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Abstract

Topic models provide a useful text-mining tool for learning, extracting, and discovering latent

structures in large text corpora. Although a plethora of methods have been proposed for topic

modeling, lacking in the literature is a formal theoretical investigation of the statistical identifiability

and accuracy of latent topic estimation. In this paper, we propose a maximum likelihood estimator

(MLE) of latent topics based on a specific integrated likelihood that is naturally connected to the

concept, in computational geometry, of volume minimization. Our theory introduces a new set of

geometric conditions for topic model identifiability, conditions that are weaker than conventional

separability conditions, which typically rely on the existence of pure topic documents or of anchor

words. Weaker conditions allow a wider and thus potentially more fruitful investigation. We

conduct finite-sample error analysis for the proposed estimator and discuss connections between

our results and those of previous investigations. We conclude with empirical studies employing

both simulated and real datasets.

Keywords: Topic models, Identifiability, Sufficiently scattered, Volume minimization, Maximum

likelihood, Finite-sample analysis.

1 Introduction

Topic models, such as Latent Dirichlet Allocation (Blei et al., 2003) models and probabilistic Latent

Semantic Analysis (Hofmann, 1999), have been widely used in natural language processing, text mining,
∗
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1

ar
X

iv
:2

11
0.

04
23

2v
2 

 [s
ta

t.M
L]

  1
0 

A
ug

 2
02

2



information retrieval, etc. The purpose of those models is to learn a lower-dimensional representation

of the data, in which each document can be expressed as a convex combination of a set of latent topics.

Consider a corpus of d documents with vocabulary size V . A topic model with k latent topics can

be summarized as the following matrix factorization:

UV ˆd “ CV ˆkWkˆd, (1)

where all matrices are column-stochastic1. In particular, UV ˆd is the true term-document matrix

whose columns are the true underlying word frequencies for the d documents; CV ˆk is the topic matrix

whose columns are the multinomial parameters (i.e., word frequencies) for the k topics; and Wkˆd is

the mixing matrix whose columns present the mixing weights over k topics for d documents.

The primary interest here is to reveal the latent structure of a collection of documents, i.e., to

estimate the collection’s topic matrix C. Despite the popularity and success of topic models, work on

the estimation accuracy of C is scarce. An obstacle to rigorous analysis of that important question

is that the factorization (1) may not be unique up to permutation (throughout we ignore any non-

uniqueness due to permutations of the k topics). The non-uniqueness issue can be easily understood

via the following geometric interpretation of Equation (1): recovering C based on U is equivalent to

finding a k-vertex convex polytope that encloses all columns of U; the vertices of this k-vertex convex

polytope form the columns of C. Apparently, such a convex polytope may not be unique; see Figure

1(a). In statistical language, topic models parameterized by pC,Wq without any further constraints

are not identifiable (modulo column permutations).

This leads to the following two questions that we aim to address in this paper.

1. Identifiability. Under what conditions is a topic model parameterized by pC,Wq identifiable up to

permutation? It is easy to achieve identifiability by imposing stringent conditions that significantly

limit the usefulness of the result. Our goal is to develop a set of identifiability conditions that

are weaker than ones proposed in prior studies but whose accuracy may nevertheless be well

estimated.

2. Finite-sample error. For an identifiable topic model, can we provide an estimator of C whose

finite-sample error leads to the desired rate of convergence? The rate will depend on the number

of documents d and/or the number of words per document n (which, without loss of generality,

is assumed to be the same for all documents). Throughout, we assume the vocabulary size V

and the number of topics k to be known and fixed.

1
We say a matrix is column-stochastic if its entries are non-negative and columns sum to one.
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(a) (b) (c) (d)

Figure 1: Geometric view of the simplex �V ´1pk “ V “ 3q. Black dots are columns of U. Black-lined

triangles are k-vertex convex polygons; the shaded triangles are those with minimum volume.

1.1 Related Work

Topic models have been studied under two settings: one in which the mixing weights, columns of

W, are assumed to be stochastically generated from some distribution; the other in which they are

assumed to be fixed but unknown. The Bayesian approach, for example, focuses on the former.

1.1.1 The Bayesian Approach

In the Bayesian setting, the mixing weights are often assumed to be stochastically generated from a

known distribution with a full support on the simplex �k´1. Therefore, identifiability can be guaranteed

under very mild conditions; for example, one such condition is just that C be of full rank (Anandkumar

et al., 2012). Under such Bayesian settings, Nguyen (2015) and Tang et al. (2014) established posterior

concentration rates; Anandkumar et al. (2012, 2014) and Wang (2019) established convergence rates

for the maximum likelihood estimator (MLE).

In this paper, we focus on a more general setting, in which the mixing weights may not be

stochastically generated; if they are, moreover, we do not assume any knowledge of the corresponding

distribution. Identifiability and estimation accuracy turn out to be much more challenging under this

general setting.

1.1.2 The Separability Condition

Several earlier investigations have addressed identifiability by imposing the so-called separability

condition or its generalization (Donoho and Stodden, 2004; Arora et al., 2012; Azar et al., 2001;

Kleinberg and Sandler, 2008, 2003; Recht et al., 2012; Ge and Zou, 2015; Ke and Wang, 2017;

Papadimitriou et al., 2000; McSherry, 2001; Anandkumar et al., 2012). The separability condition can

be imposed either on rows of C or on columns of W, due to the symmetry between these two matrices

3



in the factorization (1).

When imposed on the topic matrix CV ˆk, this condition assumes that, after the rows of C have

been re-arranged, its top k rows will form a diagonal matrix. Words associated with those rows

are called anchor words; anchor words can be used to identify topics since they appear only in one

particular topic.

When imposed on the mixing matrix Wkˆd, this condition again assumes that, after the columns

of W have been re-arranged, the first k columns will form a diagonal matrix. We can further conclude

that that diagonal matrix must be an identity matrix since W is column-stochastic; therefore, there are

k documents that belong to one and only one topic (Nascimento and Dias, 2005; Javadi and Montanari,

2020). A geometric interpretation of this condition is that we can use the convex hull of k columns

of U to form the k-vertex polytope that contains all other columns of U. In other words, the topic

matrix CV ˆk can be recovered by identifying the corresponding subset of k documents.

The separability condition can be easily violated, however, in real applications. In practice it is

commonly the case that topics are correlated, tend to share keywords, and therefore are not separable.

Nevertheless, several algorithms have been proposed to estimate C with a convergence rate of

the order 1{
?
nd (Arora et al., 2012; Ke and Wang, 2017), but they assume separability. This rate

of convergence would indicate that such algorithms can pool information in the d documents, each

with n words, to estimate C; therefore they have an effective sample size of nd, instead of n or

d. However, as discussed in Section 4.3, such a fast convergence rate is achievable only under the

stringent separability assumption. This is because the strong separability condition greatly simplifies

the statistical and computational hardness of the topic matrix estimation problem and turns it into

a searching problem. As a consequence, such separability-condition-based methods circumvent the

hidden non-regular statistical problem of boundary estimation (c.f. Section 4.3), which often leads to

an extremely slow rate of convergence. See Section 3.2 for a review of separability-condition-based

methods and how they relate to ours, from a two-stage estimation perspective.

1.1.3 Beyond the Separability Condition

To relax the separability assumption, the aforementioned connection between estimating a topic model

and finding a k-vertex convex polytope that encloses all columns of U has led researchers to start

looking at geometric conditions.

When there are multiple k-vertex convex polytopes enclosing columns of U, it is natural to restrict

our attention to the ones with minimum volume, that is, convex polytopes that circumscribe the data
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as compactly as possible. Many volume minimization algorithms have been proposed (Craig, 1994;

Nascimento and Dias, 2005; Miao and Qi, 2007; Fu et al., 2015) for nonnegative matrix factorization

similar to (1). However, most of these methods consider the noiseless setting. Blindly applying them to

topic model estimation fails to respect the error structure in the counting data and may lead to a loss

of statistical efficiency. Moreover, little theoretical work has been conducted on model identifiability

and estimation accuracy beyond the limited context of topic modeling that assumes the separability

condition. In particular, it is important to acknowledge that the minimum volume constraint alone

does not guarantee uniqueness; see examples in Figure 1(b)(c).

Recently, a set of geometric conditions known as the sufficiently scattered (SS) condition, which is

weaker than the separability condition, has been introduced to study identifiability of topic models

(Huang et al., 2016; Jang and Hero, 2019). Huang et al. (2016) ensure identifiability under the SS

condition by adding the constraint that the determinant of WW
T is minimized. Jang and Hero (2019)

have proved that the SS condition, along with volume minimization on the convex hull of C, ensures

identifiability when V “ k (vocabulary size is the same as topic size); their analysis is valid only for

V “ k since it is built on the assumption that the volume of the convex hull of C is equal to the

determinant of C (or to a monotonic function of the determinant of CT
C) which holds true only when

V “ k. In addition, neither Huang et al. (2016) nor Jang and Hero (2019) provided a theoretical

analysis of estimation errors for their proposed estimators, which are based on minimizing a squared

loss based objective rather than on maximizing the multinomial likelihood associated with counting

data.

Javadi and Montanari (2020) is the only study we are aware of that provides a theoretical analysis

of estimation errors without assuming the separability condition. They proposed to estimate the k

columns of C by minimizing their distance to the convex hull of the data points, and established

a convergence rate for their estimator. In their setting, model identifiability is equivalent to the

uniqueness of the minimizer in the noiseless setting; that is, they assume that a unique set of k columns

(of C) is closest to the convex hull formed by the columns of U. They show that the minimizer is

indeed unique when the separability condition is imposed on W; other than that, they do not provide

any checkable conditions for identifiability.

1.2 Summary of Our Contribution

First, we resolve the non-identifiability issue by focusing on convex hulls (of C) of the smallest volume,

and show that under volume minimization, the SS condition ensures identifiability regardless of the
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values of V and k (Section 2).

Although volume minimization helps to ensure model identifiability, since the volume of a low-

dimensional simplex in a high-dimensional space does not take a simple form (Miao and Qi, 2007), it

is difficult to incorporate volume minimization into an estimation procedure. This difficulty explains

why many prior investigations have either assumed V “ k or used an approximation formula.

Our second contribution is to establish the connection between volume minimization and maximiza-

tion of a particular integrated likelihood (Section 3.1). Specifically, we propose an estimator as the MLE

of the topic matrix C, based on an integrated likelihood, in which the mixing weights (i.e., columns

of W) are profiled out by integrating with respect to a uniform distribution over pk ´ 1q-simplex. A

geometric consequence of the use of uniform distribution is that, while maximizing the integrated

likelihood, we implicitly minimize the volume of the convex hull of C without explicitly evaluating

its volume. Here we emphasize that the uniform distribution is used only to integrate over nuisance

parameters (i.e., the mixing weights), and that our theoretical analysis does not require the mixing

weights to be generated stochastically from a uniform distribution.

Our third contribution is to establish a finite-sample error bound of the proposed estimator of

C, of the order
a
logpn _ dq{n under the fixed design setting where the mixing weights W can be

arbitrarily allocated—as long as the SS condition pertains (Section 4.2). As a consequence, our result

implies asymptotic consistency as the number of documents d and/or the number of words n (in

each document) increases to infinity. In the stochastic setting, where the mixing weights W are

independently generated according to some unknown underlying distribution over the simplex, we

show that, for sufficiently large d, W still satisfies a perturbed version of the SS condition with high

probability—as long as the support of the weight generating distribution satisfies the SS condition.

Based on this observation, we also provide a finite-sample error bound in the stochastic (or random

design) setting (Section B in the supplementary material). Furthermore, by drawing a connection

between our estimating approach and some representative existing methods, through a two-stage

perspective (Section 3.2), we illustrate that the separability condition greatly simplifies the topic

matrix estimation problem by circumventing the highly nontrivial and non-regular statistical problem

of boundary estimation (Section 4.3). This explains why our finite-sample error bound is similar to

that of Javadi and Montanari (2020) which is based on an archetypal analysis that, like ours, does

not assume the separability condition; however, our error bound is (not surprisingly) worse (in terms

of the dependence on d) than those (Ke and Wang, 2017; Arora et al., 2012) arrived at under the

separability condition.
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As a byproduct, our work provides a theoretical justification for the empirical success of Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) models, since the proposed estimator is essentially the

maximum likelihood estimator of C from the LDA model, with a particular choice of prior on W.

More generally, the LDA model with other prior choices on W can be interpreted as maximizing

the data likelihood while minimizing a weighted volume in which a non-uniform volume element is

integrated over the convex hull of C when defining the volume (see Section 5.1.2 for some numerical

comparisons).

Although presented in the context of topic modeling, our results can be adapted to many other

applications by using the data-specific likelihood. For example, the decomposition U “ CW plays an

important role in hyperspectral imaging analysis, in which each column of U represents the intensity

levels over V channels at a pixel. Due to the low spatial resolution of hyperspectral images, pixel

spectra are usually mixtures of spectra from several pure materials, known as endmembers. So a

key step in hyperspectral imaging analysis is to separate (or unmix) the pixel spectra into convex

combinations of endmember spectra; endmember spectra are essentially columns of C (Winter, 1999).

Similar models also arise in reinforcement learning (Singh et al., 1995; Duan et al., 2019) as a way to

compress the transition matrix of an underlying Markov decision process; a detailed discussion is given

in Section 5.2.2.

1.3 Notation and Organization

Let 1k denote the all-ones vector of length k, and ef the f -th column of the k ˆ k identity matrix

Ik. Let �k´1 “ tx P Rk : 0 § xi § 1,
∞

k

i“1 xi “ 1u denote the pk ´ 1q-dimensional probability simplex.

For a matrix Apˆq “ pA1, ¨ ¨ ¨ ,Aqq, let

ConvpAq “ tx P Rp : x “ A�,� P �q´1u,

conepAq “ tx P Rp : x “ A�,� • 0u,

and affpAq “ tx P Rp : x “ A�,�T
1q “ 1,� P Rqu,

denote the convex polytope, simplicial cone and affine space generated by (the q columns of) A,

respectively. For A P Rpˆqpp • qq, we define |ConvpAq| as the pq ´ 1q-dimensional volume of ConvpAq
on affpAq, which can be computed by the Cayley–Menger determinant or Lemma D.1 in Appendix

D. For any vector x, x • a means x is element-wisely greater than or equal to a. Denote a _ b

and a ^ b as the larger and smaller number between a and b, respectively. For any cone C, let

C˚ “ tx : xT
y • 0, @y P Cu denote its dual cone. Recall some useful facts of dual cones (Donoho and
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Stodden, 2004): (i) conepAq˚ “ tx P Rp : xT
A • 0u; (ii) if A and Ā are convex cones, and A Ñ Ā,

then Ā˚ Ñ A˚. Unless stated otherwise, all the constants in the paper are independent of number of

words per document n and number of documents d.

The rest of the paper is organized as follows. In Section 2, we discuss identifiability under volume

minimization as well as a set of sufficient conditions. In Section 3, we propose the MLE based on an

integrated likelihood, establish its connection with volume minimization, and describe its computation.

Theoretical analysis of the proposed estimator is presented in Section 4. Finally, empirical evidence is

reported in Section 5. Proofs and technical results are included in the supplementary material.

2 Identifiability of Topic Models

In this section we start with a formal definition of topic model identifiability under the minimum

volume constraint. After that, we describe two sufficient conditions that lead to the identifiability,

namely the separability condition and the sufficiently scattered condition. Finally, for the latter

condition, which is weaker and less stringent than conventional separability, we provide a geometric

interpretation.

2.1 Identifiability under Volume Minimization

We have observed (see Figure 1(a)) that without any constraint, a topic model is almost always

non-identifiable. We thus focus on identifiability under the minimum volume volume minimization

constraint, due to its natural interpretation as finding the most parsimonious topic model that explains

the documents in the corpus data, or equivalently, the most compact k-vertex convex polytope in

which the documents reside.

We begin by defining the following distance metric between two topic matrices C and C̄:

DpC, C̄q “ min
⇧

}C̄ ´ C⇧}2, (2)

where } ¨ }2 denotes the spectral norm and ⇧ is a permutation matrix. Note that DpC, C̄q “ 0 if and

only if C̄ “ C⇧, that is, C and C̄ are identical up to a permutation of columns. Since k and V are

fixed, the spectral norm in (2) is not important because all matrix norms are equivalent. In particular,

if the Frobenius norm is employed instead of the spectral norm, then the distance metric D coincides

with the 2-Wasserstein distance between column vectors of C and C̄.

Next, we state the definition of identifiability under the minimum volume constraint:
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Definition 1 (Identifiability). A topic model associated with parameters pC,Wq is identifiable, if for

any other set of parameters pC̄,W̄q, the following conditions hold,

CW “ C̄W̄ and |ConvpC̄q| § |ConvpCq|, (3)

if and only if DpC, C̄q “ 0.

It is easy to check that model identifiability is achieved under the separability condition on columns

of W, as it implies that W contains a k ˆ k identity matrix after a proper column permutation; that

is, there exist k columns in U that are the k corners of ConvpCq. Therefore, no other k-vertex convex

polytope of smaller or equal volume can still enclose all columns in U.

Proposition 1. If the separability condition is satisfied on W, then pC,Wq is identifiable.

Since the separability condition can be overly stringent in practice, we next show that a condition

weaker than the separability condition can also achieve model identifiability. Our analysis is related

to the following geometric condition, known as sufficiently scattered (SS). Its definition relies on the

second order cone K, its boundary bdK, and its dual cone K˚, which are defined below:

K “ tx P Rk : }x}2 § x
T
1ku,

bdK “ tx P Rk : }x}2 “ x
T
1ku,

and K˚ “ tx P Rk : xT
1k •

?
k ´ 1}x}2u.

Definition 2 (SS Condition). A matrix W is sufficiently scattered, if it satisfies:

(S1). conepWq˚ Ñ K, or equivalently, conepWq Ö K˚
;

(S2). conepWq˚ ì bdK Ñ t�ef , f “ 1, ¨ ¨ ¨ , k,� • 0u.

It is easy to verify that the separability condition on W implies W to be sufficiently scattered.

In fact, the separability condition on W means that ConvpWq “ �k´1 fills up the entire simplex,

and that conepWq˚ “ conep�k´1q is the most extreme cone (smallest possible cone, corresponding to

the solid triangle in Figure 2; see the following section for details) that satisfies (S1) - (S2) in the SS

condition.

Theorem 2. If W is sufficiently scattered and C is of rank k (full column rank), then pC,Wq is

identifiable.
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Proof of Theorem 2 is given in the supplementary material (Section D.1). Here we give a

sketch of the proof. Suppose CW “ C̄W̄. We have C “ C̄B, where B “ W̄W
T pWW

T q´1. It

suffices to show B is a permutation matrix, which we prove by verifying that any row of B is in

conepWq˚ ì bdK “ t�ef ,� • 0u and is also of unit length.

Remark 2.1 (Comparison with definition in Javadi and Montanari (2020)). The model identifiability

defined in Javadi and Montanari (2020) is different from ours. They define a model to be identifiable

if there is a unique convex polytope that minimizes the sum of distances from vertices of ConvpCq
(i.e., columns of C) to the convex hull of U. Their notion of identifiability is easier than ours to be

formulated into a statistical estimator that minimizes an empirical evaluation of the distance sum from

data. In our approach, the volume of our low-dimensional polytope does not take a simple form, which

greatly complicates the estimator construction. Fortunately, we find that maximizing a particular

integrated likelihood leads to an estimator that implicitly minimizes the volume. (See Appendix A for

further discussion of this topic.)

Remark 2.2 (SS condition is not a necessary condition). The SS condition is not necessary for

identifiability — one reason is that it does not take into account additional parameter constraints (e.g.,

in the topic model, each column of topic matrix C should be a probability weight vector belonging to

the simplex). See Figure 1(d) for an example (V “ k “ 3 and C “ I3) where the SS condition does

not hold but the model is identifiable. Since any alternative topic matrix C as a convex polytope with

three vertices must be inside �2, due to the parameter constraint, I3 is the only topic matrix enclosing

all columns of U and is within simplex �2. However, the SS condition does not hold since, apparently,

conepWq Ö K˚ is not true.

2.2 Geometrical Interpretation of Sufficiently Scattered Condition

We provide a geometric interpretation of the SS condition in Figure 2 with k “ 3. Since the mixing

weights are all on �2, what is shown in Figure 2 is the intersection of the cones with the hyperplane

x
T
13 “ 1. The mixing weights, w1, . . . ,wd, are represented as blue dots. Other items related to

Definition 2 are: bdK is the red circle, K˚ is the dark brown ball inscribed in the triangle, and conepWq˚

is the yellow convex region with dashed boundary.

We illustrate three different scenarios: “SS” means that the SS condition is satisfied, “not SS” means

that the SS condition is violated, and “sub-SS” means that (S1) is satisfied but (S2) is not.

10



(a) SS (b) sub-SS (c) sub-SS (d) not SS

Figure 2: Geometric views of the SS condition shown on the hyperplane x
T
1k “ 1 (k “ 3). Mixing

weights w are represented as blue dots; blue dots in (c) are all on the boundary of the inner circle.

Any dashed triangle in (b)(c)(d) is an alternative 3-vertex convex polytope that contains all w’s and is

of a volume no larger than �k´1.

An equivalent form of Condition (S1) is conepWq Ö K˚. So (S1) has a simple and intuitive

interpretation: the mixing weights (blue dots) should form a convex polytope that contains the dual

cone K˚, the inner ball inscribed in the triangle. See Figure 2(d) for a violation of (S1). In particular,

the separability condition on W implies that the three vertices (blue circles) of the triangle are

included in W. As a consequence, conepWq˚ “ conepWq is the entire triangle, which is the most

extreme/superfluous instance that satisfies the SS condition.

Condition (S1) ensures that ConvpCq has the smallest possible volume, but such minimum volume

convex polytopes may not be unique. The purpose of condition (S2) is to determine the “orientation” of

the convex polytope and consequently to ensure that it is unique. When (S2) is violated, it is possible

to rotate the convex polytope to produce different feasible convex polytopes of the same volume; see

Figure 2(b)(c).

The SS condition was first introduced by Huang et al. (2016) to study the identifiability of topic

models, where identifiability is ensured under the SS condition along with a minimal determinant on

WW
T . This condition is used differently in their work and ours: Huang et al. (2016) impose the SS

condition on rows of C; we impose this condition on columns of W. Although volume is not discussed

in Huang et al. (2016), imposing the SS condition on rows of C in fact leads to a convex polytope of

maximum volume; in contrast, we seek a convex polytope of the smallest volume.

Remark 2.3 (Algorithm for checking SS condition). Checking conepWq Ö K˚ in the SS condition

is equivalent to verifying whether a convex polytope contains a ball (after being projected to �k´1),

which is in general an NP-complete problem in computational geometry (Freund and Orlin, 1985;
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Huang et al., 2014). Consequently, it can be computationally difficult to provide a definitive conclusion

as to whether or not the SS condition holds in high dimensions. However, if making a small probability

mistake is allowed, then we propose that the following randomized algorithm to check the SS condition

will give the correct answer with acceptable high probability. Since it suffices to verify that ConvpWq Ö
bdK˚ ì�k´1, we can independently choose M sample points uniformly from bdK˚ ì�k´1 and check

whether all of them are in ConvpWq. If W satisfies the SS condition, then the M sampled points

should belong to ConvpWq; if W does not satisfy the SS condition, then, since the probability of

each sampled point falling in ConvpWq is a fixed number, the probability of making a mistake decays

exponentially in M . For real datasets where ConvpWq is not observed, we can use an estimator of it

to empirically check the SS condition by reporting the frequency of sampled points not falling into the

estimated ConvpWq.

3 Maximum Integrated Likelihood Estimation

Before introducing the proposed estimator for topic matrix C, let us describe some more notations

and the data generating process. Let X “ pxp1q, ¨ ¨ ¨ ,xpdqq denote the observed data as a collection of

word sequences. Without loss of generality, we assume each document has the same number of words,

denoted by n. Given parameters pC,Wq, word sequences from different documents are independent,

with the word sequence from the i-th document, xpiq “ pxi,1, . . . , xi,nq, being n i.i.d. samples from the

categorical distribution Catpuiq, where ui “ Cwi is the V -dimensional probability vector in �V ´1,

and wi “ pwi,1, . . . , wi,kq denotes the i-th column of matrix W. We use fnp¨ | uiq to denote the

multinomial likelihood function of the i-th document. Let cj denote the j-th topic vector, i.e., the

j-th column of matrix C, for j “ 1, 2, . . . , k. Under this notation, we can express the word frequency

vector ui “ ∞
k

j“1 wi,jcj associated with the i-th document as a convex combination of the topic vectors,

where wi serves as the mixing weight vector.

3.1 Implicit Volume Minimization

Since our primary interest is on the topic matrix C, we can profile out the nuisance parameters wi’s

by integrating them with respect to some distribution, resulting an integrated likelihood function

of C. After that, we can estimate C by maximizing the integrated likelihood (Berger et al., 1999).

We propose to integrate out wi’s with respect to the uniform distribution over simplex �k´1, which

induces a uniform distribution on ui “ Cwi over ConvpCq. This is because the linear transformation
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w fiÑ Cw has a constant Jacobian. The integrated likelihood can be formally written as follows:

FnˆdpC;Xq “
dπ

i“1

ª

ConvpCq

fnpxpiq |uq
|ConvpCq| du, (4)

where |ConvpCq| denotes the pk ´ 1q-dimensional volume of the set ConvpCq. The corresponding

maximum likelihood estimator (MLE) is defined to be

Ĉn “ argmax
C

FnˆdpC;Xq, (5)

where the maximum is over all V -by-k column-stochastic matrices.

Although the integrated likelihood (4) is equivalent to the marginal likelihood from an LDA model

after integrating out the mixing weight w with respect to a Dirichletp1kq prior, we emphasize again

that the uniform prior is just used to profile out the nuisance parameters so that we can derive an

MLE for the topic matrix. In our theoretical analysis below, we do not assume data to be generated

from the LDA model with a uniform prior on w.

Why uniform distribution? To understand the motivation behind the use of a uniform distribution

in (4), let us consider the noiseless case (corresponding to the limiting case as n Ñ 8), in which we

“observe” the true word-frequency vectors for the d documents: u0
1, ¨ ¨ ¨ ,u0

d
. In this ideal setting, from

a standard Laplace approximation argument, the i-th integral inside the product in (4) after rescaling

by a factor of order npV ´1q{2 converges to 1pu0
i

P ConvpCqq, and the MLE Ĉ becomes:

argmax
C

dπ

i“1

1pu0
i

P ConvpCqq
|ConvpCq| “ argmax

C

1pu0
1, ¨ ¨ ¨ ,u0

d
P ConvpCqq

|ConvpCq| , (6)

where 1p¨q is the indicator function. Therefore, maximizing the integrated likelihood function (4)

is asymptotically equivalent to minimizing the volume of ConvpCq subject to the constraint that

ConvpCq contains all true word-frequency vectors.

In the rest of this section we first provide an alternative interpretation of our approach as a

two-stage estimation procedure. We compare it with some representative topic learning methods

designed under the separability condition that can also be cast as two-stage procedures. After that, we

describe an MCMC-EM algorithm designed for implementing the optimization problem of maximizing

the integrated likelihood.

3.2 Interpretation as Two-Stage Optimization

Our method of estimating C can be viewed as a two-stage procedure: in the first stage, we estimate the

pk ´ 1q-dimensional hyperplane affpCq in which the convex polytope of C lies; then in the second stage,
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(a) First stage (b) Second stage

Figure 3: Illustration of the two-stage perspective of maximizing the integrated likelihood (4). The left

figure illustrates the first stage when V “ k “ 2. Black dots are the sample word frequency vectors

û
piq’s. affpCq is the red line. We target to minimize the sum of the squared distances, where each

distance is induced from its own local norm } ¨ }i (see main text for details about the norm). That is

why the black lines correspond to the projection directions are not necessarily parallel to each other.

The right figure illustrates of the second stage when V “ 4, k “ 3. The blue tetrahedron is the simplex

�V ´1 and the red hyperplane is the estimated affpĈnq from the first stage. The black dots are the

projections of the sample word frequency vectors û
piq’s on affpĈnq. The black dashed triangle is our

estimator Ĉn, whose convex hull is roughly the 3-vertex convex polytope that encloses all the black

dots and has the minimal volume.

we determine the boundary of ConvpCq by estimating its k vertices within the estimated hyperplane

obtained in the first stage. See Figure 3 for an illustration, and the following for a heuristic derivation.

It is worth mentioning that many recent separability condition based topic modeling methods in

the literature (such as Arora et al. (2012); Azar et al. (2001); Kleinberg and Sandler (2008, 2003);

Ke and Wang (2017); Papadimitriou et al. (2000); McSherry (2001); Anandkumar et al. (2012))

can be explained under this general two-stage framework. For example, some papers (Azar et al.,

2001; Kleinberg and Sandler, 2008, 2003) aim only at recovering the column span of topic matrix C

using singular value decomposition (SVD), which suffices for their applications. This corresponds

to solving the hyperplane estimation problem in our first stage. Some papers (Arora et al., 2012;

Papadimitriou et al., 2000; McSherry, 2001; Anandkumar et al., 2012) directly search for a subset

of words (separability condition on anchor words, Arora et al. (2012)) or documents (separability

condition on pure topic documents, Papadimitriou et al. (2000); McSherry (2001); Anandkumar et al.
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(2012)) in their first stage, and then in their second stage recover the population-level term-document

matrix (or the hyperplane affpCq) based on the estimated anchor words/pure topic documents. This

corresponds to our two-stage procedure, in reverse order. Others such as Ke and Wang (2017) also use

a two-stage procedure based, first, on projecting a certain transformation of the sample term-document

matrix onto a lower-dimensional hyperplane via SVD, and then searching for the anchor words over

that hyperplane. Notice that all aforementioned methods reply crucially on the separability condition,

which greatly simplifies the statistical and computational hardness of the problem and turns it into

a searching problem; thus they are able to circumvent the hidden non-regular statistical problem of

boundary estimation (c.f. Section 4.3).

To illustrate the two-stage interpretation of our method, we observe that the integrated likelihood

(4) is equivalent to the following expression:

1

|ConvpCq|d
dπ

i“1

ª

ConvpCq
exp

 
´ nDKLpûpiq ||uq

(
du, (7)

where û
piq denotes the sample word frequency vector for document i. Here, we use DKLpp ||qq “

∞
V

v“1 pv logppv{qvq to denote the Kullback-Leibler divergence between two categorical distributions with

parameters p “ pp1, . . . , pV q and q “ pq1, . . . , qV q. When n is large, the classical Laplace approximation

to the integral in (7) uses a nonnegative quadratic form }u ´ û
piq}2

i
:“ pu ´ û

piqqTHipu ´ û
piqq to

approximate the exponent DKLpûpiq ||uq in a local neighborhood of ûpiq. Since such a quadratic form

defines the norm } ¨ }i, we can decompose it into }u´ û
piq}2

i
“ }u´ Ppiq

C û
piq}2

i
` }

`
IV ´ Ppiq

C

˘
û

piq}2
i
, where

Ppiq
C denotes the projection operator onto the pk ´ 1q-dimensional hyperplane affpCq with respect to

the distance induced from } ¨ }i. Finally, we can approximate the integrated likelihood in the preceding

display as

exp
!

´ n
dÿ

i“1

}
`
IV ´ Ppiq

C

˘
û

piq}2
i

loooooooooooomoooooooooooon
residual sum of squares

)
¨ 1

|ConvpCq|d
dπ

i“1

ª

ConvpCq
exp

 
´ n }u ´ Ppiq

C û
piq}2

i

(
du

looooooooooooooooooooooomooooooooooooooooooooooon
«Ci n

´pk´1q{2 1pPpiq
C ûpiqPConvpCqq

, (8)

where the display underneath the second curly bracket is due to the Laplace approximation to the

pk ´ 1q-dimensional integral, and the constants Ci depends only on û
piq.

We see from this approximation that the maximization of integrated likelihood (7) can be approxi-

mately cast into a two-stage sequential optimization problem. In the first stage, we find an optimal

pk ´ 1q-dimensional hyperplane spanned by C that is closest to û
piq’s by minimizing the residual sum

of squares in (8) (see Figure 3(a)). This corresponds to the SVD approach for estimating the true

topic supporting hyperplane adopted by Azar et al. (2001); Kleinberg and Sandler (2008, 2003); Ke
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and Wang (2017), and several others under the separability condition. In the second stage, we find the

most compact (i.e., minimal volume) k-vertex convex polytope ConvpCq that encloses the projections

of ûpiq’s onto the hyperplane affpCq, so that the second term in (8) is maximized.

With the separability condition on C or W, the vertex search in the second stage can be greatly

simplified and restricted to a small number of choices. For example, the anchor-word assumption

implies that each column of C has at least pk ´ 1q zeros; consequently, columns of C should be chosen

from the intersection of affpCq and the simplex �V ´1 in the second stage (as shown in Figure 3(b)).

Our second stage, in the absence of a separability condition, is essentially the much more challenging

non-regular statistical problem of boundary estimation. To see this, consider the same toy example

of pV, kq “ p4, 3q as illustrated in Figure 3(b). The separability condition on C implies that once

the hyperplane affpCq (red hyperplane) is determined, the only candidate topic matrix C is the one

whose columns are the intersections (blue circles) of this hyperplane and the three 1-dimensional

edges of the simplex �3 (blue tetrahedron), making the second stage trivial. On the contrary, the

statistical problem in our setting is to estimate the minimal volume k-vertex convex polytope (black

dashed triangle as our estimator) that encloses all true underlying word probability vectors of the

documents, which is highly nontrivial (see Section 4.3 for a more detailed comparison). Fortunately,

our computational algorithm described in the following subsection circumvents this difficulty directly

maximizing the integrated likelihood via a variant of the expectation maximization (EM) algorithm,

which implicitly constructs such an estimator.

3.3 Computing Maximum Integrated Likelihood Estimator

For computation, we employ an MCMC-EM algorithm to find the maximizer Ĉn of the integrated

likelihood objective (4) by augmenting the model with a set of latent variables Z “ tZij : i “
1, 2, . . . , d, j “ 1, 2, . . . , nu, where, given the mixing weights wi, Zij P t1, 2, . . . , ku follows Catpwiq
and is interpreted as the topic indicating variable for the j-th word x

piq
j

in the i-th document. Our

MCMC-EM algorithm proceeds in a manner similar to that of the classical EM algorithm with, first,

an E-step of computing the expected log-likelihood function log ppX, Z |Cq, where the expectation is

with respect to the distribution of latent variable Z after marginalizing out W, and then an M-step of

maximizing the expected log-likelihood function over topic matrix C. An MCMC scheme is introduced

in the E-step for sampling pZ, Wq pairs from the joint conditional distribution of ppZ, W |X, Cq in

order to compute the expected log-likelihood function via Monte-Carlo approximation.

As discussed before, our proposed estimator is essentially the MLE estimator from the LDA model
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(Blei et al., 2003) with a particular choice of priors on W. Many algorithms have been proposed

for the LDA model, such as the Gibbs sampler (Griffiths and Steyvers, 2004), partially collapsed

Gibbs samplers (Magnusson et al., 2018; Terenin et al., 2018), and various variational algorithms (Blei

et al., 2003). The use of MCMC-EM here is a personal preference. Our MCMC-EM algorithm is a

stochastic EM algorithm similar to the Gibbs sampler in Griffiths and Steyvers (2004), and to the

partially collapsed Gibbs samplers in Magnusson et al. (2018); Terenin et al. (2018). According to the

asymptotic results of stochastic EM algorithms in Nielsen et al. (2000), the estimation of the topic

matrix produced by our algorithm is guaranteed to converge to the proposed MLE, provided that

W
0 is sufficiently scattered. In Section 5.2, we compare our algorithm with the algorithms mentioned

above and find all very similar in performance. Since computation is not the main focus of this paper,

we confine the details, including derivations for the full algorithm, to the supplementary material.

4 Finite-Sample Error Analysis

In this section, we study the finite-sample error bound and its implied asymptotic consistency of the

proposed estimator Ĉn. We consider the fixed design setting where columns of W can take arbitrary

positions in �k´1 as long as a perturbed version of the SS condition described in the following is

satisfied. For the stochastic setting where columns of W are generated from some distribution, the

error analysis and consistency can be found from Section B in the supplementary material. To avoid

ambiguity, we use C
0, W0, U0 to denote the ground truth, and leave C, W, U as generic notations

for parameters.

4.1 Noise Perturbed SS Condition

Before introducing our results from the error analysis, it is helpful to introduce a perturbed version

of the SS condition, called p↵, �q-SS condition, which characterizes the robustness/stability of the

(population level) SS condition against random noise perturbation due to the finite sample size.

Definition 3 (p↵, �q-SS Condition). A matrix W is p↵,�q-sufficiently scattered for some ↵, � • 0,

if it satisfies (S1) and

(S3). rconepWq˚s↵ìrbdKs↵ Ñ tx : }x ´ �ef}2 § ��,� • 0u, where

rconepWq˚s↵ “ tx : x
T
W • ´↵}x}2u and rbdKs↵ “ tx : |}x}2 ´ x

T
1k| § ↵}x}2u are the

↵-enlargements of conepWq˚
and bdK, respectively.

17



We provide a geometric view of the p↵, �q-SS condition in Figure 4. Similar to the setting of

Figure 2, everything is projected onto the hyperplane x
T
1k “ 1: blue dots denote columns of W, the

inner brown ball inscribed in the triangle denotes K˚, and the shaded yellow region denotes conepWq˚

along with the dashed gray line as its boundary. The boundary of the enlarged cone of conepWq˚,

rconepWq˚s↵, is marked by the solid gray line, and the thickened boundary of K, rbdKs↵, is the outside

ring in red. The set tx : }x ´ �ef}2 § ��,� • 0, f P rksu, when being projected to the hyperplane

x
T
1k “ 1, corresponds to the green balls centered at the vertices of �k´1 with radius �.

(a) p↵,�q-SS (b) not (↵2, �2)-SS

(↵2 “ ↵,�2 † �)

(c) not (↵3, �3)-SS

(↵3 ° ↵,�3 ° �)

Figure 4: Geometric view of p↵, �q-SS sliced at the hyperplane x
T
1k “ 1 (k “ 3). W is the same in

(a)(b)(c) while the values of ↵ and � are different. In (b) and (c), we highlight the region (the dashed

circle) that are in rconepWq˚s↵ìrbdKs↵ but not in tx : }x ´ �ef}2 § ��u.

For a matrix W to satisfy the p↵, �q-SS condition, the corresponding convex hull of the blue dots

need to contain K˚, the inner brown ball. In addition, the intersection of the red ring, rbdKs↵, and the

region enclosed by the solid gray line, rconepWq˚s↵, must be inside the green balls; see Figure 4(a). In

other words, rconepWq˚s↵ only touches rbdKs↵ near the k vertices of the simplex �k´1.

The p↵, �q-SS condition can be viewed as a generalization of the SS condition with the two

parameters p↵, �q quantifying the robustness of conepWq˚ under noise perturbation. In particular, ↵

characterizes the tolerable noise level, and �, which we refer to as the vertices sensitivity coefficient,

represents the maximum estimation error induced by noises below level ↵. Due to this interpretation,

the p↵, �q-SS condition becomes stronger as ↵ increases and � decreases (c.f. Proposition 3). In

particular, the minimal allowable � under (S3) should increase as ↵ increase. In most examples, �

should be proportional to ↵ up to some constant depending on the geometric structure of conepKq (for

a concrete example, c.f. Proposition 5).

While the SS condition requires conepWq˚ and bdK to intersect exactly at the positive semi-axis

rays t�ef ,� • 0u, the p↵, �q-SS condition requires the intersection of rconepWq˚s↵ and rbdKs↵—the
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perturbed versions of conepWq˚ and bdK, respectively, with noise level ↵—to be within distance �

away from the semi-axis rays. Note that p↵, �q-SS degenerates to the SS condition when ↵ “ � “ 0.

Intuitively, if a matrix W has vertices sensitivity coefficient � under noise level ↵, then condition (S3)

remains valid at the same sensitivity coefficient as we decrease the noise level and at the same tolerable

noise level as we increase the sensitivity coefficient. The following proposition provides a more general

picture about the relation of the p↵, �q-SS conditions under different combinations of p↵, �q.

Proposition 3. The followings are some properties of p↵, �q-SS condition and SS condition.

(i) If ↵ • ↵1
and � § �1

, then p↵, �q-SS implies p↵1, �1q-SS.

(ii) If W is p↵, �q-SS and ConvpWq Ñ ConvpW̄q, then W̄ is also p↵, �q-SS.

(iii) If W is SS and conepWq Ñ conepW̄q, then W̄ is also SS.

By Proposition 3(i), the p↵, �q-SS condition gets more stringent if we increase the tolerable noise

level ↵ and/or reduce the vertices sensitivity coefficient �. This is because when ↵ gets larger, the

intersection rconepWq˚s↵ìrbdKs↵ gets larger and consequently may not be packed inside the green

ball with radius �. Similarly, when � gets smaller, the green balls may not be large enough to

contain the intersection. See Figure 4(b)(c) for illustration. Since ConvpWq Ñ ConvpW̄q implies

conepWq Ñ conepW̄q, we provide a more general sufficient condition for SS in Proposition 3(iii)

compared to that in Proposition 3(ii), where SS is a special case of p↵, �q-SS. However, in this paper,

the columns of W we consider are all on the hyperplane x
T
1k “ 1, so ConvpWq Ñ ConvpW̄q is

equivalent to conepWq Ñ conepW̄q. As a direct consequence of Proposition 3(ii), if some columns of

W is p↵, �q-SS, then W is p↵, �q-SS.

The maximal allowable tolerable noise level ↵ is determined by the geometric structure of conepWq.
Given ↵, the p↵, �q-SS condition can be satisfied by almost any W when � is large enough. However,

such a condition is meaningless since � will appear as one of the error terms later in Theorem 4. So

we would like to set � as small as possible in order to derive a tight error bound. For example, we

need � to have an order of
b

logpn_dq
n

in Theorem 4 to ensure a desired error rate that matches the

order of our ↵ choice reflecting the effective noise level in the data.

4.2 Error Analysis and Consistency

In this subsection, we consider the setting where columns of W are fixed, and satisfy a set of conditions

related to the noise perturbed SS condition discussed in the previous subsection. Note that the results
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in this subsection also apply to randomly generated mixing weights, as long as we can verify that the

set of conditions below holds for the random mixing weights with high probability (c.f. Section B in

the supplementary material). Before presenting our main results on the finite-sample error bound of

the estimator Ĉn, let us first state our assumptions.

Assumptions. Assume the following:

(A1) C
0

is of rank k and its columns are bounded away from the boundary of �V ´1
.

(A2) Eigenvalues of
1
d
WcWc

T
are lower bounded by a positive constant, where Wc “ W

0 ´ 1
d
W

0
1d1

T

d

is the centered version of W
0
. In addition, there exist k affinely independent columns of W

0

with minimum positive singular value larger than a positive constant.

(A3) There exist s columns of W
0

which are (↵, �)-SS with ↵ • C1

b
s logpn_dq

n
, where s and C1 are

constants.

Now we are ready to present our main result on the estimation accuracy.

Theorem 4. Under Assumptions (A1)-(A3), with probability at least p1 ´ 3{pn _ dqcqd,

DpĈn,C
0q § D1

c
s logpn _ dq

n
` D2

?
s�, (9)

where c,D1 and D2 are positive constants. In particular, if � § C2

b
logpn_dq

n
where C2 is a constant,

then

DpĈn,C
0q § D1

1

c
s logpn _ dq

n
. (10)

In the theorem, constants D1 and c have the relation that D1 “ C3 ¨ ?
c ` C4 where C3 and C4 are

constants independent of pn, dq. Some remarks about the assumptions are in order.

(A1) is commonly imposed for technical reasons in other related work, such as Nguyen (2015) and

Wang (2019), to avoid singularity issues. The geometric interpretation of the assumption in (A2) on

Wc is that ConvpU0q should contain a ball of a constant radius, which is again imposed to avoid

singularity issues when a large proportion of the mixing weight vectors are too concentrated. Similar

assumptions are also made in Ke and Wang (2017); Javadi and Montanari (2020).

Next, we discuss Assumption (A3) in detail. First, note that a subset of columns of W0 satisfying

the p↵, �q-SS condition immediately implies the full matrix W
0 itself to satisfy the same condition,

due to Proposition 3(ii). Second, note that to attain the error bound (10) we need the existence of a

sub-matrix W
0 to satisfy condition (A3) with � of the same order as ↵. The following proposition
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provides a sufficient condition for fulfilling this requirement. For example, when k “ 3 as illustrated in

Figure 4(a), all we need are two data points on each of the three line segments connecting ei and ej

pi ‰ jq (i.e., totally six points) with the distance from each data point to the nearest vertex is less

than 1{3.

Proposition 5. Suppose for all 1 § i ‰ j § k, there exists a column of W
0

that can be represented as

p1 ´ xijqei ` xijej where 0 § xij † 1{k, then W
0

is (✏, C✏)-SS for all ✏ ° 0, where C is constant only

depending on the geometry of W
0
.

Third, we discuss the parameter s, the smallest number of columns in W
0 that are (↵, �)-SS, in

Assumption (A3). The following proposition shows that when the columns of W0 are stochastically

generated according to some underlying distribution over �k´1 with appropriate properties, then s

can be chosen as a constant with high probability. Note that even if s is not a constant, the error

bound in (10) still goes to zero as long as s is of a smaller order of n

logpn_dq in the asymptotic setting

where pn, dq Ñ 8.

Proposition 6. Suppose the columns of W
0

are i.i.d. samples from a probability density function

that is uniformly larger than a positive constant on neighborhoods of the vertices of �k´1
. If C ¨

n
k´1
2 § d § en

c
, then with probability at least 1 ´ C0 ¨ k{d, there exist k columns in W

0
that areˆ

C1

b
logpn_dq

n
, C2

b
logpn_dq

n

˙
-SS, where c P p0, 1q, C, C0, C1 and C2 are positive constants.

Next, we show the asymptotic consistency of Ĉn, that is, Ĉn Ñ C
0 in probability as pn, dq Ñ 8.

In particular, we assume the existence of a sequence of ↵ and � values along which the p↵, �q-SS

conditions are satisfied, which is summarized in the following.

Assumptions. Assume the following:

(A3’) For any sufficiently small ✏ ° 0, there exists some �✏ such that �✏ Ñ 0 when ✏ Ñ 0, and there

are s columns of W
0

satisfying the (✏, �✏)-SS condition, where s is a bounded constant.

(A4) log d{n Ñ 0 as pn, dq Ñ 8.

Theorem 7 (Estimation Consistency). Under Assumptions (A1), (A2) and (A3’) with a fixed d, we

have

DpĈn,C
0q Ñ 0 in probability as n Ñ 8. (11)

If d is also increasing in n in a way such that Assumption (A4) holds, then

DpĈn,C
0q Ñ 0 in probability as pn, dq Ñ 8. (12)
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Note that Proposition 5 again provides a set of sufficient conditions for Assumption (A3’). However,

our current condition on W
0 in Proposition 5 is stronger than the SS condition on W

0. We conjecture

that Assumption (A3’) is equivalent to the SS condition on W
0, and leave a formal proof to future

work.

4.3 Comparison with Existing Theoretical Results

Our error bound in Theorem 4 does not decay as the number of documents d increases, which

is seemingly weaker than some existing results, such as Arora et al. (2012), Bansal et al. (2014),

Anandkumar et al. (2014), Ke and Wang (2017), and Wang (2019). In particular, under the anchor

word assumption, Arora et al. (2012) and Ke and Wang (2017) showed an error upper bound as 1{
?
nd.

As discussed in Section 3.2, many algorithms for estimating the topic matrix can be explained

through a two-stage optimization, corresponding to either a single stage or both. Under this perspective,

each stage will incur an error. With the anchor word assumption, the main source of errors comes from

the first stage of applying an SVD approach (Azar et al., 2001; Kleinberg and Sandler, 2008, 2003;

Ke and Wang, 2017) to find a pk ´ 1q-dimensional hyperplane best approximating the data whose

error bound is 1{
?
nd. In fact, the anchor word assumption greatly reduces the search space in the

second stage of identifying columns of C as either a subset of anchor words or a subset of pure topic

documents, yielding negligible estimation error. For example, the vertex hunting algorithm adopted

in Ke and Wang (2017) directly focuses on all the k combinations of the noisy data points in the

pk´ 1q-dimensional hyperplane obtained in the first stage, and chooses the combination that minimizes

the predetermined criterion. With the separability condition, they show that the estimated vertices

are all close to their corresponding true vertices in a pk ´ 1q-dimensional hyperplane, from which they

draw the conclusion that the estimation error of the second stage is no larger than that of the first

stage (see Lemma A.3, Ke and Wang (2017)).

Without the anchor word (or separability) assumption, errors incurred in the second stage become

dominant. Consider the toy examples illustrated in Figures 1 and 2 with K “ V “ 3. The first stage

is trivial since the data are already in pk ´ 1q-dimension and projection to a hyperplane is not needed.

In the second stage, we need to estimate a k-vertex convex polytope enclosing all true word probability

vectors of the documents that generates the data, which can be formulated as the non-regular statistical

problem of boundary estimation. As pointed out by Goldenshluger and Tsybakov (2004); Brunel et al.

(2021), estimation of convex supports from noisy measurements as in our second stage is an extremely

difficult problem. For example, in the one-dimensional case, even with the knowledge that the noises
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are homogeneous and follow a known Gaussian distribution, the minimax rate of boundary estimation

based on d observations is as slow as 1{?
log d, let alone the more complex situation where the noise

distribution is heterogeneous and only partly known. For example, in our case the projection Ppiq
C û

piq

onto affpCq of the sample word frequency vector ûpiq for document i, for i “ 1, . . . , d, plays the role of

a noisy measurement from the convex polytope ConvpCq. Note that a typical noise level in our second

stage is of order 1{?
n due to n number of words within each document; however, the error distribution

depends on both the position of the hyperplane affpCq obtained in the first stage as well as the location

of Ppiq
C û

piq on the data simplex �V ´1. Therefore, we cannot expect to achieve the 1{
?
nd error bound

as those separability condition based methods. It is an interesting open problem of determining the

precise minimax-optimal rate in topic models without separability condition and whether our error

bound is optimal, which we leave as a future direction.

5 Empirical Studies

In this section, we describe numerical studies we have performed to test our theoretical results. We

report the performance of our model on two real datasets.

5.1 Simulation Studies

We have conducted three simulation studies to verify our theoretical results and to test the performance

of our proposed algorithms. In Section 5.1.1, we apply the MCMC-EM algorithm to the data generated

by non-identifiable and identifiable models, and compare the recovered convex polytopes with the

truth, to show the importance of the SS condition. In Section 5.1.2, we compare the proposed uniform

prior �0 “ 1k with other priors, using data generated from different distributions, to demonstrate

empirically the robust performance of our estimator. In Section 5.1.3, we apply Monte Carlo simulation

to visualize the convergence of the proposed MLE.

5.1.1 Effect of the SS Condition

Data are generated from a simple setup: k “ V “ 3, C
0 “ I3, and the number of words for

each document is sampled from Poissonp2000q. For the true matrix W
0, we consider four different

configurations for w0
i
: (a) concentrated in the center of �2; (b) concentrated in the bottom right; (c)

satisfying the SS condition; (d) spread around three vertices. The four configurations are displayed in
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(a) non-identifiable (b) non-identifiable (c) identifiable (d) identifiable

Figure 5: Results of the simulation in Section 5.1.1. Black dots are columns of W0; the black triangle

is the ground truth ConvpC0q “ �2; red triangles are estimates of ConvpĈnq.

Figure 5, where the black dots denote w
0
i

and the large black triangle represents ConvpC0q “ �2. In

cases (a)(b)(d), we set the number of documents d “ 1000, while in case (c) we set d “ 6.

We run our MCMC-EM algorithm 20 times with different initialization; Figure 5 displays the

estimates of ConvpĈnq as red triangles. Our simulation results demonstrate that if the SS condition is

not satisfied, even when the sample size d is fairly large (d “ 1000 in (a) and (b)), ConvpC0q cannot

be correctly recovered. However, when SS is satisfied, even with just a few samples (d “ 6 in (c)), our

algorithm can accurately recover the ground truth. Identifiability is thus determined primarily by the

scatteredness of w0
i

rather than by the number of documents d.

5.1.2 Performance under Prior Misspecification

When deriving our estimator, we choose to integrate over the mixing weights with respect to the

uniform prior. A natural question is how our estimator would perform when the true mixing weight

W
0 is stochastically generated from a distribution other than uniform.

In this simulation study we consider the following setup: k “ 3, V “ 1000, d “ 200, C
0 „

DirichletV p1q, and the number of words for each document is generated from Poissonp20000q. The true

mixing weights W0 are stochastically generated from the following distributions: (a) Dirichlet3p1q; (b)

uniformly from 10 Euclidean balls whose centers satisfy the SS condition; (c) a mixture of Dirichlet

distributions: 0.2 ˆ Dir3p10, 1, 1q ` 0.2 ˆ Dir3p0.1, 1, 1q ` 0.2 ˆ Dir3p10, 10, 1q ` 0.2 ˆ Dir3p0.1, 0.1, 1q `
0.2 ˆ Dir3p1, 2, 3q.

We compare our estimator and estimators based on other Dirichlet priors using the averaged

Relative RMSE (i.e., RMSE divided by the average of RMSE of random guesses) of Ĉn over 100

replications. The results are reported in Table 1. We can see that in all three cases, our proposed

estimator outperforms other estimators.
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Table 1: Relative RMSE (Simulation 2).

priors (1, 1, 1) (0.1, 0.1, 0.1) (10, 1, 1) (0.1, 1, 1) (0.1, 0.1, 1) (10, 1, 0.1) (1, 2, 3) (3, 3, 3)

case (a) 0.048 0.064 0.058 0.059 0.061 0.068 0.048 0.049

case (b) 0.053 0.065 0.062 0.060 0.061 0.075 0.056 0.057

case (c) 0.040 0.042 0.048 0.040 0.041 0.049 0.042 0.044

5.1.3 Convergence of the Estimation

We use the Monte Carlo simulation to show the convergence of the integrated likelihood FnˆdpCq and

the MLE Ĉn.

In the first experiment, we consider the setup where V “ 9, k “ 3, and the sample size n and

number of documents d increase simultaneously. The sample size n varies as n “ 50, 200, 400, 1600 and

d “ n{5. Let

C
0 “

»

———–

2{3 1{6 1{6
1{6 2{3 1{6
1{6 1{6 2{3

fi

���fl , W
0 “

»

———–

5{6 0 1{6 5{6 1{6 0

1{6 5{6 0 0 5{6 1{6
0 1{6 5{6 1{6 0 5{6

fi

���fl .

We generate the “noiseless” data, i.e., X “ nC1
W

1, where C
1 “ 1

3

`
C

0T ,C0T ,C0T
˘
T , the first six

columns of W1 are W0, and the rest of the columns are randomly generated from Dirkp1q. We compare

the integrated likelihood among candidate topic matrices of the form C “ 1
3

`
A

T ,AT ,AT
˘
T , where A

is
»

———–

c p1 ´ cq{2 p1 ´ cq{2
p1 ´ cq{2 c p1 ´ cq{2
p1 ´ cq{2 p1 ´ cq{2 c

fi

���fl , (13)

with c taking values from r0.5, 1s. We use the Monte Carlo method to evaluate the integrated likelihood

(4):

F̂nˆd,T pCq «
dπ

i“1

«
1

T

Tÿ

t“1

fnpxpiq|u “ Cwtq
�
,

where w1, ¨ ¨ ¨ ,wT are i.i.d. random samples from Dirkp1q and T “ 100, 000.

Figure 6 shows F̂nˆd,T pCq{maxC F̂nˆd,T pCq, the relative value of the estimated integrated likelihood.

From the plot we can see that the integrated likelihood converges quickly to the truth as both n and d

increase. That is because n is the sample size, and the integrated likelihood is the product of d terms.

As d increases, the product is more concentrated.
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Figure 6: Results of the first experiment in Section 5.1.3. The curves show the relative integrated

likelihood of “noiseless” data when n and d increase simultaneously.

In the second experiment, we consider the case where V “ k “ 3 and d “ 6. We add some noise to

the data, i.e., xpiq „ Multipn,C0
w

0piqq. In Figure 7 we plot the multinomial likelihood density function

fnpu;xpiqq (represented by the purple clusters) for the d documents and the estimated ConvpĈnq
(represented by the red triangle).

(a) n “ 60 (b) n “ 600 (c) n “ 6000 (d) n “ 60000

Figure 7: Results of the second experiment in Section 5.1.3. The likelihood density fnpu;xpiqq over

�2 for different n. The colored circles represent the values of fnpu;xpiqq: the darker the color is, the

higher the likelihood is. The black triangle is ConvpC0q; the dark red triangle is ConvpĈnq produced

by MCMC-EM. The red dots are the true means u
0piq, and the black dots are the sample means û

piq.

We observe that ConvpĈnq tends to cover these density balls while maintaining its volume small.

Recall that Ĉn “ argmaxC
±

d

i“1

≥
ConvpCq

fnpxpiq|uq
|ConvpCq|du. ConvpĈnq can be considered to be the convex

polytope that has the highest value of the averaged likelihood density, as well as the smallest convex

polytope containing the sample means û
piq. Therefore, ConvpĈnq tends to trade off its volume for

a larger coverage of the density balls. In this case, the true means u
0piq are all located on the

boundary of ConvpC0q; to fulfill the SS condition, a fraction of each circle thus lies outside ConvpC0q.
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Consequently, the averaged likelihood density over ConvpĈnq is larger than that of ConvpC0q, though

|ConvpĈnq| ° |ConvpC0q|. As proved in Theorem 4, the convergence rate of Ĉn, in the order of
a
logpn _ dq{n, is slightly slower than that of ûpiq, which is in the order of

a
1{n.

5.2 Real Applications

We next apply our algorithm to some real-world datasets. In Section 5.2.1 we compare the quantitative

performance of our algorithms, and of several baseline methods, on two text datasets: an NIPS dataset

that contains long academic documents, and the Daily Kos dataset that contains short news documents.

In Section 5.2.2 we analyze a taxi-trip dataset that contains New York City (NYC) taxi trip records,

including pick-up and drop-off locations.

5.2.1 Text Data sets

The NIPS dataset2 contains V “ 11463 unique words and d “ 5811 NIPS conference papers, with an

average document length of 1902 words. The Daily Kos dataset3 contains V “ 6906 unique words and

d “ 3430 Daily Kos blog entries, with an average document length of 136 words. As the two datasets

are formatted in document-term matrices without stop words or rarely occurring words, we do not

apply any pre-processing procedures.

We compare the performance of our algorithm (MC2-EM) with the following baseline algorithms:

Anchor Free (AnchorF) (Huang et al., 2016), Geometric Dirichlet Means (GDM) (Yurochkin and

Nguyen, 2016), and two MCMC algorithms—one based on Gibbs sampler (Gibbs) (Griffiths and

Steyvers, 2004), and the other based on a partially collapsed Gibbs sampler (pcLDA) (Magnusson

et al., 2018; Terenin et al., 2018). The hyper-parameters of the baselines are set as their default, except

that the prior of the mixing weights in Gibbs and pcLDA is set as uniform as ours. For our algorithm,

the number of MCMC samples is 100 without burn-in; the stopping criterion is that the relative change

of likelihood goes below 10´9 or that 200 EM iterations are completed, whichever comes first.

To evaluate the results, we employ the following three metrics. Topic Coherence is used to measure

the single-topic quality, defined as
∞

k

l“1

∞
v1,v2PVl

log pfreqpv1,v2q`✏{freqpv2qq, where Vl is the leading 20 words

for topic l, freqp¨q is the occurrence count, and ✏ is a small constant added to avoid numerical issues.

Similarity Count is used to measure similarity between topics (Arora et al., 2013; Huang et al., 2016);

it is obtained simply by adding up the overlapped words across Vl. Perplexity Score is used to measure
2
https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015

3
https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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goodness of fit, which is the multiplicative inverse of the likelihood, normalized by the number of

words. For the first metric, the larger the better; for the latter two, the smaller the better. (Detailed

definition of these three metrics can be found in Appendix F.)

In practice, the number of topics k is unknown. We propose a procedure to select k based on the

effective rank of the sample document-term matrix Û. Since the topic matrix C is assumed to have full

rank (Theorem 2), the true term-document matrix U has rank k. By Weyl’s inequality (Weyl, 1912),

the singular values of Û are expected to be close to those of U. Therefore we can plot the ordered

singular values of Û versus its index, and then select k by detecting the location of a significant drop

of the curve. See Appendix F for a simulation illustrating this approach.

Table 2: Experiment results on the NIPS and the Daily Kos Datasets.

NIPS Daily Kos

AnchorF GDM Gibbs pcLDA MC
2
-EM AnchorF GDM Gibbs pcLDA MC

2
-EM

Topic Coherence

k “ 5 -904 -501 -365 -355 -342 -699 -643 -752 -709 -723

k “ 10 -1954 -1083 -960 -942 -975 -1659 -1551 -1708 -1609 -1614

k “ 15 -2935 -1770 -1648 -1599 -1573 -2727 -2307 -2465 -2380 -2411

k “ 20 -3664 -2409 -2314 -2373 -2254 -3942 -3182 -3840 -3115 -3299

Similarity Counts

k “ 5 24 10 25 26 24 24 14 23 25 25

k “ 10 69 44 63 67 63 85 55 55 66 57

k “ 15 102 98 99 99 102 151 111 78 103 90

k “ 20 154 161 134 155 147 224 175 116 153 143

Perplexity Score

k “ 5 4431 2955 2256 2183 2182 2252 2252 1755 1758 1724

k “ 10 4317 2479 2067 1973 1973 2124 2004 1546 1532 1507

k “ 15 4176 2273 1975 1870 1874 2061 1912 1452 1438 1404

k “ 20 3877 2166 1918 1801 1800 2012 1791 1405 1384 1342

The results are summarized in Table 2 and Table 3, where k “ 5 and k “ 7, respectively, are the

recommended number of topics for NIPS and Daily Kos dataset, chosen by the procedure mentioned

above (the singular values plots can be found in Appendix F). The best score in each case is highlighted

in boldface. Overall, our estimator (MC2-EM) gives promising results. For all three metrics in both
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Table 3: Results on the Daily Kos dataset based on k “ 7 chosen by the singular values plot.

Daily Kos (k “ 7)

AnchorF GDM Gibbs pcLDA MC
2
-EM

Topic Coherence -998 -1007 -1095 -1090 -1053

Similarity Counts 47 36 40 40 40

Perplexity Score 2190 2147 1649 1643 1607

datasets, it gives the highest score or a score close to the highest. For topic coherence, it is the best

for k “ 5, 15, and 20 in NIPS. For similarity counts, it performs similarly to Gibbs and pcLDA in

both datasets, and in Daily Kos largely outperforms AnchorF and GDM for k “ 10, 15, and 20. For

perplexity score, it is consistently the best in Daily Kos, and in NIPS except for k “ 15; its scores are

very close to the best one given by pcLDA.

The leading 10 topic words given by MC2-EM can be found in the supplementary material.

5.2.2 New York Taxi-trip Dataset

Reinforcement learning algorithms have been widely used in solving real-world Markov decision

problems. Use of a compact representation of the underlying states, known as state aggregation,

is crucial for those algorithms to scale with large datasets. As shown below, learning a soft state

aggregation (Singh et al., 1995) is equivalent to estimating a topic model.

We say that a Markov chain X0, X1, ¨ ¨ ¨ , XT admits a soft state aggregation with k meta-states, if

there exist random variables Z0, Z1, ¨ ¨ ¨ , Zn´1 P t1, ¨ ¨ ¨ , ku such that

PpXt`1|Xtq “
kÿ

l“1

PpZt “ l|Xtq ¨ PpXt`1|Zt “ lq, (14)

for all t with probability 1 (Singh et al., 1995). Here, PpZt “ l|Xtq and PpXt`1|Zt “ lq are independent

of t and are referred to as the aggregation distributions and disaggregation distributions. Let U P RV ˆV

denote the transition matrix with Uji “ PpXt`1 “ j|Xt “ iq. Let C P RV ˆk and W P RkˆV denote

the disaggregation and aggregation distribution matrices, respectively, with Cjl “ PpXt`1 “ j|Zt “ lq
and Wli “ PpZt “ l|Xt “ iq. Then (14) can be written as U “ CW, the same as the matrix form for

topic modelling.

In this section, we consider a New York taxi-trip4 dataset. This dataset contains
∞

d

i“1 ni “ 7, 667, 792

New York City yellow cab trips in January 2019. The location information is discretized into V “ 263

4
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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taxi zones with 69 in Manhattan, 69 in Queens, 61 in Brooklyn, 43 in Bronx, 20 in Staten Island, and

1 in EWR. For each trip, we are given its pick-up and drop-off zones. On the left of Figure 8, we plot

30 example trips from the data. Following a similar analysis of this dataset from Duan et al. (2019),

we aim to merge the V “ 263 taxi zones into meta-states via soft state aggregation.

Figure 8: NYC taxi-trip data glance. Left: 30 example trips with arrows pointing from pick-up zones

to drop-off zones. Middle: the pick-up distribution. Right: the drop-off distribution.

In the middle and the right of Figure 8, we use heat maps to visualize the distributions of the trip

counts for pick-up and drop-off over V “ 263 zones. Most of the traffic concentrates in midtown and

downtown Manhattan, as well as at the JFK airport on the southeast side of Queens, for both pick-up

and drop-off.

At the top of Figure 9 we plot the estimation results for the drop-off distributions conditioned on

the meta-state, PpXt`1|Zt “ lq. We observe that the drop-off traffic is decomposed into three clusters,

(1) downtown Manhattan, (2) west midtown Manhattan, and (3) east midtown Manhattan, for each of

the three meta states (topics); this implies that people dropped off in downtown Manhattan may come

from the first meta state, and that people dropped off in midtown east and west may come from the

second and the third meta states, respectively. The JFK airport has a relatively high probability mass

in all three states but is not on the top list for any of them, which implies that people arriving at JFK

may come from anywhere in NYC.

At the bottom of Figure 9 we plot the conditional probability over the meta-state (topics), given

the pick-up zone, PpZt “ l|Xtq. The three meta states consist of (1) Staten Island, Brooklyn, Queens,

and downtown Manhattan; (2) uptown Manhattan and Bronx; and (3) east midtown Manhattan. Note

that the scales of the estimates for C and W are quite different. In specific, the sum of values over

each map of the top three is 1 since
∞

V

v“1PpXt`1 “ v|Zt “ lq “ 1, l “ 1, 2, 3, while the sum of values
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Figure 9: Estimation results for NYC taxi-trip data for k “ 3. The top three plots represent the

estimated disaggregation distributions (topic vectors) Ĉ1, Ĉ2, Ĉ3 P RV , where Ĉl “ PpXt`1|Zt “ lq.
The bottom three plots represent the estimated aggregation distributions Ŵ1,Ŵ2,Ŵ3 P RV , where

Ŵl “ PpZt “ l|Xtq.

for each zone over the bottom three maps is 1 since
∞3

l“1PpZt “ l|Xt “ vq “ 1, v “ 1, ¨ ¨ ¨ , V . The

interpretation of, say, the second meta state, is that the destinations of trips starting from uptown

Manhattan and Bronx are likely to be in midtown Manhattan. We observe that the pick-up and the

drop-off locations in the same meta state are generally close regionally; this result is reasonable, as

people tend to take a taxi for short trips, preferring less expensive public transportation for longer

trips.

The estimated disaggregation and aggregation distributions plots for k “ 9 can be found in the

supplementary material. They reveal that the traffic in the first eight meta states is within Manhattan,

which is the most heavy-traffic place in NYC, and that the partition is more fine-grained compared

with the results for k “ 3. Similar to the results for k “ 3, the pick-up and drop-off locations for each

meta state are regionally close at this time. It is interesting that such a strong regional relationship

emerges, since the data fed into our algorithm do not contain any regional information.

6 Discussion

In this paper, we introduce a new set of geometric conditions for topic model identifiability under

31



volume minimization, a weaker set than the commonly used separability conditions. For computation,

we propose a maximum likelihood estimator of the latent topics matrix, based on an integrated

likelihood. Our approach implicitly promotes volume minimization. We conduct finite-sample error

analysis for the estimator and discuss the connection of our results to existing ones. Experiments on

simulated and real datasets demonstrate the strength of our method. Our work makes an important

contribution to the general theory of estimation of latent structures arising for topic models. Some

interesting future work might include: (1) exploring a sufficient and necessary condition for model

identifiability, as the SS condition is not necessary; (2) providing explicit verifiable sufficient conditions

for the p↵, �q-SS condition — we conjecture that the p↵, �q-SS condition can be implied by the SS

condition; (3) establishing the minimax rate of convergence of topic matrix estimation, and verifying

whether the proposed estimator is (nearly) optimal. Although presented in the context of topic models,

results from our work are immediately applicable to a wide range of mixed membership models arising

from various machine learning applications. In addition, we may incorporate additional low-dimensional

structures into the model, such as (group) sparsity, to enhance the estimation accuracy.
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Supplementary Material:
Learning Topic Models: Identifiability and

Finite-Sample Analysis

The supplementary material is organized as follows.

• Section A: Discussion on identifiability related to Remark 2.1.

• Section B: Error analysis and consistency under stochastic mixing weights.

• Section C: Derivation of the MCMC-EM algorithm.

• Section D: Proofs of main theorems.

• Section E: Proofs of technical lemmas and propositions.

• Section F: Additional simulations and experiments.

• Sections G & H: Top 10 words of the latent topics returned by our algorithm for the two real

applications.

• Section I: Mined meta states for the taxi-trip dataset.
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A Discussion on Identifiability Related to Remark 2.1

Javadi and Montanari (2020) and we both follow the same principle to address the non-identifiability

issue — among all equivalent parameters that lead to the same statistical model, the one that minimizes

a chosen criterion function is used to represent the equivalence class (therefore the most parsimonious

representation). However, the adopted criterion functions are different: ours is the volume of ConvpCq,
while theirs is the sum of distances from the vertices of ConvpCq (i.e., columns of C) to the convex hull

of U. The criterion function adopted Javadi and Montanari (2020) is easier to be formulated into a

statistical estimator that minimizes an empirical evaluation of it. However, as we discussed in Section

1.2, our criterion function as the volume of a low-dimensional polytope in a high-dimensional space

does not take a simple form, which greatly complicates the estimator construction. Fortunately, we

find that maximizing a particular integrated likelihood leads to an estimator that implicitly minimizes

the volume.

Regarding the two notions of identifiability, minimizers of the two criterion functions are usually

different — except for some special cases, such as when the pure topic documents condition hold so

that vertices of ConvpCq are data points. Therefore, the two notions of identifiability are not directly

comparable. Figure S1 helps to illustrate this point. In Figure S1, the grey region is ConvpUq and

the black triangle ABC is the unique volume minimizer among all three-vertex convex polytopes

enclosing ConvpUq. However, triangle ABC is not the minimizer of the criterion function in Javadi

and Montanari (2020) with the Euclidean distance as the distance function: it is easy to verify that

when the ratio of the height to the base of triangle ABC is larger than 6, the red triangle FGH has a

smaller summation of distances to the gray region than ABC (see the caption that describes how we

construct the red triangle FGH).
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Figure S1: An example (V “ k “ 3), in which both ABC and FGH are isosceles triangles enclosing

ConvpUq (grey region). In addition, BC “ b, AD “ h, AE “ h{4, and F is the midpoint of AE.

Under the principle of using the minimizer to represent the whole equivalence class, a trivial

identifiability condition is to assume the uniqueness of the minimizer, which is exactly the identifiability

condition given in Javadi and Montanari (2020). The drawback, however, is that it is often not trivial,

if not impossible, to check whether the minimizer of a criterion function is unique. In Javadi and

Montanari (2020), uniqueness is checked only for a simple case when the vertices of ConvpCq are

data points (their Remark 3.1). In contrast, our identifiability condition, the SS condition, is a set of

explicit, verifiable conditions. Consider the example given in Figure S1. By our Theorem 2, the model

is identifiable with respect to our volume minimization. But, it is difficult to verify whether the model

is identifiable in Javadi and Montanari (2020): We do not know whether the triangle FGH, although

shown to be a better choice than triangle ABC, indeed minimizes the criterion function; even if it

does, we do not know whether it is unique.

In summary, neither definition of identifiability is more general than the other. Since the identifi-

cation condition in Javadi and Montanari (2020) is difficult to check, we are not able to provide an

example where the model is identifiable under one notion but not under the other. Due to the same

reason, it is unclear whether our SS condition implies their definition of identifiability. Although the two

notions of identifiability are not comparable, we would like to highlight that an advantage of our volume

minimization criterion is that it helps to justify the empirical success of the Latent Dirichlet Allocation

(LDA) model, because the proposed estimator is essentially the maximum likelihood estimator of C

from the LDA model with the prior of W being the uniform distribution. LDA models with general

priors can be interpreted as maximizing the data likelihood while minimizing a weighted volume where

a non-uniform volume element is integrated over the convex hull of C when defining the volume.
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B Error Analysis and Consistency under Stochastic Mixing

Weights

In this appendix, we explore cases in which w
0
1, ¨ ¨ ¨w0

d
are random i.i.d. samples from some unknown

distribution P over �k´1 (the theoretical result in the main manuscript considers the fixed mixing

weights setting). In such cases, we will apply Theorem 4 to this set of stochastic mixing weights by

showing that under a suitable set of conditions to be described below, Assumptions (A1)-(A3) hold

with high probability.

Figure S2: Examples of p↵, �q-SS distributions for k “ 3: w
7’s (blue dots) from supppPq (pink area)

are p↵, �q-SS on �k´1(the triangle).

Formally, we introduce a “stochastic” version of the SS condition on P , called p↵, �q-SS distribution,

to ensure the p↵, �q-SS condition to hold for W with high probability as long as the number of

documents d is sufficiently large.

Definition 4 (p↵, �q-SS distribution). A distribution P is an p↵,�q-SS distribution, if there exist

s distinct points in its support, w
7
1, ¨ ¨ ¨ ,w7

s
P supppPq, and some positive constants r0, c0, such that

W
7 “ tw7

i
us
i“1 is p↵, �q-SS, and for each i P rss,

Pp}w ´ w
7
i
}2 § rq • pk ´ 1q! ¨ c0 ¨ rk´1, @ 0 † r § r0.

The condition in Definition 4 is mild and can be satisfied by many commonly encountered

distributions over the simplex �k´1. For example, any distribution whose density function does not

vanish on �k´1, such as the uniform distribution and Dirichlet distributions, is p✏, C✏q-SS for any

sufficiently small ✏ ° 0, where C is some constant depends on the distribution. In addition, an p↵, �q-SS

distribution does not need to have a full support over �k´1—as long as a distribution has positive

density values around a set of p↵, �q-SS points, then it is p↵, �q-SS. See Figure S2 for some examples

of SS distributions whose supports are sparsely scattered over the simplex.
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Next, we state our assumption on the true underlying distribution P0 that generates the stochastic

mixing weights.

Assumptions. Assume the following:

(A5) w
0
1, ¨ ¨ ¨ ,w0

d
are i.i.d. random samples from an p↵, �q-SS distribution P0

, with ↵ • C 1
1

b
logpn_dq

n
`

`
log d
d

˘ 1
k´1

, where C 1
1 is a constant.

The following Theorem 8 establishes the finite-sample error bound when W is stochastically

generated.

Theorem 8. Under Assumptions (A1), (A2) and (A5), it holds with probability at least 1 ´ D1
1s{d ´

D1
2d{pn _ dqc that

DpĈn,C
0q § D1

3

c
logpn _ dq

n
` D1

4�, (B.1)

where c,D1
1, D

1
2, D

1
3, D

1
4 are positive constants. In particular, if � § C 1

2

`a
logpn _ dq{n`plog d{dq1{pk´1q˘

for some constant C 1
2, then

DpĈn,C
0q § D2

3

c
logpn _ dq

n
` D2

4

ˆ
log d

d

˙ 1
k´1

. (B.2)

Similar to the remark of Assumption (A3), in most cases the parameter � can be chosen as the

same order as ↵ in the p↵, �q-SS condition in Theorem 8. For example, according to Proposition 5, if

the support of P0 contains the point p1 ´ xijqei ` xijej, where 0 § xij † 1{k, for all 1 § i ‰ j § k,

and P0 has positive density values around these points, then P is p✏, C✏q-SS for all ✏ ° 0.

It is important to emphasize that our method does not require any prior knowledge about the

distribution P0 (albeit our theory requires it to be SS). In comparison, in most Bayesian latent variable

mixture model literature such as Tang et al. (2014), Nguyen (2015) and Wang (2019), P0 is assumed

to be known and have a full support over the simplex �k´1.

Similar to Theorem 7, we provide conditions for the estimator Ĉn to have the estimation consistency

under the double asymptotic setting by letting pn, dq Ñ 8 in a suitable manner in Theorem 8.

Assumptions. Assume the following:

(A5’) For all sufficiently small ✏ ° 0, there exist some �✏ ° 0, such that �✏ Ñ 0 as ✏ Ñ 0, and

w
0
1, ¨ ¨ ¨ ,w0

d
are i.i.d. random samples from distribution P0

that is p✏, �✏q-SS.

Theorem 9 (Estimation consistency). Under Assumptions (A1), (A2), (A4) and (A5’), we have

DpĈn,C
0q Ñ 0 in probability as pn, dq Ñ 8.
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C Derivation of the MCMC-EM Algorithm

We use an MCMC-EM algorithm to compute the MLE of the integrated likelihood function (4). First

we introduce a set of latent variables Z “ tZiju, where Zij is the topic label for xi,j . Then express the

LDA model as follows:

xi,j|C, Zij “ l „ MultiV pClq

Zij|wi „ Multikpwiq

wi|�0 „ Dirkp�0q,

where

i “ 1, . . . , d; j “ 1, . . . , n; l “ 1, . . . , k.

We fix �0 “ 1k throughout, since we consider a uniform “prior” on W. The integrated likelihood (4)

can be written as

FnˆdpC;Xq “ ppX | Cq “
ª
ppX,Z | CqdZ

9
dπ

i“1

ª «ª nπ

j“1

ppxi,j|C, ZijqppZij|wqppw|�0qdw
�
dZi¨

9
dπ

i“1

ª nπ

j“1

ppxi,j|C, ZijqppZi¨ “ z|�0qdz

where Zi¨ “ pZi1, ¨ ¨ ¨ , Zinq.

E-step Define QpC|Cp0qq as the expected value of the log likelihood function of C, with respect to

Z given X and C
p0q, where C

p0q is the estimated topic matrix obtained from the last EM iteration.

QpC|Cp0qq “ EZ|Cp0q logrFnˆdpC;X,Zqs

“ EZ|Cp0q

dÿ

i“1

nÿ

j“1

log ppxi,j|C, Zijq ` Const

We ignore the constant term in the following derivation. Since the marginal probability ppZi¨ “ z|�0q
is infeasible, we apply MCMC to and iteratively sample Z “ tZijui,j and W “ twiudi“1 as follows:

Zij|C, xi,j “ v „ Multik

˜
cvlwli∞
k

l“1 cvlwli

¸

l“1,...,k

wi|Zi¨ „ Dirk

˜
�0l `

nÿ

j“1

1pZij “ lq
¸

l“1,...,k

.
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We approximate QpC|Cp0qq function by the samples of Z,

QpC|Cp0qq “ EZ|Cp0q

Vÿ

v“1

kÿ

l“1

log cvl

«
dÿ

i“1

nÿ

j“1

1pZij “ l, xi,j “ vq
�

« 1

T

b`Tÿ

t“b`1

Vÿ

v“1

kÿ

l“1

«
log cvl

dÿ

i“1

nÿ

j“1

1pZptq
ij

“ l, xi,j “ vq
�
.

where cvl is the pv, lq-th element of C. Here the Zptq
ij

denotes the sample of Zij at t-th MCMC iteration,

b denotes the burn-in period and T denotes the number of the samples after burn-in.

M-step We maximize the approximated QpC|Cp0qq with respect to C by the following closed-form

solution:

cvl “
∞

i,j,t
1pZptq

ij
“ l, xi,j “ vq

∞
i,j,t
1pZptq

ij
“ lq

.

The algorithm of the E-step is given in Algorithm 1. Here we use, Z,Z P RdˆV ˆk, to denote

the counts of the samples of Z. Specifically, Z ri, v, ls “ ∞
j
1pZptq

ij
“ l, xi,j “ vq is the count of Z at

t-th MCMC iteration, and Zri, v, ls “ ∞
b`T

t“b`1

∞
j
1pZptq

ij
“ l, xi,j “ vq is the sum of count of Z over T

iterations.

Algorithm 1: The E-step of the MCMC-EM Algorithm
Input: C;

Zr:, :, :s – 0dˆV ˆk; ô Initialize Z

Wr:, is – Dirkp1q, i “ 1, ¨ ¨ ¨ , d; ô Wr:, is is the i-th column of W

for t “ 1, ¨ ¨ ¨ , b, b ` 1, ¨ ¨ ¨ , b ` T do

Z r:, :, :s – 0dˆV ˆk; ô Initialize Z

for i “ 1, ¨ ¨ ¨ , d do

for v “ 1, ¨ ¨ ¨ , V do

p – Crv, :s d Wr:, is ô Crv, :s is the v-th row of C

ô d denotes an element-wise multiplication

p – p{∞k

l“1 prls ô prls is the l-th element of p

Z ri, v, :s – Multipn “ xpiq
v , p “ pq; ô xpiq

v is the count of v-th word in the i-th doc
Wr:, is – Dirkp∞

v
Z ri, v, :s ` �0q;

if t ° b then

Z – Z ` Z ;

Z – 1
T
Z;

Output: Z.
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Empirically, since Z and Z are sparse, to save the computation space, we recommend to use

two 2-dim arrays instead, namely C “ ∞
d

i“1 Zri, :, :s and W “ ∞
V

v“1 Zr:, v, :s, and C ,W can be used

efficiently in updating C and W, respectively. In addition, the operations in the two nested for-loops

over i and v in Algorithm 1 can be paralleled, as they are independent with each other.

The full algorithm is given in Algorithm 2.

Algorithm 2: The MCMC-EM Algorithm
Input: Data X “ txpiqud

i“1; number of topics k;

Crl, :s – DirV p1q, l “ 1, ¨ ¨ ¨ , k; ô Initialize C

repeat

Obtain Z using Algorithm 1; ô E-step

Crv, ls – ∞
d

i“1 Zri, v, ls{∞V

v“1

∞
d

i“1 Zri, v, ls,
v “ 1, ¨ ¨ ¨ , V, l “ 1, ¨ ¨ ¨ k; ô M-step

until convergence;

Wrl, is – ∞
V

v“1 Zri, v, ls{∞k

l“1

∞
V

v“1 Zri, v, ls,
l “ 1, ¨ ¨ ¨ k, i “ 1, ¨ ¨ ¨ , d; ô Estimate W

Output: C;W.
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D Proofs of Main Theorems

D.0 Notation

For a vector x, we denote by }x}2 “
a∞

i
x2
i

its L2 norm and }x}1 “ ∞
i
|xi| its L1 norm. Write x • a

to indicate that x is element-wisely no smaller than a. In particular, 1k denotes the all-ones vector of

length k, and ef the f -th column of the k ˆ k identity matrix Ik.

For a matrix Apˆq, Api, :q and Ap:, jq are i-th row and j-th column vectors, respectively. We

use �maxpAq to denote the square root of the largest eigenvalue of AT
A, and �`

minpAq the square

root of the smallest nonzero eigenvalue of AT
A. We denote by }A}2 “ �maxpAq the spectral norm

and }A}1 “ maxq
j“1

∞
p

i“1 |Aij| the L1 matrix norm. Some useful facts we will use in the proof: (i)

�maxpABq § �maxpAq�maxpBq; (ii) �`
minpABq • �`

minpAq�`
minpBq; (iii) }A}2 § ?

q}A}1; (iv) if p • q

and A
T
A is invertible, then �maxppAT

Aq´1
A

T q “ 1{�`
minpAq.

We denote by �k´1 “ tx P Rk : 0 § xi § 1,
∞

k

i“1 xi “ 1u the standard pk ´ 1q-dimensional simplex.

For a matrix Apˆq, let

ConvpAq “ tx P Rp : x “ A�,� P �q´1u

conepAq “ tx P Rp : x “ A�,� • 0u

affpAq “ tx P Rp : x “ A�,�T
1q “ 1u

denote the convex polytope, the simplicial cone and the affine space generated by the q columns of A,

respectively.

For any cone C, let C˚ “ tx : xT
y • 0, @y P Cu denote its dual cone. In particular, let K “ tx P

Rk : }x}2 § x
T
1ku. The boundary of K is denoted by bdK “ tx P Rk : }x}2 “ x

T
1ku, and its dual

cone takes the form as K˚ “ tx P Rk : xT
1k •

?
k ´ 1}x}2u. Some useful facts of dual cones from

Donoho and Stodden (2004): (i) conepAq˚ “ tx P Rp : xT
A • 0u; (ii) if A and Ā are convex cones,

and A Ñ Ā, then Ā˚ Ñ A˚.

The true C, W, and U are denoted by C
0,W0,U0, respectively; Ĉn is the estimator obtained

from FnˆdpC;Xq. Ŵn is a valid estimator for the mixing matrix in Rkˆd which we will construct in

Lemma D.3 such that Ŵn • 0, ŴT

n
1k “ 1d. ✏n “ C0

b
logpn_dq

n
is a small quantity used to measure

the convergence rates. Here C0 in ✏n is a positive constant independent of n and d.

Throughout, we use symbols like C, C 1, C2, C3, C˚, Ci, C 1
i
, i “ 1, 2, . . . , and D1, D2 as generic

notations for large absolute numbers, whose exact values may vary from part to part. Unless stated

otherwise, these constants are all independent of n and d.
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D.1 Proof of Theorem 2

The following lemmas are useful in the proof of Proposition 10. Their proofs are given in Appendix E.

Lemma D.1. For a full column rank matrix C P RV ˆk
,

|ConvpCq| “
a
detpCTCq

h ¨ pk ´ 1q! ,

where h is the perpendicular distance from the origin to the hyperplane affpCq. In particular, we have

|ConvpCq|
|ConvpC̄q| “

a
detpCTCqa
detpC̄T C̄q

,

if affpCq “ affpC̄q.

Lemma D.2. If W P Rkˆd
satisfies Condition (S1), then W is of rank k (full row rank), and

�`
minpWq • 1

k
.

We first show that Condition (S1) guarantees that ConvpCq has the minimal volume.

Proposition 10. If W satisfies Condition (S1) and C is of rank k (full column rank), then |ConvpC̄q| •
|ConvpCq| must hold for any other set of parameters pC̄,W̄q satisfying CW “ C̄W̄.

Proof of Proposition 10. By Lemma D.2, WW
T P Rkˆk is invertible. Define

Bkˆk :“ W̄W
T pWW

T q´1.

Then C “ C̄B. Note that

B
T
1k “ pWW

T q´1
WW̄

T
1k “ pWW

T q´1
W1d,

which is the solution of the least square (LS) problem minxPRk }1d ´ x
T
W}2. Since }1d ´ 1

T

k
W}2 “ 0

achieves the minimum, the unique LS solution is given by 1k, i.e.,

B
T
1k “ 1k. (D.3)

Thus, columns of C̄ are convex combination of columns of C, which implies affpCq “ affpC̄q. By

Lemma D.1, we have

|ConvpC̄q|
|ConvpCq| “

d
detpC̄T C̄q
detpCTCq “

d
detpC̄T C̄q

detpBT C̄T C̄Bq “ 1

| detpBq| .
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Therefore, it suffices to show

| detpBq| § 1. (D.4)

We first show that for any row of B, we have Bpf, :q P conepWq˚ Ñ K. Since CW “ C̄BW “ C̄W̄

and C̄
T
C̄ P Rkˆk is invertible, we have

BW “ pC̄T
C̄q´1

C̄
T
C̄BW “ pC̄T

C̄q´1
C̄

T
C̄W̄ “ W̄.

Because W̄ • 0kˆd, we obtain that, for any row of B, Bpf, :q P Rk,

B
T pf, :qW “ W̄

T pf, :q • 0.

That is, Bpf, :q P conepWq˚, which consequently implies that

}Bpf, :q}2 § Bpf, :qT1k. (D.5)

Combining (D.4), (D.5) and the Hadamard Inequality and Inequality of Arithmetic and Geometric

means (AM-GM), we can show (D.4) as follows:

| detpBq| Hadamard
1
s§

kπ

f“1

}Bpf, :q}2
(D.5)
§

kπ

f“1

B
T pf, :q1k

AM´GM§
˜∞

k

f“1 B
T pf, :q1k

k

¸k

“
ˆ∞

B
T
1k

k

˙k

(D.3)“ 1. (D.6)

Next, we give the proof of Theorem 2.

Proof of Theorem 2. Suppose CW “ C̄W̄ and |ConvpC̄q| § |ConvpCq|. Following the notation of

the proof of Proposition 10, we aim to show that B is a permutation matrix.

To complete the proof, we only need to verify the following three conditions on B.

(1.i) Any row of B belongs to bdK
ì

conepWq˚, i.e.,

Bpf, :q P t�es : s “ 1, ¨ ¨ ¨ , k, � • 0u, @f P rks.

(1.ii) Any row sum of B is one, which, along with (1.i), implies

Bpf, :q P t�es : s “ 1, ¨ ¨ ¨ , k, � • 0u, @f P rks.
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(1.iii) detpBq “ 1. Along with the previous two conditions, it implies

tBp1, :q,Bp2, :q, ¨ ¨ ¨ ,Bpk, :qu “ te1, e2, ¨ ¨ ¨ , eku;

that is, B must be a permutation matrix.

First, by the condition |ConvpC̄q| § |ConvpCq| and Proposition 10, we have |ConvpC̄q| “
|ConvpCq|, or equivalently detpBq “ 1, i.e., (1.iii) holds.

Consequently, all inequalities in (D.6) become equalities. Specifically,

}Bpf, :q}2 “ B
T pf, :q1k “ 1, @f P rks, (D.7)

which implies that the row sums of B are all 1’s, i.e., (1.ii) holds.

The above equation (D.7) also implies that Bpf, :q is on the boundary of K, Bpf, :q P bdK. Together

with the fact that Bpf, :q is in conepWq˚ (proved in the proof of Proposition 10), it implies that (1.i)

holds.

D.2 Proof of Theorem 4

The sketch of this proof is as follows:

Step 1 : We first show that with high probability, all true word frequency vectors, columns of U0,

are close to the estimated convex polytope ConvpĈnq. More specifically, we show in Lemma D.3 that

there exists a k ˆ d column-stochastic matrix 5
Ŵn such that

U
0 “ C

0
W

0 “ ĈnŴn ` En (D.8)

and maxi }Enp:, iq}2 § C✏n.

Step 2 : We then work with a subset of s documents. Let W
0
1 P Rkˆs be the collection of the s

columns of W0 that are p↵, �q-SS; let Ŵn1 and En1 be the corresponding sub-matrices of Ŵn and En,

respectively. As a consequence of (D.8), we have

C
0
W

0
1 “ ĈnŴn1 ` En1. (D.9)

We can upper bound the estimation error by the summation of the following two terms:

DpĈn,C
0q § }En1W

0
1
T pW0

1W
0
1
T q´1}2 ` min

⇧

?
k}B ´ ⇧}2, (D.10)

5
We say a matrix is column-stochastic, if its entries are non-negative and columns sum to one.

48



where B “ Ŵn1W
0
1
T pW0

1W
0
1
T q´1. By Lemma D.3, the first term is upper bounded.

Step 3 : We show that for all f “ 1, ¨ ¨ ¨ , k, Bpf, :q satisfies:

Bpf, :q P rconepW0
1q˚sC1✏n

£
rbdKsC1✏n (D.11)

Then by the definition of p↵, �q-SS, Bpf, :q’s are all close to indicator vectors. Using Lemma D.4 and

letting ↵ “ C1✏n, we can prove that the matrix B is close to a permutation matrix. So the second

term in (D.10) can be bounded. Putting all the steps together, we obtain that with high probability,

DpĈn,C
0q § D1

c
logpn _ dq

n
` D2�.

In the following, we provide the details of the above-mentioned steps.

Proof of Theorem 4.

Step 1 : The following lemma is useful; its proof is given in Appendix E.

Lemma D.3. With probability at least p1 ´ 3{pn _ dqcqd, there exists a matrix Ŵn P Rkˆd
satisfying

Ŵn • 0, ŴT

n
1k “ 1d such that

U
0 “ C

0
W

0 “ ĈnŴn ` En

and each column of En satisfies

}Enp:, iq}2 § C✏n (D.12)

for all i “ 1, ¨ ¨ ¨ , d, where c, C ° 0 are constants independent of n and d.

Step 2 : By Lemma D.3, we have

C
0
W

0
1 “ ĈnŴn1 ` En1,

and }En1}2 § C
?
s✏n.

Let B “ Ŵn1W
0
1
T pW0

1W
0
1
T q´1. Then,

C
0 “ ĈnŴn1W

0
1
T pW0

1W
0
1
T q´1 ` En1W

0
1
T pW0

1W
0
1
T q´1 “ ĈnB ` Ẽn1 (D.13)
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where Ẽn1 “ En1W
0
1
T pW0

1W
0
1
T q´1. We can bound }Ẽn1}2 by

}Ẽn1}2 § r�`
minpW0

1qs´1}En1}2 § k ¨ C?
s✏n “ C 1?s✏n.

Then, we have

DpĈn,C
0q “ min

⇧
}Ĉn⇧ ´ C

0}2 “ min
⇧

}Ĉn⇧ ´ ĈnB ´ Ẽn1}2

§ min
⇧

}Ĉn}2}B ´ ⇧}2 ` }Ẽn1}2

§ min
⇧

?
k}B ´ ⇧}2 ` }Ẽn1}2

Step 3 : Now, it suffices to show that for some permutation matrix ⇧,

}B ´ ⇧}2 § C2�.

We will use the following Lemma D.4 to prove the above inequality. The proof of Lemma D.4 is

deferred to Appendix E.

Lemma D.4. For a matrix B P Rkˆk
, if it satisfies the following conditions

(2.i) B
T
1k “ 1k;

(2.ii) }B}2 § M ;

(2.iii) any row of B belongs to rbdKs↵ìrconepW0
1q˚s↵, so that

Bpf, :q P t�el ` ✏ : l “ 1, ¨ ¨ ¨ , k, � • 0, }✏}2 § ��u, f “ 1, ¨ ¨ ¨ , k;

then there exists a permutation matrix ⇧, such that

}B ´ ⇧}2 § C3M�,

where C3
is a constant independent of n and d.

Next, we verify the conditions in Lemma D.4.

Firstly, the proof of (2.i) BT
1k “ 1k is similar to the proof of Proposition 10 equation (D.3), so we

omit it here.

Secondly, (2.ii) holds because

}B}2 § �maxpŴn1qr�`
minpW0

1qs´1 § ?
s}Ŵn1}1r�`

minpW0
1qs´1 § ?

s ¨ k “ M.

Thirdly, to prove (2.iii), it suffices to verify the followings hold for any f P rks,
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1. Bpf, :q P rconepW0
1q˚sC1✏n , i.e.,

Bpf, :qTW0
1 • ´C1✏n}Bpf, :q}21s. (D.14)

2. Bpf, :q P rbdKsC1✏n , i.e.,

}Bpf, :q}2 ´ Bpf, :qT1k § C1✏n}Bpf, :q}2, (D.15)

}Bpf, :q}2 ´ Bpf, :qT1k • ´C1✏n}Bpf, :q}2, (D.16)

Now, we proceed to verify (D.14), (D.15) and (D.16). The following lemma is useful; its proof is

given in Appendix E.

Lemma D.5.

| detpĈT

n
Ĉnq| § p1 ` C 1✏nq| detpC0T

C
0q| (D.17)

where C 1 ° 0 is a constant.

Since

detpĈT

n
Ĉnq “ detpB´T pC0 ´ Ẽn1qT pC0 ´ Ẽn1qB´1qq

“ | detpB´1q|2 detpC0T
C

0 ´ C
0T
Ẽn1 ´ Ẽ

T

n1C
0 ` Ẽ

T

n1Ẽn1q

“ | detpB´1q|2 detpC0T
C

0q det pI ´ Fnq , (D.18)

where Fn “ pC0T
C

0q´1
C

0T
Ẽn1 ` pC0T

C
0q´1

Ẽ
T

n1C
0 ´ pC0T

C
0q´1

Ẽ
T

n1Ẽn1. Then }Fn}2 § C5✏n. We

order the singular values �i of I ´ Fn as �1 § �2 § ¨ ¨ ¨ § �k. By Weyl’s inequality in matrix theory

(Weyl, 1912), |1 ´ �i| § }Fn}2 § C5✏n for all i “ 1, ¨ ¨ ¨ , k. Therefore

det pI ´ Fnq “
kπ

i“1

�i • p1 ´ C5✏nqk • 1 ´ kC5✏n. (D.19)

By (D.18) and (D.19), we have

detpĈT

n
Ĉnq • | detpB´1q|2 detpC0T

C
0q p1 ´ C 1

5✏nq (D.20)

By (D.17) and (D.20), we have

| detpBq| • 1 ´ C6✏n. (D.21)

• Verify (D.14).

Right-multiplying W
0 on both sides of (D.13), we have

ĈnŴn1 ` En1 “ C
0
W

0
1 “ ĈnBW

0
1 ` En1W

0
1
T pW0

1W
0
1
T q´1

W
0
1.
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Then, left-multiply pĈT

n
Ĉnq´1

Ĉ
T

n
on both sides of the above equation:

Ŵn1 ` pĈT

n
Ĉnq´1

Ĉ
T

n
En1 “ BW

0
1 ` pĈT

n
Ĉnq´1

Ĉ
T

n
En1W

0
1
T pW0

1W
0
1
T q´1

W
0
1

BW
0
1 “ Ŵn1 ` pĈT

n
Ĉnq´1

Ĉ
T

n
En1pI ´ W

0
1
T pW0

1W
0
1
T q´1

W
0
1q

• ´C7✏n, (D.22)

The last inequality holds because Ŵn1 • 0 and

}pĈT

n
Ĉnq´1

Ĉ
T

n
En1pI ´ W

0
1
T pW0

1W
0
1
T q´1

W
0
1q}F

§
?
k}pĈT

n
Ĉnq´1

Ĉ
T

n
En1pI ´ W

0
1
T pW0

1W
0
1
T q´1

W
0
1q}2

§
?
k ¨ }pĈT

n
Ĉnq´1

Ĉ
T

n
}2 ¨ }En1}2 ¨ }I ´ W

0
1
T pW0

1W
0
1
T q´1

W
0
1}2

§
?
k ¨ r�`

minpĈnqs´1 ¨ C?
s✏n ¨ 1

§C 1?s✏n, (D.23)

where in the last inequality we use the fact that �`
minpĈnq is lower-bounded by a positive constant.

That is because by (D.20),

detpĈT

n
Ĉnq • | detpB´1q|2 detpC0T

C
0q p1 ´ C 1

5✏nq

• }B}´2k
2 detpC0T

C
0q p1 ´ C 1

5✏nq

• M´2k detpC0T
C

0q p1 ´ C 1
5✏nq

• detpC0T
C

0q
2 ¨ M2k

(D.24)

At the same time,

detpĈT

n
Ĉnq § }Ĉn}2pk´1q

2 r�`
minpĈnqs2 § kk´1r�`

minpĈnqs2 (D.25)

Combining (D.20) and (D.25), we get a lower bound for �`
minpĈnq.

• Verify (D.15).

Since 1
T

k
W

0
1 “ 1

T

s
, by (D.22), we have

pB ` C7✏n1kˆkqW0
1 “ BW

0
1 ` C7✏n1kˆs • 0, (D.26)

which implies that for any row of B, Bpf, :q,

pBpf, :q ` C7✏n1kq P conepW0
1q˚ “ tx : xT

W
0
1 • 0u Ñ K “ tx : }x}2 § x

T
1u,

52



where we use the condition (S1) in the definition of SS condition. pBpf, :q`C7✏n1kq P tx : }x}2 §
x
T
1u implies that

}Bpf, :q ` C7✏n1k}2 § pBpf, :q ` C7✏n1kqT1k

}Bpf, :q}2 § Bpf, :qT1k ` C8✏n. (D.27)

• Verify (D.16).

By Hadamard’s inequality, Inequality of AM-GM, and (D.21), we have
˜
1

k

kÿ

f“1

}Bpf, :q}2
¸k

AM´GM•
kπ

f“1

}Bpf, :q}2
Hadamard

1
s• | detpBq|

(D.21)
• 1 ´ C6✏n. (D.28)

Consequently,

1

k

kÿ

p“1

}Bpp, :q}2 • p1 ´ C6✏nq1{k

1

k

kÿ

p“1

}Bpp, :q}2 • p1 ´ C6✏nq1{k ¨ 1
k

kÿ

p“1

rBpp, :qT1ks by B
T
1k “ 1k

kÿ

p“1

}Bpp, :q}2 •
kÿ

p“1

rBpp, :qT1ks ´ C9✏n

}Bpf, :q}2 `
kÿ

p‰f

}Bpp, :q}2 • Bpf, :qT1k `
kÿ

p‰f

Bpp, :qT1k ´ C9✏n

}Bpf, :q}2 • Bpf, :qT1k ´
kÿ

p‰f

r}Bpp, :q}2 ´ Bpp, :qT1ks ´ C9✏n

}Bpf, :q}2 • Bpf, :qT1k ´ pk ´ 1qC8✏n ´ C9✏n by (D.27)

• Bpf, :qT1k ´ C10✏n, @f “ 1, ¨ ¨ ¨ , k (D.29)

• Check }Bpf, :q}2 is lower-bounded.

Now we show that, }Bpf, :q}2 is lower-bounded, using Inequality of AM-GM and (D.27),

}Bpf, :q}2
˜

1

k ´ 1

ÿ

p‰f

}Bpp, :q}2
¸

k´1
AM´GM• }Bpf, :q}2

π

p‰f

}Bpp, :q}2

}Bpf, :q}2
˜∞

p‰f
rBpp, :qT1 ` C8✏ns

k ´ 1

¸
k´1

• }Bpf, :q}2
π

p‰f

}Bpp, :q}2 by pD.27q

}Bpf, :q}2
ˆ
k ´ }Bpf, :q}2 ` kC8✏n

k ´ 1

˙
k´1

• 1 ´ C6✏n by (D.28)
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p1 ` C 1
8✏nq}Bpf, :q}2

ˆ
k

k ´ 1

˙
k´1

• 1 ´ C6✏n

}Bpf, :q}2 • e´1p1 ´ C2
8✏nq by

ˆ
1 ` 1

x

˙
x

§ e

• e´1{2 @f “ 1, ¨ ¨ ¨ , k. (D.30)

• Now we put all the previous derivations together. From (D.26) and (D.30), we have (D.14) holds,

Bpf, :qTW0
1 • ´C7✏n1s • ´2e ¨ C7}Bpf, :q}2✏n1s.

Similarly, from (D.27), (D.29) and (D.30), we have

Bpf, :qT1k ´ 2e ¨ C10}Bpf, :q}2✏n § }Bpf, :q}2 § Bpf, :qT1k ` 2e ¨ C8}Bpf, :q}2✏n.

Therefore, (D.15) and (D.16) hold.

D.3 Proof of Theorem 8

Proof. This proof consists of two major steps:

Step 1 : We apply Chernoff bound to show that with probability at least 1 ´ D1
1s{d, for any w

7
i
,

there exists at least one sample w
1
piq, such that

}w1
piq ´ w

7
i
}2 § rd, @i “ 1, ¨ ¨ ¨ , s,

where rd “
`
log d
d

˘ 1
k´1 .

Step 2 : Let W
0
1 “ tw1

piqusi“1, Ŵn “ tŵnpiqudi“1, and B “ Ŵn1W
0T
1 pW0

1W
0T
1 q´1. We show with

probability at least 1 ´ D1
2d{pn _ dqc, for all f “ 1, ¨ ¨ ¨ , k, Bpf, :q satisfies:

Bpf, :q P rconepW0
1q˚sC1

1✏n
£

rbdKsC1
1✏n (D.31)

Then using the conclusion from Theorem 4, we get the desired bound.

In the following, we provide the details of the above-mentioned steps.
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Step 1 : Let Xi denote a random variable representing the number of documents falls into the ball

Bpw7
i
, rdq (rd § r0) in a sample of size d drawn from P ,

Xi „ Binomialpd, piq

where pi • pk ´ 1q! ¨ c0 ¨ rk´1
d

. Since P is an p↵, �q-SS distribution, we have

pi “ P
´

}w ´ w
7
i
}2 § rd

¯
• pk ´ 1q! ¨ c0 ¨ rk´1

d
“ C3

log d

d
(D.32)

According to Chernoff bound, for 0 † � † 1,

P pXi § p1 ´ �qC3 log dq
(D.32)

§ P pXi § p1 ´ �qdpiq
Chernoff§ exp

ˆ
´�2dpi

2

˙
(D.32)

§ exp
`
´�2C3 log d{2

˘
.

Therefore, when d is large enough, such that for some 0 † �0 † 1, p1 ´ �0qC3 log d • 1
2 , we have

P
ˆ
Xi § 1

2

˙
§ exp

`
´�20C3 log d{2

˘
“ D1

1

1

d
, @i “ 1, ¨ ¨ ¨ , s

Then, we can bound the probability of the event
 
mini“1,¨¨¨ ,s Xi § 1

2

(
,

P

ˆ
min

i“1,¨¨¨ ,s
Xi § 1

2

˙
§

sÿ

i“1

P

ˆ
Xi § 1

2

˙
§ D1

1

s

d
.

In other words, with probability at least 1 ´ D1
1s{d, there exist s different samples w1

p1q, ¨ ¨ ¨ ,w1
psq, such

that }w1
piq ´ w

7
i
}2 § rd.

Step 2 : Denote W
0
1 “ tw1

piqusi“1, W0 “ pW0
1,W

0
2q P Rkˆd, and Ŵn “ tŵnpiqudi“1. We have

C
0
W

0 “ ĈnŴn ` En

Therefore,

C
0
W

0
1 “ ĈnŴn1 ` En1, W

0
1 “ W

7 ` E
1
d
, (D.33)

where Ŵn1 and En1 are the collections of the corresponding columns from Ŵn and En respectively.

Moreover, }En1p:, jq}2 § C3✏n and }E1
d
p:, jq}2 § rd, for all j “ 1, ¨ ¨ ¨ , s.

Now we show that rconepW0
1q˚s↵´rd “ tx : xT

W
0
1 • ´p↵ ´ rdq}x}2u Ñ rconepW7q˚s↵ “ tx :

x
T
W

7 • ´↵}x}2u. For any x P Rk and x
T
W

0
1 • ´p↵ ´ rdq}x}2,

´↵}x}2 § x
T
W

0
1 ´ rd}x}2 § x

T
W

0
1 ` x

T pW7 ´ W
0
1q “ x

T
W

7,

where in the second inequality we apply (E.78) and Cauchy–Schwarz inequality. Therefore, by definition,

if W7 is p↵, �q-SS, W0
1 is p↵ ´ rd, �q-SS.
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Back to our case, since W7 is pC 1
1

b
logpn_dq

n
`rd, �q-SS, W0

1 is pC 1
1

b
logpn_dq

n
, �q-SS. Then by Theorem

4, we obtain that with probability at least 1 ´ D1
1s{d ´ D1

2d{pn _ dqc,

DpĈn,C
0q § D1

3

c
logpn _ dq

n
` D1

4�.
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E Proofs of Technical Lemmas and Propositions

In this section, we provide proofs of propositions and all technical lemmas. From now on, we use u
0

to denote the true word frequency; û the the sample word frequency; ũ “ Ĉnŵ the estimated word

frequency in ConvpĈnq. We use the superscript piq to denote the i-th document. For example, u0piq

denotes the true word frequency of the i-th document and x
piq denotes the observation of the i-th

document. We write U
0 “ C

0
W

0 “ pu0p1q, ¨ ¨ ¨ ,u0pdqq P RV ˆd and Ũn “ ĈnŴn “ pũp1q, ¨ ¨ ¨ , ũpdqq P
RV ˆd.

We use f piqpuq as a shorthand notation of fnpu;xpiqq. By Pinsker’s inequality, we have

f pjqpuq
f pjqpûpjqq § exp

´
´n

2
}ûpjq ´ u}22

¯
, (E.34)

for any u P �V ´1. By the reverse Pinsker’s inequality (Götze et al., 2019), we have

f pjqpuq
f pjqpûpjqq • exp

`
´C6n}ûpjq ´ u}22

˘
, (E.35)

where C6 “ pminiPrV s uiq´1 depends on the minimum element of u.

E.1 Proof of Lemma D.1

Proof. Write C “ pc1, ¨ ¨ ¨ , ckq P RV ˆk and C̃ “ pc̃1, ¨ ¨ ¨ , c̃k´1q P RV ˆpk´1q, where c̃j “ cj ´ ck with

j P rk ´ 1s. Write

G “ C
T
C, G̃ “ C̃

T
C̃.

The volume of the k-dimensional parallelepiped spanned by c1, ¨ ¨ ¨ , ck P RV is given by
a
detpGq

(Boyd and Vandenberghe, 2004). Therefore
b
detpG̃q “ pk ´ 1q!|ConvpCq|, since

b
detpG̃q measures

the volume of the pk ´ 1q-dimensional parallelepiped spanned by columns of C̃ in RV , which is pk ´ 1q!
times larger than the volume of ConvpCq. It suffices to show that

h2 detpG̃q “ detpGq.

Denote by v the perpendicular vector to affpCq, represented as

v “
k´1ÿ

j“1

tjpcj ´ ckq ` ck,

so that

pcj ´ ckqTv “ 0 and c
T

k
v “ }v}2 “ h2.
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Further, we construct a system of k linear equations for k unknowns, t1, ¨ ¨ ¨ , tk´1, h2,
k´1ÿ

j“1

tj c̃
T

i
c̃j “ ´c̃

T

i
ck, i “ 1, ¨ ¨ ¨ , k ´ 1 (E.36)

k´1ÿ

j“1

tj c̃
T

j
ck ´ h2 “ ´c

T

k
ck. (E.37)

By Cramer’s rule, we have

h2 “ 1

det

¨

˚̊
˚̊
˚̊
˝

»

——————–

0
...G̃

0

c̃
T

1 ck ¨ ¨ ¨ c̃
T

k´1ck ´1

fi

������fl

˛

‹‹‹‹‹‹‚

det

¨

˚̊
˚̊
˚̊
˝

»

——————–

´c̃
T

1 ck

...G̃

´c̃
T

k´1ck

c̃
T

1 ck ¨ ¨ ¨ c̃
T

k´1ck ´c
T

k
ck

fi

������fl

˛

‹‹‹‹‹‹‚

Then, we see that for the denominator,

det

¨

˚̊
˚̊
˚̊
˝

»

——————–

0
...G̃

0

c̃
T

1 ck ¨ ¨ ¨ c̃
T

k´1ck ´1

fi

������fl

˛

‹‹‹‹‹‹‚
“ ´ detpG̃q

The numerator is

´ det

¨

˚̊
˚̊
˚̊
˝

»

——————–

c̃
T

1 c̃1 ¨ ¨ ¨ c̃
T

1 c̃k´1 c̃
T

1 ck

... . . . ...
...

c̃
T

k´1c̃1 ¨ ¨ ¨ c̃
T

k´1c̃k´1 c̃
T

k´1ck

c̃
T

1 ck ¨ ¨ ¨ c̃
T

k´1ck c
T

k
ck

fi

������fl

˛

‹‹‹‹‹‹‚

add last column to othersùùùùùùùùùùùùùùùù ´ det

¨

˚̊
˚̊
˚̊
˝

»

——————–

c̃
T

1 c1 ¨ ¨ ¨ c̃
T

1 ck´1 c̃
T

1 ck

... . . . ...
...

c̃
T

k´1c1 ¨ ¨ ¨ c̃
T

k´1ck´1 c̃
T

k´1ck

c
T

1 ck ¨ ¨ ¨ c
T

k´1ck c
T

k
ck

fi

������fl

˛

‹‹‹‹‹‹‚

add last row to othersùùùùùùùùùùùùùù ´ det

¨

˚̊
˚̊
˚̊
˝

»

——————–

c
T

1 c1 ¨ ¨ ¨ c
T

1 ck´1 c
T

1 ck

... . . . ...
...

c
T

k´1c1 ¨ ¨ ¨ c
T

k´1ck´1 c
T

k´1ck

c
T

1 ck ¨ ¨ ¨ c
T

k´1ck c
T

k
ck

fi

������fl

˛

‹‹‹‹‹‹‚
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“ ´ detpGq.

E.2 Proof of Lemma D.2

Proof. We will show that for any x P Rk,x ‰ 0, there exists � P Rd such that

x
T pW�q
}x}2

• 1

k
, and }�}2 § 1. (E.38)

Therefore,
}xT

W}2
}x}2

• 1

}�}2
x
T
W�

}x}2
• 1

k
.

In the following, we will find � satisfying (E.38).

First, decompose x as

x “ �

k
1k ` �,

for some � P R and � P Rk such that �T
1k “ 0.

Second, let

y “ signp�q
k

¨ 1k ` 1a
kpk ´ 1q}�}2

¨ �

where signp¨q is the sign function. Next we verify that

x
T
y

}x}2
• 1

k
.

This is because

x
T
y “ |�|

k
` 1a

kpk ´ 1q
}�}2

}x}2 “
c

�2

k
` }�}22 §

$
’&

’%

|�| if |�| •
b

k

k´1}�}2
b

k

k´1}�}2 if |�| †
b

k

k´1}�}2
,

and

x
T
y

}x}2
•

$
’&

’%

1
k

` 1?
kpk´1q

}�}2
|�| if |�| •

b
k

k´1}�}2
|�|

}�}2
?
k´1
k

?
k

` 1
k

if |�| †
b

k

k´1}�}2.

Third, we verify that rsignp�q ¨ ys P r�k´1
ì

K˚s. This is because

rsignp�q ¨ ysT1k “ 1

k
1
T

k
1k “ 1,
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}y}2 “
d

1

k
` 1

kpk ´ 1q “ 1?
k ´ 1

.

Since K˚ Ñ conepWq, we have

r�k´1
£

K˚s Ñ r�k´1
£

conepWqs “ tx P �k´1 : x “ W�,� • 0u “ ConvpWq.

Therefore, rsignp�q ¨ ys P ConvpWq, meaning that there exists �1 P �d´1 such that

y “ signp�q ¨ W�1 “ Wrsignp�q�1s “ W�,

and

}�}2 “ }�1}2 § �1T
1k “ 1.

E.3 Proof of Lemma D.3

We arrange the proof as Lemma E.1 and Lemma E.2. First, in Lemma E.1, we derive a lower bound

for the integrated likelihood function, FnˆdpĈn;Xq. Then, we prove equation (D.12) in Lemma E.2.

We first define the �-enlargement convex polytope below, which is useful later in the proof.

Definition 5 (�-enlargement convex polytope). For a convex polytope, ConvpCq Ñ RV
, with k linearly

independent vertices C “ tcfuk
f“1 P RV ˆk

. The �-enlargement convex polytope of ConvpCq,
denoted as ConvpC�q, is defined such that each column of C

�
,

c
�

f
“ p1 ` ⇢pCq�q pcf ´ c̄q ` c̄, @f “ 1, ¨ ¨ ¨ k,

where ⇢pCq “ k

�
`
minpCq , and c̄ “ 1

k

∞
k

f“1 cf P RV
is the center of the k columns of C. C

�
is called the

�-enlargement matrix of C.

Proposition 11. ConvpC�q satisfies the following properties.

1. It composes of k vertices, C
� “ tc�

f
uk
f“1 P RV ˆk

;

2. |ConvpC�q| “ p1 ` ⇢pCq�qk´1 |ConvpCq|.
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Lemma E.1. With probability at least p1 ´ 3 ¨ pn _ dq´cqd, the integrated likelihood is lower-bounded:

FnˆdpĈn;Xq • C ¨ An,d ¨ pn _ dq´C10d,

where An,d :“
±

d

i“1 fnpûpiq;xpiqq and C, C10 are constants.

Proof. The integrated likelihood function can be written as

FnˆdpC;Xq “
dπ

i“1

1

|ConvpCq|

ª

ConvpCq
fnpu;xpiqqdu

“
dπ

i“1

fnpûpiq;xpiqq
ª

ConvpCq

1

|ConvpCq|
fnpu;xpiqq
fnpûpiq;xpiqqdu

“An,d ¨
dπ

i“1

ª

ConvpCq

1

|ConvpCq|
f piqpuq
f piqpûpiqqdu

where f piqpuq is a shorthand notation of fnpu;xpiqq.
By Devroye et al. (1983), for each document i, it holds with probability at least 1 ´ 3 ¨ e´cx

2 that

}u0piq ´ û
piq}2 § 5

?
cx?
n

for all x ° 0. By a simple union bound argument, we have that with probability

at least p1´ 3 ¨ pn_dq´cqd, }u0piq ´ û
piq}2 § 5

?
c ¨

b
logpn_dq

n
“: C1

b
logpn_dq

n
, for any i P rds, by choosing

x to be a large multiple of
a
logpn _ dq. Let Bpu0piq;C1✏nq denote the Euclidean ball centered at u0piq

with radius C1✏n. Consequently, with high probability, for any u P Bpu0piq;C1✏nq,

}u ´ û
piq}2 § }u ´ u

0piq}2 ` }u0piq ´ û
piq}2 § 2C1✏n. (E.39)

Next, by the definition of MLE, we have

FnˆdpĈn;Xq • FnˆdpC0;Xq

“ An,d

|ConvpC0q|d ¨
dπ

i“1

ª

ConvpC0q

f piqpuq
f piqpûpiqqdu

• An,d

|ConvpC0q|d ¨
dπ

i“1

ª

ConvpC0qìBpu0piq;C1✏nq

f piqpuq
f piqpûpiqqdu

• An,d

|ConvpC0q|d ¨
dπ

i“1

ª

ConvpC0qìBpu0piq;C1✏nq
exp

`
´C6n}u ´ û

piq}22
˘
du (E.40)

• An,d

|ConvpC0q|d ¨
dπ

i“1

“
C8pC1✏nqk´1 ¨ expp´C6np2C1✏nq2q

‰
(E.41)

• C ¨ An,d ¨ pn _ dq´C10d.

Inequality (E.40) follows from the reverse Pinsker’s inequality (E.35) since the columns of C0 are

interior points in �V ´1, i. Inequality (E.41) follows from (E.39).
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Definition 6 (Distance between a vector and a convex polytope). The distance between a vector x

and a convex polytope ConvpCq is defined as

dpx,ConvpCqq “ min
yPConvpCq

}x ´ y}2.

Lemma E.2. With probability at least p1 ´ 3 ¨ pn _ dq´cqd, we have

dpu0piq,ConvpĈnqq § C✏n (E.42)

for any i P rds. Therefore, there exists a matrix Ŵn, such that Ŵn • 0, ŴT

n
1k “ 1d, and

U
0 “ C

0
W

0 “ ĈnŴn ` En “ Ũn ` En

and maxi }Enp:, iq}2 § C✏n. Here constants c and C are independent of n and d.

Proof. We prove the lemma by contradiction. Suppose the i-th document violates (E.42):

dpu0piq,ConvpĈnqq • C✏n.

First, we claim that there exist at least C1d columns of U0 such that

dpu0piq,ConvpĈnqq • C2C✏n,

where C1, C2 P p0, 1q are constants independent of n and d. We prove this claim at the end.

Then, by Devroye et al. (1983), with probability at least p1´3 ¨ pn_dq´cqd, we have }u0piq ´ û
piq}2 §

O

ˆb
logpn_dq

n

˙
hold for all i “ 1, ¨ ¨ ¨ , d. By making the constant C large enough, we have

dpûpjq,ConvpĈnqq • pC2C ´ 1q✏n.

Therefore,

FnˆdpĈn;Xq “An,d

dπ

i“1

ª

ConvpĈnq

1

|ConvpĈnq|
f piqpuq
f piqpûpiqqdu

§ An,d

|ConvpĈnq|d
dπ

i“1

ª

ConvpĈnq
exp

´
´n

2
}ûpiq ´ u}22

¯
du

“An,d

dπ

i“1

exp
´

´n

2
}ûpiq ´ u

˚piq}22
¯

§An,d ¨ exp
˜

´n

2

dÿ

i“1

d2pûpiq,ConvpĈnqq
¸

§An,d ¨ exp
´

´n

2
¨ C1d ¨ pC2C ´ 1q2✏2

n

¯
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“An,d ¨ pn _ dq´ 1
2C1pC2C´1q2C2

0d,

where the first inequality follows (E.34) and the second inequality is due to the mean value theorem

for integrals with u
˚piq’s being some points in ConvpĈnq. By choosing C large enough, we can make

FnˆdpĈn;Xq § An,d ¨ pn _ dq´pC10`1qd,

which contradicts with Lemma E.1. So we conclude that

dpu0piq,ConvpĈnqq § C✏n

for all i “ 1, ¨ ¨ ¨ , d.
It remains to prove the claim we made at the beginning. When affpC0q is parallel to affpĈnq, the

claim is trivial by making C2 small. When affpC0q is not parallel to affpĈnq, again we prove it by

contradiction. Suppose there are at least p1 ´ C1qd columns of U0 such that

dpu0pjq,ConvpĈnqq § C2C✏n

and let S be their column index set.

Denote r as the distance from u
0piq to the intersection of affpC0q and affpĈnq, i.e.,

r “ dpu0piq, affpC0q
£

affpĈnqq,

where u
0piq is the vector such that dpu0piq,ConvpĈnqq • C✏n. Since dpu0pjq,ConvpĈnqq § C2C✏n for

all j P S, we know that

dpu0pjq, affpC0q
£

affpĈnqq § C2C✏n
C✏n

¨ r “ C2r, @j P S.

At the same time,

r ´ C2r § max
jPS

}u0piq ´ u
0pjq}2 § max

i,jPrks
}C0piq ´ C

0pjq}2.

Since the RHS is a constant, we know that r is upper bounded.

Let bn be the unit normal vector of affpC0qì affpĈnq on the hyperplane affpC0q. Since bn P affpC0q,
there exists �n P Rk and �T

n
1k “ 1 such that bn “ C

0�n.

On the one hand, the variance of all u0piq’s on the direction of bn can be upper bounded:

V arbnpU0q § 1

d

“
p1 ´ C1qd ¨ C2

2r
2 ` C1d ¨ r2

‰
“

`
p1 ´ C1qC2

2 ` C1

˘
r2 (E.43)

On the other hand, since the minimum eigenvalue of WcW
T

c
is lower bounded, we have

V arbnpU0q • 1

d
b
T

n
UcU

T

c
bn “ 1

d
b
T

n
C

0
WcW

T

c
C

0T
bn
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• C3}C0T
bn}22 “ C3 ¨ �T

n
C

0T
C

0
C

0T
C

0�n

• C3

“
�`
minpC0q

‰4 }�n}22
• C3

“
�`
minpC0q

‰4 1
k

(E.44)

In (E.43), by choosing the constants C1 and C2 small enough, we can make

`
p1 ´ C1qC2

2 ` C1

˘
r2 † C3

“
�`
minpC0q

‰4 1
k
.

Therefore, we get a contradiction from (E.43) and (E.44), which finishes the proof of the claim.

As a conclusion, let ũ
piq “ argminuPConvpĈnq dpu,u0piqq for i “ 1, ¨ ¨ ¨ , d and Ũn “ tũp1q, ¨ ¨ ¨ , ũpdqu,

then we have shown that w.h.p. }u0piq ´ ũ
piq}2 § C✏n. Further, by the definition of ConvpĈnq, there

exists ŵ
piq P �k´1, such that ũpiq “ Ĉnŵ

piq, for any i “ 1, ¨ ¨ ¨ , d. Let Ŵn “ tŵp1q, ¨ ¨ ¨ , ŵpdqu, we have

ĈnŴn “ Ũn and

}Enp:, iq}2 “ }u0piq ´ Ĉnŵ
piq}2 “ }u0piq ´ ũ

piq}2 § C✏n.

E.4 Proof of Lemma D.4

Proof. Since Bpf, :q “ �fepfq ` ✏f , }✏f}2 § �f� and }B}2 § M , we can bound �f by C2M .

M • }B}2 • }Bpf, :q}2 • }�fepfq}2 ´ }✏f}2 • �f ´ ��f , f “ 1, ¨ ¨ ¨ , k.

�f § M

1 ´ �
§ C2M, f “ 1, ¨ ¨ ¨ , k.

We write T “ p�1ep1q, ¨ ¨ ¨�kepkqqT , E “ p✏1, ¨ ¨ ¨ , ✏kqT , such that T ` E “ B.

Next, we show that the column sums of T are close to 1, using the fact that the column sums of B

are all 1’s.
kÿ

s“1

ˇ̌
ˇ̌
ˇ

kÿ

f“1

Tpf, sq ´ 1

ˇ̌
ˇ̌
ˇ “

kÿ

s“1

ˇ̌
ˇ̌
ˇ

kÿ

f“1

Tpf, sq ´
kÿ

f“1

Bpf, sq
ˇ̌
ˇ̌
ˇ

§
kÿ

s“1

kÿ

f“1

|Bpf, sq ´ Tpf, sq| “
kÿ

f“1

kÿ

s“1

|Bpf, sq ´ Tpf, sq|

“
kÿ

f“1

}Bpf, :q ´ Tpf, :q}1 §
?
k

kÿ

f“1

}Bpf, :q ´ Tpf, :q}2

“
?
k

kÿ

f“1

}✏f}2 §
?
k

kÿ

f“1

�f� § C3M�. (E.45)
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Let ⇧ “ pep1q, ¨ ¨ ¨ epkqqT . Then ⇧ must be a permutation matrix. Otherwise, there exists at least

one column p, such that all the entries in the p-th column of ⇧ are 0, i.e., ep1q,p “ ¨ ¨ ¨ epkq,p “ 0, where

epfq,p denotes the p-th element in epfq. Then the sum of p-th column of T is 0, i.e.,
∞

k

f“1 Tpf, pq “
∞

k

f“1 �fepfq,p “ 0, which contradicts with (E.45).

Furthermore, since T “ ⇧ ¨ diagp�1, ¨ ¨ ¨ ,�kq and ⇧ is a permutation matrix, each column of T

should include one and only one of �1, ¨ ¨ ¨ ,�k, so that

kÿ

s“1

ˇ̌
ˇ̌
ˇ

kÿ

f“1

Tpf, sq ´ 1

ˇ̌
ˇ̌
ˇ “

kÿ

f“1

|�f ´ 1| § C3M�.

Consequently,

}B ´ ⇧}2 § }T ´ ⇧}2 ` }B ´ T}2 §
kÿ

f“1

|�f ´ 1| ` }E}2 § C 1
3M�.

where the last inequality holds because

}E}2 § }E}F “
˜

kÿ

f“1

}✏f}22
¸ 1

2

§
?
kC2M�

E.5 Proof of Lemma D.5

Recall that ✏n “ C0

b
logpn_dq

n
where C0 ° 0 is a constant. We aim to show that

| detpĈT

n
Ĉnq| § p1 ` C2✏nq| detpC0T

C
0q|.

Let affpĈnq and affpC0q be the pk ´ 1q-dim hyperplanes obtained by expanding ConvpĈnq and

ConvpC0q, respectively. By Lemma D.1,

| detpĈT

n
Ĉnq|

| detpC0TC0q|
“ ĥn

h0
¨ |ConvpĈnq|

|ConvpC0q| .

where ĥn is the perpendicular distance from the origin to affpĈnq, and h0 is the perpendicular distance

from the origin to affpC0q.
Therefore, it suffices to show the following two inequalities,

ĥn § p1 ` C1✏nqh0, (E.46)

and

|ConvpĈnq| § p1 ` C2✏nq|ConvpC0q|. (E.47)
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We first prove the projection matrix associated with affpĈnq converges to the one associated with

affpC0q in the order of ✏n in Lemma E.3. Then (E.46) is proved in Corollary 11.1, as a special case of

Lemma E.3.

To compare |ConvpĈnq| and |ConvpC0q|, we introduce three more convex polytopes:

• ConvppC0q�✏nq, an enlarged convex polytope of ConvpC0q (defined in Definition 5). Here � ° 0

is a constant.

• ConvpC7q, the projection of ConvppC0q�✏nq on affpĈnq.

• ConvpC˚q, the smallest k-vertex convex polytope on affpĈnqì�V ´1 containing

S “ ConvpĈnqì
!î

d

i“1 Bpu0piq;C4✏nq
)
. Here Bpu0piq;C4✏nq is the Euclidean ball centered at

u
0piq with radius C4✏n. The formal definition is given in Definition 7.

We then prove (E.47) by the following steps.

1. In Lemma E.4 and Lemma E.5, we show
ˆ
1 ´ 1

n

˙
|ConvpĈnq| § |ConvpC˚q|. (E.48)

2. In Lemma E.6 to Lemma E.8, we show that ConvpC7q is a k-vertex convex polytope within �V ´1

containing S. Therefore, by the definition of ConvpC˚q, we have

|ConvpC˚q| § |ConvpC7q|. (E.49)

3. In Lemma E.9, we prove (E.47) by summarizing the the above inequalities, i.e.,
ˆ
1 ´ 1

n

˙
|ConvpĈnq|

(E.48)
§ |ConvpC˚q|

(E.49)
§ |ConvpC7q|

Definition of ConvpC7q
§ |ConvppC0q�✏nq|

Proposition 11
§

`
1 ` ⇢pC0q�✏n

˘
k´1 |ConvpC0q|.

Next, we provide detailed proof.
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First, we show that the projection matrix and any projected vector of affpĈnq converges to the

ones of affpC0q in the order of
b

logpn_dq
n

.

Let pup1q, ¨ ¨ ¨ ,upkqq be any k linearly independent vectors from affpCq. Then, the projection

matrix of affpCq can be written as

PC “ U
1pU1T

U
1q´1

U
1
T , (E.50)

where U
1 “

`
u

p2q ´ u
p1q, ¨ ¨ ¨ ,upkq ´ u

p1q˘.

For any vector y, its projection onto affpCq is given by

ŷC “ PCpy ´ u
p1qq ` u

p1q “ PCy ` pI ´ PCqup1q. (E.51)

Lemma E.3.

}PĈn
´ PC0}2 § C✏n (E.52)

}ŷĈn
´ ŷC0}2 § C}y}2✏n ` C 1✏n, (E.53)

for any y P RV
, where C and C 1

are positive constants.

Proof. By assumption (A3), let pi1, ¨ ¨ ¨ , ikq denote the index set of the columns of W
0˚ in W

0,

where the k columns of W
0˚ are affinely independent and have minimum positive singular value

lower bounded. Let U
0˚ “ C

0
W

0˚ “ pu0pi1q, ¨ ¨ ¨ ,u0pikqq and Ũ
˚
n

“ pũpi1q, ¨ ¨ ¨ , ũpikqq, where ũ
piq “

argminuPConvpĈnq dpu,u0piqq is the projection of u0piq onto ConvpĈnq.
By Lemma E.2, we have

}U0˚ ´ Ũ
˚
n
}2 § }U0˚ ´ Ũ

˚
n
}F “

˜
kÿ

j“1

}u0pijq ´ ũ
pijq}22

¸ 1
2

§ C2✏n,

and

}u0pi1q ´ ũ
pi1q}2 § C3✏n.

By (E.50), we have

PC0 “ U
01pU01T

U
01q´1

U
01T , PĈn

“ Ũ
1
n
pŨ1T

n
Ũ

1
n
q´1

Ũ
1T
n

where U
01 “ U

0˚
Q, Ũ1

n
“ Ũ

˚
n
Q, and Qkˆpk´1q “

”
´1k´1 Ik´1

ı
T

.

By Weyl’s inequality in matrix theory (Weyl, 1912),

�`
minpU01q ´ �`

minpŨ1
n
q § }U01 ´ Ũ

1
n
}2 § }U0˚ ´ Ũ

˚
n
}2}Q}2 § C 1

2✏n.
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Therefore,

�`
minpŨ1

n
q • �`

minpU01q ´ C 1
2✏n • �`

minpU01q
2

. (E.54)

Moreover,

�`
minpU01q “ �`

minpU0˚
Qq “ �`

minpC0
W

0˚
Qq • �`

minpC0q�`
minpW0˚q�`

minpQq • C3. (E.55)

So the columns of Ũ˚
n

are also affinely independent.

According to Davis-Kahan theorem (Chen et al., 2016; Davis and Kahan, 1970), we have

}PĈn
´ PC0}2

Davis´Kahan§ max

˜
1

�`
minpŨ1

n
q
,

1

�`
minpU01q

¸
}Ũ1

n
´ U

01}2

§ max

˜
1

�`
minpŨ1

n
q
,

1

�`
minpU01q

¸
}Ũ˚

n
´ U

0˚}2}Q}2

§ C4✏n,

where the last inequality is due to (E.54) and (E.55).

Finally, for any y P RV ,

}ŷĈn
´ ŷC0}2 § }PĈn

´ PC0}2}y}2 ` }PĈn
´ PC0}2}}u0pi1q}2 ` }u0pi1q ´ ũ

pi1q}2
§ C}y}2✏n ` C 1✏n

Corollary 11.1. Denote the perpendicular distance between origin, 0 “ p0, 0, ¨ ¨ ¨ , 0q, and affpC0q by

h0
, and the perpendicular distance between origin and affpĈnq by ĥn. The followings hold,

1. |ĥn ´ h0| § C 1✏n,

2. h0 ° C2.

where C 1
and C2

are positive constants.

Proof. The perpendicular distance of affpCq is the length of the projected vector of 0 on affpCq.
Specifically,

ĥn “ }0̂Ĉn
}2, h0 “ }0̂C0}2,

Therefore,
ˇ̌
ˇĥn ´ h0

ˇ̌
ˇ “

ˇ̌
}0̂Ĉn

}2 ´ }0̂C0}2
ˇ̌

§ }0̂Ĉn
´ 0̂C0}2 § pC}0}2✏n ` C 1✏nq § C 1✏n.
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Furthermore, since 0̂C0 is on affpC0q, we can represent 0̂C0 by C
0
wh for some wh P �k´1.

h0 “ }0̂C0}2 • �`
minpC0q}wh}2 • �`

minpC0q}wh}1{
?
k “ �`

minpC0q{
?
k.

With the result from Lemma E.2, in the following Lemma E.4, we show that most of the mass of

f piqpuq on ConvpĈnq is concentrated on ConvpĈnqìBpu0piq;C4✏nq.

Lemma E.4. For any i P rds,
ª

ConvpĈnqìBpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu • p1 ´ 1

n
q
ª

ConvpĈnq

f piqpuq
f piqpûpiqqdu.

Proof. It suffices to show that for any i P rds,
ª

ConvpĈnqìBCpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu § 1

n

ª

ConvpĈnq

f piqpuq
f piqpûpiqqdu. (E.56)

For the LHS of (E.56),
ª

ConvpĈnqìBCpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu

§
ª

ConvpĈnqìBCpu0piq;C4✏nq
exp

´
´n

2
}ûpiq ´ u}22

¯
du

§ exp
´

´n

4
pC4 ´ 1q2✏2

n

¯ ª

affpĈnq
exp

´
´n

4
}ûpiq ´ u}22

¯
du

“ exp
´

´n

4
pC4 ´ 1q2✏2

n

¯
exp

´
´n

4
d2pûpiq, affpĈnqq

¯ ª

affpĈnq
exp

´
´n

4
}ûpiq

Ĉn
´ u}22

¯
du

§ exp
´

´n

4
pC4 ´ 1q2✏2

n

¯
¨ 1 ¨ C5

n
k´1
2

,

where the first inequality is due to the Pinsker’s inequality (E.34), the third inequality is from the

normalizing constant for a multivariate Gaussian distribution.

For the integration in the RHS of (E.56),
ª

ConvpĈnq

f piqpuq
f piqpûpiqqdu

•
ª

ConvpĈnqìBpu0piq;
?
2C✏nq

f piqpuq
f piqpûpiqqdu

•
ª

ConvpĈnqìBpu0piq;
?
2C✏nq

exp
`
´C7n}ûpiq ´ u}22

˘
du

•C8pC✏nqk´1 ¨ exp
´

´C7np
?
2C ` 1q2✏2

n

¯
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where C is the constant from (E.42). Since u
0piq’s are interior points in �V ´1, when n is large enough,

the second inequality follows from the reverse Pinsker’s inequality (E.35).

By choosing C4 large enough, we can ensure

exp
´

´n

4
pC4 ´ 1q2✏2

n

¯ C5

n
k´1
2

§ 1

n
¨ C8C

k´1✏k´1
n

exp
´

´C7np
?
2C ` 1q2✏2

n

¯

Consequently, we have
ª

ConvpĈnqìBCpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu § 1

n

ª

ConvpĈnq

f piqpuq
f piqpûpiqqdu.

Definition 7. Define C
˚ “ rc˚

1 , ¨ ¨ ¨ , c˚
k
s P RV ˆk

, such that, c
˚
f

P affpĈnqì�V ´1, @f P rks, and

ConvpC˚q is the smallest (volume) convex polytope with k vertices on affpĈnqì�V ´1
that

contains the set S “ ConvpĈnqì
!î

d

i“1 Bpu0piq;C4✏nq
)
.

Note that ConvpĈnq is a convex polytope with k vertices on affpĈnqì�V ´1 containing S. So

C
˚ must exist and it satisfies |ConvpC˚q| § |ConvpĈnq|. In the following lemma, we show that

|ConvpĈnq| cannot be much larger than |ConvpC˚q|.

Lemma E.5. ˆ
1 ´ 1

n

˙
|ConvpĈnq| § |ConvpC˚q|

Proof. Since c
˚
f

P �V ´1, @f P rks, C
˚ is a valid parameter of FnˆdpC;Xq, and FnˆdpĈn;Xq •

FnˆdpC˚;Xq. From Lemma E.4, we have

An,d

|ConvpĈnq|d
¨

dπ

i“1

ª

ConvpĈnqìBpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu

•
ˆ
1 ´ 1

n

˙
d

FnˆdpĈn;Xq •
ˆ
1 ´ 1

n

˙
d

FnˆdpC˚;Xq

“
ˆ
1 ´ 1

n

˙
d An,d

|ConvpC˚q|d ¨
dπ

i“1

ª

ConvpC˚q

f piqpuq
f piqpûpiqqdu

•
ˆ
1 ´ 1

n

˙
d An,d

|ConvpC˚q|d ¨
dπ

i“1

ª

ConvpĈnqìBpu0piq;C4✏nq

f piqpuq
f piqpûpiqqdu,

where the last inequality is due to the definition of ConvpC˚q. Therefore,

1

|ConvpĈnq|d
•

`
1 ´ 1

n

˘
d

|ConvpC˚q|d ,
ˆ
1 ´ 1

n

˙
|ConvpĈnq| § |ConvpC˚q|.
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Next, we compare |ConvpC0q| and |ConvpC˚q|. We will construct an enlarged convex polytope,

ConvppC0q�✏nq, and then project it to affpĈnq to obtain a projected convex polytope, |ConvpC7q|. We

will show that |ConvpC7q| contains the set S, so that |ConvpC˚q| § |ConvpC7q|.

Definition 8. Let C
7 “ pc7

1, ¨ ¨ ¨ , c7
k
q P RV ˆk

such that c
7
f

is the projected vector of the f -th vertex of

Conv ppC0q�✏nq on affpĈnq, @f “ rks. Here � ° 0 is a constant.

Lemma E.6. When n is large enough, ConvpC7q is in �V ´1
.

Proof. It suffices to show that for any f P rks, (1) c
7T
f
1V “ 1 and (2) c

7
f

• 0.

By the definition of affpĈnq, c7
f

“ Ĉn�f and �T

f
1k “ 1. Therefore, (1) holds because

c
7T
f
1V “ �T

f
Ĉ

T

n
1V “ �T

f
1k “ 1.

By Lemma E.3, we have

}c7
f

´ pc0
f
q�✏n}2 § C✏n.

Therefore, to show (2), it suffices to verify that pc0
f
q�✏n ° C1, for any f P rks.

Note that c
0
1, ¨ ¨ ¨ , c0

k
• C2, since c

0
1, ¨ ¨ ¨ , c0

k
are strict inner points of �V ´1.

By the definition of the enlarged convex polytope (Definition 5), we have

pc0
f
q�✏n “ p1 ` ⇢�✏nq pc0

f
´ c̄

0q ` c̄
0

“ p1 ` ⇢�✏nq c0
f

´ ⇢�✏nc̄
0

• p1 ` ⇢�✏nqC2 ´ ⇢�✏n • C1,

where ⇢ “ ⇢pC0q and c̄
0 “ 1

k

∞
k

f“1 c
0
f
.

Next, we want to prove that ConvpC7q contains the set S. We first study the property of the

boundary points of the �-enlargement convex polytope in Lemma E.7 and show that the distance

between any boundary point and the original convex polytope is at least �. Using this fact, we know

that any boundary point of ConvpC7q is at least �✏n away from any u
0piq P ConvpC0q. By letting

� large enough, we can have ConvpC7q contain the set S 1
i

“ Bpu0piq, C4✏nqì affpĈnq for any i P rds.
Therefore, ConvpC7q contains the set S 1 “ î

d

i“1 S 1
i
, which is a superset of the set S. The detailed

proof is in Lemma E.8.
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Lemma E.7. For any point x on the boundary of ConvpC�q,

� § dpx,ConvpCqq § pCqk�.

where pCq “ �maxpCq
�

`
minpCq is the conditional number of C.

Proof. By the definition of �-enlargement in Definition 5,

x “
kÿ

f“1

↵fc
�

f
“

kÿ

f“1

↵f rp1 ` ⇢�qpcf ´ c̄q ` c̄s

“
kÿ

f“1

↵f p1 ` ⇢�qrcf ´ 1

k

kÿ

s“1

css `
ÿ

f“1

↵f c̄

“
kÿ

f“1

↵f p1 ` ⇢�qcf ´ 1 ` ⇢�

k

kÿ

s“1

cs ` c̄

“
kÿ

f“1

p1 ` ⇢�q
ˆ
↵f ´ 1

k

˙
cf ` c̄

where ⇢ “ k

�
`
minpCq , and ↵ “ t↵fuf“1,¨¨¨ ,k P �k´1. Since x is a boundary point, there exists at least one

f P rks, such that ↵f “ 0. WLOG, we assume ↵k “ 0.

Let ↵1 “ ↵ ´ 1
k
1. We have

x “ Cp1 ` ⇢�q↵1 ` c̄.

At the same time, any point y in ConvpCq can be represented by

y “ C� “
kÿ

f“1

�f pcf ´ c̄q ` C̄ “ C�1 ` c̄,

where � “ t�fuf“1,¨¨¨ ,k P �k´1 and �1 “ � ´ 1
k
1.

Now we can measure the distance between the boundary point x and ConvpCq,

dpx,ConvpCqq “ min
yPConvpCq

}x ´ y}2 “ min
�P�V ´1

}Crp1 ` ⇢�q↵1 ´ �1s}2

• �`
minpCq ¨ min

�P�V ´1
}p1 ` ⇢�q↵1 ´ �1}2.

Write ⌘ “ p1 ` ⇢�q↵1 ´ �1 “ p1 ` ⇢�q↵ ´ � ´ ⇢�

k
1. Then, the k-th element of ⌘ is

⌘k “ p1 ` ⇢�q↵k ´ �k ´ ⇢�

k
“ 0 ´ �k ´ ⇢�

k
§ ´⇢�

k

because we assume ↵k “ 0, and � P �pk´1q so that �k • 0. Then, we obtain the lower bound,

dpx,ConvpCqq • �`
minpCq ¨ min

⌘
}⌘}2 • �`

minpCq ¨ min
⌘

|⌘k| • �`
minpCq ¨ ⇢�

k
“ �.
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For the upper bound, let �1 “ ↵1, we have

min
yPConvpCq

}x ´ y}2 § }Crp1 ` ⇢�q↵1 ´ ↵1s}2 § �maxpCq ¨ ⇢� ¨ }↵1}2

“ �maxpCq⇢�
c

}↵}22 ´ 1

k
§ �maxpCq⇢�

c
1 ´ 1

k

§ pCqk�.

Lemma E.8. For some � ° 0, ConvpC7q covers the set S 1 “
!î

d

i“1 Bpu0piq, C4✏nq
)ì

affpĈnq, i.e.,

S Ñ S 1 Ñ ConvpC7q.

Proof. Since ConvpC7q is a closed and simply connected region, it suffices to show that for any boundary

point, x P bdConvpC7q,
min

i“1¨¨¨ ,d
}x ´ u

0piq}2 • C4✏n.

In fact, any boundary point of ConvpC7q, x P bdConvpC7q, is projected from a boundary point of

ConvpC0q�✏n , denoted as y P bdpConvpC0q�✏nq. Then,

x “ PŨn
y ` pI ´ PŨn

qũpkq.

By Lemma E.7, we have @y P bdpConvpC0q�✏nq,

}y ´ u
0piq}2 • dpy,ConvpC0qq • �✏n. @i “ 1, ¨ ¨ ¨ , d. (E.57)

Denote the projected point of u0piq on affpĈnq “ affpŨnq, as û
0piq
Ũn

. We have

}x ´ u
0piq}2 “}px ´ û

0piq
Ũn

q ` pû0piq
Ũn

´ u
0piqq}2

•}x ´ û
0piq
Ũn

}2 “ }PŨn
py ´ u

0piqq}2
“}PU0py ´ u

0piqq ` pPŨn
´ PU0qpy ´ u

0piqq}2
•}y ´ u

0piq}2 ´ }PŨn
´ PU0}2}y ´ u

0piq}2
•p1 ´ C5✏nq}y ´ u

0piq}2 by Lemma E.3 (E.52)

•p1 ´ C5✏nq�✏n @i “ 1, ¨ ¨ ¨ , d. by (E.57)

By letting � large enough, we can make that for any x P bdConvpC7q,

}x ´ u
0piq}2 • p1 ´ C5✏nq�✏n • C4✏n @i “ 1, ¨ ¨ ¨ , d.
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Now we are ready to piece together all the useful results and conclude the following inequalities.

Lemma E.9.

|ConvpĈnq| § p1 ` C 1✏nq |ConvpC0q|

| detpĈT

n
Ĉnq| § p1 ` C2✏nq| detpC0T

C
0q|

Proof. Since the �-enlargement is an affine transformation, by Proposition 11,

|ConvppC0q�✏nq| “
`
1 ` ⇢pC0q�✏n

˘
k´1 |ConvpC0q| § p1 ` C1✏nq|ConvpC0q|.

Then, by Lemma E.6 and Lemma E.8,ConvpC7q is on affpĈnqì�V ´1 covering S. And by Definition

7, ConvpC˚q is the smallest k-vertex convex polytope on affpĈnqì�V ´1 covering S. So we have ,

|ConvpC˚q| § |ConvpC7q| § |ConvppC0q�✏nq|.

The last inequality holds because C
7 is a projection of pC0q�✏n on affpĈnq, so that any side length of

ConvpC7q is shorter than the corresponding one of pC0q�✏n , i.e.,

}c7
f

´ c
7
p
}2 “ }PŨn

rpc0
f
q�✏n ´ pc0

p
q�✏ns}2 § }pc0

f
q�✏n ´ pc0

p
q�✏n}2

Together with Lemma E.5, we obtain,

|ConvpĈnq| §
ˆ
1 ` 1

n ´ 1

˙
|ConvpC˚q|

§
ˆ
1 ` 1

n ´ 1

˙
p1 ` C1✏nq |ConvpC0q|

§ p1 ` C 1✏nq |ConvpC0q|.

Furthermore, by Lemma D.1, we have

|ConvpĈnq|
|ConvpC0q| “ h0

ĥn

¨

b
detpĈT

n
Ĉnq

b
det pC0TC0q

§ 1 ` C 1✏n.

By Corollary 11.1, we obtain
b
detpĈT

n
Ĉnq

b
det pC0TC0q

§ ĥn

h0
¨ p1 ` C 1✏nq § 1 ` C2✏n.
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E.6 Proof of Proposition 3

Proof. (i) If ↵ • ↵1, � § �1 and W is p↵, �q-SS,

rconepWq˚s↵1 £rbdKs↵1 Ñ rconepWq˚s↵
£

rbdKs↵

Ñ tx : }x ´ �ef}2 § ��,� • 0u Ñ tx : }x ´ �ef}2 § �1�,� • 0u.

Then W is p↵1, �1q-SS.

(ii) If ConvpWq Ñ ConvpW̄q,

conepW̄q˚ Ñ conepWq˚ Ñ K. (E.58)

Also, since

rconepWq˚s↵ “
 
x : xT

W • ´↵}x}2
(

“
 
x : xT

w • ´↵}x}2, @w P ConvpWq
(
,

we have

rconepW̄q˚s↵ Ñ rconepWq˚s↵. (E.59)

By (E.58), (E.59) and the definition, if W is p↵, �q-SS, W̄ is also p↵, �q-SS.

(iii) The proof is trivial by definition.

E.7 Proof of Proposition 5

The following lemma is helpful in the proof of Proposition 5.

Lemma E.10. For any x P Rk
, if

}x}1 ´ }x}2 § ✏}x}1

for some ✏ P r0, 1
2k s, then there exists one element xi of x such that

}x ´ xiei}2 § 4
?
k ´ 1✏ ¨ |xi|.

Proof. It suffices to show the lemma holds for x • 0 and }x}1 “ 1. Now suppose there exist some

elements of x, say x1, such that

x1 • 2✏ and x1 § 1

2
.

75



Since }x´1}2 is a convex function, under the convex constraint
#

px2, ¨ ¨ ¨ , xkq :
kÿ

j“2

xj “ 1 ´ x1, xj • 0, j “ 2, ¨ ¨ ¨ , k
+
,

it is maximized on the vertex of the constraint. Therefore, }x´1}2 § 1 ´ x1, which leads to

}x}1 ´ }x}2 • 1 ´
b

p1 ´ x1q2 ` x2
1

“ 1 ´ p1 ´ x1q
d

1 `
ˆ

x1

1 ´ x1

˙2

° 1 ´ p1 ´ x1q
«
1 ` 1

2

ˆ
x1

1 ´ x1

˙2
�

“ x1 ´ x2
1

2p1 ´ x1q
• x1 ´ x2

1 • x1

2
• ✏,

where the second inequality is because
?
1 ` t † 1` t

2 for t ° 0. So we get a contradiction. Consequently,

there is no element in r2✏, 12s. Since there is at least one element that is larger than or equal to 1
k

and

2✏ § 1
k
, at least one element is larger than or equal to 2✏. At the same time, there is at most one

element that is larger than 1
2 , so there must be exactly one element that is larger than 1

2 . Let the

element be xi, then all other elements are less than 2✏. Therefore,

}x ´ xiei}2 §
?
k ´ 1 ¨ 2✏ §

?
k ´ 1 ¨ 2✏ ¨ 2xi

Now we are ready to present the proof of Proposition 5.

Proof. By Proposition 3(ii), it suffices to prove for the case when all xij “ m P
“
0, 1

k

˘
. Denote

A�✏ “ tx : }x ´ �ef}2 § �✏�,� • 0u ,

B✏ “ rbdKs✏ “
 
x : |}x}2 ´ x

T
1k| § ✏}x}2

(
,

C✏ “ rconepW0q˚s✏ “
 
x : xT

W
0 • ´✏}x}2

(
.

Then it suffices to show that there exist �✏ Ñ 0 when ✏ Ñ 0 such that B✏

ì
C✏ Ñ A�✏ for ✏ ° 0.

Without loss of generality, we assume }x}2 “ 1. For any x P B✏

ì
C✏, We consider the following

three cases:

Case (i). When all elements of x are nonnegative. Since x P B✏, }x}1 “ ∞
k

i“1 xi § 1 ` ✏. Then

}x}1 ´ }x}2 § ✏ § ✏}x}1. (E.60)
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Case (ii). When there exist at least negative two elements in x. Suppose one of the negative

elements is x1. Denote

P “ ti : xi • 0u , s “
ÿ

iPP
xi • 0.

And

N “ ti : xi † 0, i ‰ 1u , t “
ÿ

iPN
xi † 0.

Since x P C✏, for all i P N ,

mx1 ` p1 ´ mqxi • ´✏,

which implies

0 ° xi • ´ ✏

1 ´ m

and

0 ° t “
ÿ

iPN
xi ° ´ k

1 ´ m
✏. (E.61)

Also, pick any i P N ,

´✏ § p1 ´ mqx1 ` mxi † p1 ´ mqx1.

Therefore,

0 ° x1 ° ´ ✏

1 ´ m
. (E.62)

By (E.61) and (E.62),

kÿ

i“1

xi “ x1 ` s ` t °
ˆ

|x1| ´ 2✏

1 ´ m

˙
` s `

ˆ
|t| ´ 2k

1 ´ m
✏

˙
“ }x}1 ´ 2k ` 2

1 ´ m
✏. (E.63)

Since x P B✏,

kÿ

i“1

xi § 1 ` ✏. (E.64)

By (E.63) and (E.64),

}x}1 § 1 `
ˆ
1 ` 2k ` 2

1 ´ m

˙
✏,

i.e.,

}x}1 ´ }x}2 §
ˆ
1 ` 2k ` 2

1 ´ m

˙
✏ §

ˆ
1 ` 2k ` 2

1 ´ m

˙
✏ ¨ }x}1. (E.65)

Case (iii). When there exists only one negative element in x. Suppose the negative element is x1.

Without loss of generality, we assume xk • |xj| for all j “ 1, ¨ ¨ ¨ , k ´ 1.
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Denote

r “
k´1ÿ

i“2

xi • 0.

Since x P B✏,
∞

k

i“1 xi § 1 ` ✏. At the same time, }x}2 “ 1. Combining these two expressions, we have

0 §
k´1ÿ

i“1

x2
i

`
˜

k´1ÿ

i“1

xi

¸2

´ 2p1 ` ✏q
k´1ÿ

i“1

xi ` ✏2 ` 2✏ (E.66)

In (E.66), applying the fact that
k´1ÿ

i“2

x2
i

§
˜

k´1ÿ

i“2

xi

¸2

“ r2,

we have

0 § 2x2
1 ´ 2p1 ` ✏qx1 ` 2r2 ´ 2p1 ` ✏qr ` ✏2 ` 2✏. (E.67)

Since x P C✏, for all i “ 2, ¨ ¨ ¨ , k ´ 1,

p1 ´ mqx1 ` mxi • ´✏,

which implies

0 ° x1 • ´ m

pk ´ 2qp1 ´ mqr ´ ✏

1 ´ m
. (E.68)

From (E.67) and (E.68), we derive that

0 §2

«ˆ
m

pk ´ 2qp1 ´ mq

˙2

` 1

�
r2 `

„
4m

pk ´ 2qp1 ´ mq2 ✏ ` 2m

pk ´ 2qp1 ´ mqp1 ` ✏q ´ 2 ´ 2✏

⇢
r

`
„

2

p1 ´ mq2 ✏
2 ` 2

1 ´ m
✏ ` 2

1 ´ m
✏2 ` ✏2 ` 2✏

⇢
(E.69)

Since x P B✏,

1 ´ ✏ §
kÿ

i“1

xi “ x1 ` r ` xk § r ` xk § pk ´ 1qxk,

so

xk • 1 ´ ✏

k ´ 1
. (E.70)

Since x P C✏,

p1 ´ mqx1 ` mxk • ´✏.

So

x1 • ´ m

1 ´ m
xk ´ ✏

1 ´ m
. (E.71)
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Therefore,

1 ` ✏ •
kÿ

i“1

xi “ x1 ` r ` xk

(E.71)
• ´ m

1 ´ m
xk ´ ✏

1 ´ m
` r ` xk

(E.70)
•

ˆ
1 ´ m

1 ´ m

˙
1 ´ ✏

k ´ 1
´ ✏

1 ´ m
` r.

In other words,

r §
ˆ
1 ´ 1 ´ 2m

pk ´ 1qp1 ´ mq

˙
`

ˆ
1 ` 1

1 ´ m
` 1 ´ 2m

pk ´ 1qp1 ´ mq

˙
✏ (E.72)

By (E.69) and (E.72), we get r † 30✏ when ✏ is small enough. Then combining with (E.68),

0 ° x1 • ´ 1

1 ´ m

ˆ
30m

k ´ 2
` 1

˙
✏.

Consequently,
kÿ

i“1

xi “ x1 ` r ` xk °
„

|x1| ´ 2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙
✏

⇢
` r ` xk

“ }x}1 ´ 2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙
✏. (E.73)

Since x P B✏,
kÿ

i“1

xi § 1 ` ✏. (E.74)

By (E.73) and (E.74),

}x}1 § 1 `
„
1 ` 2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙⇢
✏,

i.e.,

}x}1 ´ }x}2 §
„
1 ` 2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙⇢
✏ §

„
1 ` 2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙⇢
✏ ¨ }x}1. (E.75)

Finally, combining the three cases above, by (E.60), (E.65) and (E.75), for any x P B✏

ì
C✏,

}x}1 ´ }x}2 §
„
1 ` max

"
2k ` 2

1 ´ m
,

2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙*⇢
✏ ¨ }x}1. (E.76)

Then by Lemma E.10, we know that B✏

ì
C✏ Ñ A�✏ for all ✏ ° 0 and ✏ small, where

�✏ “ 4
?
k ´ 1 ¨

„
1 ` max

"
2k ` 2

1 ´ m
,

2

1 ´ m

ˆ
30m

k ´ 2
` 1

˙*⇢
✏ Ñ 0

when ✏ Ñ 0.
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E.8 Proof of Proposition 6

Proof. By Step 1 of the proof of Theorem 8 in Section D.3 we know that: if the probability density

function satisfies

Pp}w ´ w
7
i
}2 § rq • pk ´ 1q! ¨ c0 ¨ rk´1, @ 0 † r § r0 (E.77)

for the s distinct points w
7
1, ¨ ¨ ¨ ,w7

s
in its support and some positive constants r0, c0, then with

probability at least 1 ´ C1s{d, for any w
7
i
, there exists at least one sample w

1
piq, such that

}w1
piq ´ w

7
i
}2 § rd, @i “ 1, ¨ ¨ ¨ , s, (E.78)

where rd “
`
log d
d

˘ 1
k´1 .

Now we show that

rconepW0
1q˚s↵´rd “ tx : xT

W
0
1 • ´p↵ ´ rdq}x}2u Ñ rconepW7q˚s↵ “ tx : xT

W
7 • ´↵}x}2u.

For any x P Rk and x
T
W

0
1 • ´p↵ ´ rdq}x}2,

´↵}x}2 § x
T
W

0
1 ´ rd}x}2 § x

T
W

0
1 ` x

T pW7 ´ W
0
1q “ x

T
W

7,

where in the second inequality we apply (E.78) and Cauchy–Schwarz inequality. Therefore, by definition,

if W7 is p↵, �q-SS, W0
1 is p↵ ´ rd, �q-SS.

We pick w
7
i

to be the vertex ei of �k´1 for i “ 1, ¨ ¨ ¨ , k. Apparently, when the density function is

uniformly larger than a constant on neighborhoods of ei’s, (E.77) holds. Let

↵0 “ C2

c
logpn _ dq

n
` rd,

then by Proposition 5, W
7 is p↵0, C3↵0q-SS for all n and d if log d

n
Ñ 0. As a result, W

0
1 is

pC2

b
logpn_dq

n
, C3↵0q-SS.

When d • Cn
k´1
2 , we have

↵0 “ C2

c
logpn _ dq

n
` rd § C 1

2

c
logpn _ dq

n
.

Then W
0
1 is pC2

b
logpn_dq

n
, C 1

3

b
logpn_dq

n
q-SS for all n and d if log d

n
Ñ 0, which finishes the proof.
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F Additional Simulations and Experiments

F.1 Convergence of the Estimation

We use the Monte Carlo simulation to show the convergence of the integrated likelihood FnˆdpCq and

the MLE Ĉn. Consider a simple setup: k “ V “ 3, d “ 6,

C
0 “

»

———–

2{3 1{6 1{6
1{6 2{3 1{6
1{6 1{6 2{3

fi

���fl , W
0 “

»

———–

5{6 0 1{6 5{6 1{6 0

1{6 5{6 0 0 5{6 1{6
0 1{6 5{6 1{6 0 5{6

fi

���fl ,

and the sample size is set to be n “ 60, 600, 6000, 60000.

In the experiment, we consider the “noiseless” data, i.e., X “ nC0
W

0. We compare the integrated

likelihood among candidate C’s taking the following form:
»

———–

c p1 ´ cq{2 p1 ´ cq{2
p1 ´ cq{2 c p1 ´ cq{2
p1 ´ cq{2 p1 ´ cq{2 c

fi

���fl , (F.79)

with c taking values from r0.5, 1s. We use Monte Carlo method to evaluate the integrated likelihood

(4):

F̂nˆd,T pCq «
dπ

i“1

«
1

T

Tÿ

t“1

fnpxpiq|u “ Cwtq
�
,

where w1, ¨ ¨ ¨ ,wT are i.i.d. random samples from Dirkp1q and T “ 50, 000.

The left plot of Figure S3 shows F̂nˆd,T pCq{maxC F̂nˆd,T pCq, the relative value of the estimated

integrated likelihood. As n increases, the peak of the likelihood approach the truth (i.e., c “ 2{3): the

optimal c values that maximize F̂nˆd,T pCq for n “ 60, 600, 6000, 60000, are 0.778, 0.720, 0.701, 0.686,

respectively. The small fluctuations in the curves of n “ 6000, 60000 are possibly due to numeric issues.

The right plot of Figure S3 displays ConvpC0q and the optimal ConvpCq’s for different n.

F.2 Comparison with Other Methods

In this section, we provide additional simulation studies to compare the proposed method (MCMC-EM)

with several existing approaches: Anchor Free (AnchorF) (Huang et al., 2016), Geometric Dirichlet

Means (GDM) (Yurochkin and Nguyen, 2016), and two MCMC algorithms based on Gibbs sampler

(Gibbs) (Griffiths and Steyvers, 2004) and based on partially collapsed Gibbs sampler (pcLDA)

(Magnusson et al., 2018; Terenin et al., 2018).
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Figure S3: Results of the experiment in Section F.1. Left: the relative integrated likelihood of “noiseless”

data. Right: ConvpC0q and the optimal ConvpCq’s under different n. The white triangle represents

�2; the smallest black triangle is ConvpC0q; other colored triangles represent the ConvpCq’s that

maximize F̂nˆd,T pCq under different n’s. The legend in the middle is shared by both plots.

The basic simulation setup is as follows: V “ 1200, d “ 1000, n “ 1000 and k “ 5, columns of C

are generated from DirV p0.1q and columns of W are from Dirkp0.1q. For our MCMC-EM algorithm,

the number of MCMC samples is 20 without burn-in. The EM algorithm stops after 50 iterations;

For each simulation, we run the EM algorithm 12 times in parallel with different randomly-initialized

parameters and report the result with the highest likelihood value. All hyper-parameters are set as

default, except that the prior over mixing weights in Gibbs and pcLDA is set to be uniform, same as

ours.

We evaluate the performance by the following four metrics:

• Relative Error is defined by min⇧ }Ĉ⇧ ´ C}F {}C}F , where ⇧ is a permutation matrix.

• Topic Coherence is used to measure the single-topic quality, defined as

kÿ

l“1

ÿ

v1,v2PVl

log

ˆ
freqpv1, v2q ` ✏

freqpv2q

˙

where Vl is the leading 20 words for topic l, freqpv1, v2q, freqpv2q are the co-occurrence count of

word v1 and word v2 and the occurrence counts of word v2, respectively, and ✏ is a small constant

added to avoid numerical issue. Generally, the higher the topic coherence is, the better the

quality of the mined topics is.
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Figure S4: Comparison with existing methods when document length varies (n “
10, 200, 400, ¨ ¨ ¨ , 1400).

• Similarity Count is used to measure similarity between topics (Arora et al., 2013; Huang et al.,

2016), which is obtained simply by adding up the overlapped words across Vl.

ÿ

l1†l2

ÿ

v1PVl1
,v2PVl2

1pv1 “ v2q.

It focuses on the relationship between mined topics while the topic coherence measures the one

within each topic. A smaller similarity count means the mined topics are more distinguishable.

• Perplexity Score measures the goodness of fit of the fitted model to the data. It is the multiplicative

inverse of the likelihood normalized by the number of words. Sometimes the perplexity score is

calculated on the hold-out data. Here, for simplicity, we use the one based on the training data

(the whole dataset),
∞d
i“1 ni

d
1

±
d

i“1 fnipxpiq|Ĉ, ŵpiqq
.

For a fixed k, a smaller perplexity score implies a better fit of the model.

We investigate the performance of those methods (i) when document length n varies, (ii) when both

document length n and number of documents d varies, and (iii) when the parameter ↵ of the Dirichlet
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Figure S5: Comparison with existing methods when both document length n and number

of documents d vary (n “ 20, 200, 400, ¨ ¨ ¨ , 1400, d “ 2n).

distribution we use to generate W varies. Results are reported in Figure S4 to Figure S6; each metric

reported in those plots is the average over 10 repetitions. Below we summarize our findings:

(i) MCMC-EM, GDM, Gibbs and pcLDA perform very similarly in these three simulation settings

in terms of four different evaluation metrics. That is because MCMC-EM, Gibbs and pcLDA

have the same objective function and GDM is also a likelihood-based approach. MCMC-EM has

the best relative error and perplexity score in most experiments of the first two settings;

(ii) Estimators of MCMC-EM, GDM, Gibbs and pcLDA converge very quickly as n increases or as

both n and d increase. Their performance is stable as the Dirichlet parameter ↵ increases;

(iii) The eigenvalue decomposition-based approach AnchorF has better similarity count than other

methods in most experiments. However, it performs much worse than others in terms of relative

error and perplexity score in almost all experiments. The topic coherence of AnchorF is slightly

better than the others in the first two settings, but decreases sharply as the Dirichlet parameter

↵ increases in the third setting.

In Table 1, we report the computation time of our MCMC-EM algorithm and other methods for
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Figure S6: Comparison with existing methods when the Dirichlet parameter ↵ varies.

Columns of W „ Dirkp↵q with ↵ “ 0.2, 0.4, ¨ ¨ ¨ , 1.6. Identity matrix Ik is appended to

the randomly sampled matrix W to ensure model identifiability.

the experiment in Fig. S6 (V “ 1200, d “ n “ 1000 and k “ 5). For our MCMC-EM algorithm, the

number of MCMC samples is 20 without burn-in. The EM algorithm stops after 50 iterations. The

results show that the computation time of our MCMC-EM algorithm is comparable with the other

methods. Our code, which is currently partially implemented in C++, could run faster if being fully

implemented in C++; in comparison, the publicly available codes of the competing methods have been

mostly highly optimized.

Method AnchorF GDM Gibbs pcLDA MC2-EM

Time/s 6.93 0.27 82.20 34.83 49.15

Table 1: Computational time of the MCMC-EM algorithm and other methods (V “ 1200, d “ n “ 1000,

k “ 5).
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F.3 Selecting the Number of Topics

In practice, the number of topics k is unknown. Below we propose a procedure to select k based on

the "effective rank" of the sample term-document matrix Û reflected in the spectrum.

In Theorem 2, the topic matrix C is assumed to have full rank; consequently, the true term-

document matrix U “ CW has rank k. By Weyl’s inequality (Weyl, 1912), the singular values of the

sample term-document matrix Û are expected to be close to those of U. Similar to the elbow method

used in selecting the number of components in clustering analysis and in PCA, we plot the ordered

singular values of Û versus its index, and then select k by detecting the location of a significant drop

of the curve.

To test our procedure, we conducted a simulation study where k “ 5, V “ 1200, d “ 1000 and

n “ 50. Columns of C are randomly generated from DirV p0.1q and columns of W are randomly

generated from Dirkp0.1q. We repeated the experiment 10 times and the results are shown in Fig. S7.

From the figure we can see that there is a sudden drop between the 5th and the 6th largest singular

values. And the singular values after the 6th one are stable. So, we would set k “ 5, which agrees

with the underlying truth.

Figure S7: Singular values plot of sample term-document matrices. In 10 repetitions of the experiments,

k “ 5, V “ 1200, d “ 1000 and n “ 50. Columns of C and W are generated Dirichlet distributions.

We also apply the approach to the two text data used in the paper – the NIPS and the Daily Kos
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datasets. The singular values plots are in Figure S8. For the NIPS dataset, there is a drop between

5th and 6th largest singular values. For the Daily Kos dataset, there is a drop between 7th and 8th

largest singular values. So we choose 5 and 7 as the recommended number of topics for the NIPS and

the Daily Kos datasets, respectively.
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Figure S8: Singular values plot of the NIPS and the Daily Kos datasets.
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G Estimated Topics for the NIPS Dataset

The NIPS dataset is originally from Perrone et al. (2016) and is accessible on UCI Machine Learning

Repository6. It contains V “ 11463 words and d “ 5811 NIPS conference papers published between

1987 and 2015, with an average document length of 1902. In this section, we display the top 10 words

of mined topics output by our MCMC-EM algorithm at k “ 5, 10, 15, 20.

6
https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
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H Estimated Topics for the KOS Dataset

The Daily Kos dataset is accessible on UCI Machine Learning Repository Bag of Words Database7,

and its original source is dailykos.com, a group blog and internet forum focused on the Democratic

Party and liberal American politics. The KOS dataset contains V “ 6906 words and d “ 3430 Daily

Kos blog entries, with an average document length of 67. In this section, we display the top 10 words

of mined topics output by our MCMC-EM algorithm at k “ 5, 10, 15, 20.

7
https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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I Mined meta states for the taxi-trip dataset

Figure S9: Estimation of disaggregation distributions for NYC taxi-trip data for k “ 9:

Ĉ1, Ĉ2, ¨ ¨ ¨ , Ĉ9 P RV , where Ĉl “ PpXt`1|Zt “ lq.
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Figure S10: Estimation of aggregation distributions for NYC taxi-trip data for k “ 9:

Ŵ1,Ŵ2, ¨ ¨ ¨ ,Ŵ9 P RV , where Ŵl “ PpZt “ l|Xtq.
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