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Abstract

In this paper, we propose a novel hierarchical Bayesian model and an efficient estimation
method for the problem of joint estimation of multiple graphical models, which have similar
but different sparsity structures and signal strength. Our proposed hierarchical Bayesian
model is well suited for sharing of sparsity structures, and our procedure, called as GemBag,
is shown to enjoy optimal theoretical properties in terms of ¢, norm estimation accuracy
and correct recovery of the graphical structure even when some of the signals are weak.
Although optimization of the posterior distribution required for obtaining our proposed
estimator is a non-convex optimization problem, we show that it turns out to be convex
in a large constrained space facilitating the use of computationally efficient algorithms.
Through extensive simulation studies and an application to a bike sharing data set, we
demonstrate that the proposed GemBag procedure has strong empirical performance in
comparison with alternative methods.

Keywords: graphical models, Bayesian regularization, spike-and-slab priors, selection
consistency, non-convex optimization, EM algorithm

1. Introduction

Graphical models provide a natural framework to study the dependence relationship among
random variables, in which a node represents a variable and an edge between two nodes
means that the two variables are conditionally dependent given the others. When all the
variables jointly follow a Gaussian distribution, the corresponding graphical model is known
as the Gaussian graphical model (GGM). For GGMs, it is well known that edges in the
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graph correspond to non-zero entries in the precision matrix of the underlying Gaussian
distribution (Dempster, 1972). Due to this connection, estimating the precision matrix and
its support for a high-dimensional Gaussian distribution has drawn a lot of research interest
both from the frequentist framework (Yuan and Lin, 2007; Friedman et al., 2008, 2010; Cai
et al., 2011; Mazumder and Hastie, 2012) and from the Bayesian framework (Carvalho and
Scott, 2009; Dobra et al., 2011; Wang and Li, 2012; Banerjee and Ghosal, 2015; Mohammadi
and Wit, 2015; Gan et al., 2019a).

Estimating a single graphical model is not sufficient in applications where observations
are naturally grouped into different classes. For example, in social network data, users
are grouped by users’ characteristics; in biological experiments, subjects are classified into
categories based on their experimental conditions; and in gene expression analysis, samples
are classified into different tissues or disease states. In the capital bike sharing dataset
that we shall analyze in Section 6, user data can be divided into two different classes:
“registered” and “casual” or over different years. In such situations, useful insights on
the differences between different classes of observations will be missed if we only estimate
a single Gaussian graphical model. On the other hand, it is natural to expect that the
precision matrices from different classes would share some similarities, especially in terms
of their sparsity patterns (i.e., their graph structures). Therefore, it is advantageous to
utilize the cross-class similarities and estimate the multiple graphs jointly.

Several methods have been proposed for jointly estimating multiple GGMs based on
various penalized likelihood approaches. To encourage shared sparsity, Guo et al. (2011);
Danaher et al. (2014); Ma and Michailidis (2016) adopted the group lasso formulation; Zhu
and Barber (2015) introduced a non-convex log-shift penalty at the group-level; and Lee
and Liu (2015) extended the CLIME method from Cai et al. (2011) for estimating a single
graph to the setting of multiple graphs. When the graphs are ordered, Yang et al. (2015)
proposed to use a fused lasso penalty to encourage nearby graphs to have similar structures.
For theoretical properties, Guo et al. (2011); Ma and Michailidis (2016) established the rate
of convergence of their estimators in terms of the averaged Frobenius norm, while Lee and
Liu (2015) established the rate of convergence in terms of an averaged version of /o, norm
where the average is taken over classes.

The Bayesian framework can naturally facilitate sharing of information across different
precision matrices through a hierarchical prior. For example, Peterson et al. (2015) used a
Markov random field prior on multiple graphs to encourage the selection of common edges
in related graphs, and Tan et al. (2017) used a Chung-Lu random graph model (Chung and
Lu, 2002) as the prior for hierarchical modeling of multiple graphs. However, theoretical
properties of the Bayesian methods for multiple graphs are not studied in the literature.
Moreover, implementations of existing Bayesian methods for multiple graphical models
have severe computational limitations. Neither the block Gibbs sampler used in Peterson
et al. (2015) nor the sequential Monte Carlo algorithm in Tan et al. (2017) scales well with
the number of nodes/variables in the graph. The maximum number of nodes considered by
these papers is 22, while in practice, many applications have graphs with hundreds of nodes.
Moreover, theoretical properties of the existing Bayesian approaches for this problem are
not studied. A major motivation of our paper is to develop a Bayesian hierarchical model
for multiple GGMs with a scalable computational implementation that can accommodate
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a large number of nodes and to study the theoretical properties in terms of estimation
consistency and graph structure recovery.

In this paper, we develop a Bayesian approach for jointly estimating multiple GGMs. In
the proposed hierarchical model, we allow the GGMs to have similar but different sparsity
structures and heterogeneous signal magnitudes. Our method extends the joint estimation
method proposed by Gan et al. (2019b) and includes it as a special case where all the
graphical models are assumed to have a common sparsity structure. We devise a compu-
tationally scalable EM algorithm to obtain the MAP (maximum a posteriori) estimators
of the precision matrices. Our theoretical results show that the MAP estimators have an
optimal rate of convergence in £, norm under a general setting where the graphical models
may have different sparsity structures and signal strength. In terms of sparsity structure
recovery, we show that our proposed estimators can consistently recover the sparsity struc-
ture of each individual graphical model under the usual minimal signal strength condition
that requires a (4/(logp)/n) rate for the signals. When the sparsity patterns of the graph-
ical models are similar, we show that our Bayesian regularization method can achieve a
smaller misclassification error compared to individual estimation method. In the special
case where the multiple GGMs do share a common sparsity structure, the selection consis-
tency of our method can be retained under a weaker minimal signal strength condition that
allows signals presented within groups to be even smaller than the (4/(logp)/n) rate.

The remaining part of the paper is organized as follows. The proposed Bayesian hier-
archical formulation and the parameter estimation procedure are described in Section 2.
Theoretical guarantees of our approach are presented in Section 3 and computational tech-
niques are discussed in Section 4. Finally, empirical studies are presented in Sections 5 and
6.

Notations

We use the following notations throughout the paper. For a square matrix Ay, = (a;;), we
denote its spectral norm by [|A]2; its element-wise ¢y, norm by [|A|, = maxi<i j<p |aijl;
and its Frobenius norm by [A|r. We denote the largest eigenvalue and the smallest
eigenvalue of A by Apax(A) and Amin(A), respectively. When A is a square symmetric
matrix, we note [Als = Amax(A4), and use A > 0 to indicate that A is positive defi-
nite. For a collection of K square matrices of the same dimension A = (Aj,..., Ax),
write | Al = maxicr<r [Akllo. Let @0 = (09,...,0%) denote the collection of true
precision matrices and 8% = (S,...,8%) where S = {(i,5) : 92717 # 0} is the index
set of nonzero entries in the true precision matrix @2. Define column sparsity of @2 as
d, = maxi<;<pcard({j : 6 .. # 0}) where card(-) denotes the cardinality of a set and let

kij
d= maxigk<K dk.

2. Group Estimation of Multiple Bayesian Graphical Models

Suppose we observe multivariate datasets Yi,...,Yx from K distinct and related classes,
where the k-th dataset consists of nj observations Yi, = (Yi1,...,Yin,) of a p-dimensional
random vector Y that is common to the K classes. Assume that Y7,..., Yk follow indepen-
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dent Gaussian graphical models:
Vitseooy Vi, ~ Np(0,0.1), k=1,...,K.

Our target is to estimate the K precision matrices ©y = () ,;) and identify their sparsity
structures. Because of the equivalence of 6, ;; = 0 and the conditional independence between
the i-th and j-th components of Y (Dempster, 1972), the sparsity structure of O reveals
the dependence structure of Y in the k-th class.

A naive approach for this problem is to estimate @, = (0;), k = 1,..., K, individually.
However, since the p-dimensional random vector Y is common to the K related classes, it
is reasonable to assume that the K matrices share some common structure. The naive ap-
proach, which does not utilize the cross-class similarity information, may not be effective. To
borrow strength across classes and improve the efficiency of estimation and structure recov-
ery, we treat entries of the same indices across K precision matrices 0;; = (6145, ..,0k,ij)
as one group and encourage them to have similar sparsity patterns.

2.1 Bayesian Model Formulation

We now specify the Bayesian formulation of our model by first introducing the group level
binary indicators v;;’s. Each indicator +;; is used to gather the group-level sparsity informa-
tion for the corresponding group 6;; and indicate whether there is an edge between nodes
i and j in at least one of the K graphs (y;; = 1) or not (v;; = 0). As 7;;’s are binary, we
place a Bernoulli prior on the v;;’s:

7Yij ~ Bern(py).

Conditioning on 7;;, we then introduce individual binary indicators 74 ;;’s to indicate the
sparsity of the corresponding entries 0y, ;;’s. Priors on {Tk,ij}iil | vi; are placed to encourage
similarities among them:
Tlijs - TR | Y ~ T ),

where f(- | 7;;) is a distribution that encodes the sparsity sharing pattern of our model. We
shall discuss the choices for f(- | 7;5) in Section 2.2.

We now discuss prior specification on 0y, ;; given the binary indicator 7 ;;. When ry ;; =
1, we assume 0y, ;; is a “signal” entry that is likely to take a large value; when ry ;; = 0, 0y ;;
is a “noise” entry that is tightly centered around zero. To achieve this mechanism, we place
the following spike-and-slab Lasso prior (Rockova, 2018; Gan et al., 2019a) on the upper
triangular entries 6y ;; (i < j):

7T((9k7ij’7’k7ij) _ {LP(9k71j;U1) when Tkij = 1,

LP (0,3 v0) when 7,5 = 0,
where v; > vy > 0 and LP(:;v) denotes a Laplace distribution with density function
exp(—|0]/v)/(2v). Here, LP (0} ;;;v0) represents the spike component with a small vari-
ance that would induce values close to zero and LP (6} ;;; v1) represents the slab component
with a large variance that would produce large signals. Additionally, we enforce 0y, ;; = 0, j;
for ¢ < j to keep ©’s symmetric.
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Figure 1: A graphical representation of our model. The boxes are “plates” representing
replicates: the left plate represents indices of precision matrices and the right plate repre-
sents different classes.

We also place an exponential prior on the positive diagonal entries of the K precision
matrices to introduce proper shrinkage:

9]{7“' ~ EXp(T).
The full Bayesian prior formulation of our proposed method is thus given by:
Or,ii ~ Exp(7),
Ok,ij | Thyij ~ Thi LP (Oki55v1) + (1 — 7hi5) LP Ok 355 v0),
Thij | vig ~ F( | Yij)s
vij ~ Bern(py),

(1)

fork=1,...,K;1<1i<j<p. Figure 1 gives a graphical representation of our Bayesian
model.

2.2 Priors for Group-level and Bi-level Sparsity

In our prior formulation (1), a key element is the distribution f(- | v;;), which encodes
the sparsity sharing pattern of our model. In this paper, we consider two specific forms of
f(- ] 7vij): one is used to encourage a common group-level sparsity; the other one is used to
encourage bi-level sparsity, where some components within a non-sparse group are allowed
to be sparse.

Group-Level Sparsity. If the sparsity structure at the group-level is the main target in
a real application, or if it is reasonable to assume that entries within 6;; are either signals
or noises simultaneously, we set f(- | vi;) = 7i;, which enforces 7y ;;’s to be the same as 7;;,
ie.,

Tkyij = Yij- (2)
Under this formulation, the individual binary indicators 7y ;;’s in (1) become redundant and
can all be replaced by their corresponding group level indicator ;;.
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Bi-Level Sparsity. In some applications, we may be interested in not only the group-level
sparsity patterns, but also the within-group individual sparsity patterns. This is usually
referred to as the bi-level selection problem in literature and a variety of methods have been
proposed to perform bi-level selection in the regression setting (Huang et al., 2009; Simon
et al., 2013; Xu and Ghosh, 2015). In this paper, we consider f(- | 7;;) to have the following
hierarchical structure for the bi-level sparsity:

Thyij | Yij ~ viBern(p2) + (1 — vi;)00(7k,i5), (3)

where () denotes a point mass at zero. Under this setup, when the group level indicator
vi; = 0, all the ry;;’s within the group indexed by (7,7) have to be 0 altogether; when
the group sparsity indicator v;; = 1, each of 7y ;;’s can still take 0 with probability 1 — po
independently.

The bi-level prior provides a flexible approach to encourage information sharing at the
group level and meanwhile allow within-group heterogeneity. In (1), when p; = 1 so that
7i;’s have to be all 1’s, the bi-level formulation (3) becomes a special case that every class
of the data is modeled independently and ©’s are estimated separately. On the other
hand, when py = 1, the bi-level formulation (3) degenerates to the one for the group-level
sparsity (2). Thus, the joint estimation method in Gan et al. (2019b) is a special case of
our general framework of bi-level prior specification (3). The bi-level prior with p; € (0, 1)
and py € (0,1) represents a middle ground where different classes share commonality of
structures while not subjected to have the exact same structure.

In the remaining part of the paper, we only focus on the bi-level prior specification for
convenience of illustration. Our prior on the precision matrices ® = (01,...,0;) after
integrating out +;;’s and ry ;;’s is specified as follows:

T(Orii) = Texp(—70k4i), Ori >0,

K K (4)
m(0i5) = p1 H [p2LP (0 ij:v1) + (1 — p2)LP (0455 v0)] + (1 — p1) H (Ok.,i55v0),
k=1 bl

where £k = 1,...,K and 1 < ¢ < j < p. The Bayesian joint model (1) with this prior will
be called GemBag, short for Group estimation of multiple Bayesian graphical models.

For the problem of multi-task GGM, a key element is the modeling of the similarity of
the multiple underlying graphs. It is quite natural in the Bayesian framework to consider a
hierarchical prior to induce similar sparsity patterns of the multiple graphs (Peterson et al.,
2015; Tan et al., 2017). While the general idea of using a hierarchical prior is natural,
it is not trivial to design the hierarchies and choose appropriate prior distributions to
achieve desirable theoretical properties and computational efficiency. In comparison with
the existing approaches, our prior specification allows more efficient computations while
allowing efficient estimation by sharing information from across multiple graphs.

Peterson et al. (2015) use a Markov random field (MRF) model for learning the simi-
larity between the structure of the multiple graphs which involves a K x K matrix valued
parameter with a hyper-prior placed on it. Due to this, their approach is computationally
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not feasible unless the number of graphs K being considered is very small due to the com-
putational intractability of the normalizing constant of the MRF model. In contrast, our
proposal of the simple bi-level Bernoulli prior allows efficient computation even when the
number of graphs K is large and yet allows sharing of information across multiple graphs.
For modeling the precision matrices given the structure of the underlying graphs, Peterson
et al. (2015) use a G-Wishart prior which has normalizing constants in both the prior and
the posterior that pose computational difficulties. In contrast, we place the spike-and-slab
Lasso prior on the off-diagonal precision matrices entries. This formulation has the nice
interpretation of differentiating “signal” and “noise” entries and facilitate the computation
due to the conditional independence of the precision matrices entries given the structure
of the underlying graphs. Tan et al. (2017) also use G-Wishart priors with intractable
normalizing constants making it not computationally scalable for large graphs.

Besides the computational challenge, theoretical properties are not established for the
procedures of Peterson et al. (2015); Tan et al. (2017) and it is unclear how they would per-
form theoretically in terms of estimation accuracy and recovering the underlying graphs. In
contrast, the theoretical properties we establish for our prior specification help us show that
GemBag procedure enjoys optimal theoretical properties in terms of £, norm estimation
accuracy and correct recovery of the graphical structure (see Section 3).

We close this subsection with a remark on Covariate Dependent Sparsity, which allows
covariates to impact sparsity structures of graphs. For example, in our model, p;, p2 can
be treated as functions of covariates, if additional covariates are available. Let x; denote
class specific covariates of the k-th sample class, we can extend the prior placed on ry;; in
(3) in the following manner:

Thij | Vijs Thyis Ty ~ YigBern(my i ;) + (1 — 7i5)00(rr,ij), where logit(my;) = 5] 2.

While it is possible to generalize our methodology for this prior, the theoretical analysis
and computational techniques deserve an independent study and we leave it for future
exploration. In the remaining part of the paper, we focus on the settings when pi, p2 do
not depend on covariates.

2.3 Parameter Inference
2.3.1 POINT ESTIMATION

For efficient computations, we estimate ® via point estimation. Motivated by Gan et al.
(2019a), we consider the following MAP estimator:

:]@

e = arg min lognp Yi | Ok) — g
O,eSy, k=1,. K

K
[ ] 7Ok 1ogHw(9ij>>

k=1 i<j

ol

P
= arg min (— Zlogp(Yk | O) + Z Z enr, (Ok,ii) + Z PenGB(BU)> (5)
k i1 k=1

@kESP k=1,...,.K i<j

where S¥ denotes the cone of positive definite matrices with dimension p x p,

n
log p(Yi | ©) = 5 (log det(©x) — tr(S404) )
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is the log likelihood with Sy = n—lk Dok Yk,iYkT’i being the sample covariance matrix of the

k-th class, and Penp, (6k,i;) and Penggp(0;;) are (—log) of the prior on the diagonal entry
014 and the prior on the off-diagonal entries 6;;, respectively:

(Penp, (0kii) = 0k,

K 165451 - 165,451
) PenGB(Bij) = _log b1 szl (2])11216 o+ 27}1())26 0 >

K 1 10,451
+(1 —p1) [Ts (21}06 ”°> ;

The MAP estimator can be interpreted as a penalized likelihood estimator with penalty
functions, Peny,, (6x,;) and Pengg(0;;), induced from our prior specification (4). The ex-
ponential prior on the diagonal entry 6}, ;; leads to the usual ¢; penalization. The induced
penalty from the bi-level prior on a group of parameters 6;;, however, does not correspond
to any standard penalty function, which we shall discuss in Section 2.3.3.

\

2.3.2 STRUCTURE RECOVERY

Given the point estimation C':')7 we further quantify the uncertainty of the sparsity patterns
through the marginal inclusion probability P(ry;; =1 | @)

For any © value, the marginal inclusion probability can be computed as follows (see the
detailed derivation in Appendix C).

wi,ij(0ij) =P (rpij =1|0) =P (rg;; = 1] 6;5)
=P (v =116:5) P(res =117 =1, Orj)

= 11(0:5) - 12(0k,ij) (6)
h
where 0:.)2P(~rv: =1180:. — p151(0i5)
m(0ij) = P (v =11 6;) _p151(9ij)+(1jp1)5‘2(9ij)’
0 i
B (7)
M2(Okij) =P (ris =1 v =1, Ora) = L Thsyl
gZe UL +pe M0
with
K 16k, _ 16k, K 16k,
py ka1 —po Rl 1 _DPrajl
S51(0i5) = —e U1+ v0 and S2(0;;) = —e v . 8
w0 =11 (52 e ) mason =[] (g ) ©

Based on the MAP estimator © from (5), we obtain an estimate of the sparsity patterns
S by thresholding the posterior inclusion probabilities wy ;;(8;;):

fk,ij =1 << Wk,ij(éij) > t, for t e (O, 1). (9)

The expressions (6)-(8) provide some insight about how information across classes is
shared for structure recovery. The first quantity 1;(6;;) represents the group-level inclusion
probability for 6;;, the group of entries indexed by (i, j) across ©}’s, and the second quantity
n2(0k,i;) is the within-group inclusion probability for entry 6y ;; from the k-th class. The
product of them, which takes both the group level and individual level information into
consideration, is in effect when performing the sparsity structure recovery.
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2.3.3 THE BI-LEVEL BAYESIAN PENALTY

To understand the Bayesian penalty induced from our bi-level prior specification, we exam-

ine the gradient of Pengg(6;;) = —logm(6;;). Calculation reveals that
Pencgp(6;) ()~ + (1 (6:)~ (10)
_ % Pen Y = wn i (0:0) — o i (0:)) —
awk,z’j’ GB\Uij k,ij\Yij v k,ij\Yij U07

where wy, ;;(0;5) is defined in (6).

Equations (6) and (10) together provide intuition on how our proposed prior formulation
works. The penalty induced penalty by our prior is a weighted sum of two ¢; penalties: a
large penalty 1/vg that is used to eliminate noise entries and a smaller penalty 1/v; that
is used to reduce bias due to over-shrinkage on relevant entries. The weight, determined
by the conditional probability of ry;; = 1, can be decoupled as the product of group-
level posterior inclusion probability and within-group level posterior inclusion probability
as shown by (6) and measures the group information and the second term measures the
individual information, respectively.

The surprisingly simple representation (10) of the gradient unveils how adaptive shrink-
age is induced based on posterior inclusion probabilities, and also plays an important role
in our theoretical analysis. In contrast to the alternative prior choices proposed in the
literature such as the Markov random field prior (Peterson et al., 2015) and the Chung-Lu
random graph prior (Tan et al., 2017), our prior allows us to investigate the theoretical
properties of the proposed Bayesian framework.

Note that the gradient (10) is a decreasing function with respect to the magnitude of
01,5, if we fix the other elements of 8;;. That is, the bi-level Bayesian penalty is a concave
function of |y ;;|. In the regression setting, several concave penalties have been proposed
and shown to have the oracle property for bi-level selection (Huang et al., 2012; Breheny
and Huang, 2009).

3. Theoretical Guarantees

In this section, we provide theoretical guarantees for MAP estimators that take the following
general form including (5) as a special case:

p K
e = argmin ( Elogp Yy | O) + 2 Z eny,, (0r.ii) —i—aEPenGB(HU)), (11)
LK k=1

OreSY, k=1,. i=1 i<j

where o > 1. From the Bayesian perspective, we can view the estimator above as a
MAP estimator of the posterior distribution 7(® | Y) o p(Y | ®)7(©)* or of 7(© |
Y) « p(Y | @)1/a 7(®). The latter, known as the fractional Bayesian posterior (Jiang
and Tanner, 2008; Yang et al., 2017), has often been considered for Bayesian theoretical
analysis.

The objective function (11) is not convex due to the non-convexity of the penalty func-
tion Pengp(-) and, consequently, has multiple local solutions. Despite this, we show that
there exists a local solution © of (11) enjoys optimal rate of convergence in £, norm and
has a stronger performance for structure recovery performance when compared to other
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alternatives. If an additional constraint |Ol2 < B,k = 1,..., K, is imposed on the pa-
rameter space () with a reasonably large B, we show the objective function (11) is strictly
convex, and thus, the local solution @ is the unique solution.

3.1 Conditions

In our theoretical analysis, we allow the true data generating distribution to be non-Gaussian
and consider distributions with exponential tails (sub-Gaussian distributions) or with poly-
nomial tails (such as the ¢ distributions). The same conditions are also considered in Cai
et al. (2011) and Gan et al. (2019a) when only one class is present in the data, that is,
K = 1. For all the p-dimensional random vectors Y}, ; = (Ykg), A Yk(ﬁ.’)),i =1,...,n, and
k=1,..., K, we define

(A.1) Exponential tail condition: there exist some constants 0 < ¢ < 1/4 and U > 0 such
that (logp)/n < ¢ and

(€)]
E(etYki‘ )<U forany [t|<Candj=1,...,p;
(A.2) Polynomial tail condition: there exist some constants ki, k2,k3,U > 0 such that
p < K1n"? and
E‘Yk(ﬂi)|4+4n2+n3 <U forj—1,.. . .p

(A.3) Eigenvalue condition: 1/§y < )\mm(@g) < /\max(@g) <1/& fork=1,... K.

When presenting the theoretical results, we also assume the sample sizes of the K classes
to be the same with ny = --- = ng = n for simplicity.

3.2 Estimation Accuracy

With the aforementioned assumptions, we are now ready to present our result on the rate
of convergence in ¢, norm.

Theorem 1 Suppose that one of the tail conditions, (A.1) or (A.2), and the eigenvalue
condition (A.3) hold. Let Cy = (TY2 + ko + (TtU?) when the exponential tail condition
(A.1) holds and Cy = /(|©°] s + 1)(4 + ko) when the polynomial tail condition (A.2) holds
for some kg > 0. In addition, assume that:

(i) the hyperparameters (vi, vy, p1, p2, T) satisfy the following when ps = 1:

max(-2-, 27) < Cs, flogp 1  Cy [logp
nvi’n « n nuvo «@ n
K K42
vyt (1—p1) v] 1-p1) €0/
€2 < oK1 < v+ < 2p o/
or when py < 1:
max( 5 277-) < Cs log p 1 Cu log p
nvy’ n «@ n ’ nuvg @ n ’
K+2
v " “(1—p1) K
e < 2p/opl,
o 31-p2)
vil=p2) _ v7(1=p2) _ o co/a.
€ < vop2 < ,ng2 < 2}7 )
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(ii) the sample size n satisfies: \/n = Mymax(d, v/ K)+/log p;
(iii) the parameter o satisfies: op/® > KC2logp/(2£3).
Then, there exists a local solution of (11) that satisfies

~ 1
6 — €] < G5y | —2F

with probability greater than 1 — K&, where 6 = 2p~"0 when condition (A.1) holds, and
§ = O(n="3/3 4 p=r0/2) when condition (A.2) holds. Moreover, ék’ij =0 for (i,7) € (S9)°.
Here, C3,eo are sufficiently small positive constants; Mgy, Cy,Cs,€q are positive constants
that only depend on the ground truth @0,

Our proof of Theorem 1 is motivated by the constructive proof technique used in Raviku-
mar et al. (2011) and Gan et al. (2019a). The exact definitions of My, Cy, C5, €y and the
proof of Theorem 1 are provided in Appendix A.1. We note that the penalty from our
bi-level prior specification (10) is a weighted combination of two ¢; penalties. Through the
interplay of (vo,v1,p1,p2), the consequence of condition (i) is to ensure that Pengp(6;;)
achieves adaptive shrinkage: small entries in 6;; lead to penalty that is bigger than the
order of 4/(logp)/n to suppress noise, whereas large entries lead to penalty that is smaller
in order than 4/(logp)/n to reduce bias. To make condition (i) hold, we require the rate
of 1/v1 to be at most y/nlogp/a and the rate of 1/vy to be at least y/nlogp/a. While
condition (i) does not impose any requirement on the rate of «, a large o may imply ex-
treme rates of other parameters like p; and py to satisfy condition (i). For example, when
a = n, p/ would go to 1 when n — oo and log p/n — 0. Therefore, to make the condition
v 2 (1-py)

v,
ratcoa makes condition (i) easier to satisfy in theory, we observe in empirical studies that
our method with « of different rates such as a = 1, 4/n, n, has a comparable performance.
Under the conditions stated, Theorem 1 guarantees that there exists a local minimizer C)

that has an optimal rate of convergence for estimation in £, norm.

< 2p®/* hold, we require p; to be close enough to 1. While an « of moderate

3.3 Sparsity Structure Recovery

The local minimizer ® from Theorem 1 also has desirable properties in sparsity structure
recovery. Let us first consider the simple case when sparsity patterns of 62’5 are the same,
that is, S) = --- = S%. The following theorem establishes the selection consistency of C)
with a mild condition on the minimal signal strength.

Theorem 2 Under the same conditions (i) — (iii) in Theorem 1 and the following condi-

tions:
(iv) minimal signal strength satisfies the following when 8y = --- = 8%

min (k'max (]927”])) > Lon/log p/n,

i#j (4,§)eS?
where Lo > Cs is a sufficiently large constant;

11
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(v) the hyperparameters (v1, vg, p1, p2) satisfy:

1

I+ So=ente—corn

where t € (0,1) is an arbitrary thresholding value,

1 1
m(0)=1+ T <mdmm):I:H;aH,
p1[p2vo+(1—p2)v1]™ P2v0
we have ~
P(S = 8% — 1.

A proof of Theorem 2 is provided in Appendix A.2. In the proof, we show that for any
threshold ¢ between 0 and 1, we can differentiate the signal entries and the noise entries
based on their posterior inclusion probabilities with a proper choice of the hyperparameters
(v1, vo, p1, p2). It is worth noting that in condition (iv), we only impose a condition on
the maximum magnitude within each group. This illustrates the advantage of GemBag
for identification of group sparsity when many signals in a group may be weak. When the
sparsity structures of different graphs are not exactly the same, GemBag still performs well.
The following theorem shows that GemBag consistently recovers the sparsity structure of
each individual graphical model.

Theorem 3 Under the same conditions (i) — (iii) in Theorem 1 and the following condi-
tions:
(vi) minimal signal strength satisfies the following when sparsity patterns of @2 ’s are
not the same:
min ( min_(|6};]) | = Liv/logp/n,
1#5 \ k:(i,5)eS) ’
where L1 > Cs is a sufficiently large constant;
(vii) the hyperparameters (vi, vo, p1, p2) satisfy:

2
— _ €0/
(A=pojor 1=t fy 2 —1,
p( )/

P2t t Cs—C3)(L1—C5

we have .
P(S =8 — 1.

A proof of Theorem 3 is provided in Appendix A.3. In condition (vi), we require the
minimal signal strength on each individual signal entry, which is the same signal strength
requirement from individual estimation method (Gan et al., 2019a). Compared to individual
estimation, GemBag would have better performance and smaller misclassification error
when the sparsity patterns are similar across different classes. Recall that our posterior
inclusion probability (6) takes both group-level inclusion probability 7;(6;;) and within-
group inclusion probability 72(6y ;) into consideration. As a result, for entries with weak

12
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signal strength and small within-group inclusion probabilities, they could still be correctly
identified as long as signal strength at the group level is strong and group-level inclusion
probabilities are large. In contrast, by individual estimation method, those entries with
weak signals would be misclassified as noises without the group-level information. A more
rigorous comparison is provided in Appendix D.

3.4 Local Strict Convexity

A potential challenge is caused by the non-convexity of the objective function.
It is easy to check that the whole objective function (11) is non-convex with multiple
local solutions. Therefore finding ©, the minimizer of (11), is not straightforward.
Motivated by Loh and Wainwright (2017); Gan et al. (2019a), we consider estimating
the MAP estimator in the parameter space with a side constraint Q = {|Ox2 < B, 0y >
0,k=1,...,K}:

p K
® =  argmin < - Z}logp(Y;.C | Ok) + Z Z Peny, (0 4i) + o Z PenGB(Oij)>
ekESi, k=1,...K k i=1k=1 i<j
subject to [|Okll2 < B,O; > 0,k =1,..., K.
(12)

As shown in the following theorem, even when the bound B diverges to +00, the optimization
problem is strictly convex. That is to say, within a reasonably large parameter space, the
solution we obtained from any algorithm that solves (11) will be unique and globally optimal.
A proof of Theorem 4 is provided in Appendix A.4.

1/2 .
Theorem 4 If 1/& + dCs 10% <B< (Z—?) , then the local minimizer © of (11) is

also the unique solution of (12).

Theorem 4 suggests that the objective function in (12) is strictly convex even when B
is quite large and is growing to infinity. For a given prior parameter vy, the upper bound
on B decreases as « increases which is expected because the weight of the non-convex
regularization function becomes larger. However, for establishing the optimal theoretical
results of £, norm convergence in Theorem 1, the hyperparameter vy depends on « and
is required to be O(a/y/nlogp). To empirically corroborate the rate of vy for achieving
optimal performance, we provide a simulation study in Appendix E.2 which supports our
theoretical results that vy scales linearly with a/4/nlog p. Therefore, the upper bound on B
to achieve both strict local convexity and optimal estimation accuracy is O(1/a/(K logp)),
which grows to infinity as long as « grows faster than the rate of Klogp. To gain more
insight into the convexity result, recall that the rate of vy from Theorem 1, O(a/+/nlog p),
can be larger with a larger a and the density of the spike component would be flatter
and thus, the non-convexity of the regularization function becomes less severe. While this
does not guarantee that the MAP estimator with a = 1 is unique for the specific choice of
vg required for attaining the consistency results, we observe in empirical studies that the
performance of a MAP estimator we find is as good as the unique estimator with a larger
.

13
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3.5 Comparisons with Existing Works

We consider existing joint estimation methods proposed by Guo et al. (2011) and Lee and
Liu (2015) for comparison in terms of estimation accuracy and selection consistency. In
the following discussion, we use © asa generic notation to denote estimators proposed by
these authors.

Guo et al. (2011) established the estimation consistency of their estimator ©’ in Frobe-
nius norm for a fixed K value:

K
> 16k~ 6llr =0, ( ra)losy q”logp) ,
k=1

n

where ¢ = card(ukSg) — p. Our Theorem 1 implies that the estimation error upper

bound of our estimator ©® under this Frobenius norm is O < (p+q2n)1°gp> , where ¢o =

maxy {card(SY)} — p. This rate is the same as that of @ when K is fixed. For graph struc-
ture recovery, Guo et al. (2011) obtained sparsistency, a notion from Lam and Fan (2009),
in the sense that the zero entries in the true precision matrices are estimated as zeroes with
probability tending to one (For our method, sparsistency is stated in Theorem 1). However,
there is no guarantee that the nonzero entries could be detected. This is weaker than our se-
lection consistency result as we can recover the entire graph structure. Moreover, to achieve
sparsistency, Guo et al. (2011) required the minimum signal min min#j7(2-’j)esg(|927ij\) to
be lower bounded by some constant while we allow it to go to 0.

Lee and Liu (2015) established the estimation consistency of their joint estimator of

N

multiple precision matrices (JEMP), @', in the averaged version of the £y-f1 norm:

1 3 N’ 90 =0 logp
H}gx K/;1 kij — Ykii| ] = Yp n .

Our estimation error rate under £, norm in Theorem 1 implies this result. Besides, our
error rate in Theorem 1 is on the maximum over all entries of all precision matrices without
averaging, and therefore is stronger. For selection consistency, JEMP has the same result as
ours but requires a stronger condition on the signal strength. Specifically, JEMP implicitly
requires ming min;; ; )cso (]92,1-]- |) to be lower bounded at the rate of K (logp/n)Y2. In com-

parison, we only require a smaller rate of (logp/ n)l/ 2. Moreover, when the sparsity patterns

of @g’s are the same, our condition becomes even weaker as our minimum signal strength
. . 0 . . O

rate would be imposed on miny, max;_; ; j)eso (6% ;;1) rather than ming ming; ; j)es? (165.5;1)-

4. EM Algorithm

In this section, we present an EM algorithm to compute the MAP estimator in (12). We
treat the indicator variable I' = (v45) and R = (R1,...,Rg) with Ry = (r4,;) as latent
variables and obtain the MAP estimator of ® by iterating the following two steps:

e Expectation step (E-step): compute the @ function defined as the expectation of
the full log likelihood with respect to the joint posterior distribution of the latent
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variables, I' and R, given Y and ©®), the current estimate of ©:

1
Q(G | (-)(t)) = EF,R‘@(”,Y 10g (p(Y | @,F,R)aﬂ(@,F,R))
|0k,i5]
= Epgreny ( > Z [ + (1= 7)) = ’
i<j k=1 0
1 X
—logp (Y |©) 2 2 704 + C, (13)

i=1k=1

where C' is some constant not depending on .

e Maximization step (M-step): update the estimate of ® by maximizing the @ function
(13) under the constraints that O > 0 and |Gk < Bfor k=1,..., K.

4.1 E-step

To evaluate the @ function, we need to compute the conditional expectation Ep ROy (Thyij),

which is the posterior inclusion probability of ry ;;’s given O® and Y defined in (6):

EF,R|@<t),y(7“k,ij) =P <r;m-j =1 G(t),Y)

=P (’yij =1 0@) P (Tk,zg 1|y =1, el(c 2])

—m(6) - m(0)): (14)
We write the @) function as
5 ng o
)y — Dk _ Bk _ y
QO | 6W) ;1 {M log det(O%) — o ~tr(S5x6%) i_erek,“
B t) [ zj| O3 10k.i5]
l;] {wk ij vl ( Wk, ij (9 )) 71}0 +C.

4.2 M-step

The function Q(® | ®®)) is a summation of K terms where the k-th term is a function of
O}, alone. Therefore, maximizing Q(® | ®®) is equivalent to optimizing K sub-problems,
where the objective function of the k-th sub-problem is only related to © and takes the
following form:

p
e g (1), 105
%0 log det(©y) — ﬁtr(sk@k) - Z TOk,ii — Z [Wk,ij(eij ) v + (1 Wk,ij (9 ij )> v |’

i=1 i<j 1

(15)
subject to the constraints that ©y > 0 and ||O[2 < B
Optimizing (15) is a graphical lasso problem with an adaptive /1 penalty. The magnitude

of shrinkage on 0}, ;; is controlled by wy ;; (0( )) Compared to BAGUS (Gan et al., 2019a),
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the adaptive weights wmj(egf)) take the group information into consideration through the

sharing of nl(OZ-(]t-)). We adopt the BAGUS algorithm in Gan et al. (2019a) to solve (15).
The time complexity of our algorithm is O(p?), the same as the state-of-the-art algorithms
for graphical Lasso (Friedman et al., 2008; Hsieh et al., 2011; Gan et al., 2019a). Our EM
algorithm is summarized in Algorithm 1, which outputs estimates of K precision matrices
and K posterior inclusion probability matrices.

Algorithm 1 EM algorithm for computing the MAP estimator in (12)

repeat
Calculate P, = (wg5),k = 1,..., K using (14).
for k=1 to K do
Update ©y by maximizing (15).
end for
until Convergence
return P, 0, k=1,..., K.

Implementation of existing Bayesian methods for multiple graphical models such as the
proposal in Peterson et al. (2015); Tan et al. (2017) have severe computational limitations
due to the use of MCMC-based samplers to sample from the full posterior. While it might
be possible to develop an EM algorithm for obtaining the MAP estimators corresponding to
the models in Peterson et al. (2015); Tan et al. (2017), it is unclear whether these approaches
will be scalable to large graphs due to the intractable normalizing constants of their priors.

5. Simulation Studies

Following the simulation setups in Guo et al. (2011), Danaher et al. (2014); Peterson et al.
(2015), Lee and Liu (2015), and Gan et al. (2019a), we assess the performance of GemBag
under four different designs: an AR(2) model, a circle model, a nearest-neighbor network,
and a scale-free network. In the first two designs, we set K = 10 and p = 50 and in the last
two designs, we set K = 3 and p = 100, 150,200. For each k£ = 1,..., K, we generate ng
independently and identically distributed observations from a multivariate normal distri-
bution with mean 0 and precision matrix ©. To assess the performance of GemBag when
data is not normally distributed, we consider multivariate ¢-distribution and the details are
provided in Appendix E.1. To evaluate the performance of GemBag for a higher dimension,
we also consider p = 400 and the results for this setting are provided in Appendix E.3. In
the first two designs, we consider n; = --- = ng = n = 50,100, 200; in the last two designs,
we set n; = -+ =ng =n = 100. The details of the four designs are described as follows.

1. AR(2) model: we construct a baseline precision matrix ©° with 6 = 1 007~ =
69

i1 = 0.5, and 9%_2 = 9?_272- = 0.25 . Then K = 10 individual precision matrices

are generated by randomly setting 30% of the nonzero off-diagonal elements of O to
Zero.
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2. Circle model: we construct a baseline precision matrix ©° with 69 = 1,921-71 =

9?_1’1» = 0.5, and 9%0 = 921 = 0.4. Then K individual precision matrices and n

random samples are generated in the same way as in the first design.

3. Nearest-neighbor network: we randomly generate p points on a unit square and con-
struct a baseline nearest-neighbor network by linking any two points that are the o
nearest neighbors (based on the Euclidean distance) of each other. We set 0 = 3 in our
simulation. Then, we generate K = 3 individual networks by adding pM individual
edges to the baseline graph where M is the number of edges in the baseline graph and
p=0,0.251.

Given an individual network, we generate a precision matrix @, that has the same
sparsity structure as the corresponding network. The diagonal entries of © are set to
be one, and non-zero off diagonal entries are independently generated from a uniform
distribution with support on [—1,—0.5] u [0.5,1]. W then divide each off-diagonal
element 6y, ;; by 1-01\/21‘;#]‘ |0k,ij|\/2j;j¢z’ |0k,ij| to ensure @ to be positive definite.

4. Scale-free network: many real-world large networks, such as the world wide web, social
networks, and collaboration networks, are thought to be scale-free. We construct a
baseline scale-free network using the Barabdsi-Albert model in Barab&si and Albert
(1999). Then, K individual networks and precision matrices, as well as the nj random
samples, are generated in the same way as in the third design.

We compare GemBag with three alternative methods: (i) fitting each class of observa-
tions individually using the BAGUS method (denoted as BAGUS) in Gan et al. (2019a);
(ii) fitting a single model on data from all classes using the BAGUS method (denoted as
Pooled); (iii) using the group graphical lasso (denoted as GGL) from Danaher et al. (2014).
Bayesian approaches based on full posterior sampling (Peterson et al., 2015; Tan et al., 2017)
are not considered for comparison as their Markov chain Monte Carlo samplers are not scal-
able with large p. For all methods, we use a grid search to select the set of hyperparamters
that minimizes BIC:

K
BIC = Z {nk (— log det(Oy,) + tr(Skék)>
k=1

log() x card({(6.) s # 0.1 1< < p})|

For GemBag, we consider o = 1,4/n, and n and estimate the sparsity patterns using
a threshold ¢ = 0.5 on the posterior inclusion probabilities. We set p; = pa = 0.5
so that the prior inclusion probability P(ry;; = 1) = pips = 0.5 and tune (vo,v1) with
vo = 7 = (0.25,0.5,0.75,1) x 4/1/(nlogp) and v; = (2.5,5,7.5,10) x 4/1/(nlogp) when
a=1,withvy =7 = (1,1.5,2,2.5,3) x 1072 x 1 /1/log p and v; = (2,4, 6,8) x 1/1/log p when
a = +/n,or withvg = 7 = (1,1.5,2,2.5,3) x 1073 x y/n/log p and v1 = (2,4,6,8) x 1/n/logp
when a = n. We recommend the same range of constants as default choices for tuning vy and
v1 when applying our method to new settings. Analysis on how sensitive the performance
of our method in graph estimation is to different choices of hyperparameters is provided in
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Spec Sens MCC AUC F-norm {5 norm

n =50, p=>50

1) 0.997(0.001) 0.581(0.056)  0.721(0.034)  0.973(0.013)  3.095(0.139)  0.656(0.135)
m)  0.995(0.001)  0.700(0.028)  0.783(0.021) 0.974(0.010)  2.923(0.149)  0.707(0.151)
n)  0.995(0.001)  0.660(0.034)  0.751(0.019)  0.967(0.013)  3.158(0.115)  0.665(0.137)
BAGUS 0.983(0.002)  0.660(0.024)  0.657(0.014)  0.859(0.019)  3.227(0.073)  0.938(0.193)
Pooled 0.966(0.004)  0.983(0.010) 0.771(0.020)  0.985(0.004) 2.900(0.067) 0.492(0.027)
GGL 0.965(0.009)  0.622(0.039)  0.545(0.021)  0.802(0.018)  4.647(0.133)  0.644(0.072)

n =100, p = 50
0.928(0.016) 0.998(0.001) 1.813(0.111) 0.502

GemBag (a =
GemBag («
GemBag (o

GemBag (o =1)  0.998(0.000) 0.899(0.029 0.095
0.07

(0.029) (0.095)
GemBag (a = v/n) 0.997(0.001)  0.900(0.017)  0.923(0.011)  0.998(0.001) 1.829(0.070)  0.506(0.075)
GemBag (a =n)  0.996(0.001)  0.891(0.017)  0.909(0.010)  0.998(0.001) 1.914(0.083)  0.525(0.071)
BAGUS 0.988(0.002)  0.873(0.018)  0.830(0.019)  0.953(0.012)  2.084(0.064)  0.575(0.098)
Pooled 0.964(0.006)  0.996(0.005) 0.771(0.026)  0.989(0.002)  2.851(0.064)  0.485(0.023)
GGL 0.963(0.008)  0.763(0.022)  0.629(0.025)  0.876(0.011)  4.158(0.104)  0.551(0.018)

n = 200, p =50

GemBag (@ =1)  0.999(0.000)  0.986(0.008)  0.986(0.004) 1.000(0.000) 1.106(0.038) 0.342(0.052)
GemBag (a = v/n) 0.999(0.001)  0.987(0.006)  0.981(0.006)  1.000(0.000) 1.126(0.041)  0.315(0.047)
(0.007)

)
GemBag (o =n)  1.000(0.000) 0.973(0.007)  0.981(0.004)  1.000(0.000) 1.176(0.050)  0.346(0.078)
BAGUS 0.991(0.002)  0.979(0.011)  0.918(0.016)  0.992(0.005)  1.288(0.048)  0.360(0.055)
Pooled 0.959(0.009)  0.999(0.002) 0.751(0.034)  0.989(0.001)  2.825(0.054) o 480(0 019)
GGL 0.925(0.010)  0.929(0.014)  0.600(0.027)  0.959(0.007)  3.267(0.083) 55(0.016)

Table 1: Simulation results for AR(2) model.

Spec Sens MCC AUC F-norm {4 norm
n =50, p=>50

GemBag (a =1)  1.000(0.000) 0.972(0.010)  0.983(0.005) 1.000(0.000) 1.912(0.087)  0.898(0.210)
GemBag (a = /1) 0.999(0.000)  0.987(0.006)  0.979(0.008)  1.000(0.000) 1.877(0.055) 0.651(0.164)
(0.007) (0.191)

GemBag (a =n)  0.999(0.000)  0.984(0.007)  0.973(0.009)  1.000(0.000) 1.888(0.059)  0.695(0.191
BAGUS 0.990(0.002)  0.960(0.015)  0.840(0.020)  0.980(0.008)  2.264(0.142)  0.938(0.227)
Pooled 0.981(0.004)  1.000(0.000) 0.776(0.035)  0.996(0.000)  2.473(0.040)  0.503(0.024)
GGL 0.952(0.009)  0.955(0.020)  0.583(0.033)  0.975(0.011)  3.768(0.140)  0.745(0.194)

n =100, p = 50

GemBag (a =1)  1.000(0.000) 0.999(0.002)  0.998(0.002) 1.000(0.000) 1.258(0.037)  0.559(0.087)
GemBag (a = y/n) 1.000(0.000) 1.000(0.001) 0.996(0.003)  1.000(0.000) 1.199(0.038)  0.462(0.097)
GemBag (a =n)  1.000(0.000) 0.999(0.002)  0.998(0.002) 1.000(0.000) 1.193(0.035) 0.485(0.078)

BAGUS 0.991(0.001)  0.998(0.002)  0.875(0.015)  0.999(0.001)  1.415(0.039)  0.551(0.081)
Pooled 0.979(0.004)  1.000(0.000) 0.759(0.030)  0.996(0.000)  2.448(0.029)  0.489(0.020)
GGL 0.953(0.004)  0.998(0.003)  0.609(0.018)  0.999(0.002)  3.115(0.069)  0.528(0.056)

n = 200, p =50

GemBag (a =1)  1.000(0.000) 1.000(0.000) 0.999(0.001)  1.000(0.000) 0.865(0.031)  0.346(0.057)
GemBag (a = /) 1.000(0.000) 1.000(0.000) 0.999(0.002)  1.000(0.000) 0.865(0.029)  0.302(0.040)
GemBag (a =n)  1.000(0.000) 1.000(0.000) 1.000(0.001) 1.000(0.000) 0.854(0.029) 0.301(0.045)

BAGUS 0.993(0.002)  1.000(0.000) 0.892(0.023)  1.000(0.000)  0.973(0.029)  0.341(0.054)
Pooled 0.974(0.005)  1.000(0.000) 0.722(0.035)  0.996(0.000)  2.432(0.027)  0.477(0.014)
GGL 0.957(0.005)  1.000(0.000) 0.627(0.021)  1.000(0.000)  2.550(0.071)  0.424(0.019)

Table 2: Simulation results for circle model.

Appendix E.4. For BAGUS and Pooled, we follow the same tuning procedure in Gan et al.
(2019a) and tune (vg, v1) with the same values as in GemBag when a = 1. For GGL, we
tune the penalty parameters (A1, A2) as in Danaher et al. (2014) with A\; = (0.1,0.2,...,1)
and A2 = (0.1,0.3,0.5).

Tables 1-4 summarize the results of selection accuracy and estimation accuracy for all
methods. The metrics we use for selection accuracy are specificity (Spec), sensitivity (Sens),
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Matthews correlation coefficient (MCC), and area under the receiver operating characteristic
(ROC) curve (AUC); the metrics we use for estimation accuracy are Frobenius norm (F-
norm) and element-wise ¢o, norm (¢, norm). In Tables 1-4, we report the maximum of £y,
norm and the average for the other metrics over the K classes and the results are aggregated
over 100 replications.

Spec Sens MCC AUC F-norm {5 norm
n =100, p =100, p=0
GemBag (a =1)  0.999(0.000) 0.850(0.037)  0.906(0.021) 0.979(0.011)  2.853(0.163) 0.517(0.083)

GemBag (o = 4/n) 0.990(0.005)  0.895(0.049) 0.794(0.059)  0.993(0.007) 3.503(0.415)  0.759(0.298)
GemBag (v =n)  0.997(0.002)  0.852(0.046)  0.857(0.043)  0.991(0.008)  3.337(0.371)  0.789(0.257)
BAGUS 0.994(0.002)  0.816(0.039)  0.794(0.033)  0.903(0.022)  3.184(0.190)  0.551(0.093)
Pooled 0.989(0.003)  0.664(0.056)  0.616(0.048)  0.840(0.029)  7.115(0.380)  0.983(0.035)
GGL 0.948(0.008)  0.707(0.074)  0.401(0.044)  0.845(0.038)  6.338(0.382)  0.604(0.037)

n = 100, p = 100, p = 0.25

GemBag (@ =1)  0.998(0.001) 0.794(0.044)  0.857(0.025) 0.964(0.015)  2.940(0.142) 0.495(0.081)
GemBag (o = /n) 0.998(0.001) 0.798(0.038)  0.853(0.022)  0.959(0.010)  2.960(0.177)  0.480(0.110)

GemBag (@ =n)  0.997(0.001)  0.795(0.030)  0.845(0.026)  0.964(0.009) 3.058(0.178)  0.495(0.138)
BAGUS 0.988(0.003)  0.813(0.030) 0.732(0.025)  0.917(0.017)  3.372(0.148)  0.591(0.102)
Pooled 0.976(0.004)  0.571(0.045)  0.472(0.029)  0.783(0.024)  6.179(0.256)  0.871(0.104)
GGL 0.966(0.010)  0.769(0.043)  0.552(0.054)  0.879(0.022)  5.274(0.122)  0.529(0.029)

n =100, p = 150, p = 0.25

GemBag (@ =1)  0.998(0.001) 0.793(0.036)  0.838(0.023)  0.960(0.012) 3.672(0.162) 0.485(0.076)
GemBag (o = /n) 0.998(0.000) 0.789(0.030)  0.845(0.022) 0.959(0.007)  3.757(0.260) 0494(0 100)

GemBag (¢ =n)  0.998(0.001) 0.759(0.055)  0.826(0.026)  0.954(0.014)  3.925(0.200)  0.514(0.108)
BAGUS 0.987(0.002)  0.816(0.028) 0.663(0.026)  0.915(0.014)  4.453(0.196)  0.622(0.103)
Pooled 0.983(0.003)  0.561(0.038)  0.459(0.024)  0.778(0.020)  7.608(0.268)  0.907(0.089)
GGL 0.976(0.005)  0.719(0.051)  0.513(0.044)  0.855(0.026)  6.782(0.258)  0.551(0.027)

n =100, p = 200, p = 0.25

GemBag (o =1)  0.998(0.000)  0.793(0.027)  0.823(0.019)  0.959(0.011) 4.320(0.125) 0.483(0.064)
GemBag (o = /n) 0.999(0.000) 0.780(0.034)  0.836(0.016) 0.958(0.010)  4.516(0.242)  0.495(0.122)

)
GemBag (¢ =n)  0.999(0.000) 0.723(0.024)  0.822(0.016)  0.946(0.009)  4.740(0.163)  0.515(0.132)
BAGUS 0.986(0.002)  0.819(0.019) 0.613(0.019)  0.915(0.009)  5.551(0.137)  0.693(0.107)
Pooled 0.986(0.002)  0.558(0.031)  0.442(0.020)  0.777(0.016)  8.801(0.252)  0.924(0.082)
GGL 0.981(0.005)  0.684(0.045)  0.486(0.057)  0.838(0.023)  8.062(0.209)  0.569(0.020)

n =100, p =100, p=1

GemBag (@ =1)  0.996(0.001) 0.430(0.036)  0.591(0.028) 0.847(0.016) 3.672(0.098) 0.490(0.105)
GemBag (o = v/n) 0.993(0.003)  0.444(0.060)  0.564(0.030)  0.793(0.030)  3.793(0.122)  0.407(0.040)

GemBag (v =n)  0.993(0.002)  0.431(0.054)  0.559(0.032)  0.791(0.026)  3.806(0.116)  0.427(0.062)
BAGUS 0.985(0.001)  0.484(0.032) 0.525(0.024)  0.773(0.017)  4.212(0.103)  0.595(0.108)
Pooled 0.977(0.005)  0.300(0.037)  0.314(0.025)  0.697(0.015)  4.810(0.099)  0.551(0.087)
GGL 0.994(0.003)  0.372(0.103)  0.516(0.059)  0.684(0.051)  4.767(0.167)  0.481(0.026)

Table 3: Simulation results for nearest-neighbor network.

As shown in the tables, GemBag performs the best in almost all the designs in terms of
both selection accuracy (MCC and AUC) and estimation accuracy (F-norm and ¢4 norm).
In the first two designs, signals within the same group have the same magnitude. Therefore,
Pooled method has some advantage by aggregating all the samples from different classes
and fitting a single model when n is small. As n grows larger, GemBag outperforms all
the other competitors. The last two designs are more challenging, since both the sparsity
structures and signal strength can be different within a group. We observe that GemBag

19



YANG, GAN, NARISETTY, AND LIANG

still has the best performance under different values of p, which controls the discrepancy
between the sparsity patterns across classes.

Spec Sens MCC AUC F-norm {5 norm
n =100, p =100, p=0
GemBag (a =1)  1.000(0.000) 0.999(0.002)  0.991(0.005) 1.000(0.000) 1.677(0.095) 0.515(0.114)
GemBag (o = 4/n)  0.996(0.002) 0.946(0.015) 0.892(0.038) 0.990(0.007) 2.212(0.102) 0.455(0.096)
GemBag (o = n) 0.994(0.002) 0.943(0.015) 0.854(0.036) 0.990(0.007) 2.263(0.098) 0.458(0.096)
BAGUS 0.997(0.001) 0.995(0.004) 0.936(0.019) 0.998(0.002) 1.747(0.096) 0.492(0.107)
Pooled 0.958(0.003) 0.746(0.043) 0.429(0.027) 0.903(0.018) 7.148(0.300) 0.869(0.024)
GGL 0.938(0.007) 1.000(0.001) 0.483(0.022) 1.000(0.001) 5.043(0.282) 0.545(0.019)
n =100, p =100, p = 0.25

GemBag (a =1) 0.999(0.001) 0.936(0.019) 0.939(0.014) 0.992(0.004) 2.017(0.082) 0.485(0.091)
GemBag (o = 4/n)  0.998(0.001) 0.879(0.032) 0.892(0.024) 0.970(0.012) 2.413(0.102) 0.427(0.073)
GemBag (o = n) 0.997(0.001) 0.867(0.029) 0.880(0.022) 0.969(0.012) 2.422(0.080) 0.437(0.071)
BAGUS 0.990(0.001) 0.919(0.021) 0.801(0.019) 0.967(0.009) 2.407(0.100) 0.518(0.088)
Pooled 0.959(0.004) 0.654(0.040) 0.415(0.027) 0.833(0.021) 6.331(0.229) 0.799(0.040)
GGL 0.959(0.006) 0.964(0.013) 0.591(0.029) 0.980(0.007) 4.705(0.137) 0.540(0.024)
n =100, p = 150, p = 0.25
GemBag (a 1) 0.999(0.001) 0.929(0.021) 0.925(0.017) 0.990(0.004) 2.522(0.090) 0.483(0.082)
GemBag (o = 4/n) 0.999(0.000) 0.861(0.023) 0.890(0.017) 0.962(0.011) 3.019(0.080) 0.437(0.059)
GemBag (o = n) 0.998(0.001) 0.846(0.041) 0.864(0.019) 0.960(0.018) 3.070(0.093) 0.462(0.079)
BAGUS 0.991(0.001) 0.911(0.019) 0.757(0.022) 0.963(0.008) 3.121(0.150) 0.542(0.080)
Pooled 0.971(0.003) 0.639(0.031) 0.403(0.022) 0.826(0.015) 7.740(0.240) 0.823(0.040)
GGL 0.977(0.005) 0.940(0.022) 0.619(0.032) 0.969(0.011) 6.222(0.325) 0.582(0.025)
n = 100, p =200, p = 0.25
GemBag (a = 1) 0.999(0.001) 0.932(0.017) 0.909(0.023) 0.989(0.004) 2.986(0.111) 0.503(0.107)
GemBaG (a = 4/n) 0.999(0.000) 0.857(0.026) 0.884(0.015) 0.961(0.012) 3.515(0.098) 0.464(0.075)
GemBag (o = n) 0.999(0.000) 0.815(0.024) 0.875(0.016) 0.949(0.011) 3.602(0.091) 0.501(0.082)
BAGUS 0.991(0.002) 0.910(0.016) 0.713(0.039) 0.962(0.007) 3.890(0.376) 0.598(0.110)
Pooled 0.977(0.002) 0.639(0.026) 0.396(0.018) 0 826(0.014) 8.916(0.209) 0.835(0.027)
GGL 0.985(0.003) 0.931(0.019) 0.636(0.034) 0.964(0.010) 7.467(0.143) 0.610(0.025)
n =100, p =100, p =1
GemBag (a =1) 0.996(0.001) 0.571(0.023) 0.686(0.017) 0.902(0.011) 3.210(0.083) 0.506(0.109)
)

GemBag (o = v/n)  0.993(0.003)

GemBag (a = n) 0.994(0.001)
BAGUS 0.985(0.001)
Pooled 0.969(0.003)
GGL 0.986(0.002)

0.569(0.046
0.553(0.032)
0.616(0.022)
0.362(0.031)
0.609(0.033)

0.658(0.019)

0.647(0.020)
0.606(0.018)
0.315(0.026)
0.616(0.019)

0.838(0.023)
0.835(0.017)
0.845(0.011)
0.739(0.016)
0.801(0.016)

.017

3.390(0.083)
3.411(0.088)
3.785(0.107)
5.083(0.110)
4.616(0.069)

0.422(0.051)
0.428(0.057)
0.613(0.115)
0.606(0.072)
0.487(0.022)

Table 4: Simulation results for scale-free network.

To gain more insights into the performance of each method in recovering the sparsity
structure, we plot the ROC curves of all methods for each design in Figure 2. Each point on
the ROC curve corresponds to a possible threshold of the posterior probabilities in case of
GemBag, BAGUS, and Pooled, and the magnitude of the estimated precision matrix entries
for GGL. Therefore, the ROC curve provides an overall measurement on the performance
in recovering the sparsity structure at various thresholds, which can be used to assess the

performance of the methods irrespective of the choice of the threshold.

We observe that

the ROC curves of GemBag are above the other curves in almost all the designs. We also
plot the estimated sparsity structure from one replication for each design in Figure 3. We
note that the estimated graphs from GemBag are closest to the truth while the others tend

to include more false edges.
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Figure 2: ROC curves under different designs.

We report the computational time of GemBag along with the competing methods using
a MacBook Pro with 2.9 GHz Intel Core i5 processor and 8.00 GB memory in Table 5.
The computational time of our method is comparable to the competitors except the Pooled
method, which restrictively assumes the same precision matrix for all classes and has much
worse performance compared to our method. GemBag not only has better performance but
is also computationally more efficient even compared to group graphical lasso.

21



AR(2)

YANG, GAN, NARISETTY, AND LIANG

Circle

Neqre_st—neiqhbqr

Scale-free

s e

Truth
LN

GemBag (o =1)

GemBag (o = n)

BAGUS

Pooled

GGL

Figure 3: True sparsity pattern and estimated sparsity patterns by all the methods under
AR(2) model with n = 100, circle model with n = 100, nearest-neighbor network with
p = 0.25, and scale-free network with p = 0.25 (from leftmost column to rightmost column).
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Nearest-neighbor network (n = 100, p = 0.25)

Scale-free network (n = 100, p = 0.25)

p =100 p =150 p = 200 p =100 p =150 p = 200
GemBag (o= 1) 3.637(0.122)  12.272(1.018) 27.867(1.054)  3.590(0.078) 11.864(0.226) 28.454(0.215)
GemBag (o =n) 5.877(0.871)  17.324(2.680) 42.479(5.734)  3.906(0.185) 16.504(1.455) 36.946(3.248)
BAGUS 3.601(0.046)  12.120(0.443) 28.065(1.222)  3.557(0.047) 12.142(1.060) 28.665(0.401)
Pooled 1.182(0.013)  3.968(0.155)  9.192(0.381)  1.174(0.005) 3.937(0.089)  9.495(0.101)
GGL 10.555(0.768)  27.445(2.717) 60.421(9.453)  8.188(0.912) 26.068(2.727) 55.364(4.471)

Table 5: Average computational time (in seconds) based on 10 replications.

6. Application to Capital Bikeshare Data

We use the Capital Bikeshare trip data® to evaluate the performance of GemBag. The
data contains records of bike rentals by either a “registered” rider or a “casual” rider in a
bicycle sharing system with more than 500 stations. We consider p = 237 stations located
in Washington, D.C. and use the registered and casual rental data from these stations for
every day in 2016, 2017 and 2018. Following the same processing procedure in Zhu and
Barber (2015), we removed the seasonal trend and marginally transformed each station’s
data to a normal distribution, then divided the observations of daily rental counts by year
and rider membership into K = 3 x 2 = 6 classes.

For each class, we use the first 80 percent observations as training data and the rest
20 percent as test data. We apply GemBag using @ = 1, as well as BAGUS and GGL,
on the training data to estimate up and O, k = 1,...,6. To evaluate the prediction
performance, we follow the same procedure as described in Fan et al. (2009): we divide

each observation from the test data of the k-th class, Y;; = (ylgli), e ,y,(ff?)

parts, Yiq, = ( ,(cli), e y,(:ilg)) and Yy ;, = (y](ﬁlilg), .. ,y,iQf?)), and predict the second half

Y},io by the best linear predictor based on the first half Yy ; ,

), into two

Yiio = E(Yaig | Yiiy) = fika + Okp O, (Yeiy — firn), for k=1,...,6, and i € Ty,

where 7 is the index set of the test data of the k-th class, ur = (ugi, pro), and O =

(gk“ @ku). Finally we report the average absolute forecast error (AAFE) of each class:
ka1 ka2
S () _ )
AAFE, = — > ——— >[5} —y/il, k=1,...,6.
119 55y card(Ty) 2 ™ !

In Figure 4, we plot the averaged AAFE versus the number of nonzero off-diagonal en-
tries in the estimated precision matrices. We observe that although GemBag and GGL have
roughly the same lowest averaged AAFE, the precision matrices estimated by GemBag are
sparser than the ones estimated by GGL. In other wrods, to achieve the same prediction
performance, GemBag is based on a sparser dependence structure than GGL, indicating a
stronger performance of the GemBag estimator in terms of parsimony. The parsimonious
model from GemBag is preferred since it is more interpretable with the same level of pre-
diction accuracy. In the case of Gaussian graphical model, it is known that zero entries

1. Data available at https://www.capitalbikeshare.com/system-data.
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in the precision matrix have a correspondence to the conditional independence of the two
variables given the others. Therefore, with a sparser estimate of precision matrix, we can
get a sparser underlying graph to extract useful information.
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Figure 4: Averaged AAFE versus the total number of nonzero off-diagonal entries in 6
estimated precision matrices. For GemBag and BAGUS, we plot the curves by fixing v; =
0.2 and varying vg. For GGL, we fix the ratio between its two tuning parameters and

varying them together. Different ratios would output similar curves and only one of them
is plotted.

To get estimates for the networks of the stations, we select the tuning parameters for
GemBag and BAGUS by BIC and summarize the number of edges in the estimated net-
works in Table 6. We note that networks estimated by GemBag are sparser compared
to those estimated by BAGUS. Besides, GemBag outputs denser registered user networks
compared to casual user networks in all years, which is more interpretable as we expect
more dependence in registered user networks.

Registered User Casual User
2016 2017 2018 2016 2017 2018

GemBag 562 643 620 402 488 493
BAGUS 1042 1121 996 1209 1101 1280

Table 6: Number of edges in estimated networks.

To further understand the estimated registered user networks and casual user networks,
we plot the intersection of the networks across three years in Figure 52. The intersection
of registered user networks is denser than the intersection of casual user networks, which

2. Map built using the R package ggmap (Kahle and Wickham, 2013).
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implies that registered users have more regular activities. When comparing GemBag and
BAGUS, we observe that although networks estimated by BAGUS are denser individually,
the networks estimated by GemBag share more common edges. More spatial visualization
is provided in Appendix F.

To get a better understanding of the common structure of registered user networks over
three years, we provide another plot of the intersection of registered user networks estimated
by GemBag and BAGUS in Figure 6. In Figure 6a, we notice three hubs, stations that have
higher connectivity. It turns out that the three stations are close to Union Station, Dupont
Circle, and Logan Circle, respectively.  As Figure 6 suggests, GemBag provides a much
more convincing case for the three hubs it detects as compared to BAGUS. Although one
may still see the three hubs in BAGUS to have slightly more edges than the other nodes, the
degree of difference is not as pronounced as in the case of GemBag. In conclusion, compared
to BAGUS, GemBag not only accomplishes better prediction accuracy as shown in Figure 4,
but also provides more interpretable insights about the underlying graph structure. This
advantage is due to the Bayesian hierarchical modeling of Gembag which utilizes the cross-
class similarity information as desired.

38.96

Latitude
Latitude

Longtitude Longtitude

(a) Registered user network by GemBag (b) Casual user network by GemBag

m
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Latitude

-77.00 -77.00 T 76
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(c) Registered user network by BAGUS (d) Casual user network by BAGUS

Figure 5: Intersection of the estimated networks across three years.
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Figure 6: Intersection of registered user networks across three years estimated by GemBag
and BAGUS.
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Appendix A. Proofs of the Main Results

In this section, we provide the proofs of the main results, Theorem 1-4. For simplicity, we

assume sample sizes of the K classes to be the same: ny = --- = ng = n.
Recall our objective function is

K p K
L(@) Z @k Z Z enLl Gk “ ZPGDGB 9”)
k=1 i=1k=1 Hfj

where

(k) = — 5 (tr(S1O1) — log det(64))

Penr, (Ok,ii) = 70k i

K py il 1 py 1kl K1
Pengg(0;;) = —log le(%e 4 500 e v ) (1—p1) HT

where C' is some constant that lets Pengg(0) = 0.
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A.1 Proof of Theorem 1

In this subsection, we provide the proof of Theorem 1 when po < 1. For the case of po = 1,
a proof is provided in Gan et al. (2019b). We first introduce some notations that we use
in the proof. Let 22 denote the k-th true covariance matrix and Wy, = Si — Eg denote the
difference between the k-th sample covariance matrix and %Y. Use =9 = (29,...,%%) and
W = (Wy,...,Wk) to denote the collection of Zg’s and Wy’s, respectively. For any subset
My, of {(i,7) : 1 < 4,5 < p} and a p x p matrix Oy, let (O)arq, denote the submatrix of
O with entries indexed by My; for M = (My,..., Mf), a collection of My’s, and © =
(O1,...,0K),let Oar = ((O1) My, - -+, (OK) My ); for a vector of dimension K, let (0;) m =
(Ok.ij ) k:(ij)em, - We use I'%aq to denote the Hessian matrix V%M@M(— > logdet Oy)

evaluated at @°, and (I')) o, M, to denote the Hessian matrix V%@k)M ©n (— log det O)

k> My, (

evaluated at @2.
Our proof is motivated by the proof techniques in Ravikumar et al. (201%); Gan et al.
(2019a). We prove the rate of convergence in ¢,, norm of some local minimizer @ in Theorem

1 following three steps:
e Step 1. Construct a solution set A for the following constrained minimization problem:

min L(©),
@Eﬂl

where 1 :={©® :Opc =0and O, € SV, k=1,...,K} and B® = (Bf,...,BS) with
By = {(i,4) : 163 4;| = C5+/logp/n or i = j}.

e Step 2. Show that there exists some ©’ € A such that |@' — @, < Cs+/log p/n.

e Step 3. Show that the constructed @ in Step 2 is a local minimizer of L(®).

Let Mpo = ||(T%) oo = supy [|(TR) 5,5, l|oo and Mo = supy [|59oc where || - [|oo
denotes the matrix maximum absolute row sum norm. We first describe a more general
result of Theorem 5. Theorem 1 directly follows from Theorem 5 by checking its condition
(iv) with standard concentration inequalities (cf. Theorem 1 in Cai et al. (2011)).

Theorem 5 Under the following conditions:
(i) rates of the hyperparameters vy, vy, p1, p2, and T:

e < C3/(1 + 2¢1)+/logp/n
1

nv
o
> Cyr/logp/n
nvo
K+2
V] _ (1—p1) < elp(C2—C3)Mpo(C4—Cs)/a
ve P pipk
3
o < vi(l—p2) _ U1(13— p2) < e1p(C2=Cs)Mro(Ca=Cs)
Vop2 VoP2

C
< gx/logp/n,
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where Co > C3 > 0, Cy > (1 + 62)/62[01 + 2(01 + CQ)MFOM%O + 6(01 + Cz)2dMlgoM%0/M],
and €1 > €3 > 0,
(ii) the eigenvalues of the true precision matrices:

0 0 | _aprole
1/60 < Amin(O)) < Amax(O) < 1/61 < m fork=1,... K,

where €y := (Cy — C3) Mo (Cy — C3),
(iii) the sample size n: y/n = M+/logp with

3 3
M = 2d(01 + CQ)MFO maX{QMFO [2MEO (M%o + ngo) + (M%o + iM%())z],?)MEO, 1,50},

(iv) difference between the sample covariance matrices and the true covariance matrices:

[Wleo < C14/logp/n,

there exists a local solution © of (11) such that

|© — ©°| s < 2(Cy + C3) Mpon/logp/n,

where Cy is chosen such that 2(Cy + Cy) Mo = Cs.
Proof of Theorem 5

e Step 1. Construct a solution set for minimizing the objective function (11) as follows:
A={0:G(O)3=0,05:=0, and O, S}, k=1,...,K},

where B = (By,...,Bk) with By = {(i,7) : |92,ij| > reori = j} for re = 2(Cy +
C3)Mro+/log p/n and

2

G(©) = g(s -~ +=2(0)) (16)

is the subgradient of the objective function L(®) with ®~! = (07',...,0.") and

Zii(©) = Zsi(0:) = 4 - L
eii(©) = Zpis(6:;) — - o

where
1 1
P 0..) — (0::)— 1— (0::)) —
20r.5] engg(0ij) = wWiis( Z])Ul + ( W, ij ( Z])),UO
and
1 when Gk,ij > O,
sign(ﬁmj) =< -1 when Hk,ij < 0,

[-1,1]  when 6;; = 0.
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e Step 2. Show that there exists some @' € A such that @' — @/, < 7.

We only need to consider the entries of © indexed by B, because || (©’ —0°)ge| s < re
due to the way that A is constructed.

Define the following mapping from RIBl to RIBl with |B| = > card(By):

Fvec(Ag)) — —%(ro,s,s)*lvec (G(8° + A)g) + vec(Ag),

where G(©) is the subgradient of the objective function L(®) defined in (16), and
A satisfies (©° + A)ge = 0, that is, Age = —@%c. Note that the factor 2/n is
introduced to cancel the factor n/2 from G.

Let B(r) denote the £, ball in RIBl where r = 2(C} + C3)Mpoy/log p/n < .. For any
vec(Ag) € B(r), we have

F(vec(Ap)) = — (F%B)*lvec«S ~ @+ A+ 2?O(Z(G)O + A))B> + vec(Ap)

— — ()" (vec(Z0 = (O° + A))5) — Tsgvec(Ap) ) (17)
- (F%B)_lvec(WB + %O‘Z(eo + A)B) (18)

where (@° + A)~! = (09 + Ay)7L ..., (0% + Ak)™!) and W = § — 30, Next we
bound F'(vec(Ag)).

For (17), we have

|=(T5s) ™" (vec (2%~ (O + A)7!) 5) — (Tgg)vec(As)) ],
<sup | ~(Ms,~ (vee (50— (02 + 2075, ) ~ (MDmsvec((B)s) )|

<sup |0z, o [vee (59 = (60 + 27 5, ) = (MDsesvee((Ar)s,)

0

0

< sup (0, "l  [vee (20 (5 + A1) 7)) = (Fhvee(ai) |

)

[vec((Ar)s,)lo

+ || (Phvec(an) 5, = (T s vec((Ar)s,)

1
< Mo sup (HU {(O) +tAr) '@ () + tAg) ! — T} dt
k 0

)

1
<Mror supf H|(92 + tAk)_l ® (@2 + tAlc)_l - (@2)_1 ® (@2)_1”‘00 dt
k Jo

.

+ M;o H (Ak)Bi

<Mrorsup max [|(6} +tA) ' @ (6} + 1A ! = (O} @ () ],
<Mror sup max (2l©D, lef +tan - ©) 7",

+]l©% + a0~ — @72)
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3 3

<Mror[2Mso(Mgo + 5Mgo)dre + (M2 + EM%0)2d2rg]
.

<,

19
' (19)
where the second inequality is because |AB| s < [|A||w| B, the fourth inequality is
because I') = (09)7'® (09)~! and entries of A, indexed by B{ have rates lower than
\/1og p/n, the seventh inequality is because || A® A— B® B||e < 2|| Bl ||A— Bllo +
|A — BJ|?, from Lemma 13 of Loh and Wainwright (2017), the eighth inequality is
because

3

105+ tAK) ™" = (OR) M loo <M [#A% llor + 5 Mo AR5

3
2 3 42,2 2
gMzgdtTe + 5 ng tor;
3
2 3 42
<(M22t + §M22t )d'f’e

and r, < 3 from condition (iii), and last inequality is by Mpo[2Mso(MZ, + 3M3,) +
(M2, + 3M3,)?]dre < 5 and r. < % from condition (iii).
For (18), we have

2
I'%zvec (WB + —aZ(@O + A)B> ‘ <sup
n 0 k

0

2a
FOBkBkveC ((Wk)Bk + ;Zk(@o + A)Bk> H
2a 0
< s%p Mro | |[Wgleo + ?Zk((ﬂ + A)p,

)
<Mro <01\/W+ C3x/logp/n> = g

(20)

where the third inequality is because of |Wy | < |[W | < Ci4/log p/n from condition
(iv) and the upper bound on the magnitude of the first derivatives from Lemma 6 since
[(@° + A)g, o = re — 1 = 2(Ca — Cs) Mror/log p/n.

Thus, combining (17), (18), (19), and (20), we have |F(vec(Ag))|wn < 7, that is,
F(vec(Ag)) < B(r) for any vec(Ag) € B(r). Therefore, we have F(B(r)) < B(r).
By Brouwer’s fixed point theorem (Ortega and Rheinboldt, 1970), there exists a fixed
point vec(Al) € B(r) such that F(vec(Al)) = vec(Al), which is equivalent to
G(O° + A')g = 0. Let @ = ®° + A’ and we have

{ :§3=®0,3+A;§
@lBCZGOBc+A,c:0

Then, this estimate ) satisﬁes~G((:)’)B =0, Oy =0, and (O — O g|p <7 < .
As long as ©' is in ), that is, ©} > 0, we establish the statement for Step 2.

Indeed, for any k, and by conditions (ii), we have
Amin(O7) = Amin(O) — A2 = Amin(©3) — dre > 0.
Therefore, we have © € A and |©' — ©°, < 7.
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e Step 3. Show that @' constructed in Step 2 is a local minimizer of L(©).

It suffices to show that there exists some € > 0 such that H(A) = L(©'+A)—L(©') >
0 for any A with |Al, < €. We have

K
Z g{tr (AR(Sk — O17Y) + tr(AO L) — [1ogdet(é; + Ag) — log det(é;)]}

+a Z Z TAkii + = Z [PenGB(B + Ayj) — PenGB(égj)] .
k=11i=1 #J

Under the condition y/n > 2d(C1 + Ca) Mro&p+/log p and with the same proof for The-
orem 1 in Rothman et al. (2008), we have the following upper bound on log det(©7, +
Ay) —logdet(©7,):

~ ~ ~ 1
log det(©}, + Ag) — log det(0},) < tr(Ax©O; 1) — ES%HA;CH%, E=1,...,K. (21)
For any (i,7) pair with i # j, we have

PenGB(égj + Az‘j> — PenGB(égj) = (PGHGB(GN% + Aij) — PenGB(égj + A%))

_ _ (22)
+ (PGHGB(O% + A;]) — PenGB(O,’Lj)) ,

where Agj is defined as follows:

For the first term in (22), we have

Pengp(60);+A;)—Pengp(0;+Aj;) = V (g, Penan(0;+Afj+ur (Ay—A%)) (Aij) pe

(23)
for some w; in (0,1).
For the second term in (22), we have
PenGB(é;j + A;]) — PenGB(égj) = V(Gij)BPenGB(é;j)(A;j)B
1 -
+ 5(Agj)gv?oij)B,(eij)BPenGB(ez{j + ugAj;) (A8

= V(o,,)sPencs(9;;)(Ai))s

1
+ §(A, )BV% 0:)8 (OJ)BPenGB(O + ’LLQA )(AZ])B
(24)

for some ug in (0, 1).
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Combining (21), (23), and (24), we have the following lower bound for H(A):

K

n —1
H(A 5 | 2w 0L+ amw) cay A

k=1 k=1i=1
o J 0/ / /

+ 5 Y. s —Pencp(6; + Al +ui(Ay — AL)) Ay
9L\ L 3] JT 2
7] \k:(i,5)eBy,

(0%
+ 5 Z PenGB(H )Ak Qg
i | ki(ij)eBy O ot
. k

1
+§(Aij)§v%eij),5,(e JsPencn(0; + w2 Al))(Ai))s

= (I) + (I) + (IID)

where
o K
I = 52 D Ak (Sk,m O+ wa(G’ ))
k=1 (i,j)EBk
K
(I = > §1HAI€HF+Z Ai))BY (0,10, PENGB (0] + 12 A])) (Aij)B,
k= 1 1#]
(I11) = Z{ > [Ak,z‘j(Sk,u Oiy)
275] k:(i,5)eBy

+| k2]|

0 _
o 70 |PenGB(0§j + AL+ ur (A — A;,])):| }
k.ij

Due to the construction of ©’, we have (I) = 0.

For (II), by condition (ii) and the upper bound on the magnitude of the second
derivatives of Pengp(6;;) in Lemma 6, we have

|V PenGB(égj + u2 A% ||oo
II > Z Z é—l k Z] Z ( 11)57( 1,7)3 4 Z Akﬂj
1,j k= 1 (4,7):5#7 k:(%,5)EBx
nC’g logp 2
2ap€0/
= Z Z SEIAL - Z 7%4 Z Ay ij
i,j k= 1 (4,9):1#7 k:(i,5)eBy
2
o nCilogp )
= . Z . (SKEI - 8ap/o 2 Ak | =0.
(3,7):157 k:(4,7)eBy
In (III), we have the following upper bound on the magnitude of sy, ;; — @2 Zz:
‘Sk ij @k Jij ‘Sk,ij - 0-]271‘j| + |®;~c 7; - Jg,ij|
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lo 3
<Cm/§p+M%m+§@M%@

where 7, = 2(C1 + C2) Mro+/log p/n, defined in the first line of the proof of Theorem
5, and |@;€_é — ngij| < Mggre + %dkMggrg can be shown with the same proof for
Corollary 4 in Ravikumar et al. (2008).

For the rest of the first derivative inside the inner summation in (III), we have

Aliijigo ankﬂﬂpenGB(é% + A;j + ul(Aij — A%)) = Wk’ij(ééj)n&m + (1 — whij(égj))nivo
> (1= o (0))
—(1- m<é;j>n2<o>>n%0 (25)
o
> (1= m(0),
€ (0]
1 —1—262 ni’l)() (26)

lo 3
> O 2L+ My + SdiMr?

AN/ —1
= ‘Sk’,ij — O

where (25) is because 0, ;; = 0for (¢,7) € By, and (26) is due to ez < v1(1—p2)/(vop2)-
Therefore, there exists some small enough € > 0 such that (III) > 0.

Hence, there exists some € > 0 such that H(A) > (I) + (II) + (III) > 0 and we can
conclude that the constructed @' is a local minimizer of L(®).

A.2 Proof of Theorem 2

In this subsection, we provide the proof of Theorem 2 of selection consistency when the
sparsity patterns of @g’s are the same, that is, Sy = ... = S?(:

o If 0% = 0, then we have éij = 0 by Theorem 1. Therefore,

wk,i5(0i5) = m(0)n2(0) < t.
Hence, we have (i,j) ¢ S

o If 9% # 0, then we have [;;]1 > (Lo — C5)+/log p/n with probability going to one by
Theorem 1 and the minimal signal strength condition (iv) in Theorem 2. Thus,

Wi i (037) = 11 (055)12 (O i7)
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B e — 10,451
- p151(;)) 20, "
P1S1(035) + (1= p1)S2(0ij) p, —esl o, ki
21)16 + 2v0
|9k,1‘7|
- P1 Hk | e 1
- 105 Ok.i1 1 4 (1=p2)ur
K — it} K - -
pillkei e ™ + (1 —p1)[[imy ﬁ w p2to
1
= n2(0
1+ %e 1611 (1/vo—1/v1) (©)
p1p2 UQ
1
= opco/a 772(0)
1+ 2L
p(Ca—C3)(Lo—C5)/a
> 1.
So, we have (i,7) € Sg.
Therefore, we have
P(S =8% -1

A.3 Proof of Theorem 3

In this subsection, we provide the proof of Theorem 3 of selection consistency when the

sparsity patterns of @g’s are not the same.

o If 0,”]

= 0, then we have ékm = 0 by Theorem 1. Therefore,

wiij(0i5) = M (03)12(0) < 12(0) < t.

Hence, we have (i,7) ¢ Sy

o If 69, 4 # 0, then we have |9~;“]| > (L1 — C5)4/logp/n with probability going to one
by Theorem 1 and the minimal signal strength condition (vi) in Theorem 3. Thus,
whij(0i3) = m(0i5) 12 (O i)

» 10,451
- , ik
_ p151(0;5) 20,6
p151(635) + (1 — p1)S2(655) pfge—leifjl 4 1op —Prsg]
2u1 2v9
18y 45 » 10,451
v 2 v
- D1 ch 1 2v1 ! Joe M
= 19,45 10,5 1945 7%
g K — — _ —
p Il sre 1+ =p) [y ﬁe 0ogke i+ Re W
- 1 1
T 4 A=pul® iy 1 (10— 1/01) 1 4 BZP20VL =0k 551 (1/w0—1/01)
PPy v P20
1
=

2 €o/a
L+ Ser=eyui=csra

5
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> {.

So, we have (i,7) € Sk.

Therefore, we have

P(S = 8% — 1.

A.4 Proof of Theorem 4

To establish the uniqueness result of ©, we first show that L(©) is strictly convex under the
constraint Oz < B,k =1,..., K. Then, we show the local minimizer ® we constructed
is inside the constraint set, i.e., Oz < B.

To establish the strict convexity, we decompose L(©) into the following two parts and
show that each part is strictly convex:

(1) Li(®) = 5, [~U(6r) — 2|0y} ]
() La(©) = a 3, 5 Penr, (Oris) + § Xisj Pencn(6i;) + 55 3 [0k

e For (I):

The Hessian matrix of L1(Oy) is

aK

V2L1(0F) = 2(0,®0,) L — 20T k=1,....K.
2 20

2 tp2xp2»
0

Consider the minimum eigenvalue of the Hessian matrix of L;(©y),

n._ aK

Amin(v2L1(®k)) :§Am;x(@k ® @k) - 272
Yo

ok

211(2)

ok

21}8

n__o ok

“27  w?

_ -2 _
- 2)‘max(@k)

n _
>20nlz? -

> 0.

Therefore, L1(0y),k =1,..., K and L1(©®) = >}, L1(0©y) are all strictly convex.

e For (II):

Denote Pen(©) = Y, >, Peny, (05i:) + 3 Yix; Pengp(0;;) and consider the magnitude
of its second-order subgradients. For any k # k' € {1,..., K} and i # j € {1,...,p},
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we have
( 1 1)\?
gk uvgk ”Pen(@)‘ = (UO - Ul) wk,zg (91])(1 Wi 1] (01.7))
1/1 1)\?
< — -
4 Vo U1
< 1
411(2)
oo 1 1\?
Vo6 ..Pen(@)‘ =\ = = — ) m2(Okij)n2(0kij)m (0i5) (1 — 11 (655))
kyij YK/ ij Vo n
1 1)\
<vo - v1> m(0:5)(1 —m1(0;))
- 1
= 41}8
vzk,iivek,iiPen(e) = nghek/’npen(@) = 0

Therefore, for any (i, j) pair, we have

K
. 2 - T 9
Amin(Vg,, 0, Pen(©)) > prel
Hence,
aK
Amin (V5,0 L2(0)) = aAmin(Ve, o, Pen(©)) + 27
_ oK oK
4@8 21)3
aK
=—>0
41)3 '

that is, Vgij’gij Ly(®) is positive definite for any (i, j) pair. Since vgij»gi/j/LZ(@) =0

for any two different (i, 5), (', 5') pairs, we have V2Lo(®) is positive definite. There-
fore, Ly(@®) is strictly convex.
Thus, L(©) = L1(©) + L(®) is strictly convex. )
The only thing left to show is © is inside the constraint set, i.e., [|Ore < B,k =1,..
Indeed, we have

K.

)

1Ok]2 < [©k — OR[l2 + O} 2
- 1

<16k — Ol + —
&1

<dre + — < B.

1
&1

Therefore, the theorem is proved.
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Appendix B. Other Proof

The following lemma gives upper bounds on the magnitudes of the first derivative and
second derivative of Pengg(0;;) when 0 ;; is O(4/logp/n) away from zero.

Lemma 6 Under condition (i) in Theorem 5, if |0y ;| = 2(Cy — C3)Mrpor/logp/n, then we

have
al 0
- Pengp(0;)| < Cs+/logp/n,
n (3’9k,ij
and )
o 0 C3logp
S22 p 0,
2n 62916,1'3' €’/LGB( ]) = 404p€0/0‘
Furthermore, for any k' # k, we have
« 02 C2logp
P oi, ~3 Vel
2n 89k,z~j80k/,ij enGB( J) 804]?50/0‘

Proof We first show that 71(0;;) and 72(6k,;) are close to 1 when |6 ;] = 2(Cy —

C3)Mro+/log p/n.

m(0i5) = p151(6y)
Y p1S1(0i5) + (1 - p1)S2(8;5)
161,441
K _ ey
- pilliz, 2171,21 “
= 167,451 107,51
K - v’ K 1 - 1;
nllsigee 0 + 1 =p) [ 55e
2
B : > 21 >1— Depeolo,
& —0%,i51(1/vo—1/v1) Y0 o p—eo/a ’Ul
1+ ppl ol € EY L+ gep
10,451
1m2(0k,i5) = ) _19k,451 7|9k,ij\
2 v v
Ee 1+ 27)0 0
1 1 2
= 1— = 2 =1- vfgﬂpﬁo/a,
1 + ( pQ)Ul _‘Hk: ”‘(1/’00 1/’1)1) 1 4 Z%elp_eo/a Ul

where €g := (Cy — C3)Mpo(Cy — Cs), due to the following inequalities:

(1_1)2)UiS ”Uf(+2(1—p1) (C2—C3)M0(Cs—C3)/cx
<€ r
paf 0 o P

e|9k,ii|(1/v0_1/”1) > p2(02_03)MF0 (04—03)/04.

Therefore )
(0 = . Y>> ] = — .2
Wh,ij (035) = m(0i5)12(Ori5) = 1 ol o2
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e For the first derivative, we have

0 1 1
T engp(0i5)| = w,ij( z])vl (1 — wrij( ”))vo
1 1
So T (1- Wk,ij(aij))%
< 1, 2a .vj 1
v po/e vy
1
< —(1+2
Ul( €1)

when p is large enough so that p©/® > 1. Therefore,

< i(1 + 2¢1) < C3/log p/n.

nvq

e For the second derivative, we have

Q 02 a (1 1)?
on | 229, Tenan(9i)| = o <vo - vl) Wh,i5 (i) (1 — wi,i;(035))
71‘7
a 1 v}
Son %(1 — Wi (0i5))
_ Cilogp
b 404p50/0‘

and for k # k', we have

« 02

P 6,;)| =
2n aak’z‘]aeklﬂj enGB( ])

2
7 (1 - Ull) 12(Ori5)712 (O i) (055) (1 — 11 (85))

2n \ v

2
a 1 w
1
< — - — =1 =m0
< - mey)
- C2logp
~
Sapeo/a
due to
0 v2 €1 0 v €1
L= wrij(0) < 235 - s 1 =m(0y) < 35
1 C% _nlogp < i% _nlogp
U% (1+261)2 a? deq a?

Appendix C. Marginal Posterior Inclusion Probability

In this section, we derive the marginal inclusion probability (6). Given ® and Y, the
indicators I' = (7;;) and R = (Ry,..., Ri) with Ry, = (r,;) in different locations on the
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precision matrices would be independent:

(0, R|©,Y)x | [n(vjmi | ©,Y),

1<J

where 7;; = (r14j,...,7K,ij). Therefore, it suffices to look at one location and the posterior
for indicators in other locations can be similarly derived:

Vij K 1—=7ij
(7@]7T2]|9Y lePQkZ] p21 rk”] ll_pl H TI“J]

?, 1 'L
914}1]7@1 "k, JLP(Qk”,Uo) kg

n:]x

After summing out ;;, we have

K
m(rij | ©,Y )ocp H [p2LP (61,153 v1)]™ [(1 — p2)LP (O 555 v0)]' "
k=1
K K
(1—p1) H LP (0,55 v0) H 30(Tk,ij)
k=1 k=1
. Tkij - 1—rg;
K f—zef‘ei’fjl o 12—p2 e*w’zgﬂ o
V1 Vo
“p191(6;5) ] | e Pl Tkl L R 1
— 2 v —p2 > 2 " —p2 >
k=1 Tle v+ 2v0 € 0 21)16 v+ 2v0 € 0
K
+ (1=p1)S2(055) | | 00(r,iz),
k=1
where
K 104 441 B 104 441 K 105 441
p2 kil 1 —py _Chii 1 Dkl
S1(0;5) = —e 1 + v0 d S2(0;;) = —e
o =11 (52 e ) ana 50,) = ] 510

As can be seen, it is a mixture of a point mass at 0 and a product of independent
Bernoulli distributions, so we have

" _ 10g,i51
2 v
Er rie,y (Tk,ij) = 2151(6y) S —
9 9 »t] - il
plsl(elj) + (1 _pl)SQ(Oz]) 2})1]216 \9;:]12]\ N Qv \9;fj,ozjl

Appendix D. Comparison of Sparsity Structure Recovery Performance

In this section, we provide a more rigorous comparison of sparsity structure recovery per-
formance between our proposed GemBag method and individual estimation method. Let
us consider the entries that might have different classification results by GemBag method
and individual estimation method and divide them into different groups: (1) entries with
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weak signals that are identified as signals by GemBag and noises by individual estimation
(2) noise entries that are identified as signals by GemBag and noises by individual estima-
tion (3) entries with strong signals that are identified as noises by GemBag and signals by
individual estimation.

We introduce the following notations to represent the count of entries in each group.
For any threshold ¢, let

Ni= 30 20,10 < |6] ;] < Cs4/(logp)/n and wy, ;5((167;] — Cs+/(logp) /nlk)™) > t),
N2 = Zk Z’i;&] ’6]6 1,]| = 0 and Wk Z](’023|) )
N3 =3, Z#] (]9k z]| Cs+/(logp)/n and wy, ;; \01J| Cs+/(logp)/nl1k)™

where Cs+/(logp)/n is the estimation error bound from Theorem 1, the () operator ele-

mentwisely takes the positive part of the input vector, and entries of 6;; = (07 ;5,0 ;)
have the following form:

, _ )0 if [0 < Cs/(ogp)/m, | o

ki |69 ijl T C54/(logp)/n  otherwise, Y

Here, N1 measures the number of entries that are weak individually but strong groupwisely
in signal strength; No measures the number of entries that are noises but have strong signal
strength jointly; and N3 measures the number of entries that are strong individually but
weak groupwisely in signal strength. Thus, large N7 indicates that sparsity patterns are
more likely to be the same within the group while large No and N3 imply that there are
large discrepancies in the sparsity pattern of entries within the group. We introduce the
following criterion to measure the similarity of the sparsity patterns of ©’s:

(A.4) Similarity condition:
N1 > Ny + Ns.

The following proposition illustrates the advantage of GemBag over individual estimation
when sparsity patterns are similar across classes.

Proposition 7 Under the same conditions in Theorem 1 and the similarity condition
(A.4), the misclassification error by GemBag is smaller than the one by estimating each
graph individually.

Proof We first look at the misclassification error when we estimate each graph individually,
that is, set p; = 1. From the constructive proof of Theorem 1, when |69 ijl < Cs+/(logp)/n,

we have 0, ij = 0. Besides, from (7) and p; = 1, we have the posterior inclusion probability
Wi ij (HZJ) = 772(0k i) which only depends on the individual estimate 0y, 4ij- So there is no
way that we can differentiate the small signals with magnitude less than Cs4/(logp)/n
from noises with magnitude 0. Therefore, the number of misclassified elements is at least
Ny =325, 10 <107 ;51 < C5+/(log p)/n).

In the case of using our proposed estimator to perform sparsity structure recovery, the
misclassification error could come from two sources:

1. Noises but classified as signals Y, 3. 1(|6? ijl = 0and wrij (1055]) > t) < N,

i#]
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2. Signals but classified as noises 3}, >}, ; 1(]92’1-]-] > 0 and wy,;(16]) < t) < N3+ (N~
Ny).

By the similarity condition, we have Ny + N3 + (Ngy — N1) = Ny + (N2 + N3 — N7) < Njy.
Hence, we conclude that the misclassification error from thresholding the posterior inclusion
probability of our proposed estimator is lower than the one from individual estimation
method.

|

Appendix E. Additional Simulation Results

In this section, we provide some additional simulation results.

E.1 Non-normally Distributed Data

We consider the multivariate ¢-distribution with degrees of freedom = 5 or 10 to generate
data and use the four network designs as described in Section 5 to construct the true
precision matrices. As can be seen in Table 7 and 8, GemBag still has the best performance
in terms of both selection accuracy (MCC and AUC) and estimation accuracy (F-norm).
As the degrees of freedom parameter of the multivariate ¢-distribution grows larger and the
tails become lighter, GemBag outperforms all the other competitors also in £, norm in the
nearest-neighbor network and scale-free network. In the AR(2) model and circle model,
signals within the same group have the same magnitude and thus, Pooled method has some
advantage by aggregating all the samples from different classes to get small estimation error
in £y norm, which is similar to what we observe in the multivariate normal case.

E.2 Empirical Study on the Rate of v

We consider the nearest-neighbor network with p = 1 as described in Section 5 and
try different combinations of (n,p,a) values with n = o = 100, 150,200,250 and p =
50, 75,100, 125,150. For each combination, we select vy that produces an unique estimate
under different initial values with the smallest error in F-norm:

argmin » | [Oy(vo) — OF .
V0 A

This process is repeated 30 times for each combination of (n,p, ) values. In Figure 7, we
plot the average of selected vy over 30 repetitions versus the value of a/y/nlogp. As can be
seen, the points approximately form a straight line with a positive slope, which supports
our theory that vy scales linearly with a/4/nlogp.

E.3 Empirical Performance with Large p

To evaluate the performance of our method with higher dimensions, we consider the nearest-
neighbor network with p = 400 and p = 0.25 as described in Section 5. We implement our
method with = 1 and a = n and the competitors and report the results aggregated over
50 replication in Table 9. As shown in the table, GemBag still has the best performance in
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Spec Sens MCC AUC F-norm £ norm
AR(2) model (n =100, p = 50)

GemBag (o« =1) 0.996(0.001) 0.817(0.040)  0.862(0.023) 0.990(0.006) 2.486(0.093) 0.724(0.143)
GemBag (o« =n) 0.996(0.002) 0.748(0.045)  0.818(0.026)  0.987(0.009)  2.722(0.167)  0.727(0.138)

BAGUS 0.952(0.006)  0.805(0.034)  0.608(0.025)  0.902(0.021)  3.322(0.184)  0.938(0.154)
Pooled 0.900(0.023)  0.993(0.008) 0.579(0.051)  0.986(0.004)  2.920(0.117)  0.508(0.037)
GGL 0.918(0.014)  0.731(0.021)  0.474(0.030)  0.850(0.010)  4.167(0.094)  0.621(0.071)

Circle model (n =100, p = 50)

GemBag (o = 1) 0.999(0.000)  0.981(0.027)  0.977(0.018)  1.000(0.000) 2.024(0.138)  0.822(0.151)
GemBag (o« =n) 1.000(0.000) 0.982(0.010)  0.985(0.007) 1.000(0.000) 1.790(0.121) 0.677(0.123)

BAGUS 0.961(0.005)  0.991(0.006)  0.646(0.025)  0.995(0.003)  2.694(0.153)  0.899(0.139)
Pooled 0.914(0.025)  1.000(0.000) 0.492(0.058)  0.996(0.000)  2.553(0.091)  0.515(0.028)
GGL 0.905(0.012)  0.988(0.006)  0.468(0.023)  0.993(0.003)  3.169(0.083)  0.669(0.147)

Nearest-neighbor network (n = 100, p = 100, p = 0.25)

GemBag (o = 1) 0.985(0.004)  0.753(0.044)  0.668(0.039)  0.939(0.017) 4.002(0.295)  0.667(0.151)
GemBag (o =n) 0.997(0.001) 0.634(0.073)  0.738(0.038) 0.918(0.026)  3.963(0.322) 0.620(0.125)
BAGUS 0.963(0.006)  0.765(0.037) 0.528(0.028)  0.878(0.020)  5.660(0.517)  0.967(0.177)
Pooled 0.945(0.012)  0.561(0.037)  0.339(0.034)  0.764(0.021)  6.225(0.249)  0.887(0.098)
GGL 0.938(0.016)  0.720(0.056)  0.418(0.042)  0.848(0.028)  5.288(0.305)  0.585(0.082)

Scale-free network (n = 100, p = 100, p = 0.25)

GemBag (o = 1) 0.984(0.003)  0.903(0.028)  0.725(0.040)  0.977(0.009) 3.360(0.238)  0.699(0.126)
GemBag (o =n) 0.997(0.001) 0.765(0.048)  0.811(0.029) 0.937(0.020)  3.208(0.266) 0.632(0.116)
(0.180)

BAGUS 0.964(0.006)  0.874(0.025)  0.571(0.035)  0.940(0.013)  4.935(0.603)  0.964(0.180
Pooled 0.927(0.011)  0.631(0.039)  0.310(0.030)  0.803(0.021)  6.320(0.234)  0.828(0.046)
GGL 0.932(0.012)  0.931(0.022) 0.479(0.034)  0.960(0.012)  4.772(0.350)  0.559(0.036)

Table 7: Simulation results for data following multivariate ¢-distribution (degrees of freedom
=5).

Spec Sens MCC AUC F-norm {4 norm
AR(2) model (n =100, p = 50)

GemBag (o = 1) 0.997(0.001) 0.878(0.031)  0.910(0.017) 0.996(0.003) 2.057(0.103) 0.574(0.090)
GemBag (¢ =n) 0.997(0.002) 0.827(0.023)  0.879(0.012)  0.994(0.003)  2.226(0.084)  0.591(0.098)

BAGUS 0.974(0.004)  0.840(0.029)  0.727(0.025)  0.929(0.019)  2.525(0.069)  0.682(0.119)
Pooled 0.951(0.010)  0.995(0.005) 0.721(0.037)  0.988(0.002)  2.868(0.078)  0.489(0.028)
GGL 0.950(0.007)  0.750(0.016)  0.570(0.019)  0.866(0.008)  4.185(0.050)  0.577(0.028)

Circle model (n = 100, p = 50)

GemBag (o = 1) 1.000(0.000) 0.997(0.003)  0.994(0.002)  1.000(0.000) 1.528(0.068)  0.650(0.108)
GemBag (o =n) 1.000(0.000) 0.996(0.004)  0.995(0.003) 1.000(0.000) 1.408(0.060) 0.557(0.078)

BAGUS 0.981(0.002)  0.996(0.003)  0.777(0.014)  0.998(0.002)  1.824(0.067)  0.667(0.107)
Pooled 0.968(0.008)  1.000(0.000) 0.684(0.048)  0.996(0.000)  2.469(0.047)  0.491(0.022)
GGL 0.936(0.006)  0.994(0.004)  0.546(0.019)  0.997(0.002)  3.160(0.051)  0.575(0.063)

Nearest-neighbor network (n = 100, p = 100, p = 0.25)

GemBag (o = 1)  0.994(0.002)  0.792(0.036)  0.787(0.030)  0.955(0.013) 3.263(0.151) 0.500(0.078)
GemBag (¢ =n) 0.998(0.002) 0.713(0.043)  0.800(0.025) 0.942(0.015)  3.482(0.168)  0.503(0.077)

BAGUS 0.977(0.005)  0.797(0.030) 0.628(0.030)  0.902(0.017)  4.128(0.276)  0.708(0.111)
Pooled 0.966(0.005)  0.569(0.043)  0.415(0.027)  0.776(0.021)  6.235(0.275)  0.897(0.099)
GGL 0.957(0.011)  0.747(0.052)  0.494(0.045)  0.866(0.026)  5.343(0.256)  0.545(0.030)

Scale-free network (n = 100, p = 100, p = 0.25)

GemBag (o = 1)  0.994(0.002)  0.931(0.020)  0.854(0.028) 0.987(0.005) 2.497(0.118) 0.530(0.110)
GemBag (o« =n) 0.998(0.002) 0.811(0.040)  0.852(0.027)  0.950(0.018)  2.729(0.137)  0.516(0.086)

BAGUS 0.981(0.003)  0.899(0.021)  0.695(0.026)  0.955(0.010)  3.187(0.218)  0.657(0.122)
Pooled 0.948(0.005)  0.649(0.035)  0.373(0.025)  0.824(0.017)  6.358(0.222)  0.818(0.043)
GGL 0.951(0.007)  0.950(0.019) 0.549(0.027)  0.972(0.010)  4.812(0.282)  0.557(0.030)

Table 8: Simulation results for data following multivariate ¢-distribution (degrees of freedom
= 10).
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Figure 7: Selected vy versus «/+/nlogp with different combinations of (n, p, ) values.

terms of both selection accuracy (MCC and AUC) and estimation accuracy (F-norm and
ly norm) when p is large.

Spec Sens MCC AUC F-norm {o norm
GemBaG (a=1) 0.998(0.000)  0.754(0.023)  0.765(0.012)  0.944(0.009) 6.512(0.174) 0.509(0.051)

GemBaG (o =n) 1.000(0.000) 0.632(0.020)  0.780(0.014) 0.916(0.008)  7.435(0.170)  0.529(0.061)
BAGUS 0.986(0.000)  0.802(0.015) 0.478(0.008)  0.902(0.007)  10.205(0.160)  0.901(0.089)
Pooled 0.991(0.001)  0.532(0.022)  0.398(0.015)  0.765(0.012)  12.480(0.254)  0.980(0.043)
GGL 0.989(0.002)  0.566(0.064)  0.400(0.054)  0.780(0.032)  12.340(0.326)  0.618(0.021)

Table 9: Simulation results for nearest-neighbor network when p = 400.

E.4 Sensitivity Analysis of vg and v; on Graph Estimation

We implement our method with @ = 1 and o = n on the nearest-neighbor network with
p = 0.25 as described in Section 5 to analyze how sensitive the performance of our method
in estimating the graphs is to different choices of hyperparameters. In Figure 8, we plot the
best AUC value versus vg while varying v or versus vy while varying vg in each setting of a.
As can be seen, the performance of graph estimation is more sensitive to vy compared to vy
in both settings of a. Besides, compared to the situation where « is small, the performance
of our method with a large « in graph estimation is more sensitive to different choices of
hyperparameters vg and v;. This suggests that more careful tuning in vg and in the setting
of large « is desired to get better performance by our method in graph estimation.
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Figure 8: AUC versus different choices of hyperparameters vy and v;.

Appendix F. Spatial Visualization of the Bike Sharing Network

In this section, we provide spatial visualization of both the intersection and the union of
the estimated bike sharing networks from Section 6 in Figure 9. As can be seen, though
networks estimated by GemBag are much sparser compared to BAGUS, they turn out to
share more common edges, which illustrates that GemBag is more capable of capturing
common structures.
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Figure 9: Intersection and union of the estimated networks across three years.
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