique entered the high-fidelity regime. The relative
ordering of the techniques persisted with increased 1 (unless all were per-
fectly accurate), while for lower n, cross-talk noise is too high, effectively
similar to adding a lot of noise as in Figure 3, where all techniques per-
formed equally poorly.
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Figure 5: The decoding accuracy and information rate against dimensionality
of representations n for three different codebook sizes D using a subset of the
considered decoding techniques. The upper panels depict accuracy, while the
lower panels correspond to information rate. The reported results are averages
obtained from 10 randomly initialized codebooks. Ten random sequences were
simulated for each codebook per each v. In the upper panels, bars depict 95%
confidence intervals, thin dashed black lines indicate the corresponding random
guess at 1/D, and gray dashed lines correspond to analytical predictions for
Codebook decoding.

Appendix C: Pseudocode for Hybrid Techniques

Section 2.2.3 stated that it is worth combining primitives from several vari-
ous techniques, which results in hybrid techniques. In particular, the results
in section 3 featured two such techniques: the combination of CD decod-
ing with LR decoding with MP (CD/LR MP) as well as the combination of
FISTA decoding with LR decoding with MP (FISTA/LR MP). In order to
provide more details on the techniques, algorithm 1 lists the corresponding
pseudocode for CD/LR MP. The algorithm for FISTA /LR MP is not shown
explicitly as it is obtained simply by replacing every use of CD decoding
in algorithm 1 by FISTA decoding. The notations used in the algorithm cor-
respond to the ones introduced above. There are, however, several novel
notations such as simcus(-, -, ) to denote cosine similarity (see section A.1),
confidence for a v-dimensional vector storing a confidence score for each
position in the sequence (see section 2.2.1), fixed for a set storing positions
with the fixed prediction (see section 2.2.1), as well as ¢D() and LRMP() de-
noting routines for performing CD and LR MP decoding, respectively. Note
that these routines can take fixed as input, which means that the predictions
in the corresponding positions will remain unchanged and values of con-
fidence scores in these positions will be set to —1 to avoid choosing them
again during the arg max() step.
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Algorithm 1: A High-Level Pseudocode for CD/LR MP Decoding.
Require: y; ®; v;
§°P_confidence®® « CD(y, ®,v,0,0)
§MRMP confidence™™" < LRMP(y, ®,v,5°", )
if simeos(y, #(8CP)) > simees(y, #(8FMP)) then
8+ 8P
confidence <+ confidence
else
§ «— éLRMP
confidence <+ confidence
end if
y <<y
fixed < ()
fori=1tov—1do
¢ + arg max(confidence)
append ¢ to fixed > Confidence of positions already included in fixed
is assumed to be equal —1
YV —p(Ps,)
§°P . confidence®” «+ CD(y, ®,v — i, 8, fixed)
§MRMP confidence™F « LRMP(y, ®,v — i,8°P, fixed)
if Simeos(y, A(8P)) > simees(y, ¢(8¥FMP)) then
§ + 8P
confidence < confidence
else
S+ 8§
confidence <+ confidence
end if
end for
return §

CD

LRMP

CD

LRMP
LRMP
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