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Abstract

Topic models provide a useful text-mining tool for learning, extracting, and discovering latent
structures in large text corpora. Although a plethora of methods have been proposed for topic
modeling, lacking in the literature is a formal theoretical investigation of the statistical identifiability
and accuracy of latent topic estimation. In this paper, we propose a maximum likelihood estimator
(MLE) of latent topics based on a specific integrated likelihood that is naturally connected to the
concept, in computational geometry, of volume minimization. Our theory introduces a new set of
geometric conditions for topic model identifiability, conditions that are weaker than conventional
separability conditions, which typically rely on the existence of pure topic documents or of anchor
words. Weaker conditions allow a wider and thus potentially more fruitful investigation. We
conduct finite-sample error analysis for the proposed estimator and discuss connections between
our results and those of previous investigations. We conclude with empirical studies employing

both simulated and real datasets.

Keywords: Topic models, Identifiability, Sufficiently scattered, Volume minimization, Maximum

likelihood, Finite-sample analysis.

1 Introduction

Topic models, such as Latent Dirichlet Allocation (Blei et al., [2003) models and probabilistic Latent

Semantic Analysis (Hofmann, [1999), have been widely used in natural language processing, text mining,
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information retrieval, etc. The purpose of those models is to learn a lower-dimensional representation
of the data, in which each document can be expressed as a convex combination of a set of latent topics.
Consider a corpus of d documents with vocabulary size V. A topic model with k& latent topics can

be summarized as the following matrix factorization:
Uywd = CvxkWixd, (1)

where all matrices are Column—stochasti(ﬂ In particular, Uy 4 is the true term-document matrix
whose columns are the true underlying word frequencies for the d documents; Cy , is the topic matrix
whose columns are the multinomial parameters (i.e., word frequencies) for the k topics; and Wy is
the mixzing matriz whose columns present the mixing weights over & topics for d documents.

The primary interest here is to reveal the latent structure of a collection of documents, i.e., to
estimate the collection’s topic matrix C. Despite the popularity and success of topic models, work on
the estimation accuracy of C is scarce. An obstacle to rigorous analysis of that important question
is that the factorization may not be unique up to permutation (throughout we ignore any non-
uniqueness due to permutations of the k topics). The non-uniqueness issue can be easily understood
via the following geometric interpretation of Equation (1)): recovering C based on U is equivalent to
finding a k-vertex convex polytope that encloses all columns of Uj; the vertices of this k-vertex convex
polytope form the columns of C. Apparently, such a convex polytope may not be unique; see Figure
In statistical language, topic models parameterized by (C, W) without any further constraints
are not identifiable (modulo column permutations).

This leads to the following two questions that we aim to address in this paper.

1. Identifiability. Under what conditions is a topic model parameterized by (C, W) identifiable up to
permutation? It is easy to achieve identifiability by imposing stringent conditions that significantly
limit the usefulness of the result. Our goal is to develop a set of identifiability conditions that
are weaker than ones proposed in prior studies but whose accuracy may nevertheless be well

estimated.

2. Finite-sample error. For an identifiable topic model, can we provide an estimator of C whose
finite-sample error leads to the desired rate of convergence? The rate will depend on the number
of documents d and/or the number of words per document n (which, without loss of generality,
is assumed to be the same for all documents). Throughout, we assume the vocabulary size V'

and the number of topics k to be known and fixed.

'We say a matrix is column-stochastic if its entries are non-negative and columns sum to one.
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Figure 1: Geometric view of the simplex AY~(k = V = 3). Black dots are columns of U. Black-lined

triangles are k-vertex convex polygons; the shaded triangles are those with minimum volume.

1.1 Related Work

Topic models have been studied under two settings: one in which the mixing weights, columns of
W, are assumed to be stochastically generated from some distribution; the other in which they are

assumed to be fixed but unknown. The Bayesian approach, for example, focuses on the former.

1.1.1 The Bayesian Approach

In the Bayesian setting, the mixing weights are often assumed to be stochastically generated from a
known distribution with a full support on the simplex A*~1. Therefore, identifiability can be guaranteed

under very mild conditions; for example, one such condition is just that C be of full rank (Anandkumar

et al., [2012)). Under such Bayesian settings, (2015)) and |Tang et al|(2014) established posterior
concentration rates; Anandkumar et al. (2012, [2014) and (2019) established convergence rates

for the maximum likelihood estimator (MLE).

In this paper, we focus on a more general setting, in which the mixing weights may not be
stochastically generated; if they are, moreover, we do not assume any knowledge of the corresponding
distribution. Identifiability and estimation accuracy turn out to be much more challenging under this

general setting.

1.1.2 The Separability Condition

Several earlier investigations have addressed identifiability by imposing the so-called separability

condition or its generalization (Donoho and Stodden, 2004; |Arora et al., |2012; |Azar et al., 2001}
Kleinberg and Sandler|, 2008, 2003}, [Recht et al., 2012; |Ge and Zou|, 2015; [Ke and Wang), 2017;
Papadimitriou et al., [2000; McSherry, 2001; Anandkumar et al., 2012). The separability condition can

be imposed either on rows of C or on columns of W, due to the symmetry between these two matrices



in the factorization (1)).

When imposed on the topic matrix Cy ., this condition assumes that, after the rows of C have
been re-arranged, its top k rows will form a diagonal matrix. Words associated with those rows
are called anchor words; anchor words can be used to identify topics since they appear only in one
particular topic.

When imposed on the mixing matrix Wy, 4, this condition again assumes that, after the columns
of W have been re-arranged, the first k£ columns will form a diagonal matrix. We can further conclude
that that diagonal matrix must be an identity matrix since W is column-stochastic; therefore, there are
k documents that belong to one and only one topic (Nascimento and Dias, |2005; |Javadi and Montanari,
2020). A geometric interpretation of this condition is that we can use the convex hull of k columns
of U to form the k-vertex polytope that contains all other columns of U. In other words, the topic
matrix Cy ;. can be recovered by identifying the corresponding subset of k£ documents.

The separability condition can be easily violated, however, in real applications. In practice it is
commonly the case that topics are correlated, tend to share keywords, and therefore are not separable.

Nevertheless, several algorithms have been proposed to estimate C with a convergence rate of
the order 1/v/nd (Arora et al., 2012; Ke and Wang, 2017), but they assume separability. This rate
of convergence would indicate that such algorithms can pool information in the d documents, each
with n words, to estimate C; therefore they have an effective sample size of nd, instead of n or
d. However, as discussed in Section such a fast convergence rate is achievable only under the
stringent separability assumption. This is because the strong separability condition greatly simplifies
the statistical and computational hardness of the topic matrix estimation problem and turns it into
a searching problem. As a consequence, such separability-condition-based methods circumvent the
hidden non-regular statistical problem of boundary estimation (c.f. Section [£.3)), which often leads to
an extremely slow rate of convergence. See Section [3.2 for a review of separability-condition-based

methods and how they relate to ours, from a two-stage estimation perspective.

1.1.3 Beyond the Separability Condition

To relax the separability assumption, the aforementioned connection between estimating a topic model
and finding a k-vertex convex polytope that encloses all columns of U has led researchers to start
looking at geometric conditions.

When there are multiple k-vertex convex polytopes enclosing columns of U, it is natural to restrict

our attention to the ones with minimum volume, that is, convex polytopes that circumscribe the data



as compactly as possible. Many volume minimization algorithms have been proposed (Craig, |1994;
Nascimento and Dias, [2005; Miao and Qi, 2007; Fu et al., 2015) for nonnegative matrix factorization
similar to . However, most of these methods consider the noiseless setting. Blindly applying them to
topic model estimation fails to respect the error structure in the counting data and may lead to a loss
of statistical efficiency. Moreover, little theoretical work has been conducted on model identifiability
and estimation accuracy beyond the limited context of topic modeling that assumes the separability
condition. In particular, it is important to acknowledge that the minimum volume constraint alone
does not guarantee uniqueness; see examples in Figure .

Recently, a set of geometric conditions known as the sufficiently scattered (SS) condition, which is
weaker than the separability condition, has been introduced to study identifiability of topic models
(Huang et al., 2016; Jang and Hero, 2019)). Huang et al. (2016) ensure identifiability under the SS
condition by adding the constraint that the determinant of WW?' is minimized. |Jang and Hero (2019)
have proved that the SS condition, along with volume minimization on the convex hull of C, ensures
identifiability when V' = k (vocabulary size is the same as topic size); their analysis is valid only for
V' = k since it is built on the assumption that the volume of the convex hull of C is equal to the
determinant of C (or to a monotonic function of the determinant of C*C) which holds true only when
V = k. In addition, neither [Huang et al. (2016) nor Jang and Hero (2019) provided a theoretical
analysis of estimation errors for their proposed estimators, which are based on minimizing a squared
loss based objective rather than on maximizing the multinomial likelihood associated with counting
data.

Javadi and Montanari| (2020) is the only study we are aware of that provides a theoretical analysis
of estimation errors without assuming the separability condition. They proposed to estimate the k
columns of C by minimizing their distance to the convex hull of the data points, and established
a convergence rate for their estimator. In their setting, model identifiability is equivalent to the
uniqueness of the minimizer in the noiseless setting; that is, they assume that a unique set of k£ columns
(of C) is closest to the convex hull formed by the columns of U. They show that the minimizer is
indeed unique when the separability condition is imposed on W; other than that, they do not provide

any checkable conditions for identifiability.

1.2 Summary of Our Contribution

First, we resolve the non-identifiability issue by focusing on convex hulls (of C) of the smallest volume,

and show that under volume minimization, the SS condition ensures identifiability regardless of the



values of V and k (Section [2).

Although volume minimization helps to ensure model identifiability, since the volume of a low-
dimensional simplex in a high-dimensional space does not take a simple form (Miao and Qi, 2007), it
is difficult to incorporate volume minimization into an estimation procedure. This difficulty explains
why many prior investigations have either assumed V' = k or used an approximation formula.

Our second contribution is to establish the connection between volume minimization and maximiza-
tion of a particular integrated likelihood (Section. Specifically, we propose an estimator as the MLE
of the topic matrix C, based on an integrated likelihood, in which the mixing weights (i.e., columns
of W) are profiled out by integrating with respect to a uniform distribution over (k — 1)-simplex. A
geometric consequence of the use of uniform distribution is that, while maximizing the integrated
likelihood, we implicitly minimize the volume of the convex hull of C without explicitly evaluating
its volume. Here we emphasize that the uniform distribution is used only to integrate over nuisance
parameters (i.e., the mixing weights), and that our theoretical analysis does not require the mixing
weights to be generated stochastically from a uniform distribution.

Our third contribution is to establish a finite-sample error bound of the proposed estimator of
C, of the order \/m under the fixed design setting where the mixing weights W can be
arbitrarily allocated—as long as the SS condition pertains (Section . As a consequence, our result
implies asymptotic consistency as the number of documents d and/or the number of words n (in
each document) increases to infinity. In the stochastic setting, where the mixing weights W are
independently generated according to some unknown underlying distribution over the simplex, we
show that, for sufficiently large d, W still satisfies a perturbed version of the SS condition with high
probability—as long as the support of the weight generating distribution satisfies the SS condition.
Based on this observation, we also provide a finite-sample error bound in the stochastic (or random
design) setting (Section |B|in the supplementary material). Furthermore, by drawing a connection
between our estimating approach and some representative existing methods, through a two-stage
perspective (Section , we illustrate that the separability condition greatly simplifies the topic
matrix estimation problem by circumventing the highly nontrivial and non-regular statistical problem
of boundary estimation (Section . This explains why our finite-sample error bound is similar to
that of |Javadi and Montanari (2020)) which is based on an archetypal analysis that, like ours, does
not assume the separability condition; however, our error bound is (not surprisingly) worse (in terms
of the dependence on d) than those (Ke and Wang, 2017; Arora et al., [2012) arrived at under the

separability condition.



As a byproduct, our work provides a theoretical justification for the empirical success of Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) models, since the proposed estimator is essentially the
maximum likelihood estimator of C from the LDA model, with a particular choice of prior on W.
More generally, the LDA model with other prior choices on W can be interpreted as maximizing
the data likelihood while minimizing a weighted volume in which a non-uniform volume element is
integrated over the convex hull of C when defining the volume (see Section [5.1.2 for some numerical
comparisons).

Although presented in the context of topic modeling, our results can be adapted to many other
applications by using the data-specific likelihood. For example, the decomposition U = CW plays an
important role in hyperspectral imaging analysis, in which each column of U represents the intensity
levels over V' channels at a pixel. Due to the low spatial resolution of hyperspectral images, pixel
spectra are usually mixtures of spectra from several pure materials, known as endmembers. So a
key step in hyperspectral imaging analysis is to separate (or unmix) the pixel spectra into convex
combinations of endmember spectra; endmember spectra are essentially columns of C (Winter, |1999).
Similar models also arise in reinforcement learning (Singh et al., [1995; Duan et al., 2019) as a way to

compress the transition matrix of an underlying Markov decision process; a detailed discussion is given

in Section [5.2.2.

1.3 Notation and Organization

Let 1; denote the all-ones vector of length k, and ey the f-th column of the k x k identity matrix
I. Let A¥ ! ={xeRF:0< 2 <1, Zle x; = 1} denote the (k — 1)-dimensional probability simplex.
For a matrix Ay, = (Ay,---,A,), let

Conv(A) = {xeRF:x=AXXe AT}
cone(A) = {xeRP:x=AXX>0},
and aff(A) = {xeR’:x=AXAX"1,=1AeR%},

denote the convex polytope, simplicial cone and affine space generated by (the ¢ columns of) A,
respectively. For A € RP*4(p = q), we define | Conv(A)| as the (¢ — 1)-dimensional volume of Conv(A)
on aff(A), which can be computed by the Cayley-Menger determinant or Lemma[D.1 in Appendix
[D. For any vector X, X > a means X is element-wisely greater than or equal to a. Denote a v b
and a A b as the larger and smaller number between a and b, respectively. For any cone C, let

C* = {x: xy = 0,Vy € C} denote its dual cone. Recall some useful facts of dual cones (Donoho and
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Stodden, [2004): (i) cone(A)* = {x € R? : xT'A = 0}; (ii) if A and A are convex cones, and A S A,
then A* < A*. Unless stated otherwise, all the constants in the paper are independent of number of
words per document n and number of documents d.

The rest of the paper is organized as follows. In Section [2] we discuss identifiability under volume
minimization as well as a set of sufficient conditions. In Section [3] we propose the MLE based on an
integrated likelihood, establish its connection with volume minimization, and describe its computation.
Theoretical analysis of the proposed estimator is presented in Section [l Finally, empirical evidence is

reported in Section [5] Proofs and technical results are included in the supplementary material.

2 Identifiability of Topic Models

In this section we start with a formal definition of topic model identifiability under the minimum
volume constraint. After that, we describe two sufficient conditions that lead to the identifiability,
namely the separability condition and the sufficiently scattered condition. Finally, for the latter
condition, which is weaker and less stringent than conventional separability, we provide a geometric

interpretation.

2.1 Identifiability under Volume Minimization

We have observed (see Figure that without any constraint, a topic model is almost always
non-identifiable. We thus focus on identifiability under the minimum volume volume minimization
constraint, due to its natural interpretation as finding the most parsimonious topic model that explains
the documents in the corpus data, or equivalently, the most compact k-vertex convex polytope in
which the documents reside.

We begin by defining the following distance metric between two topic matrices C and C:
D(C,C) = mri[n |C — CII||,, (2)

where | - |2 denotes the spectral norm and IT is a permutation matrix. Note that D(C, C) = 0 if and
only if C = CII, that is, C and C are identical up to a permutation of columns. Since k and V are
fixed, the spectral norm in is not important because all matrix norms are equivalent. In particular,
if the Frobenius norm is employed instead of the spectral norm, then the distance metric D coincides
with the 2-Wasserstein distance between column vectors of C and C.

Next, we state the definition of identifiability under the minimum volume constraint:



Definition 1 (Identifiability). A topic model associated with parameters (C, W) is identifiable, if for

any other set of parameters (C, W), the following conditions hold,
CW = CW and |Conv(C)| < | Conv(C)|, (3)
if and only if D(C,C) = 0.

It is easy to check that model identifiability is achieved under the separability condition on columns
of W, as it implies that W contains a k x k identity matrix after a proper column permutation; that
is, there exist k columns in U that are the k corners of Conv(C). Therefore, no other k-vertex convex

polytope of smaller or equal volume can still enclose all columns in U.
Proposition 1. If the separability condition is satisfied on W , then (C, W) is identifiable.

Since the separability condition can be overly stringent in practice, we next show that a condition
weaker than the separability condition can also achieve model identifiability. Our analysis is related
to the following geometric condition, known as sufficiently scattered (SS). Its definition relies on the

second order cone K, its boundary bdK, and its dual cone K*, which are defined below:

K

{X € Rk : HXHQ < XT].k},
bdK = {xeRF:|x|, =x"1;},
and K* = {xeRF:x"1,=>Vk—1|x|s}.

Definition 2 (SS Condition). A matriz W is sufficiently scattered, if it satisfies:
(S1). cone(W)* < K, or equivalently, cone(W) 2 K*;
(S2). cone(W)*(bdKK < {Xes, f=1,--- kA =0}

It is easy to verify that the separability condition on W implies W to be sufficiently scattered.
In fact, the separability condition on W means that Conv(W) = A*! fills up the entire simplex,
and that cone(W)* = cone(A*™1) is the most extreme cone (smallest possible cone, corresponding to
the solid triangle in Figure [2} see the following section for details) that satisfies (S1) - (S2) in the SS

condition.

Theorem 2. If W is sufficiently scattered and C is of rank k (full column rank), then (C, W) is
wdentifiable.



Proof of Theorem 2] is given in the supplementary material (Section [D.1). Here we give a
sketch of the proof. Suppose CW = CW. We have C = CB, where B = WWT(WW7*)~! Tt
suffices to show B is a permutation matrix, which we prove by verifying that any row of B is in

cone(W)* [ bdlC = {Xes, A = 0} and is also of unit length.

Remark 2.1 (Comparison with definition in Javadi and Montanari| (2020)). The model identifiability
defined in |Javadi and Montanari (2020) is different from ours. They define a model to be identifiable
if there is a unique convex polytope that minimizes the sum of distances from vertices of Conv(C)
(i.e., columns of C) to the convex hull of U. Their notion of identifiability is easier than ours to be
formulated into a statistical estimator that minimizes an empirical evaluation of the distance sum from
data. In our approach, the volume of our low-dimensional polytope does not take a simple form, which
greatly complicates the estimator construction. Fortunately, we find that maximizing a particular
integrated likelihood leads to an estimator that implicitly minimizes the volume. (See Appendix |A|for

further discussion of this topic.)

Remark 2.2 (SS condition is not a necessary condition). The SS condition is not necessary for
identifiability — one reason is that it does not take into account additional parameter constraints (e.g.,
in the topic model, each column of topic matrix C should be a probability weight vector belonging to
the simplex). See Figure for an example (V = k = 3 and C = I3) where the SS condition does
not hold but the model is identifiable. Since any alternative topic matrix C as a convex polytope with
three vertices must be inside A2, due to the parameter constraint, Is is the only topic matrix enclosing
all columns of U and is within simplex A%. However, the SS condition does not hold since, apparently,

cone(W) 2 K* is not true.

2.2 Geometrical Interpretation of Sufficiently Scattered Condition

We provide a geometric interpretation of the SS condition in Figure [2| with £ = 3. Since the mixing
weights are all on A%, what is shown in Figure 2| is the intersection of the cones with the hyperplane
xT13 = 1. The mixing weights, wy,..., wy, are represented as blue dots. Other items related to
Definition [2{are: bdKC is the red circle, £* is the dark brown ball inscribed in the triangle, and cone(W)*
is the yellow convex region with dashed boundary.

We illustrate three different scenarios: “SS” means that the SS condition is satisfied, “not SS” means

that the SS condition is violated, and “sub-SS” means that (S1) is satisfied but (S2) is not.
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(b) sub-SS (c) sub-SS (d) not SS

Figure 2: Geometric views of the SS condition shown on the hyperplane x’1, = 1 (k = 3). Mixing
weights w are represented as blue dots; blue dots in (c) are all on the boundary of the inner circle.
Any dashed triangle in (b)(c)(d) is an alternative 3-vertex convex polytope that contains all w’s and is

of a volume no larger than A*~1.

An equivalent form of Condition (S1) is cone(W) = K*. So (S1) has a simple and intuitive
interpretation: the mixing weights (blue dots) should form a convex polytope that contains the dual
cone K*, the inner ball inscribed in the triangle. See Figure for a violation of (S1). In particular,
the separability condition on W implies that the three vertices (blue circles) of the triangle are
included in W. As a consequence, cone(W)* = cone(W) is the entire triangle, which is the most
extreme/superfluous instance that satisfies the SS condition.

Condition (S1) ensures that Conv(C) has the smallest possible volume, but such minimum volume
convex polytopes may not be unique. The purpose of condition (S2) is to determine the “orientation” of
the convex polytope and consequently to ensure that it is unique. When (S2) is violated, it is possible
to rotate the convex polytope to produce different feasible convex polytopes of the same volume; see

Figure 2(b)(c)

The SS condition was first introduced by Huang et al.| (2016) to study the identifiability of topic

models, where identifiability is ensured under the SS condition along with a minimal determinant on

WWT'. This condition is used differently in their work and ours: [Huang et al.| (2016) impose the SS

condition on rows of C; we impose this condition on columns of W. Although volume is not discussed

in |[Huang et al. (2016), imposing the SS condition on rows of C in fact leads to a convex polytope of

maximum volume; in contrast, we seek a convex polytope of the smallest volume.

Remark 2.3 (Algorithm for checking SS condition). Checking cone(W) 2 K* in the SS condition

is equivalent to verifying whether a convex polytope contains a ball (after being projected to AF~1),

which is in general an NP-complete problem in computational geometry (Freund and Orlin, 1985}
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Huang et al., 2014). Consequently, it can be computationally difficult to provide a definitive conclusion
as to whether or not the SS condition holds in high dimensions. However, if making a small probability
mistake is allowed, then we propose that the following randomized algorithm to check the SS condition
will give the correct answer with acceptable high probability. Since it suffices to verify that Conv(W) 2
bdK* () A*~1, we can independently choose M sample points uniformly from bdiC* (| A*~! and check
whether all of them are in Conv(W). If W satisfies the SS condition, then the M sampled points
should belong to Conv(W); if W does not satisfy the SS condition, then, since the probability of
each sampled point falling in Conv(W) is a fixed number, the probability of making a mistake decays
exponentially in M. For real datasets where Conv(W) is not observed, we can use an estimator of it
to empirically check the SS condition by reporting the frequency of sampled points not falling into the
estimated Conv(W).

3 Maximum Integrated Likelihood Estimation

Before introducing the proposed estimator for topic matrix C, let us describe some more notations
and the data generating process. Let X = (x(),---  x(@) denote the observed data as a collection of
word sequences. Without loss of generality, we assume each document has the same number of words,
denoted by n. Given parameters (C, W), word sequences from different documents are independent,
with the word sequence from the i-th document, x(¥ = (®i1,...,%;n), being n ii.d. samples from the
categorical distribution Cat(u;), where u; = Cw; is the V-dimensional probability vector in AV 1,
and w; = (w;1,...,w;x) denotes the i-th column of matrix W. We use f,(- | u;) to denote the
multinomial likelihood function of the i-th document. Let c; denote the j-th topic vector, i.e., the
j-th column of matrix C, for j = 1,2,... k. Under this notation, we can express the word frequency
vector u; = Z?zl w; jc; associated with the i-th document as a convex combination of the topic vectors,

where w; serves as the mixing weight vector.

3.1 Implicit Volume Minimization

Since our primary interest is on the topic matrix C, we can profile out the nuisance parameters w;’s
by integrating them with respect to some distribution, resulting an integrated likelihood function
of C. After that, we can estimate C by maximizing the integrated likelihood (Berger et al., 1999)).
We propose to integrate out w;’s with respect to the uniform distribution over simplex A*~!, which

induces a uniform distribution on u; = Cw; over Conv(C). This is because the linear transformation

12



w — Cw has a constant Jacobian. The integrated likelihood can be formally written as follows:

d

) - fn(x(i) | u)
FnXd(C’ X) a H fConv(C) |CODV(C>| dU7 (4)

where | Conv(C)| denotes the (k — 1)-dimensional volume of the set Conv(C). The corresponding

maximum likelihood estimator (MLE) is defined to be

A

C, = arg maxF),,4(C;X), (5)
c

where the maximum is over all V-by-k column-stochastic matrices.

Although the integrated likelihood is equivalent to the marginal likelihood from an LDA model
after integrating out the mixing weight w with respect to a Dirichlet(1;) prior, we emphasize again
that the uniform prior is just used to profile out the nuisance parameters so that we can derive an
MLE for the topic matrix. In our theoretical analysis below, we do not assume data to be generated
from the LDA model with a uniform prior on w.

Why uniform distribution? To understand the motivation behind the use of a uniform distribution
in , let us consider the noiseless case (corresponding to the limiting case as n — ), in which we
“observe” the true word-frequency vectors for the d documents: u?,---  ul. In this ideal setting, from
a standard Laplace approximation argument, the i-th integral inside the product in (4)) after rescaling

by a factor of order n(V="/2 converges to 1(u? € Conv(C)), and the MLE C becomes:

0 ... uo
arg max H (u; € Conv(C)) arg max L(uy, -, uy € Conv(C)) (6)

|Conv(C)| "¢ | Conv(C)| ’

where 1(-) is the indicator function. Therefore, maximizing the integrated likelihood function (/4]
is asymptotically equivalent to minimizing the volume of Conv(C) subject to the constraint that
Conv(C) contains all true word-frequency vectors.

In the rest of this section we first provide an alternative interpretation of our approach as a
two-stage estimation procedure. We compare it with some representative topic learning methods
designed under the separability condition that can also be cast as two-stage procedures. After that, we
describe an MCMC-EM algorithm designed for implementing the optimization problem of maximizing

the integrated likelihood.

3.2 Interpretation as Two-Stage Optimization

Our method of estimating C can be viewed as a two-stage procedure: in the first stage, we estimate the

(k — 1)-dimensional hyperplane aff(C) in which the convex polytope of C lies; then in the second stage,
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A (1,0,0,0)

Conv(C,,)

aff(C,)

(0,1,0,0) (0,0,1,0)

v

(a) First stage (b) Second stage

Figure 3: Illustration of the two-stage perspective of maximizing the integrated likelihood . The left
figure illustrates the first stage when V = k = 2. Black dots are the sample word frequency vectors
s aff(C) is the red line. We target to minimize the sum of the squared distances, where each
distance is induced from its own local norm || - |; (see main text for details about the norm). That is
why the black lines correspond to the projection directions are not necessarily parallel to each other.
The right figure illustrates of the second stage when V' = 4, k = 3. The blue tetrahedron is the simplex
AV~ and the red hyperplane is the estimated aff(én) from the first stage. The black dots are the
projections of the sample word frequency vectors @?’s on aﬂ(@n). The black dashed triangle is our
estimator C,,, whose convex hull is roughly the 3-vertex convex polytope that encloses all the black

dots and has the minimal volume.

we determine the boundary of Conv(C) by estimating its k vertices within the estimated hyperplane
obtained in the first stage. See Figure |3|for an illustration, and the following for a heuristic derivation.

It is worth mentioning that many recent separability condition based topic modeling methods in
the literature (such as |Arora et al. (2012); |Azar et al.| (2001); Kleinberg and Sandler (2008, 2003));
Ke and Wang (2017); Papadimitriou et al. (2000); [McSherry (2001); |Anandkumar et al. (2012)))
can be explained under this general two-stage framework. For example, some papers (Azar et al.,
2001} |[Kleinberg and Sandler, 2008, [2003)) aim only at recovering the column span of topic matrix C
using singular value decomposition (SVD), which suffices for their applications. This corresponds
to solving the hyperplane estimation problem in our first stage. Some papers (Arora et al., [2012;
Papadimitriou et al.| 2000; McSherry, 2001; Anandkumar et al., 2012) directly search for a subset
of words (separability condition on anchor words, Arora et al.| (2012))) or documents (separability

condition on pure topic documents, |Papadimitriou et al. (2000); McSherry| (2001); Anandkumar et al.
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(2012)) in their first stage, and then in their second stage recover the population-level term-document
matrix (or the hyperplane aff(C)) based on the estimated anchor words/pure topic documents. This
corresponds to our two-stage procedure, in reverse order. Others such as Ke and Wang] (2017) also use
a two-stage procedure based, first, on projecting a certain transformation of the sample term-document
matrix onto a lower-dimensional hyperplane via SVD, and then searching for the anchor words over
that hyperplane. Notice that all aforementioned methods reply crucially on the separability condition,
which greatly simplifies the statistical and computational hardness of the problem and turns it into
a searching problem; thus they are able to circumvent the hidden non-regular statistical problem of
boundary estimation (c.f. Section [4.3)).

To illustrate the two-stage interpretation of our method, we observe that the integrated likelihood

is equivalent to the following expression:

d
o @ L o0 (Pl ) e g
where ) denotes the sample word frequency vector for document i. Here, we use Dki(p||q) =
21‘;1 Do log(py/qy) to denote the Kullback-Leibler divergence between two categorical distributions with
parameters p = (p1,...,py) and q = (q1, ..., qy). When n is large, the classical Laplace approximation
to the integral in (7)) uses a nonnegative quadratic form [u — 4@ |? : = (u — a%)"H;(u — 4@) to
approximate the exponent Dxp,(1” || u) in a local neighborhood of @1V, Since such a quadratic form
defines the norm | - [;, we can decompose it into |u—a® |2 = |u—P¥ a2 + | (Iy — P(é)) a2, where
Pg) denotes the projection operator onto the (k — 1)-dimensional hyperplane aff(C) with respect to

the distance induced from | - [|;. Finally, we can approximate the integrated likelihood in the preceding

display as
d 4 , 1 d N
exp{ —n |1y~ PE) a2 } - [Com (O I] j exp{ —nlu—Pda? 2} du, (8)
'£=1 B i=1 \COnv(C) )
residual su; of squares ~ Cyn—(k=1)/2 1[(;%) () eConv(C))

where the display underneath the second curly bracket is due to the Laplace approximation to the
(k — 1)-dimensional integral, and the constants C; depends only on 4.

We see from this approximation that the maximization of integrated likelihood can be approxi-
mately cast into a two-stage sequential optimization problem. In the first stage, we find an optimal
(k — 1)-dimensional hyperplane spanned by C that is closest to @(’s by minimizing the residual sum
of squares in (see Figure . This corresponds to the SVD approach for estimating the true
topic supporting hyperplane adopted by |Azar et al. (2001); |[Kleinberg and Sandler| (2008, [2003); |Ke
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and Wang| (2017), and several others under the separability condition. In the second stage, we find the
most compact (i.e., minimal volume) k-vertex convex polytope Conv(C) that encloses the projections
of 1’s onto the hyperplane aff(C), so that the second term in (8] is maximized.

With the separability condition on C or W, the vertex search in the second stage can be greatly
simplified and restricted to a small number of choices. For example, the anchor-word assumption
implies that each column of C has at least (k — 1) zeros; consequently, columns of C should be chosen
from the intersection of aff(C) and the simplex AV~! in the second stage (as shown in Figure [3(b)).

Our second stage, in the absence of a separability condition, is essentially the much more challenging
non-regular statistical problem of boundary estimation. To see this, consider the same toy example
of (V.k) = (4,3) as illustrated in Figure The separability condition on C implies that once
the hyperplane aff(C) (red hyperplane) is determined, the only candidate topic matrix C is the one
whose columns are the intersections (blue circles) of this hyperplane and the three 1-dimensional
edges of the simplex A? (blue tetrahedron), making the second stage trivial. On the contrary, the
statistical problem in our setting is to estimate the minimal volume k-vertex convex polytope (black
dashed triangle as our estimator) that encloses all true underlying word probability vectors of the
documents, which is highly nontrivial (see Section [4.3 for a more detailed comparison). Fortunately,
our computational algorithm described in the following subsection circumvents this difficulty directly
maximizing the integrated likelihood via a variant of the expectation maximization (EM) algorithm,

which implicitly constructs such an estimator.

3.3 Computing Maximum Integrated Likelihood Estimator

For computation, we employ an MCMC-EM algorithm to find the maximizer C,, of the integrated
likelihood objective by augmenting the model with a set of latent variables Z = {Z;; : i =
1,2,...,d,j = 1,2,...,n}, where, given the mixing weights w;, Z;; € {1,2,...,k} follows Cat(w;)
and is interpreted as the topic indicating variable for the j-th word Xg-i) in the i-th document. Our
MCMC-EM algorithm proceeds in a manner similar to that of the classical EM algorithm with, first,
an E-step of computing the expected log-likelihood function log p(X, Z | C), where the expectation is
with respect to the distribution of latent variable Z after marginalizing out W, and then an M-step of
maximizing the expected log-likelihood function over topic matrix C. An MCMC scheme is introduced
in the E-step for sampling (Z, W) pairs from the joint conditional distribution of p(Z, W | X, C) in
order to compute the expected log-likelihood function via Monte-Carlo approximation.

As discussed before, our proposed estimator is essentially the MLE estimator from the LDA model
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(Blei et al., 2003) with a particular choice of priors on W. Many algorithms have been proposed
for the LDA model, such as the Gibbs sampler (Griffiths and Steyvers, 2004), partially collapsed
Gibbs samplers (Magnusson et al., 2018; [Terenin et al., |2018)), and various variational algorithms (Blei
et al., 2003)). The use of MCMC-EM here is a personal preference. Our MCMC-EM algorithm is a
stochastic EM algorithm similar to the Gibbs sampler in |Griffiths and Steyvers (2004)), and to the
partially collapsed Gibbs samplers in Magnusson et al. (2018); Terenin et al.| (2018). According to the
asymptotic results of stochastic EM algorithms in Nielsen et al. (2000)), the estimation of the topic
matrix produced by our algorithm is guaranteed to converge to the proposed MLE, provided that
WV is sufficiently scattered. In Section , we compare our algorithm with the algorithms mentioned
above and find all very similar in performance. Since computation is not the main focus of this paper,

we confine the details, including derivations for the full algorithm, to the supplementary material.

4 Finite-Sample Error Analysis

In this section, we study the finite-sample error bound and its implied asymptotic consistency of the
proposed estimator C,. We consider the fixed design setting where columns of W can take arbitrary
positions in A*~! as long as a perturbed version of the SS condition described in the following is
satisfied. For the stochastic setting where columns of W are generated from some distribution, the
error analysis and consistency can be found from Section [B in the supplementary material. To avoid
ambiguity, we use C°, W? UY to denote the ground truth, and leave C, W, U as generic notations

for parameters.

4.1 Noise Perturbed SS Condition

Before introducing our results from the error analysis, it is helpful to introduce a perturbed version
of the SS condition, called («, 3)-SS condition, which characterizes the robustness/stability of the

(population level) SS condition against random noise perturbation due to the finite sample size.

Definition 3 ((«a, §)-SS Condition). A matrizx W is (e, 3)-sufficiently scattered for some a, f = 0,
if it satisfies (S1) and
(S3). [cone(W)*]* ([bdK]* < {x: ||x — Nef[a < BN, A = 0}, where

[cone(W)*]* = {x : xTW = —a|x|2} and [bdK]* = {x : ||x]|2 — xT1}| < a|x|2} are the

a-enlargements of cone(W)* and bdIC, respectively.
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We provide a geometric view of the (a, $)-SS condition in Figure . Similar to the setting of
Figure |2, everything is projected onto the hyperplane x’1; = 1: blue dots denote columns of W, the
inner brown ball inscribed in the triangle denotes K*, and the shaded yellow region denotes cone(W)*
along with the dashed gray line as its boundary. The boundary of the enlarged cone of cone(W)*,
[cone(W)*]%, is marked by the solid gray line, and the thickened boundary of K, [bdK]%, is the outside
ring in red. The set {x : [|x — Aef2 < SN\ A =0, f € [k]}, when being projected to the hyperplane

xT1;, = 1, corresponds to the green balls centered at the vertices of A¥~! with radius 3.

-
oy ~
vt /e
) /N
Z

[Cone(W)ye /.
bdKl® L |

D S

el - Rell, <prr

(a) (a, B)-SS (b) not (g, f2)-SS (¢) not (a3, B3)-SS
(a2 = a, B2 < B) (a3 >, B3 > B)

Figure 4: Geometric view of (a, 3)-SS sliced at the hyperplane x71; = 1 (k = 3). W is the same in
(a)(b)(c) while the values of o and g are different. In (b) and (c), we highlight the region (the dashed
circle) that are in [cone(W)*]* ([bdK]* but not in {x : [x — Aef|2 < SA}.

For a matrix W to satisfy the (o, 5)-SS condition, the corresponding convex hull of the blue dots
need to contain ¥, the inner brown ball. In addition, the intersection of the red ring, [bdKC]*, and the
region enclosed by the solid gray line, [cone(W)*]*, must be inside the green balls; see Figure . In
other words, [cone(W)*]® only touches [bdK]* near the k vertices of the simplex A*~L.

The («, 8)-SS condition can be viewed as a generalization of the SS condition with the two

* under noise perturbation. In particular, o

parameters (a, ) quantifying the robustness of cone(W)
characterizes the tolerable noise level, and 3, which we refer to as the vertices sensitivity coefficient,
represents the maximum estimation error induced by noises below level a. Due to this interpretation,
the (a, 8)-SS condition becomes stronger as a increases and § decreases (c.f. Proposition [3). In
particular, the minimal allowable § under (S3) should increase as « increase. In most examples,
should be proportional to o up to some constant depending on the geometric structure of cone(KC) (for
a concrete example, c.f. Proposition .

While the SS condition requires cone(W)* and bdKC to intersect exactly at the positive semi-axis

rays {\es, A = 0}, the («, 5)-SS condition requires the intersection of [cone(W)*]|* and [bdK]*—the
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perturbed versions of cone(W)* and bdIC, respectively, with noise level a—to be within distance 3
away from the semi-axis rays. Note that («, 5)-SS degenerates to the SS condition when o = 3 = 0.

Intuitively, if a matrix W has vertices sensitivity coefficient 8 under noise level a, then condition (S3)
remains valid at the same sensitivity coefficient as we decrease the noise level and at the same tolerable
noise level as we increase the sensitivity coefficient. The following proposition provides a more general

picture about the relation of the («, )-SS conditions under different combinations of (a, f3).
Proposition 3. The followings are some properties of («, 8)-SS condition and SS condition.
(i) If « = o and p < [, then («, B)-SS implies (o, f')-SS.
(i) If W is (v, 3)-SS and Conv(W) < Conv(W), then W s also (a, 3)-S8S.
(iii) If W is SS and cone(W) S cone(W), then W is also SS.

By Proposition [3(i), the («, 8)-SS condition gets more stringent if we increase the tolerable noise
level a and/or reduce the vertices sensitivity coefficient 5. This is because when a gets larger, the
intersection [cone(W)*]*([bdK]* gets larger and consequently may not be packed inside the green
ball with radius g. Similarly, when 8 gets smaller, the green balls may not be large enough to
contain the intersection. See Figure for illustration. Since Conv(W) < Conv(W) implies
cone(W) < cone(W), we provide a more general sufficient condition for SS in Proposition [3{(iii)
compared to that in Proposition [3{ii), where SS is a special case of («, 3)-SS. However, in this paper,
the columns of W we consider are all on the hyperplane x’1;, = 1, so Conv(W) < Conv(W) is
equivalent to cone(W) < cone(W). As a direct consequence of Proposition [3[ii), if some columns of
W is («, 5)-SS, then W is («, 3)-SS.

The maximal allowable tolerable noise level « is determined by the geometric structure of cone(W).
Given «, the («, 3)-SS condition can be satisfied by almost any W when f is large enough. However,
such a condition is meaningless since 8 will appear as one of the error terms later in Theorem {4l So
we would like to set § as small as possible in order to derive a tight error bound. For example, we

log(nvd)
n

need [ to have an order of in Theorem || to ensure a desired error rate that matches the

order of our « choice reflecting the effective noise level in the data.

4.2 Error Analysis and Consistency

In this subsection, we consider the setting where columns of W are fixed, and satisfy a set of conditions

related to the noise perturbed SS condition discussed in the previous subsection. Note that the results
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in this subsection also apply to randomly generated mixing weights, as long as we can verify that the
set of conditions below holds for the random mixing weights with high probability (c.f. Section |B|in
the supplementary material). Before presenting our main results on the finite-sample error bound of

the estimator Cn, let us first state our assumptions.
Assumptions. Assume the following:
(A1) C° is of rank k and its columns are bounded away from the boundary of AV~!.

(A2) Figenvalues of %IWCWCT are lower bounded by a positive constant, where W, = W — Cllwoldlfdr
is the centered version of WV. In addition, there exist k affinely independent columns of W°

with minimum positive singular value larger than a positive constant.

(A3) There exist s columns of W which are («, 8)-SS with a > Cy slosvd) “phere s and Cy are

n

constants.
Now we are ready to present our main result on the estimation accuracy.

Theorem 4. Under Assumptions (A1)-(A3), with probability at least (1 —3/(n v d)°)4,

A slog(n v d)

D(C,,C°% < Dy + Dav/sp, (9)

where Cy is a constant,

) 1
D(C,,, C°) < D)y /M. (10)

In the theorem, constants D; and ¢ have the relation that D; = C5 - \/c + Cy where C3 and C} are

where ¢, D1 and Dy are positive constants. In particular, if § < Co M

then

constants independent of (n,d). Some remarks about the assumptions are in order.

(A1) is commonly imposed for technical reasons in other related work, such as [Nguyen (2015) and
Wang (2019), to avoid singularity issues. The geometric interpretation of the assumption in (A2) on
W. is that Conv(Uy) should contain a ball of a constant radius, which is again imposed to avoid
singularity issues when a large proportion of the mixing weight vectors are too concentrated. Similar
assumptions are also made in Ke and Wang (2017); Javadi and Montanari (2020).

Next, we discuss Assumption (A3) in detail. First, note that a subset of columns of W? satisfying
the (a, )-SS condition immediately implies the full matrix W9 itself to satisfy the same condition,
due to Proposition [3[(ii). Second, note that to attain the error bound we need the existence of a

sub-matrix WY to satisfy condition (A3) with 3 of the same order as a. The following proposition
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provides a sufficient condition for fulfilling this requirement. For example, when k£ = 3 as illustrated in
Figure m, all we need are two data points on each of the three line segments connecting e; and e;
(1 # j) (i.e., totally six points) with the distance from each data point to the nearest vertex is less

than 1/3.

Proposition 5. Suppose for all 1 < i # j < k, there exists a column of W© that can be represented as
(1 —z;5)e; + xije; where 0 < xy; < 1/k, then WO is (e, Ce)-SS for all € > 0, where C' is constant only

depending on the geometry of WV.

Third, we discuss the parameter s, the smallest number of columns in W? that are (c, 3)-SS, in
Assumption (A3). The following proposition shows that when the columns of W? are stochastically
generated according to some underlying distribution over A*~! with appropriate properties, then s
can be chosen as a constant with high probability. Note that even if s is not a constant, the error
bound in still goes to zero as long as s is of a smaller order of m in the asymptotic setting

where (n,d) — o

Proposition 6. Suppose the columns of W are i.i.d. samples from a probability density function

that is umformly larger than a positive constant on neighborhoods of the vertices of A*t. If C -

k—1

nz <d< , then with probability at least 1 — Cy - k/d, there exist k columns in WO that are
( 14/ 8 an) , Con/ log(+Vd) -SS, where c€ (0,1), C, Cy, Cy and Cy are positive constants.

Next, we show the asymptotic consistency of C,, that is, C,, — C° in probability as (n,d) — 0.
In particular, we assume the existence of a sequence of a and [ values along which the («, 3)-SS

conditions are satisfied, which is summarized in the following.
Assumptions. Assume the following:

(A3’) For any sufficiently small € > 0, there exists some . such that S — 0 when e — 0, and there

are s columns of W° satisfying the (e, .)-SS condition, where s is a bounded constant.
(A4) logd/n — 0 as (n,d) — .

Theorem 7 (Estimation Consistency). Under Assumptions (A1), (A2) and (A3’) with a fixed d, we

have

A

D(C,,,C°% — 0 in probability as n — 0. (11)
If d is also increasing in n in a way such that Assumption (A4) holds, then
D(C,,C% — 0 in probability as (n,d) — oo. (12)
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Note that Proposition [5| again provides a set of sufficient conditions for Assumption (A3’). However,
our current condition on W in Proposition 5| is stronger than the SS condition on W. We conjecture
that Assumption (A3’) is equivalent to the SS condition on WY, and leave a formal proof to future

work.

4.3 Comparison with Existing Theoretical Results

Our error bound in Theorem {| does not decay as the number of documents d increases, which
is seemingly weaker than some existing results, such as |Arora et al. (2012)), Bansal et al. (2014]),
Anandkumar et al. (2014), Ke and Wang (2017), and |Wang| (2019). In particular, under the anchor
word assumption, [Arora et al.| (2012) and |[Ke and Wang (2017) showed an error upper bound as 1/+/nd.

As discussed in Section many algorithms for estimating the topic matrix can be explained
through a two-stage optimization, corresponding to either a single stage or both. Under this perspective,
each stage will incur an error. With the anchor word assumption, the main source of errors comes from
the first stage of applying an SVD approach (Azar et al., 2001; |Kleinberg and Sandler, 2008 2003;
Ke and Wang, 2017) to find a (k — 1)-dimensional hyperplane best approximating the data whose
error bound is 1/ v/nd. In fact, the anchor word assumption greatly reduces the search space in the
second stage of identifying columns of C as either a subset of anchor words or a subset of pure topic
documents, yielding negligible estimation error. For example, the vertex hunting algorithm adopted
in |[Ke and Wang (2017)) directly focuses on all the k£ combinations of the noisy data points in the
(k — 1)-dimensional hyperplane obtained in the first stage, and chooses the combination that minimizes
the predetermined criterion. With the separability condition, they show that the estimated vertices
are all close to their corresponding true vertices in a (k — 1)-dimensional hyperplane, from which they
draw the conclusion that the estimation error of the second stage is no larger than that of the first
stage (see Lemma A.3, Ke and Wang (2017)).

Without the anchor word (or separability) assumption, errors incurred in the second stage become
dominant. Consider the toy examples illustrated in Figures [1| and [2| with K = V = 3. The first stage
is trivial since the data are already in (k — 1)-dimension and projection to a hyperplane is not needed.
In the second stage, we need to estimate a k-vertex convex polytope enclosing all true word probability
vectors of the documents that generates the data, which can be formulated as the non-regular statistical
problem of boundary estimation. As pointed out by |Goldenshluger and Tsybakov, (2004); Brunel et al.
(2021), estimation of convex supports from noisy measurements as in our second stage is an extremely

difficult problem. For example, in the one-dimensional case, even with the knowledge that the noises
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are homogeneous and follow a known Gaussian distribution, the minimax rate of boundary estimation
based on d observations is as slow as 1/4/log d, let alone the more complex situation where the noise
distribution is heterogeneous and only partly known. For example, in our case the projection P(é) a®
onto aff(C) of the sample word frequency vector @® for document i, for i = 1,...,d, plays the role of
a noisy measurement from the convex polytope Conv(C). Note that a typical noise level in our second
stage is of order 1/4/n due to n number of words within each document; however, the error distribution
depends on both the position of the hyperplane aff(C) obtained in the first stage as well as the location
of P(Ci)ﬁ(i) on the data simplex AY~1. Therefore, we cannot expect to achieve the 1/ v/nd error bound
as those separability condition based methods. It is an interesting open problem of determining the
precise minimax-optimal rate in topic models without separability condition and whether our error

bound is optimal, which we leave as a future direction.

5 Empirical Studies

In this section, we describe numerical studies we have performed to test our theoretical results. We

report the performance of our model on two real datasets.

5.1 Simulation Studies

We have conducted three simulation studies to verify our theoretical results and to test the performance
of our proposed algorithms. In Section we apply the MCMC-EM algorithm to the data generated
by non-identifiable and identifiable models, and compare the recovered convex polytopes with the
truth, to show the importance of the SS condition. In Section we compare the proposed uniform
prior B¢ = 1, with other priors, using data generated from different distributions, to demonstrate
empirically the robust performance of our estimator. In Section we apply Monte Carlo simulation

to visualize the convergence of the proposed MLE.

5.1.1 Effect of the SS Condition

Data are generated from a simple setup: & = V = 3, C° = I3, and the number of words for
each document is sampled from Poisson(2000). For the true matrix W° we consider four different
configurations for w): (a) concentrated in the center of A?; (b) concentrated in the bottom right; (c)

satisfying the SS condition; (d) spread around three vertices. The four configurations are displayed in
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(a) non-identifiable (b) non-identifiable (c) identifiable (d) identifiable

Figure 5: Results of the simulation in Section [5.1.1] Black dots are columns of W?; the black triangle

is the ground truth Conv(C°) = A?; red triangles are estimates of Conv(C,,).

Figure |5, where the black dots denote w? and the large black triangle represents Conv(C°) = A% In
cases (a)(b)(d), we set the number of documents d = 1000, while in case (c) we set d = 6.

We run our MCMC-EM algorithm 20 times with different initialization; Figure [5| displays the
estimates of Conv(C,,) as red triangles. Our simulation results demonstrate that if the SS condition is
not satisfied, even when the sample size d is fairly large (d = 1000 in (a) and (b)), Conv(C°) cannot
be correctly recovered. However, when SS is satisfied, even with just a few samples (d = 6 in (c)), our

algorithm can accurately recover the ground truth. Identifiability is thus determined primarily by the

scatteredness of w) rather than by the number of documents d.

5.1.2 Performance under Prior Misspecification

When deriving our estimator, we choose to integrate over the mixing weights with respect to the
uniform prior. A natural question is how our estimator would perform when the true mixing weight
WYV is stochastically generated from a distribution other than uniform.

In this simulation study we consider the following setup: & = 3, V' = 1000, d = 200, C° ~
Dirichlety (1), and the number of words for each document is generated from Poisson(20000). The true
mixing weights W? are stochastically generated from the following distributions: (a) Dirichlets(1); (b)
uniformly from 10 Euclidean balls whose centers satisfy the SS condition; (¢) a mixture of Dirichlet
distributions: 0.2 x Dirg(10,1,1) 4+ 0.2 x Dir3(0.1,1,1) + 0.2 x Dir(10, 10,1) + 0.2 x Dir3(0.1,0.1,1) +
0.2 x Dirs(1,2,3).

We compare our estimator and estimators based on other Dirichlet priors using the averaged
Relative RMSE (i.e., RMSE divided by the average of RMSE of random guesses) of C,, over 100
replications. The results are reported in Table [l We can see that in all three cases, our proposed

estimator outperforms other estimators.
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Table 1: Relative RMSE (Simulation 2).

priors (4, 1,1 (0.1,0.1,0.1) (10,1,1) (0.1,1,1) (0.1,0.1,1) (10,1,0.1) (1,2,3) (3,3,3)
case (a) | 0.048 0.064 0.058 0.059 0.061 0.068 0.048 0.049
case (b) | 0.053 0.065 0.062 0.060 0.061 0.075 0.056  0.057
case (c) | 0.040 0.042 0.048 0.040 0.041 0.049 0.042  0.044

5.1.3 Convergence of the Estimation

We use the Monte Carlo simulation to show the convergence of the integrated likelihood F,,4(C) and
the MLE C,,.

In the first experiment, we consider the setup where V' = 9, k = 3, and the sample size n and
number of documents d increase simultaneously. The sample size n varies as n = 50, 200, 400, 1600 and

d=mn/5. Let

2/3 1/6 1/6 5/6 0 1/6 5/6 1/6 0
C’=11/6 2/3 16|, W’=1[1/6 5/6 0 0 5/6 1/6
1/6 1/6 2/3 0 1/6 5/6 1/6 0 5/6

We generate the “noiseless” data, i.e., X = nC'W!, where C' = 1 (CT, COT,COT)T, the first six
columns of W' are W? and the rest of the columns are randomly generated from Diry(1). We compare
the integrated likelihood among candidate topic matrices of the form C = § (AT, AT, AT)T, where A

18

(1—2¢)/2 c (1—¢)/2], (13)
(1-¢)/2 (1-2¢)/2 c
with ¢ taking values from [0.5,1]. We use the Monte Carlo method to evaluate the integrated likelihood
H):

d T
A 1 )
~ — (D]qy =
Frxar(C) ~ Jll T t;fn(x lu=Cw,) |,
where wy, -+, wr are i.i.d. random samples from Dirg(1) and 7" = 100, 000.

Figure @ shows Fq7(C)/maxc Fpxar(C), the relative value of the estimated integrated likelihood.
From the plot we can see that the integrated likelihood converges quickly to the truth as both n and d
increase. That is because n is the sample size, and the integrated likelihood is the product of d terms.

As d increases, the product is more concentrated.
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Figure 6: Results of the first experiment in Section [5.1.3. The curves show the relative integrated

likelihood of “noiseless” data when n and d increase simultaneously.

In the second experiment, we consider the case where V' = k = 3 and d = 6. We add some noise to
the data, i.e., x® ~ Multi(n, C*w°®). In Figure [7|we plot the multinomial likelihood density function
fn(u;x9) (represented by the purple clusters) for the d documents and the estimated Conv(én)

(represented by the red triangle).

A A A A

(a) n = 60 (b) n = 600 (¢) n = 6000 (d) n = 60000

Figure 7: Results of the second experiment in Section [5.1.3| The likelihood density f,,(u;x®) over

A? for different n. The colored circles represent the values of f,(u;x®): the darker the color is, the
higher the likelihood is. The black triangle is Conv(CP); the dark red triangle is Conv(C,,) produced
by MCMC-EM. The red dots are the true means u’®, and the black dots are the sample means 0.

We observe that Conv(én) tends to cover these density balls while maintaining its volume small.

Recall that C,, = arg maxc H?Zl SCOHV(C) ‘fgg—(vi()g))'du. Conv(én) can be considered to be the convex

polytope that has the highest value of the averaged likelihood density, as well as the smallest convex
polytope containing the sample means ). Therefore, Conv(én) tends to trade off its volume for
a larger coverage of the density balls. In this case, the true means u’® are all located on the

boundary of Conv(C"); to fulfill the SS condition, a fraction of each circle thus lies outside Conv(C?).
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Consequently, the averaged likelihood density over Conv(én) is larger than that of Conv(C"), though
| Conv(C,)| > | Conv(C?)|. As proved in Theorem , the convergence rate of C,, in the order of

v/log(n v d)/n, is slightly slower than that of @, which is in the order of 1/1/n.

5.2 Real Applications

We next apply our algorithm to some real-world datasets. In Section we compare the quantitative
performance of our algorithms, and of several baseline methods, on two text datasets: an NIPS dataset
that contains long academic documents, and the Daily Kos dataset that contains short news documents.
In Section [5.2.2 we analyze a taxi-trip dataset that contains New York City (NYC) taxi trip records,

including pick-up and drop-off locations.

5.2.1 Text Data sets

The NIPS datase contains V' = 11463 unique words and d = 5811 NIPS conference papers, with an
average document length of 1902 words. The Daily Kos datasetﬂ contains V' = 6906 unique words and
d = 3430 Daily Kos blog entries, with an average document length of 136 words. As the two datasets
are formatted in document-term matrices without stop words or rarely occurring words, we do not
apply any pre-processing procedures.

We compare the performance of our algorithm (MC?-EM) with the following baseline algorithms:
Anchor Free (AnchorF) (Huang et al., 2016), Geometric Dirichlet Means (GDM) (Yurochkin and
Nguyen, 2016)), and two MCMC algorithms—one based on Gibbs sampler (Gibbs) (Griffiths and
Steyvers, 2004), and the other based on a partially collapsed Gibbs sampler (pcLDA) (Magnusson
et al., 2018; Terenin et al., [2018]). The hyper-parameters of the baselines are set as their default, except
that the prior of the mixing weights in Gibbs and pcLDA is set as uniform as ours. For our algorithm,
the number of MCMC samples is 100 without burn-in; the stopping criterion is that the relative change
of likelihood goes below 10~ or that 200 EM iterations are completed, whichever comes first.

To evaluate the results, we employ the following three metrics. Topic Coherence is used to measure

the single-topic quality, defined as ZL > log (frea(vi,v2)+€/freq(vs)), where V), is the leading 20 words

Ul,UQEVl
for topic [, freq(+) is the occurrence count, and € is a small constant added to avoid numerical issues.
Similarity Count is used to measure similarity between topics (Arora et al., 2013; |[Huang et al., 2016);

it is obtained simply by adding up the overlapped words across V;,. Perplexity Score is used to measure

Zhttps://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
3https://archive.ics.uci.edu/ml/machine-learning-databases /bag-of-words/
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goodness of fit, which is the multiplicative inverse of the likelihood, normalized by the number of
words. For the first metric, the larger the better; for the latter two, the smaller the better. (Detailed
definition of these three metrics can be found in Appendix F.)

In practice, the number of topics k is unknown. We propose a procedure to select k based on the
effective rank of the sample document-term matrix U. Since the topic matrix C is assumed to have full
rank (Theorem , the true term-document matrix U has rank k. By Weyl’s inequality (Weyl, |1912),
the singular values of U are expected to be close to those of U. Therefore we can plot the ordered
singular values of U versus its index, and then select k by detecting the location of a significant drop

of the curve. See Appendix F for a simulation illustrating this approach.

Table 2: Experiment results on the NIPS and the Daily Kos Datasets.

NIPS Daily Kos
AnchorF  GDM  Gibbs pcLDA MCZEM | AnchorF  GDM  Gibbs pcLDA MC2?-EM

Topic Coherence

k=5 -904  -501 -365 -355 -342 -699  -643 =752 -709 -723
k=10 -1954  -1083 -960 -942 -975 -1659 -1551 -1708 -1609 -1614
k=15 -2935  -1770  -1648 -1599 -1573 -2727  -2307  -2465 -2380 -2411
k=20 -3664 -2409 -2314 -2373 -2254 -3942  -3182  -3840 -3115 -3299

Similarity Counts

k=5 24 10 25 26 24 24 14 23 25 25
k=10 69 44 63 67 63 85 55 55 66 o7
k=15 102 98 99 99 102 151 111 78 103 90
k=20 154 161 134 155 147 224 175 116 153 143

Perplexity Score

k=5 4431 2955 2256 2183 2182 2252 2252 1755 1758 1724
k=10 4317 2479 2067 1973 1973 2124 2004 1546 1532 1507
k=15 4176 2273 1975 1870 1874 2061 1912 1452 1438 1404
k=20 3877 2166 1918 1801 1800 2012 1791 1405 1384 1342

The results are summarized in Table [2| and Table |3, where £ = 5 and k£ = 7, respectively, are the
recommended number of topics for NIPS and Daily Kos dataset, chosen by the procedure mentioned
above (the singular values plots can be found in Appendix F). The best score in each case is highlighted

in boldface. Overall, our estimator (MC?*-EM) gives promising results. For all three metrics in both
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Table 3: Results on the Daily Kos dataset based on £ = 7 chosen by the singular values plot.

Daily Kos (k =T7)
AnchorF GDM  Gibbs pcLDA MC2-EM

Topic Coherence -998 -1007 -1095 -1090 -1053
Similarity Counts 47 36 40 40 40
Perplexity Score 2190 2147 1649 1643 1607

datasets, it gives the highest score or a score close to the highest. For topic coherence, it is the best
for k = 5,15, and 20 in NIPS. For similarity counts, it performs similarly to Gibbs and pcLDA in
both datasets, and in Daily Kos largely outperforms AnchorF and GDM for k£ = 10, 15, and 20. For
perplexity score, it is consistently the best in Daily Kos, and in NIPS except for £ = 15; its scores are
very close to the best one given by pcLDA.

The leading 10 topic words given by MC?-EM can be found in the supplementary material.

5.2.2 New York Taxi-trip Dataset

Reinforcement learning algorithms have been widely used in solving real-world Markov decision
problems. Use of a compact representation of the underlying states, known as state aggregation,
is crucial for those algorithms to scale with large datasets. As shown below, learning a soft state
aggregation (Singh et al., [1995) is equivalent to estimating a topic model.

We say that a Markov chain Xg, X1, -, X7 admits a soft state aggregation with k meta-states, if

there exist random variables Zy, Zy,- -+, Z,_1 € {1,--- , k} such that
k
P(Xes1|Xy) = D P(Z = 1|Xy) - (X141 Zy = 1), (14)
=1

for all ¢ with probability 1 (Singh et al., 1995). Here, P(Z; = 1| X;) and P(X;11|Z; = [) are independent
of t and are referred to as the aggregation distributions and disaggregation distributions. Let U e RV*V
denote the transition matrix with Uj; = P(X;41 = j|X; = i). Let C € RV** and W € R**Y denote
the disaggregation and aggregation distribution matrices, respectively, with Cj; = P(X;11 = j|Z; = 1)
and W, = P(Z; = 1| X; =i). Then can be written as U = CW, the same as the matrix form for
topic modelling.

In this section, we consider a New York taxi—tri dataset. This dataset contains Z?:I n; = 7,667,792

New York City yellow cab trips in January 2019. The location information is discretized into V' = 263

4https://wwwl.nyc.gov/site/tlc/about /tlc-trip-record-data.page
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taxi zones with 69 in Manhattan, 69 in Queens, 61 in Brooklyn, 43 in Bronx, 20 in Staten Island, and
1 in EWR. For each trip, we are given its pick-up and drop-off zones. On the left of Figure [§, we plot

30 example trips from the data. Following a similar analysis of this dataset from Duan et al. (2019),

we aim to merge the V' = 263 taxi zones into meta-states via soft state aggregation.
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Figure 8: NYC taxi-trip data glance. Left: 30 example trips with arrows pointing from pick-up zones
to drop-off zones. Middle: the pick-up distribution. Right: the drop-off distribution.

In the middle and the right of Figure [§, we use heat maps to visualize the distributions of the trip
counts for pick-up and drop-off over V' = 263 zones. Most of the traffic concentrates in midtown and
downtown Manhattan, as well as at the JFK airport on the southeast side of Queens, for both pick-up
and drop-off.

At the top of Figure [9] we plot the estimation results for the drop-off distributions conditioned on
the meta-state, P(X;;1|Z; = ). We observe that the drop-off traffic is decomposed into three clusters,
(1) downtown Manhattan, (2) west midtown Manhattan, and (3) east midtown Manhattan, for each of
the three meta states (topics); this implies that people dropped off in downtown Manhattan may come
from the first meta state, and that people dropped off in midtown east and west may come from the
second and the third meta states, respectively. The JFK airport has a relatively high probability mass
in all three states but is not on the top list for any of them, which implies that people arriving at JFK
may come from anywhere in NYC.

At the bottom of Figure |§| we plot the conditional probability over the meta-state (topics), given
the pick-up zone, P(Z; = [|X;). The three meta states consist of (1) Staten Island, Brooklyn, Queens,
and downtown Manhattan; (2) uptown Manhattan and Bronx; and (3) east midtown Manhattan. Note
that the scales of the estimates for C and W are quite different. In specific, the sum of values over

each map of the top three is 1 since Zlle P(X;1 =v|Z; =1) =1, | =1,2,3, while the sum of values
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Figure 9: Estimation results for NYC taxi-trip data for & = 3. The top three plots represent the

estimated disaggregation distributions (topic vectors) Cy, Cs, Cs € RV, where C = P(Xi1|Z =1).
The bottom three plots represent the estimated aggregation distributions Wi, Wy, W5 € RV, where
W, =P(Z = |X,).

for each zone over the bottom three maps is 1 since Z?:1 P(Z, =X, =v)=1,v=1,--- V. The
interpretation of, say, the second meta state, is that the destinations of trips starting from uptown
Manhattan and Bronx are likely to be in midtown Manhattan. We observe that the pick-up and the
drop-off locations in the same meta state are generally close regionally; this result is reasonable, as
people tend to take a taxi for short trips, preferring less expensive public transportation for longer
trips.

The estimated disaggregation and aggregation distributions plots for £ = 9 can be found in the
supplementary material. They reveal that the traffic in the first eight meta states is within Manhattan,
which is the most heavy-traffic place in NYC, and that the partition is more fine-grained compared
with the results for k£ = 3. Similar to the results for k£ = 3, the pick-up and drop-off locations for each
meta state are regionally close at this time. It is interesting that such a strong regional relationship

emerges, since the data fed into our algorithm do not contain any regional information.

6 Discussion

In this paper, we introduce a new set of geometric conditions for topic model identifiability under
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volume minimization, a weaker set than the commonly used separability conditions. For computation,
we propose a maximum likelihood estimator of the latent topics matrix, based on an integrated
likelihood. Our approach implicitly promotes volume minimization. We conduct finite-sample error
analysis for the estimator and discuss the connection of our results to existing ones. Experiments on
simulated and real datasets demonstrate the strength of our method. Our work makes an important
contribution to the general theory of estimation of latent structures arising for topic models. Some
interesting future work might include: (1) exploring a sufficient and necessary condition for model
identifiability, as the SS condition is not necessary; (2) providing explicit verifiable sufficient conditions
for the (o, 5)-SS condition — we conjecture that the (a, 5)-SS condition can be implied by the SS
condition; (3) establishing the minimax rate of convergence of topic matrix estimation, and verifying
whether the proposed estimator is (nearly) optimal. Although presented in the context of topic models,
results from our work are immediately applicable to a wide range of mixed membership models arising
from various machine learning applications. In addition, we may incorporate additional low-dimensional

structures into the model, such as (group) sparsity, to enhance the estimation accuracy.
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Supplementary Material:
Learning Topic Models: Identifiability and
Finite-Sample Analysis

The supplementary material is organized as follows.

Section [A} Discussion on identifiability related to Remark [2.1]

Section [B: Error analysis and consistency under stochastic mixing weights.
e Section [C} Derivation of the MCMC-EM algorithm.

e Section [Dt Proofs of main theorems.

e Section [E} Proofs of technical lemmas and propositions.

e Section [F} Additional simulations and experiments.

e Sections [G & [H} Top 10 words of the latent topics returned by our algorithm for the two real

applications.

e Section [I: Mined meta states for the taxi-trip dataset.

37



A Discussion on Identifiability Related to Remark [2.1]

Javadi and Montanari (2020) and we both follow the same principle to address the non-identifiability
issue — among all equivalent parameters that lead to the same statistical model, the one that minimizes
a chosen criterion function is used to represent the equivalence class (therefore the most parsimonious
representation). However, the adopted criterion functions are different: ours is the volume of Conv(C),
while theirs is the sum of distances from the vertices of Conv(C) (i.e., columns of C) to the convex hull
of U. The criterion function adopted Javadi and Montanari (2020) is easier to be formulated into a
statistical estimator that minimizes an empirical evaluation of it. However, as we discussed in Section
1.2, our criterion function as the volume of a low-dimensional polytope in a high-dimensional space
does not take a simple form, which greatly complicates the estimator construction. Fortunately, we
find that maximizing a particular integrated likelihood leads to an estimator that implicitly minimizes
the volume.

Regarding the two notions of identifiability, minimizers of the two criterion functions are usually
different — except for some special cases, such as when the pure topic documents condition hold so
that vertices of Conv(C) are data points. Therefore, the two notions of identifiability are not directly
comparable. Figure [SI]helps to illustrate this point. In Figure [S1} the grey region is Conv(U) and
the black triangle ABC' is the unique volume minimizer among all three-vertex convex polytopes
enclosing Conv(U). However, triangle ABC' is not the minimizer of the criterion function in [Javadi
and Montanari (2020) with the Euclidean distance as the distance function: it is easy to verify that
when the ratio of the height to the base of triangle ABC' is larger than 6, the red triangle FGH has a
smaller summation of distances to the gray region than ABC' (see the caption that describes how we

construct the red triangle FGH).
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Figure S1: An example (V = k = 3), in which both ABC and FGH are isosceles triangles enclosing
Conv(U) (grey region). In addition, BC' = b, AD = h, AE = h/4, and F is the midpoint of AFE.

Under the principle of using the minimizer to represent the whole equivalence class, a trivial
identifiability condition is to assume the uniqueness of the minimizer, which is exactly the identifiability
condition given in |Javadi and Montanari (2020). The drawback, however, is that it is often not trivial,
if not impossible, to check whether the minimizer of a criterion function is unique. In |Javadi and
Montanari (2020), uniqueness is checked only for a simple case when the vertices of Conv(C) are
data points (their Remark 3.1). In contrast, our identifiability condition, the SS condition, is a set of
explicit, verifiable conditions. Consider the example given in Figure [SI. By our Theorem 2, the model
is identifiable with respect to our volume minimization. But, it is difficult to verify whether the model
is identifiable in Javadi and Montanari (2020): We do not know whether the triangle FGH, although
shown to be a better choice than triangle ABC', indeed minimizes the criterion function; even if it
does, we do not know whether it is unique.

In summary, neither definition of identifiability is more general than the other. Since the identifi-
cation condition in [Javadi and Montanari (2020)) is difficult to check, we are not able to provide an
example where the model is identifiable under one notion but not under the other. Due to the same
reason, it is unclear whether our SS condition implies their definition of identifiability. Although the two
notions of identifiability are not comparable, we would like to highlight that an advantage of our volume
minimization criterion is that it helps to justify the empirical success of the Latent Dirichlet Allocation
(LDA) model, because the proposed estimator is essentially the maximum likelihood estimator of C
from the LDA model with the prior of W being the uniform distribution. LDA models with general
priors can be interpreted as maximizing the data likelihood while minimizing a weighted volume where

a non-uniform volume element is integrated over the convex hull of C when defining the volume.
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B Error Analysis and Consistency under Stochastic Mixing

Weights

In this appendix, we explore cases in which w?,--- w9 are random i.i.d. samples from some unknown
distribution P over A*~! (the theoretical result in the main manuscript considers the fixed mixing
weights setting). In such cases, we will apply Theorem [4] to this set of stochastic mixing weights by
showing that under a suitable set of conditions to be described below, Assumptions (A1)-(A3) hold
with high probability.

Figure S2: Examples of (o, 8)-SS distributions for & = 3: w’s (blue dots) from supp(P) (pink area)
are (a, 3)-SS on A*~!(the triangle).

Formally, we introduce a “stochastic” version of the SS condition on P, called («, 5)-SS distribution,
to ensure the (o, 3)-SS condition to hold for W with high probability as long as the number of

documents d is sufficiently large.

Definition 4 ((«, §)-SS distribution). A distribution P is an (a, 3)-SS distribution, if there exist
s distinct points in its support, w%, -, wh e supp(P), and some positive constants 1o, cy, such that

{Wﬁ} _, is (o, 8)-SS, and for each i € [s],
P(HW_Wgﬂzér)Z(/{—l)!-co-rkfl, VO <r<mnr

The condition in Definition [4] is mild and can be satisfied by many commonly encountered
distributions over the simplex A*~!. For example, any distribution whose density function does not
vanish on A*~1 such as the uniform distribution and Dirichlet distributions, is (e, C¢)-SS for any
sufficiently small € > 0, where C' is some constant depends on the distribution. In addition, an («, 5)-SS
distribution does not need to have a full support over A*~1—as long as a distribution has positive
density values around a set of («, 3)-SS points, then it is («, §)-SS. See Figure [S2|for some examples

of SS distributions whose supports are sparsely scattered over the simplex.
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Next, we state our assumption on the true underlying distribution P° that generates the stochastic

mixing weights.
Assumptions. Assume the following:

(A5) w?. - w9 are i.i.d. random samples from an («a, 3)-SS distribution P°, with o > C{q/w +

(e

1
£2)¥=1, where C is a constant.

The following Theorem |[8| establishes the finite-sample error bound when W is stochastically

generated.

Theorem 8. Under Assumptions (A1), (A2) and (A5), it holds with probability at least 1 — D}s/d —
Did/(n v d)° that

log(n v d)

D(C,,C"% < Dj + DB, (B.1)

where ¢, D}, Dy, D}, D)y are positive constants. In particular, if 8 < C4(+/log(n v d)/n+(log d/d)"/*~-1)

or some constant Ch, then
f 27

) 1 logd\ 1
D(E,, Y < piy eV D L p ( Ogd) . (B.2)

Similar to the remark of Assumption (A3), in most cases the parameter 5 can be chosen as the
same order as « in the (o, 3)-SS condition in Theorem [8| For example, according to Proposition [5| if
the support of P? contains the point (1 — z;;)e; + z;;e;, where 0 < x;; < 1/k, for all 1 <i # j < k,
and PP has positive density values around these points, then P is (¢, C¢)-SS for all € > 0.

It is important to emphasize that our method does not require any prior knowledge about the
distribution P (albeit our theory requires it to be SS). In comparison, in most Bayesian latent variable
mixture model literature such as [Tang et al. (2014), Nguyen (2015) and Wang (2019), P° is assumed
to be known and have a full support over the simplex AF~1,

Similar to Theorem [7, we provide conditions for the estimator C,, to have the estimation consistency

under the double asymptotic setting by letting (n,d) — o in a suitable manner in Theorem
Assumptions. Assume the following:

(A5°) For all sufficiently small € > 0, there exist some [, > 0, such that B, — 0 as ¢ — 0, and

wi - w9 are i.i.d. random samples from distribution P° that is (e, B)-SS.

Theorem 9 (Estimation consistency). Under Assumptions (A1), (A2), (A4) and (A5’), we have

A

D(C,,,C°% — 0 in probability as (n,d) — .
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C Derivation of the MCMC-EM Algorithm

We use an MCMC-EM algorithm to compute the MLE of the integrated likelihood function (4)). First
we introduce a set of latent variables Z = {Z,;}, where Z;; is the topic label for z; ;. Then express the

LDA model as follows:

xi,j’07 Zij =~ MU.ltlv(Cl)

w;| By ~ Dirg(8o),

where

We fix By = 1, throughout, since we consider a uniform “prior” on W. The integrated likelihood

can be written as

Fua(CiX) = 5(X | ©) = [ (X, 2| C)iz
d n
<1 [ | TTptlc. 2pp(z, w)pwlgn)aw | dz.

d n
oC H J Hp(:vm |C, Zij)p(Z;. = z|Bo)dz
i=1Y j=1
where Zz = (Zib te aZzn)

E-step Define Q(C|C®) as the expected value of the log likelihood function of C, with respect to
Z given X and C©), where C© is the estimated topic matrix obtained from the last EM iteration.

d n
= Ezco Z Z log p(z;;|C, Z;;) + Const

i=1j=1
We ignore the constant term in the following derivation. Since the marginal probability p(Z; = z|3o)

is infeasible, we apply MCMC to and iteratively sample Z = {Z;;};; and W = {w;}, as follows:

. Col Wy
Zij|C, Tij; =0V~ Mlﬂtlk (kv—z)
I=1,...,k

1=1 ColWi;

77777

Wz|Zz ~ DlI‘k <60l + 2 ]l(Zw = l)) .
I=1,...,k

7=1

-----
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We approximate Q(C|C®) function by the samples of Z,

Vi k d n
Q(C|Cc?) = Ezico Z Zlog Col [Z Z =lx;; = v)]

where ¢,; is the (v,1)-th element of C. Here the Zi(;) denotes the sample of Z;; at t-th MCMC iteration,

b denotes the burn-in period and 7' denotes the number of the samples after burn-in.

M-step We maximize the approximated Q(C|C®) with respect to C by the following closed-form

solution: "
Zz]t]l(Zg lxl]:U)
Zz Jht ]l(Z - l)

The algorithm of the E-step is given in Algorithm I Here we use, Z, 2 € R>V*k to denote

Cyl =

the counts of the samples of Z. Specifically, Z[i,v,l] = >, ll(Zi(;) = l,z;; = v) is the count of Z at
t-th MCMC iteration, and Z[i,v,l] = ZZZ;TH h ]I(Zi(;) = [, x;; = v) is the sum of count of Z over T

iterations.

Algorithm 1: The E-step of the MCMC-EM Algorithm

Input: C;
Z[: 5] < Ogxvxk; o Initialize Z
W[:,i] « Dirg(1), i =1,--- ,d; > W]:, ] is the i-th column of W
fort=1,---,b,b+1,--- b+ 7T do

Z: ] < Ogsvxk; o Initialize 2

fori=1,---.,ddo

forv=1,---,V do
p — Clv,:] ©W][:, 4] > C|v,:] is the v-th row of C

> © denotes an element-wise multiplication
p<—p/ Zf;l p[l] = p[l] is the [-th element of p
| Zi,v,:] < Multi(n = xg),p =p); > 27 is the count of v-th word in the i-th doc
| W i] < Dirg (X, 27, v,:] + Bo);

if t > b then
| Z2—Z+ Z,

1 ~.
ZHTZ,

Output: Z.
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Empirically, since Z and 2 are sparse, to save the computation space, we recommend to use
two 2-dim arrays instead, namely ¢ = Zf;l Z[i,::] and # = Z:)/:l Z[:,v,:], and €, # can be used
efficiently in updating C and W, respectively. In addition, the operations in the two nested for-loops
over ¢ and v in Algorithm [1| can be paralleled, as they are independent with each other.

The full algorithm is given in Algorithm

Algorithm 2: The MCMC-EM Algorithm
Input: Data X = {x(®}¢_ : number of topics k;

=1

C[l,:] < Diry(1),l=1,--- ,k; = Initialize C
repeat
Obtain Z using Algorithm > E-step
Clv, 1] < 3, Z[i, 0,11/ Xo_y iy Z[i,0,1],
v=1,--- V. Il=1,---k; > M-step

until convergence;
WL i] < Zq‘j:l Zli,0, 1/ X0 Zq‘;;l Z[i, v, 1],

l=1,---k,i=1,---,d; > Estimate W
Output: C; W.
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D Proofs of Main Theorems

D.0 Notation

For a vector x, we denote by [x|» = A/, 27 its Ly norm and |x|; = Y, |#;| its Ly norm. Write x > a
to indicate that x is element-wisely no smaller than a. In particular, 1, denotes the all-ones vector of
length k, and e; the f-th column of the £ x k identity matrix Ij.

For a matrix A,x,, A(i,:) and A(:,j) are i-th row and j-th column vectors, respectively. We

use omax(A) to denote the square root of the largest eigenvalue of ATA, and o, (A) the square

min

root of the smallest nonzero eigenvalue of AT”A. We denote by |A[s = omax(A) the spectral norm

and |All; = max]_

(A € s (A)rman (B (i) 0y (AB) > 07y (A)ortyn (B): (i) Al < y/alAls (iv) if p > g
and AT A is invertible, then amax((ATA) AT =1/at (A).
We denote by AF1 = {x e R": < 1,3 x; = 1} the standard (k — 1)-dimensional simplex.

2P JAyj| the Ly matrix norm. Some useful facts we will use in the proof: (i)

For a matrix A,,, let

Conv(A) = {xeRF:x=AXAe A"}
cone(A) = {xeRP:x=AANAX=0}
aff(A) = {xeRP:x=AXN1, =1}

denote the convex polytope, the simplicial cone and the affine space generated by the ¢ columns of A,
respectively.
For any cone C, let C* = {x : xy > 0,Vy € C} denote its dual cone. In particular, let K = {x €
F . |x|ls < xT1,}. The boundary of K is denoted by bdK = {x € R¥ : ||x|, = xT1;}, and its dual
cone takes the form as K* = {x € R* : xT1;, > vk — 1|x|2}. Some useful facts of dual cones from
Donoho and Stodden (2004): (i) cone(A)* = {x € R? : xTA > 0}; (ii) if A and A are convex cones,
and A < A, then A* < A*.
The true C, W, and U are denoted by C°,W° U°, respectively; C,, is the estimator obtained

kxd which we will construct in

Lemma |D.3|such that W = 0, W 1, = 14. ¢, = Cyr/ M is a small quantity used to measure

from F,,.4(C;X). W,, is a valid estimator for the mixing matrix in R

the convergence rates. Here (y in €, is a positive constant independent of n and d.
Throughout, we use symbols like C, C’', C", C", C*, C;, Cl,i = 1,2,..., and Dy, Dy as generic
notations for large absolute numbers, whose exact values may vary from part to part. Unless stated

otherwise, these constants are all independent of n and d.
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D.1 Proof of Theorem [2
The following lemmas are useful in the proof of Proposition [I0l Their proofs are given in Appendix

Lemma D.1. For a full column rank matriz C € RV*¥,

det(CTC)

| Conv(C)| = m7

where h is the perpendicular distance from the origin to the hyperplane aff(C). In particular, we have

| Conv(C)|  4/det(CTC)

| Conv(C)| det((_jT(_j)’

if aff(C) = aff(C).

Lemma D.2. If W € R¥*? satisfies Condition (S1), then W is of rank k (full row rank), and
of (W) > 1.

min k

We first show that Condition (S1) guarantees that Conv(C) has the minimal volume.

Proposition 10. If W satisfies Condition (S1) and C is of rank k (full column rank), then | Conv(C)| =
| Conv(C)| must hold for any other set of parameters (C, W) satisfying CW = CW.

Proof of Proposition[10, By Lemma[D.2, WWT e R¥** is invertible. Define
Bjxr = WWH(WWT)!
Then C = CB. Note that
B"1, = (WW7)'"WWT1, — (WWT)'W1,,

which is the solution of the least square (LS) problem minyegx |14 — x7 W . Since |1, — 17 W]y =0

achieves the minimum, the unique LS solution is given by 1,, i.e.,
B”1;, = 1,. (D.3)

Thus, columns of C are convex combination of columns of C, which implies aff(C) = aff(C). By

Lemma [D.1, we have

| Conv(C det(C det(CTC) 1
| Conv ( C det(C det(BTCTCB) | det(B)|’




Therefore, it suffices to show

| det(B)] < 1. (D.4)

We first show that for any row of B, we have B(f,:) € cone(W)* < K. Since CW = CBW = CW

and CTC e R¥** is invertible, we have

BW = (C'C)"'CT"CBW = (CTC)"'!C'CW =W.
Because W = 04,4, we obtain that, for any row of B, B(f,:) € R¥,
BY(f, )W = W'(f,:) > 0.
That is, B(f,:) € cone(W)*, which consequently implies that
IB(/, ) < B(f.) 11, (D.5)

Combining (D.4), (D.5) and the Hadamard Inequality and Inequality of Arithmetic and Geometric
means (AM-GM), we can show (D.4) as follows:

k
Hadamards (D5 i AM—GM Zk: BT(f,I)]_k
| det(B)] ||HB P || < ( =

f=1 K

- <ZBTle>k 1. (D.6)

Next, we give the proof of Theorem

Proof of Theorem[3. Suppose CW = CW and | Conv(C)| < | Conv(C)|. Following the notation of
the proof of Proposition we aim to show that B is a permutation matrix.

To complete the proof, we only need to verify the following three conditions on B.

(1.i)) Any row of B belongs to bdK () cone(W)*, i.e.,

B(f,:)e{les:s=1,--- k, A =0},Yf € [k].

(1.ii) Any row sum of B is one, which, along with |(1.i), implies

B(f,)e{de,:s=1,-k A>0}VYfel[k]
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(L.iii) det(B) = 1. Along with the previous two conditions, it implies
{B(1,:),B(2,:), -+ ,B(k,:)} = {e1,e9, -+ ,er};
that is, B must be a permutation matrix.

First, by the condition | Conv(C)| < |Conv(C)| and Proposition we have | Conv(C)| =
| Conv(C)|, or equivalently det(B) = 1, i.e., [(1.iii)| holds.
Consequently, all inequalities in become equalities. Specifically,

HB(f7 :>H2 = BT(f? )1k‘ = 17 Vf € [k]7 (D7>

which implies that the row sums of B are all 1’s; i.e., holds.

The above equation ([D.7) also implies that B(f,:) is on the boundary of K, B(f,:) € bdK. Together
with the fact that B(f,:) is in cone(W)* (proved in the proof of Proposition [L0), it implies that [(L.i)
holds. [

D.2 Proof of Theorem 4

The sketch of this proof is as follows:
Step 1: We first show that with high probability, all true word frequency vectors, columns of U?,
are close to the estimated convex polytope Conv(én). More specifically, we show in Lemma that

there exists a k x d column-stochastic matrix | W,, such that
U’ = C'W° = C,W,, + E, (D.8)

and max; |E,(:,7)[2 < Ce,.
Step 2: We then work with a subset of s documents. Let W9 € R*** be the collection of the s
columns of WY that are («, 3)-SS; let W,,; and E,,; be the corresponding sub-matrices of W,, and E,,,

respectively. As a consequence of , we have
C'W! = C,W,,; + E,.1. (D.9)
We can upper bound the estimation error by the summation of the following two terms:

D(C,., ) < [En WY (WYW?') ™! + min VA|B — TI, (D.10)

4 . . . . . . .
°We say a matrix is column-stochastic, if its entries are non-negative and columns sum to one.
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where B = W,; W' (WIW?")~1. By Lemma @, the first term is upper bounded.
Step 3: We show that for all f =1,--- &k, B(f,:) satisfies:

B(f,) € [cone(WY)*]% e (()[bdK] e (D.11)

Then by the definition of (o, 8)-SS, B(f,:)’s are all close to indicator vectors. Using Lemma and
letting o = CYe¢,, we can prove that the matrix B is close to a permutation matrix. So the second

term in (D.10)) can be bounded. Putting all the steps together, we obtain that with high probability,

A log(n v d)

D(C,,C") < D + Dafs.

In the following, we provide the details of the above-mentioned steps.

Proof of Theorem [}
Step 1: The following lemma is useful; its proof is given in Appendix [E|

Lemma D.3. With probability at least (1 — 3/(n v d)°)?, there exists a matriz W,, € R¥*4 satisfying
Wn =0, WZlk = 1, such that
U’ = C'W° = C, W, + E,

and each column of E,, satisfies

|En(:,i)]2 < Cey (D.12)

foralli=1,---,d, where c,C > 0 are constants independent of n and d.

Step 2: By Lemma [D.3, we have
C'W{ = C, W, + E,1,
and HEanQ < C\/EGn
Let B = W, WO (WOW9")~L. Then,

C’ = €, W, W' (W'W) ! 4 B, W (WIWI) 1 = €, B+ Eny (D.13)
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where E,; = E,; W (WOWOT) =1 We can bound |E,; |, by

1Bt < [055 (W] [Entl2 < k- C/sen = C'Vsey.
Then, we have
D(C,,C") = min |G, I — C° = min |G I — C,B —E, >
< min |Coll2| B =TTz + [En ]2

< min VE|B —TIf; + |E |5

Step 3: Now, it suffices to show that for some permutation matrix II,
|B —II; < C"B.

We will use the following Lemma to prove the above inequality. The proof of Lemma is
deferred to Appendix [E]

Lemma D.4. For a matriz B € R¥** | if it satisfies the following conditions

(2.i) BT1), = 1;;
(2.71) |Bl2 < M;
(2.iii) any row of B belongs to [bdKC]* ([cone(W?)*]*, so that
B(f,:)e{dei+e:l=1,--k, A=0,|e|la <P}, f=1,--- kK
then there exists a permutation matriz I1, such that

|B —Ij; < C"Mp,
where C" is a constant independent of n and d.
Next, we verify the conditions in Lemma |D.4.

Firstly, the proof of 121) BT1;, = 1; is similar to the proof of Proposition |10 equation (D.3), so we

omit it here.

Secondly, holds because

B2 < Tmax (W) [0 (W] ™ < Vs Woa |1 [0 (W] ™ < Vs -k = M.

Thirdly, to prove |(2.iii)], it suffices to verify the followings hold for any f € [k],
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1. B(f,:) € [cone(W?)*]“1en ie.,

B(f,:)"W! > —Ci¢,|B(f,)|21s. (D.14)

2. B(f,:) € [bdK]% ", i.e.,
IB(f, )2 = B(f,)" 1k < Creal B(f. 1)z, (D.15)
IB(f, )2 = B(f, )" 1k = —Crea|B(f, )2, (D.16)

Now, we proceed to verify (D.14), (D.15) and (D.16). The following lemma is useful; its proof is
given in Appendix

Lemma D.5.
|det(CTC,)| < (1+ C'ey)| det(CO7CY)| (D.17)
where C" > 0 is a constant.
Since
det(CTC,) = det(B~7(C° — E,,1)T(C° — E,;)B™))
— |det(B™))|? det(C"TC® — C""E,,, — EI,C° + EL E,))
= |det(B™)[>det(C*"'C”) det (I - F,,), (D.18)
where F,, = (C7C%)~'CTE,;, + (C7CY)~'ET,C° — (CTC%)'EL E,;. Then ||F,|, < Cse,. We
order the singular values o; of I — F,, as 01 < 02 < --- < 0. By Weyl’s inequality in matrix theory
(Weyl, 1912), |1 — oy| < |Fp|2 < Cse, for all i = 1,--- | k. Therefore
k
det (I—F,) = | [o: = (1 = Cse)" = 1 = kCien. (D.19)
=1

7

By (D-18) and (D-19), we have

det(CLC,) = |det(B™)|? det(CTCP) (1 — Cle,) (D.20)

By (D.17) and (D.20)), we have
|det(B)| = 1 — Cgey,. (D.21)

« Veryfy (DT,
Right-multiplying W on both sides of (D.13)), we have

¢, W, + E,; = C°W? = &, BW? + E,, W¢" (WOW?")1w?,
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A

Then, left-multiply (CZCn)*lég on both sides of the above equation:

W, + (C7C,) 'C"E,y = BWY+ (CT¢,) 'CTE,,, W) (WIWIT)~1W?

BW! = W, +(CTC,)'CTE,,(1- W) (WIW)")~'w?)

2 —C7€n, (D22)

The last inequality holds because W,; >0 and

[(ETE,) ' CTE, (1 - W (WIWIT)TWO)
<Vk|(€LC
<VE-(ETE)CTy - Bz - JT— W (WIWI) WO,
<V o5 (€)] - Cfsen - 1
SC’\/EGn, (D.23)

A T T\ —
W) ETE (- W (WEWST) W) ),

where in the last inequality we use the fact that o (Cn) is lower-bounded by a positive constant.

That is because by ([D.20)),

min

A

det(CTC,) = | det(B™)|? det(CTCP) (1 — Cle,,)
> | B3 det(C*TC) (1 — Ciey)

> M~ det(CTCY) (1 — Cle,)
det(CTC?)

>~ (D.24)
At the same time,
. (e . .
det(C1C,) < |Cu 3% Vo (€] < Ko (C)T° (D.25)
Combining (D.20) and (D.25), we get a lower bound for ot (C,,).
o Verify (D.I5).
Since 17W? = 17 by (D.22)), we have
(B + C7€n1k><k)w(1] = BW(l) + C7€n1k><s = 0, (D26)

which implies that for any row of B, B(f,:),
(B(f,:) + Cre,1;) € cone(W)* = {x :x"WY >0} € K = {x: |x], < x"1},
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where we use the condition (S1) in the definition of SS condition. (B(f,:)+ Cre,1x) € {x : |x[2 <

x71} implies that

IB(f.:) + Crenly]2 < (B(f,:) + Cren1i) 1

e Verify (D16).

HB(fa :)HQ < B(f7 :)le + CSEn- (D27)

By Hadamard’s inequality, Inequality of AM-GM, and (D.21])), we have

( Z IB |z)

Consequently,

T =
=

bS]
Il
—

T =
1=

B(p,:)]2 =

i
L

Mw

)2 =

bS]
—_

=

IB(f. )2+ ) IB(p. )2 >

1B, :)]2 =

GM Hadamard's (D.21)
HHB I 2 o) BB S e, (D.28)

(1 — C6€n)1/k

k
1
(1—C€n 1/k EZ p,.T]_k byBT]_k:lk

k
Z : CgEn

=1

=

B(f, :)le + Z B(p, Z)le — CgEn

p#f p#f
k
IB(f, )2 = B(f,) 1 = D [IB(p::)2 = B(p, ) 1] = Coe
p#f
”B(fv )H2 (fa :)T]-k - (k - 1)08671 - Cgﬁn by
> B(f, ) 1, — Cuen, Yf=1,---,k (D.29)

o Check |B(f,:)|2 is lower-bounded.

Now we show that, |B(f,:)]2 is lower-bounded, using Inequality of AM-GM and ([D.27)),

B(f, )l (ﬁ 3

k—1
IB(p, :>|2> B L TTIBM. )l

p#f p#f
B(p, )71+ Csen] "
IB(7. )l (Zp#[ R ]> > 1B(f, )1 T T IBGw. )l by
p#f
] k—1
B(f, ol (P PR EEGS)  g, by
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L+ Cled B (g ) =1 Cue
1 T
IB(/, )l > (1= Cle) w (1+7) <
= 6_1/2 vf = 17 7k' (D?)O)

e Now we put all the previous derivations together. From (D.26)) and (D.30)), we have (D.14) holds,

B<f7 :)TW(l] 2 _C7€n]-s 2 —26 . C7HB(f7 :)HQEH]'S'

Similarly, from (D.27)), (D.29)) and (D.30]), we have

B(f.:) 1y — 2¢- Co|B(f, ) |2en < IB(f, )2 < B(f,1) 1 + 2¢ - Cs[[B(f, 1) 6.

Therefore, (D.15) and (D.16)) hold.

D.3 Proof of Theorem

Proof. This proof consists of two major steps:

Step 1: We apply Chernoff bound to show that with probability at least 1 — D}s/d, for any wh

79

there exists at least one sample W(li), such that
||W%z) - WfHQ < Td, Vi = ]-7 S,

where rg = (%)ﬁ.

Step 2: Let W9 = {wl s .= W, = {W,i%,, and B = W,,; WIT(WOWT)~1 We show with
1 (i) fi=1 (@) Si=1 1 IRAST
probability at least 1 — Did/(n v d)¢, for all f =1,---  k, B(f,:) satisfies:

B(f,) € [cone(W?)*]ie (()[bdK]“ier (D.31)

Then using the conclusion from Theorem [4, we get the desired bound.

In the following, we provide the details of the above-mentioned steps.
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Step 1: Let X; denote a random variable representing the number of documents falls into the ball

B(W?, rq) (rg < 1) in a sample of size d drawn from P,
X; ~ Binomial(d, p;)

where p; = (k —1)! - ¢o - v, Since P is an (a, 3)-SS distribution, we have

log d
d

pi=P (Iw—wilh < 7ra) = (k=175 = Cy (D-32)

According to Chernoff bound, for 0 < § < 1,
Chernoff ( 62dpz) (D.32)
exp | —

Therefore, when d is large enough, such that for some 0 < §y < 1, (1 — dy) C3logd > 5, we have
1 1 )
P(Xi<§><exp( 5C3logd/2) d Vi=1,---,s
Then, we can bound the probability of the event {rninizlj..wS X, < %},
s
/
P(Z_Igun X; < ) ZP( ) < D,

In other words, with probability at least 1 — D/ s/d, there exist s different samples W%l), = (8), such
that Hwb) —wiy <1y
Step 2: Denote W9 = {wl, 12, WO = (W, W) e R¥?, and W,, = {Wy,;)},. We have
C°'W’=C, W, +E,
Therefore,
C'W! = C,W,, +E,;, W)=W!+E,, (D.33)

where Wnl and E,; are the collections of the corresponding columns from Wn and E,, respectively.
Moreover, |Eni(:, 7)]2 < Cse, and |E/(:, j)|2 < rq, for all j = 1,-
Now we show that [cone(W?)*]* " = {x : xTW] > —(a — rd)Hng} c [cone(WH*]* = {x :

xTWF > —a|x|,}. For any x € R¥ and x"W? > —(a — r4)|x|2,
—afxly < XTWY = ralxly < xTWY + xT(WE - W) = xTWS,

where in the second inequality we apply (E.78) and Cauchy—Schwarz inequality. Therefore, by definition,
if W*is (o, 8)-SS, WY is (a — 1y, 3)-SS.

95



Back to our case, since W#is (C}4/ w+rd, B)-SS, W0 is (C} M, B3)-SS. Then by Theorem
we obtain that with probability at least 1 — D}s/d — Did/(n v d)¢,

) I
D(C,,, C°) < Dij /M + DB,

56



E Proofs of Technical Lemmas and Propositions

In this section, we provide proofs of propositions and all technical lemmas. From now on, we use u’

to denote the true word frequency; u the the sample word frequency; u = C, W the estimated word
frequency in Conv(C,,). We use the superscript (i) to denote the i-th document. For example, u®®
denotes the true word frequency of the i-th document and x* denotes the observation of the i-th
document. We write U? = COWO? = (u°® ... u%@) e RV*4 and U, = C,W, = (@®,--- ,a®) e
RY *d.

We use £ (u) as a shorthand notation of f,(u;x®). By Pinsker’s inequality, we have

7@ (é?j)) S exp (‘%Hﬁm - qu) : (E.34)

for any u e AV~ By the reverse Pinsker’s inequality (Gotze et al., [2019), we have

() ,
Lo > exp (~Cunla — uf). (E:39)

where Cg = (minepyu;) " depends on the minimum element of u.

E.1 Proof of Lemma [D.1]

Proof. Write C = (cy,--- ,¢;) € RV** and C = (&, ,&_1) € RV** D where & = ¢; — ¢; with
j €|k — 1]. Write
G=C"c, G=C"C.

The volume of the k-dimensional parallelepiped spanned by ci,--- ,c; € RY is given by 4/det(G)
(Boyd and Vandenberghe, 2004). Therefore 4/det(G) = (k — 1)!| Conv(C)|, since 4/det(G) measures
the volume of the (k — 1)-dimensional parallelepiped spanned by columns of C in RY, which is (k—1)!

times larger than the volume of Conv(C). It suffices to show that
K2 det(G) = det(G).

Denote by v the perpendicular vector to aff(C), represented as

V—Zt +Ck,

so that

(c;—cx)v=0 and ¢v = [v], = A%
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Further, we construct a system of k linear equations for k£ unknowns, ¢, - - -

k—1

~T~
Z t;C; Cj
=1

k—1
~T 2
J=1

By Cramer’s rule, we have

h* = -

G

det

T

Then, we see that for the denominator,

det

G{Ck

The numerator is

— det

add last column to others
— det

add last row to others
— det

p T
CiCp -+ Ci_C; —1

=T

=T

=T
Ck—1Ck

T
Ck—1Ck

—elep,i=1,--- k-1
T
—— det
E{Ck
0
= —det(G
0
=T
Cp_Cp —1 |
~ ~ ~T~
Ck—1€1 Ck—1Ck—1
=T =T
=T =T
Ci1C C1Ckr—1
=T =T
Cr-1€1 Cr—1Ck—1
T T
T T
T T
Cr-1C1 Ck—1Ck—1
T T
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= —det(G).

E.2 Proof of Lemma [D.2

Proof. We will show that for any x € R¥, x # 0, there exists 3 € R¢ such that

(W 1
x (Wh) > —, and |82 < 1.
Ix[a &

Therefore,

|x" W 1 x"WgB 1
> >
12 18l x>~ &

In the following, we will find 3 satisfying ([E.38]).

First, decompose x as

)\1
X = — +
k F ’

for some A € R and v € R* such that 471, = 0.

Second, let
_ sign(A) 1

k VE(E =1~

where sign(-) is the sign function. Next we verify that

T
Xy l'
Ixla ~ K
This is because
T Al 1

x = —t —
y =t Tl

A2 Al if A = /55 1]

Ix[2 = & + 7[5 <

Vil i 6 <y
1 1 lvlz k
Ay {ﬁ LB ity > [,

if Al < /&5 1]

and

. +
[AF=1 M K*]. This is because

, 1
[sign(\) - y]" 1 = 2151 = 1,
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L S
Eook(k—1) Vk—1

lyl2 =
Since K* < cone(W), we have
[ARL (VK] < [AF [ cone(W)] = {x e AF! 1 x = WA, A = 0} = Conv(W).
Therefore, [sign()\) - y] € Conv(W), meaning that there exists 3’ € A4"! such that
y = sign(A) - WB' = W(sign(\)8'] = WS,

and

18l = 18] < 871, = 1.

E.3 Proof of Lemma [D.3

We arrange the proof as Lemma [E.1 and Lemma [E.2. First, in Lemma [E.I, we derive a lower bound
for the integrated likelihood function, and(én; X). Then, we prove equation (D.12)) in Lemma |E_2

We first define the d-enlargement convex polytope below, which is useful later in the proof.

Definition 5 (§-enlargement convex polytope). For a convex polytope, Conv(C) < RV, with k linearly
independent vertices C = {cs}i_; € RV**. The 8-enlargement convex polytope of Conv(C),

denoted as Conv(C?), is defined such that each column of C?,
c‘} =1+ p(C))(cy—c)+c, Vf=1,---k,

where p(C) = =% and ¢ = %Zl;‘:l c; € RY is the center of the k columns of C. C? is called the

Urt]in (C) ’

d-enlargement matriz of C.
Proposition 11. Conv(C?) satisfies the following properties.
1. It composes of k vertices, C° = {c?}’}zl e RV*F;

2. | Conv(C?)| = (1 + p(C)6)" ! | Conv(C)|.
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Lemma E.1. With probability at least (1 —3 - (n v d)=¢)%, the integrated likelihood is lower-bounded:
Frxa(Co; X) = C - Ayg - (n v d)= 0,
where A, 4 := ]_[le [, (0D x®) and C, Cyy are constants.

Proof. The integrated likelihood function can be written as

Frea(C; X) H ]Co;

DV( ) ’ Conv(C

fn(u; X(i))du

_ (). () 1 fn(;x)
Hf"(“ X >Jcom<c [Conv(C)] J,(@®; x0)
(

1 f9(u)
=A,.4- HJ |C0nv )|f(i)<ﬁ(z)>du

Conv(C

where f)(u) is a shorthand notation of f, (u;x).

By Devroye et al. (1983), for each document i, it holds with probability at least 1 — 3 - e~ that

[u®® — 4@, < 52/[? for all z > 0. By a simple union bound argument, we have that with probability

at least (1—3-(n v d)=°)%, [[u®® —a@|, < 54/c- VM =: C14/ w, for any i € [d], by choosing

x to be a large multiple of 4/log(n v d). Let B(u’®: Ci¢,) denote the Euclidean ball centered at u®®
with radius Cje,. Consequently, with high probability, for any u e B(u’®; Cye,,),

[u— a9y < Ju—u®; + [u’® —a|, < 2C)e,. (E.39)
Next, by the definition of MLE, we have

Fpa(Cr; X) = and<co- X)

f“( )
|Conv<0°>|d HJ Fo@o) ™

And HJ &du

~ TConv (OO onv(C?) N B(u2iC1e,) £ (AD)

Ana : (i) 12
m -1 JCOHV(CO)HB(UO(i);Clen) exp (—Confu — aV];) du (E.40)
mﬁ/% ﬁ [Cs(Cren)* ™ - exp(—Cyn(2C1€,)?)] (E.41)

=1

>C Apa- (nv d)~Crd,

Inequality (E.40) follows from the reverse Pinsker’s inequality (E.35) since the columns of C° are
interior points in AV~ i. Inequality (E.41]) follows from (E.39).
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Definition 6 (Distance between a vector and a convex polytope). The distance between a vector x

and a convez polytope Conv(C) is defined as
d(x, Conv(C)) = _min  [x = yl2.

Lemma E.2. With probability at least (1 —3 - (n v d)=)%, we have

d(u®?, Conv(C,)) < Ce, (E.42)
for any i € [d]. Therefore, there erists a matriz Wn, such that W,, > 0, ngk =1y4, and

U’=C'W’=C, W, +E,=U,+E,

and max; |E,(:,7)|2 < Ce,. Here constants ¢ and C' are independent of n and d.
Proof. We prove the lemma by contradiction. Suppose the i-th document violates :

d(u’ Conv( n)) = Cep,.
First, we claim that there exist at least C;d columns of U such that

d(u’?, Conv(C,)) = CoCé,,

where C,C5 € (0,1) are constants independent of n and d. We prove this claim at the end.
Then, by [Devroye et al.| (1983), with probability at least (1—3-(n v d)~¢)¢, we have |[u’® —a®|, <
O (« / M) hold for all i = 1,--- ,d. By making the constant C' large enough, we have

d(9, Conv(C,)) = (C,C — 1)e,

Therefore,

L 9w
Foca(Cn X) = ”dl_[J (C n)|f(i)(ﬁ(i))du

Conv ‘ COHV
And d J () 9
<———— exp [ —=|0a'" —ul3) du
[Conv (ol . [T e, (-3 /8¢ - ul3)

_Andl_[exp (——Hu —u” >

n d . ~
<Apq-exp <_§ Z dQ(ﬁ(Z), Conv(Cn))>

i—1

n

<Apq-exp (—5 L Cyd - (G0 — 1)2651)
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_1 _1)202
:An7d . (n v d) 201(020 ].) Cod’

where the first inequality follows (E.34) and the second inequality is due to the mean value theorem
for integrals with u*®)’s being some points in Conv(cn). By choosing C' large enough, we can make

N

Frxa(Cp; X) < Apg-(nv d)—(C1o+1)d7
which contradicts with Lemma [E.1. So we conclude that
d(u’?, Conv(C,)) < Ce,

foralle=1,---,d.
It remains to prove the claim we made at the beginning. When aff(C°) is parallel to aff(@n), the
claim is trivial by making C; small. When aff(C?) is not parallel to aff(C,), again we prove it by

contradiction. Suppose there are at least (1 — C)d columns of U° such that
d(u®? Conv(C,)) < CyCe,

and let S be their column index set.

Denote 7 as the distance from u®® to the intersection of aff(C°) and aff(C,,), i.e.,
r = du’® aff(C%) (af(C,)),

where u’? is the vector such that d(u’®, Conv(C,)) = Ce,. Since d(u’?), Conv(C,)) < C,Ce, for
all j € S, we know that

CQCEn
Ce,

d(u’) | aff(C°) ﬂ aff(C,)) < r=Cor, VjeS8.

At the same time,
r — Cyr < max [u’® — u’0 |, < max [C°O — COWD|,.
Jjes i,j€[k]

Since the RHS is a constant, we know that r is upper bounded.
Let b, be the unit normal vector of aff(C?) (" aff(C,,) on the hyperplane aff(C°). Since b, € aff(C?),
there exists A, € R¥ and A1, = 1 such that b,, = C°\,,.

On the one hand, the variance of all u’®’s on the direction of b,, can be upper bounded:
1
Vary, (U°) < p [(1—C)d-Cir*+ Cid-r?] = (1 — C)C5 + Cy) r? (E.43)
On the other hand, since the minimum eigenvalue of W. WY is lower bounded, we have

1
b’U.U’b, = b C°"W . WIC"b,

Varbn(UO) > = —bn

SH
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> G5 C™b, 3 = G5 - A, CTCO°CCON,
4
> Cs [0 (C] A3

> Oy [0, (C)]* L

- (E.44)

mln(

In (E.43)), by choosing the constants C; and Cs small enough, we can make

(1= C)C2+Cy)r? < Cy [0, (CO]*

?rl»—ﬂ

Therefore, we get a contradiction from (E.43)) and (E.44]), which finishes the proof of the claim.

As a conclusion, let 1 = arg My cony(6,) d(u,u’®) for i = 1,--- ,d and U, = @a®, ... ady,
then we have shown that W.h.p. [u’® — @@, < Ce,. Further, by the definition of Conv(C,,), there
exists w(® € A*1 such that a® = C,w®, forany i = 1,--- ,d. Let W,, = (W ..o WD} we have
C, W, =U, and

Bl )l = [0 — &%, = [u®® — a9, < Ce,.

E.4 Proof of Lemma [D.4

Proof. Since B(f,:) = Are(y) + €5, | €f]2 < A and |B|y < M, we can bound Ay by CoM

NSt <GM, f=1-k

M
5
We write T = (Aeqy, - Mvew))’, E = (€1, ,€)7, such that T + E = B.
Next, we show that the column sums of T are close to 1, using the fact that the column sums of B

are all 1’s.

!
=
M??‘
)

—iB

=
HM
|

»
Il
_

T
)

N
=
D=
w
-
CIJ
IIM?r
ﬁ
s
=

s=1 f=1
k k
= :E] HIg(jz:) - Hl = :E: 7:)H2
f=1 f=1
k k
=VE D lerla < VE DY A8 < C3MB. (E.45)
f=1 f=1
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Let IT = (e(), - - -e(k))T. Then IT must be a permutation matrix. Otherwise, there exists at least
one column p, such that all the entries in the p-th column of IT are 0, i.e., ), = - - - €w), = 0, where

e(y)p denotes the p-th element in e(s). Then the sum of p-th column of T is 0, i.e., Z};:I T(f,p) =

ZI;ZI Are(p)p = 0, which contradicts with (E.45).

Furthermore, since T = II - diag(\q,- -+, \x) and IT is a permutation matrix, each column of T
should include one and only one of Ay, --- , A, so that
k| k k
DUDIT(fs) =1 = > [\ — 1] < CsM8B.
s=1|f=1 f=1

Consequently,
k
|B—M; < |T ~ 12 + B~ To < }, |\ — 1/ + |E]> < C3M5.
f=1

where the last inequality holds because

N[

k
|El < |E|F = (Z |6f|§) < VkC,Mp
f=1

E.5 Proof of Lemma [D.5

Recall that ¢, = C) M where Cy > 0 is a constant. We aim to show that

|det(CTC,,)| < (14 C",)| det(CVTCO)).
Let aff(C,,) and aff(C°) be the (k — 1)-dim hyperplanes obtained by expanding Conv(C,,) and
Conv(C?), respectively. By Lemma|D.1,

|det(CTC,)|  h, |Conv(C,)|

[ det(COTCO)| — A | Conv(CO)|’

where h,, is the perpendicular distance from the origin to aff(Cn), and h° is the perpendicular distance
from the origin to aff(C").

Therefore, it suffices to show the following two inequalities,
hy < (1+ Chen)h, (E.46)

and

| Conv(C,)| < (1 + Cae,)| Conv(CY)). (E.A47)
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We first prove the projection matrix associated with aff(C,,) converges to the one associated with
aff(C%) in the order of ¢, in Lemmal|E.3] Then (E-46) is proved in Corollary as a special case of
Lemma [E.3.

To compare | Conv(C,,)| and | Conv(CP)|, we introduce three more convex polytopes:

e Conv((C%)7), an enlarged convex polytope of Conv(C®) (defined in Definition [5). Here v > 0

is a constant.
e Conv(C?), the projection of Conv((C°)7*) on aff(C,,).

e Conv(C*), the smallest k-vertex convex polytope on aff(C,,) [ AY~! containing
S = Conv(C,)N {Ule B(u’®; C’4en)}. Here B(u’®; Cye,,) is the Euclidean ball centered at
u’® with radius Cye,. The formal definition is given in Definition

We then prove (E.47) by the following steps.

1. In Lemma [E.4 and Lemma [E.5, we show

(1 - %) | Conv(€,)] < | Comv(C?)|. (F.48)

2. In Lemma[E.6]to Lemmal[E.8| we show that Conv(C¥?) is a k-vertex convex polytope within A"~
containing S. Therefore, by the definition of Conv(C*), we have

| Conv(C*)| < | Conv(CH)|. (E.49)

3. In Lemma [E.9, we prove (E.47) by summarizing the the above inequalities, i.e.,

1 A (E.48) (E-19) Definition of Conv(CH)
(1 — —) | Conv(C,)| < |[Conv(C*)| < | COIIV(Cﬁ)| < | Conv((C0)7E")|
n

Proposition

< (14 p(C)7€,) | Conv(C?)].

Next, we provide detailed proof.
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First, we show that the projection matrix and any projected vector of aff(én) converges to the

ones of aff(C) in the order of M.

Let (u®,--- ,u®) be any & linearly independent vectors from aff(C). Then, the projection

matrix of aff(C) can be written as
Pc = U(UTU) U7, (E.50)

where U’ = (u® —u®, ... .u® —u®).

For any vector y, its projection onto aff(C) is given by

yc =Pc(y —uV) +uV = Pey + (I - Pg)ulV, (E.51)

Lemma E.3.
[Pe, = Pool2 < Cey (E.52)
I¥e, —Feolz < Clylzen + Ce, (E.53)

for any y € RV, where C' and C' are positive constants.

Proof. By assumption (A3), let (iy,--- ,ix) denote the index set of the columns of W% in W
where the k columns of W% are affinely independent and have minimum positive singular value
lower bounded. Let U% = COW% — (0% ... u%)) and U* = (@@ ... a®), where 2 =

arg min @ du, u’®) is the projection of u’® onto Conv(C,,).

ueConv

By Lemma [E.2, we have

1
2

k
|U™ =Ty < U™ - Tl|p = (Z [’ — ﬁ“”%) < Coep,
j=1

and

Huo(“) — ﬁ(il)HQ < Csep,.
By (E.50), we have
PCO _ IJO/(LTOITIJO/)—IU-O/T7 PCn _ ﬁ;@(ﬂ/gﬂ-;)—lfjg

- - T
where U = U%Q, U], = U3Q, and Qi1 = | ~Liy Ty | -
By Weyl’s inequality in matrix theory (Weyl, 1912),

Omin(U”) = 03, (07) < JUY = U 2 < [U — U3 2| Q2 < e

min

67



Therefore,

+ (1
> O-min(U )

Tin(T}) 073, (0”) — Cley > Toin (E.54)
Moreover,
Thin(UY) = 05, (U*Q) = 07, (COWQ) = 01, (CO)arti . (W)a ki (Q) = Cs. (E.55)
So the columns of ﬁ: are also affinely independent.
According to Davis-Kahan theorem (Chen et al., 2016; |Davis and Kahan, [1970), we have
Davis—Kahan 1 1 T/ 07
||PCn — Pcol2 < max <0';1in(fj;l)7 Ur-i-lin(UO/)) 105, — U7
1 1 B 0
< max (Umm Ty U;m<UO,)> 1U; = U™[2]Ql2
< 046717
where the last inequality is due to (E.54) and (E.55).
Finally, for any y € R,
196, — ooz < [P, — Poslalyle +[Pg, ~ Poslallu ] + [u® — &)
< Olly|26, + C'en
]

Corollary 11.1. Denote the perpendicular distance between origin, 0 = (0,0,---,0), and aff(C°) by
h°, and the perpendicular distance between origin and aﬁ(én) by hy,. The followings hold,

1. |hy, — b0 < Cey,
2. ho > C".
where C" and C" are positive constants.

Proof. The perpendicular distance of aff(C) is the length of the projected vector of 0 on aff(C).
Specifically,
ho =0, |2, 1 = 0],

Therefore,

Bn—hojz

10¢,, 2 = 10collz| < [0, — Ocoll2 < (C[0]26, + C'en) < C'en.
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Furthermore, since Oco is on aff(C"), we can represent 0co by Cw;, for some wy, € AF~1,
= [0co > = 074, (CO)[Walla = 0, (CO) w1 /VE = 05,,(C") V.

[]

With the result from Lemma [E.2, in the following Lemma [E.4, we show that most of the mass of
f@(u) on Conv(C,) is concentrated on Conv(C,,) () B(u’®; Cye,,).

Lemma E.4. For any i € [d],

J T LR} I et
Con(©:) B0y FO (D) X " Joonv(@,) SO (00)

Proof. 1t suffices to show that for any i € [d],

“(u) 1 J fD(u)
fdu < — ———~du. E.56
J‘Conv ) N BE (u0);Cyep) f( )(u ) n Conv f( )(u(l)) ( )
For the LHS of (E.56),

f § (u)
Conv () N BE (u00):Cyen) f (fl(Z

— uH%) du

exp <—Z\|ﬁ(i) — qu) du

< J‘
Conv(C,) N BE (u06); C4en)

<am(—§aa—1fi)f

aff(C,)

= exp (< 5(Ch— 172 exp (S (0, aff(C,))) J o, (~218g) —ul2) dn
< exp (—%(C’Ll - 1)267%) -1 05 :
=)

where the first inequality is due to the Pinsker’s inequality (E.34]), the third inequality is from the

normalizing constant for a multivariate Gaussian distribution.

For the integration in the RHS of (E.56]),

[
C

onv(Cp,) f(z) (11( )

2J (—(A)du
Conv(C,) N Bu(®);4/2Ce,) f ! (u )

> J ) exp (—C’mHﬁ(i) —ul3) du
Conv(C,,) N Bu0H:v/2Ce,)

>C5(Cen) ! - exp (—cm(\/ﬁc + 1)263)
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where (' is the constant from - Since u’®’s are interior points in AV~!, when n is large enough,
the second inequality follows from the reverse Pinsker’s inequality (E.35]).
By choosing Cj large enough, we can ensure

exp (200 - 122) 2 < Lo gomiett ey (<Cmivac + 17¢2)

nz n

Consequently, we have

l (u) u < lf Ldu

(4)
JConv(Cn N BE (u0);Cyey) f (ﬁ(z )  Jconv(C,) f (ﬁ )>

[
Definition 7. Define C* = [c%, - ,cf] € RV**, such that, ¢} € of(C,)(AV™Y, Vf € [k], and
Conv(C*) is the smallest (volume) convex polytope with k vertices on aff(C,) AV~ that
contains the set S = Conv(C,) {UZ B ;C'4en)}.

Note that Conv(C,) is a convex polytope with k vertices on aff(C,,) (AY~! containing S. So
C* must exist and it satisfies | Conv(C*)| < |Conv(C,)|. In the following lemma, we show that

| Conv(C,,)| cannot be much larger than | Conv(C*)|.

Lemma E.5.
1 R
(1 — —) | Conv(C,,)| < | Conv(C*)|
n
Proof. Since ¢; € AV™', Vf e [k], C* is a valid parameter of F,.4(C;X), and Frva(Cr: X) =
F,x4(C*; X). From Lemma @, we have

An,d dJ
’COHV(CnNd i=1 ¥ Conv(Cp) N B(u®);Cyuey) f(z)(ﬁ(z))

1\* . 1\
= (1 - _) and<cn§ X) = (1 - _) and(C*; X)
n n
(-1 ‘ Hf S (u) S
B ‘COHV C* ‘d Conv(C ' ﬁ(l))

1\* )(u)
> 1 _ ~ Ci‘l].7
( ) | Conv(C*)|? Conv C* )| H fConv ) N BuO®;Cyen) f( (a®)

where the last inequality is due to the definition of Conv(C*). Therefore,

1 (1-3)
~ = ,
| Conv(C,)[¢ ~ | Conv(C*)|d

1 ~
(1 - ﬁ) | Conv(C,,)| < |Conv(C*)|.



Next, we compare | Conv(C?)| and | Conv(C*)|. We will construct an enlarged convex polytope,
Conv((C°)7), and then project it to aff(C,) to obtain a projected convex polytope, | Conv(CH)|. We
will show that | Conv(C*)| contains the set S, so that | Conv(C*)| < | Conv(C*)|.

Definition 8. Let Cf = (cji, e ,ci) e RV** such that cgc is the projected vector of the f-th vertex of
Conv ((C%)*n) on af(C,), Vf = [k]. Here v > 0 is a constant.

Lemma E.6. When n is large enough, Conv(C¥) is in AV~1L.

Proof. 1t suffices to show that for any f € [k], (1) cgchV =1 and (2) cgc > 0.
By the definition of aff(C,,), cgc = C, s and A71, = 1. Therefore, (1) holds because

1y = ATCI1y = AT, = 1.

By Lemma [E.3, we have

Ich — ()2 < Cey.

Therefore, to show (2), it suffices to verify that (c(})“" > (4, for any f € [k].
Note that ¢, , ¢ = O, since ¢}, -+, c? are strict inner points of AV~

By the definition of the enlarged convex polytope (Definition , we have

(c§) = (14 pyen) (¢ — ) + &
= (14 pyen) c(} — pyenc’

= (1 + pyen)Co — pye, = O,
where p = p(C) and c° = %Zl;zl c}. O

Next, we want to prove that Conv(C*) contains the set S. We first study the property of the
boundary points of the d-enlargement convex polytope in Lemma and show that the distance
between any boundary point and the original convex polytope is at least . Using this fact, we know
that any boundary point of Conv(C?) is at least ve, away from any u’® e Conv(C"). By letting
~ large enough, we can have Conv(C#) contain the set S! = B(u®®, Cye,) (aff(C,,) for any i € [d].
Therefore, Conv(C*) contains the set S’ = Ule S!, which is a superset of the set S. The detailed
proof is in Lemma [E.8.
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Lemma E.7. For any point x on the boundary of Conv(C?),
d < d(x,Conv(C)) < k(C)kd.

where k(C) = U‘fﬁ‘""‘((g)) is the conditional number of C.

min

Proof. By the definition of -enlargement in Definition [5]

arct = > ag[(1+ pd)(cs — ) + ¢
f=1

k
af(1+p5 Ccfr— %Z Zafé

k

g
n
=

T
A

I
M=

T
I

[
Mw

ay(

T
I

1
(1 + pd) <Oéf—E>Cf+(_3

1=

1

~
Il

where p = and o = {1,k € A*=1 Since x is a boundary point, there exists at least one

k

Ur;in(c)’

f € [k], such that oy = 0. WLOG, we assume «y, = 0.
Let o = o — 11. We have

=C(1+pd)a’ +¢
At the same time, any point y in Conv(C) can be represented by
k -
y=CB=) Bilc;—e)+C=Cpg +¢,
F=1

where 8 = {Bf} =1,k € AFland 8/ =B — %1_

Now we can measure the distance between the boundary point x and Conv(C),

. . ;o
d(x,ConV(C))—yeggrllg(c)Hx yll2 BEHAHVH_IHC[(Hpé)a B2

> 07u(C) - min (14 ps)ed — B,

min BeAV-
Write n = (1 + pd)a’ — 3" = (1 + pd)ae — B — %51. Then, the k-th element of n is

o _

— (14 s —
Ne = (1 + pd)oy, . .

because we assume oy, = 0, and B € A¥®~1 o that 8, = 0. Then, we obtain the lower bound,

d(x, Conv(C)) = o=, (C) - min [q]> > 0%, (C) - min || = o (C) - 22 — 5.
n n

min min min k
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For the upper bound, let 3’ = &', we have

min _[x =yl <[C[(1 + pd)a’ — ][z < Omax(C) - p - [ ]2

yeConv(C)
. 1 1
= OmaX(C)p5 HaH2 - E < Umax(c)p6 1-— E

< k(C)ko.
[
Lemma E.8. For some v > 0, Conv(C*) covers the set S’ = {U?:l Bu®, C’4en)} Naf(C,), ie.,
S < S < Conv(CH).

Proof. Since Conv(C?) is a closed and simply connected region, it suffices to show that for any boundary
point, x € bd Conv(C¥),

min [x — u’@|, > Cje,.
=1 d
In fact, any boundary point of Conv(C*), x € bd Conv(C?), is projected from a boundary point of
Conv(C?)7" denoted as y € bd(Conv(C°)7). Then,
X = Pﬁny + (I — Pﬁn)ﬁ(k).
By Lemma [E.7, we have Yy € bd(Conv(C°)7),
ly — u’@ |, = d(y, Conv(C®)) = ve,. Vi=1,---,d. (E.57)

Denote the projected point of u’® on aff(C,) = aff(U,,), as ﬁ%(i). We have

[ = u®D s = (x — &5") + (A" — uD)];

=[x — a3 = |Pg, (y — ")

—[Pyoly —u"®) + (Pg —Pyo)(y — u"®)],

>y —u"O, = [Pg, = Pyofay — @

>(1 — Csen) |y — ul@ |, by Lemma [E.3
>(1—Cse,)ven, Vi=1,--- .d. by

By letting v large enough, we can make that for any x € bd Conv(C*),

HX - uO(Z)HQ = (1 - 05671)7671 = 04671 Vi = ]-7 T 7d'
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Now we are ready to piece together all the useful results and conclude the following inequalities.

Lemma E.9.
| Conv(C,)| < (1 + C'€,) | Conv(CP)]

|det(CTC,,)| < (1 + C”,)| det(COT Q)
Proof. Since the d-enlargement is an affine transformation, by Proposition

| Conv ((C°)7)| = (1 + p(Co)yen)k_1 | Conv(C°)| < (1 + Cye,)| Conv(CY)|.

Then, by Lemmaand LemmalE.8| Conv(C*) is on aff(C,,) [V AV~ covering S. And by Definition
, Conv(C*) is the smallest k-vertex convex polytope on aff(C,,) (JAV~! covering S. So we have |

| Conv(C*)| < | Conv(C?)| < | Conv((C)7)|.

The last inequality holds because C* is a projection of (C°)¥" on aff(C,), so that any side length of

Conv(C*) is shorter than the corresponding one of (C%) i.e.,
I — chll = [P, [ — (el < ()™ — (cl) .
Together with Lemma [E.5, we obtain,
| Conv(C,)| < <1 + p— 1) | Conv(C™)|

- (1 N ﬁ) (1 + Chey) | Conv(CO)|

< (14 C'¢,) | Conv(CY)).

Furthermore, by Lemma [D.1, we have
det(CTC,)
<14+ Ce,.

| Conv(C,,)| R
[Conv(CO)|  hyy et (COT o)

By Corollary we obtain
det(CTC,,) h,
<— (1+C%) <1+ C",.

)

det (COT'CO

74



E.6 Proof of Proposition
Proof. (i) If a =o', B < and W is (a, 5)-SS,

[cone(W)*]” [ \[bdK]* < [cone(W)*]* [ |[bdK]®

S {x:|x—XAerfa < BMAZ0} S {x:||x—Nepa < BN N =0}

Then W is (¢, B')-SS.

(ii) If Conv(W) < Conv(W),

cone(W)* < cone(W)* < K. (E.58)
Also, since
[cone(W)*]* = {x : x"W = —a|x|,} = {x : x"w > —a|x]s, YW € Conv(W)},

we have

[cone(W)*]* < [cone(W)*]°. (E.59)

By (E.58)), (E.59) and the definition, if W is (a, 3)-SS, W is also (a, 3)-SS.

(iii) The proof is trivial by definition.

E.7 Proof of Proposition

The following lemma is helpful in the proof of Proposition [5]

Lemma E.10. For any x € R*, if

Il = lella < ey

for some € € |0, ﬁ], then there exists one element x; of x such that

HX — :cl-eng < 4\/k' — le- |£CZ‘

Proof. Tt suffices to show the lemma holds for x > 0 and |x|; = 1. Now suppose there exist some
elements of x, say 1, such that

r1 = 2¢ and o1 <

DN | —

I6)



Since |x_1|2 is a convex function, under the convex constraint

k
{(l’g,"' ,a:k):ijzl—ml,xj>0,j=2,~- ,k:},
=2

it is maximized on the vertex of the constraint. Therefore, |x_1[s < 1 — x7, which leads to

%[y =[xz = 1 =4/ (1 = 21)? + 2F

=1-(1 —m)\/l + (1 flxl)Q
>1-(1—a) [1 "3 (1 ?“)2]

2

1
2(1-3’)1)
2 o T1
2$1—I1>?>€7

where the second inequality is because v/1 + ¢ < 1+% fort > 0. So we get a contradiction. Consequently,
there is no element in [2e, %] Since there is at least one element that is larger than or equal to % and

2¢ < =+, at least one element is larger than or equal to 2¢. At the same time, there is at most one

1
L

element that is larger than %, so there must be exactly one element that is larger than =. Let the

element be x;, then all other elements are less than 2¢. Therefore,

|x — zieills < VE—1-2e < Vk—1-2€¢- 2z,

Now we are ready to present the proof of Proposition [5|
Proof. By Proposition (ii), it suffices to prove for the case when all z;; = m € [(), %) Denote
= {x:|x = Aegla < A A = 03,
B, = [bK]" {x Il — x"14] < €]z}
Ce = [cone(W?)*] = {x : x" W’ > —¢|x|>} .

Then it suffices to show that there exist 5. — 0 when € — 0 such that B.[|C. € Ag_for € > 0.
Without loss of generality, we assume [x|, = 1. For any x € B.[ ) C., We consider the following
three cases:

Case (i). When all elements of x are nonnegative. Since x € B,, |x|; = Zle x; < 1+ € Then
Ix[ls = lIx]l2 < € < €]x]s. (E.60)
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Case (ii). When there exist at least negative two elements in x. Suppose one of the negative
elements is ;. Denote

P={i:x; =0}, 3=in>0.
i€P
And
N ={itw;<0/i#1}, t=> a;<0.
eN
Since x € C,, for all i € NV,

mx1 + (1 —m)z; = —e,

which implies

0>IZ>— €
—-m
and
0>t=>m>— L (E.61)
. 1—-m
eN

Also, pick any i e N,

—e< (1 —=m)xy +mz; < (1 —m)xy.

Therefore,

0 — : E.62
e i ( )
By (E-61) and (E:62),
k
2 2k 2k +2
in=x1+s+t> <|x1|——6) + s+ <|t|— e) = ||x|; — €. (E.63)
= 1—m 1—m 1—m
Since x € B,,
k
2%’ <1+e (E.64)
i=1
By (E-63) and (E64),
2k +2
Ix[r <141+ €,
1—m
ie.,
2k + 2 2k + 2
x[1 — [x]2 < <1 + T m) € < (1 + T m) e |x]1. (E.65)

Case (ii1). When there exists only one negative element in x. Suppose the negative element is z;.

Without loss of generality, we assume zj, > |z;| for all j =1,--- [k — 1.
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Denote
k—1
r = Z T, = 0.
i=2

Since x € B, Zf;l z; < 1+ €. At the same time, ||x|2 = 1. Combining these two expressions, we have

k—1 k—1 2 k—1
O<fo+<2:pi> —2(L+€) > mi+ € +2 (E.66)
=1

i=1 i=1

In (E.66)), applying the fact that
k-1 k=1 0\ 2
Z xf < (Z xl> = 7’2,
=2 =2
we have
0<22? —2(1+€)ay +2r2 —2(1 + €)r + € + 2. (E.67)
Sincexe C, forallt=2,---  k—1,

(1 —m)zy + ma; = —e,

which implies

0>x1>_(k:—2)(1—m)r_1—m' (E.68)

From (E.67) and (E.68)), we derive that

m 2 9 4m 2m
0<2[<(k5—2)(1—m)) +1]r + l<k_2)(1_m)26+ (l{:—2)(1—m)(1+6)_2_26]r

2 2 2
+[(1_m)262+1_m6+1_m62+€2+26] (E.69)

Since x € B,,

SO

- E.70
T (E-70)
Since x € C.,
(1 —m)zy +may > —¢
So
m €
S _ _ E.71
I e (E.71)



Therefore,

(E.71) m
= - T — + 7+ xg
1—m 1—m
m 1—c¢ €
> | 1- — + .
1-m/) k-1 1—m

In other words,

< (1 1—2m (s 1 N 1—-2m
r<(1-— €
(k—1)(1 —m) 1—-m (k—1)(1—m)
By (E.69) and (E.72), we get < 30e when € is small enough. Then combining with (E.68]),

1 30m
>———|——+1]c€
0>x 1_m<k_2+)6

Consequently,

- 2 [ 30m
Z$i=x1+7‘+xk> 21| ——— (| ——= +1)e|+7+a4
P 1—m\k—-2

” H 2 30m L
=|x|i———(—— :
T T k=2 ¢

Since x € B,,

k
2%1 <1l+e
=1

2 30m
<1 1+ ———+1 ,
x|+ +[ +1—m<k‘—2+ )]e

Il =l < |1+ 2 (27 Y fe f1e —2— (20 4 q) e
X||1 — ||x]]2 < — | — < — : :
1 2 T-m\k—2 ¢ T-m\k—2 € X

By (E73) and (ETD).

ie.,

Finally, combining the three cases above, by (E.60)), (E.65) and (E.75]), for any x € B[ C,,

I — e < |1+ max { 2EE2 2 (30m AL
X1 X2 & max 1_m,1_m L—_o € 1-

Then by Lemma we know that B, (| C. < Ag, for all € > 0 and € small, where

% +2 2
B —dvVE—1- |1+ max{—"2 S0m Y e o
1-m'1—-—m\k—-2

when € — 0.
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E.8 Proof of Proposition []

Proof. By Step 1 of the proof of Theorem [§in Section [D.3 we know that: if the probability density
function satisfies
P(lw—wia<r)=(k—1!-co-r* Y V0O <r<r (E.77)

for the s distinct points Wi}, ---,wt in its support and some positive constants rg, ¢y, then with

probability at least 1 — C4s/d, for any W , there exists at least one sample w( ) such that
Hw%i) ﬁHz <rg, Vi=1,--- s, (E.78)

1
logd)m

where r; = ( ;

Now we show that
[cone(W)*]o7d = {x : xTWY = —(a — 7q)|x]2} S [cone(WF#)*]* = {x : xTWF > —alx|,}.
For any x € R* and xTWY{ > —(a — r9)|x/2,
ol < xXTWE gl < xTWO -+ xT (W — W0) = xTWF,

where in the second inequality we apply and Cauchy—Schwarz inequality. Therefore, by definition,
if W#is (o, 8)-SS, WYV is (a — rg4, 8)-SS.

We pick W§ to be the vertex e; of A*~! for i = 1,--- , k. Apparently, when the density function is
uniformly larger than a constant on neighborhoods of e;’s, holds. Let

1 d
0= OBV D

then by Proposition l VVti is (g, C50)-SS for all n and d if 10%1 — 0. As a result, WY is

(02 /log(nvd C Of()) SS

When d > > Cn'T , we have

log(n v d) N log(n v d)

Oé():CQ Td<Cé

n

Then WY is (Cg\/log(zv‘i) : Cé\/log(ZVd))—SS for all n and d if °2¢ — 0, which finishes the proof. [
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F Additional Simulations and Experiments

F.1 Convergence of the Estimation

We use the Monte Carlo simulation to show the convergence of the integrated likelihood F,4(C) and

the MLE C,,. Consider a simple setup: k =V =3,d =6,

2/3 1/6 1/6 5/6 0 1/6 5/6 1/6 0
C’=11/6 2/3 1/6|. W°=11/6 5/6 0 0 5/6 1/6],
1/6 1/6 2/3 0 1/6 5/6 1/6 0 5/6

and the sample size is set to be n = 60, 600, 6000, 60000.
In the experiment, we consider the “noiseless” data, i.e., X = nC°W?°. We compare the integrated

likelihood among candidate C’s taking the following form:

c (1-¢)/2 (1-1¢)/2
(1—-2¢)/2 c (1-0¢)/2], (F.79)

(1-¢)/2 (1—-2¢)/2 c
with ¢ taking values from [0.5,1]. We use Monte Carlo method to evaluate the integrated likelihood
H):

T

d

~ 1 )

Frvar(C) ~ ] ] ?Z fo(xPu = Cwy) |,
i=1

t=1

where wy, -+, wp are i.i.d. random samples from Dirg(1) and 7' = 50, 000.

The left plot of Figure [S3|shows F}.q7(C)/ maxc Fyxar(C), the relative value of the estimated
integrated likelihood. As n increases, the peak of the likelihood approach the truth (i.e., ¢ = 2/3): the
optimal ¢ values that maximize and’T(C) for n = 60, 600, 6000, 60000, are 0.778,0.720,0.701, 0.686,
respectively. The small fluctuations in the curves of n = 6000, 60000 are possibly due to numeric issues.

The right plot of Figure @ displays Conv(C") and the optimal Conv(C)’s for different n.

F.2 Comparison with Other Methods

In this section, we provide additional simulation studies to compare the proposed method (MCMC-EM)
with several existing approaches: Anchor Free (AnchorF) (Huang et al., 2016)), Geometric Dirichlet
Means (GDM) (Yurochkin and Nguyen| 2016), and two MCMC algorithms based on Gibbs sampler
(Gibbs) (Griffiths and Steyvers, [2004) and based on partially collapsed Gibbs sampler (pcLDA)
(Magnusson et al., 2018; |Terenin et al., 2018).
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Figure S3: Results of the experiment in Section |F.1l Left: the relative integrated likelihood of “noiseless”

data. Right: Conv(C?) and the optimal Conv(C)’s under different n. The white triangle represents
A?; the smallest black triangle is Conv(CP); other colored triangles represent the Conv(C)’s that
maximize and,T(C) under different n’s. The legend in the middle is shared by both plots.

The basic simulation setup is as follows: V' = 1200, d = 1000, n = 1000 and k£ = 5, columns of C
are generated from Diry (0.1) and columns of W are from Dirg(0.1). For our MCMC-EM algorithm,
the number of MCMC samples is 20 without burn-in. The EM algorithm stops after 50 iterations;
For each simulation, we run the EM algorithm 12 times in parallel with different randomly-initialized
parameters and report the result with the highest likelihood value. All hyper-parameters are set as
default, except that the prior over mixing weights in Gibbs and pcLDA is set to be uniform, same as
ours.

We evaluate the performance by the following four metrics:
e Relative Error is defined by ming |CIT — C||g/|C||, where II is a permutation matrix.

e Topic Coherence is used to measure the single-topic quality, defined as

i S log (freq(vl,vz)+e)

=1 Ul,’UQEVl freq(UQ)

where V), is the leading 20 words for topic I, freq(vy, v2), freq(vy) are the co-occurrence count of
word v; and word vs and the occurrence counts of word v, respectively, and € is a small constant
added to avoid numerical issue. Generally, the higher the topic coherence is, the better the

quality of the mined topics is.
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Figure S4: Comparison with existing methods when document length varies (n =

10, 200,400, - - - , 1400).

e Similarity Count is used to measure similarity between topics (Arora et al., 2013; Huang et al.,
2016), which is obtained simply by adding up the overlapped words across V.

Z Z T(vy = vy).

li<lo vy EVll ,U2€Vl2

It focuses on the relationship between mined topics while the topic coherence measures the one

within each topic. A smaller similarity count means the mined topics are more distinguishable.

o Perplexity Score measures the goodness of fit of the fitted model to the data. It is the multiplicative
inverse of the likelihood normalized by the number of words. Sometimes the perplexity score is
calculated on the hold-out data. Here, for simplicity, we use the one based on the training data

(the whole dataset),

1
[T, fo,(x@|C, W)

For a fixed k, a smaller perplexity score implies a better fit of the model.

d
2,’:1 s

We investigate the performance of those methods (i) when document length n varies, (ii) when both

document length n and number of documents d varies, and (iii) when the parameter « of the Dirichlet
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Figure S5H: Comparison with existing methods when both document length n and number

of documents d vary (n = 20,200,400, --- ,1400, d = 2n).

distribution we use to generate W varies. Results are reported in Figure [S4 to Figure [S6; each metric

reported in those plots is the average over 10 repetitions. Below we summarize our findings:

(i) MCMC-EM, GDM, Gibbs and pcLDA perform very similarly in these three simulation settings
in terms of four different evaluation metrics. That is because MCMC-EM, Gibbs and pcLDA
have the same objective function and GDM is also a likelihood-based approach. MCMC-EM has

the best relative error and perplexity score in most experiments of the first two settings;

(ii) Estimators of MCMC-EM, GDM, Gibbs and pcLDA converge very quickly as n increases or as

both n and d increase. Their performance is stable as the Dirichlet parameter « increases;

(iii) The eigenvalue decomposition-based approach AnchorF has better similarity count than other
methods in most experiments. However, it performs much worse than others in terms of relative
error and perplexity score in almost all experiments. The topic coherence of AnchorF is slightly
better than the others in the first two settings, but decreases sharply as the Dirichlet parameter

« increases in the third setting.
In Table [1} we report the computation time of our MCMC-EM algorithm and other methods for
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Figure S6: Comparison with existing methods when the Dirichlet parameter o varies.
Columns of W ~ Dirg(a) with o = 0.2,0.4,--- ,1.6. Identity matrix I is appended to

the randomly sampled matrix W to ensure model identifiability.

the experiment in Fig. (V' =1200, d = n = 1000 and k = 5). For our MCMC-EM algorithm, the
number of MCMC samples is 20 without burn-in. The EM algorithm stops after 50 iterations. The
results show that the computation time of our MCMC-EM algorithm is comparable with the other
methods. Our code, which is currently partially implemented in C++, could run faster if being fully
implemented in C++; in comparison, the publicly available codes of the competing methods have been

mostly highly optimized.

Method | AnchorF  GDM Gibbs pcLDA MC?*-EM
Time/s | 6.93 027 8220 34.83  49.15

Table 1: Computational time of the MCMC-EM algorithm and other methods (V' = 1200, d = n = 1000,
k=5).
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F.3 Selecting the Number of Topics

In practice, the number of topics k is unknown. Below we propose a procedure to select k£ based on
the "effective rank" of the sample term-document matrix U reflected in the spectrum.

In Theorem 2, the topic matrix C is assumed to have full rank; consequently, the true term-
document matrix U = CW has rank k. By Weyl’s inequality (Weyl, 1912), the singular values of the
sample term-document matrix U are expected to be close to those of U. Similar to the elbow method
used in selecting the number of components in clustering analysis and in PCA, we plot the ordered
singular values of U versus its index, and then select k by detecting the location of a significant drop
of the curve.

To test our procedure, we conducted a simulation study where £ = 5, V = 1200, d = 1000 and
n = 50. Columns of C are randomly generated from Diry(0.1) and columns of W are randomly
generated from Dirg(0.1). We repeated the experiment 10 times and the results are shown in Fig. @
From the figure we can see that there is a sudden drop between the 5th and the 6th largest singular
values. And the singular values after the 6th one are stable. So, we would set & = 5, which agrees

with the underlying truth.

1.6-

Singular Value

0.4-

Figure S7: Singular values plot of sample term-document matrices. In 10 repetitions of the experiments,

k =5,V =1200, d = 1000 and n = 50. Columns of C and W are generated Dirichlet distributions.

We also apply the approach to the two text data used in the paper — the NIPS and the Daily Kos
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datasets. The singular values plots are in Figure For the NIPS dataset, there is a drop between
5th and 6th largest singular values. For the Daily Kos dataset, there is a drop between 7th and 8th
largest singular values. So we choose 5 and 7 as the recommended number of topics for the NIPS and

the Daily Kos datasets, respectively.
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Figure S8: Singular values plot of the NIPS and the Daily Kos datasets.
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G Estimated Topics for the NIPS Dataset

The NIPS dataset is originally from Perrone et al. (2016) and is accessible on UCI Machine Learning
Repositoryﬁ It contains V' = 11463 words and d = 5811 NIPS conference papers published between
1987 and 2015, with an average document length of 1902. In this section, we display the top 10 words
of mined topics output by our MCMC-EM algorithm at & = 5,10, 15, 20.

Chttps://archive.ics.uci.edu/ml/datasets/NIPS+Conference Papers+1987-2015
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H Estimated Topics for the KOS Dataset

The Daily Kos dataset is accessible on UCI Machine Learning Repository Bag of Words Databasdﬂ
and its original source is |dailykos.com, a group blog and internet forum focused on the Democratic
Party and liberal American politics. The KOS dataset contains V' = 6906 words and d = 3430 Daily
Kos blog entries, with an average document length of 67. In this section, we display the top 10 words

of mined topics output by our MCMC-EM algorithm at & = 5,10, 15, 20.

"https://archive.ics.uci.edu/ml/machine-learning-databases /bag-of-words/
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I Mined meta states for the taxi-trip dataset

Figure S9: Estimation of disaggregation distributions for NYC taxi-trip data for £k = 9:
61762, s ,Cg e RV, where C = P(Xi1|Ze = 1).
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Figure S10: Estimation of aggregation distributions for NYC taxi-trip data for k
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