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Abstract—The demand for classical cryptography schemes con-
tinues to increase due to the exhaustive studies on their security.
Thus, constant improvement of timing, power consumption, and
memory requirements are needed for the most widely used
classical Elliptic Curve Cryptography (ECC) primitives, suiting
high- as well as low-end devices. In this work, we present the
first implementation of the Edwards Curve Digital Signature
Algorithm (EdDSA) based on the Ed448 targeting the ARM
Cortex-M4-based STM32F407VG microcontroller, which forms a
large part of the Internet of Things (IoT) world. We report timing
and memory consumption results based on portable C and target-
specific hand-crafted assembly code implementations of the low-
level finite filed arithmetics. We optimize the high-level group op-
erations by implementing the efficient scalar multiplication over
the Ed448 isogenous map to reduce the computation complexity.
Furthermore, we provide a side-channel analysis (SCA) and fault
attack protected design by developing point randomization, scalar
blinding techniques, and repeated signature, and evaluate the
performance. Our optimized architecture performs a signature
and verification in 39.88ms and 51.54ms, respectively, where SCA
protection can be achieved at less than 6.4% cost of performance
overhead.

Index Terms—ARM Cortex-M4, digital signature algorithm,
Ed448, elliptic curve cryptography, side-channel

I. INTRODUCTION

Classical crypto schemes such as RSA [1] and Elliptic

Curve Cryptography (ECC) [2] form the main protection

behind widely used applications and are the base of the most

famous cryptographic libraries. The ECC family of schemes,

based on elliptic curve point manipulations, provides faster

computations and smaller key sizes, ensuring the same security

levels, compared to RSA, therefore, is the most commonly

used cryptographic scheme. The advantages of ECC and the

increasing interest in deploying it lead to continuous work on

optimizing its performance results and resource requirements.

The use of Edwards curves was first proposed by Bernstein
et al. in [3] where the name of the new signature algorithm

comes from - Edwards curve Digital Signature Algorithm

(EdDSA). The authors suggest the use of Ed25519, ensuring
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a 128-bit level of security. The improved performance results

and the optimized memory use, when applying Edwards

curves, leads to continuing the work in the field, and in

2015 Hamburg proposed a higher security level EdDSA, based

on the curve Ed448-Goldilocks [4]. Ed448 provides 2224

security target, rather than the 2128 security, provided by most

of the previously used curves such as the NIST P256 and

Curve25519, ensuring only AES-128 equivalent bit security

level. The work on Ed448 is, to the best of our knowledge,

limited to software-based design [4], where Hamburg proposes

an efficient implementation of the arithmetic operations pro-

viding portable C/C++ code and hardware-based design [5],

where Bisheh-Niasar et al. show area-time efficient results on

Xilinx Virtex 7 platform.

The low-level arithmetics performed for the key exchange

protocol X448 overlap with the Ed448 routines. Targeting

ARMv7-M architecture, Seo et al. [6] proposed the first

implementation of X448 on the Cortex-M4 platform, reaching

point multiplication performance results of 6,218,135 clock

cycles, offering constant time and cache protected design.

Other Internet of Things (IoT) target platforms have been

also used for deploying key exchange based on Curve448,

particularly the work presented by Seo et al. [7] where 8-

bit AVR ATmega and 16-bit MSP430 low-end processors are

targeted. Recently, a number of hardware implementations

have been introduced to implement a point multiplication

core over Curve448 [8], Curve25519 [9], and Ed25519 digital

signature algorithm [10].

The similar finite field bit length of Curve448 and the

security level I of the (compressed) Supersingular Isogeny Key

Encapsulation mechanism [11] leads to similar implementation

techniques of the lowest level arithmetic operations. Several

works [12], [13], [14], [15], [16] show performance, power

consumption, and memory use software-based optimization

strategies, targeting the IoT 32-bit ARM Cortex-M4 pro-

cessors, and hardware-based improvements targeting Xilinx

Virtex 7 platform [17], [18]. The literature also shows multiple

research lines focusing on the optimal, side-channel, and fault

attack secure lower security level Curve25519 and Ed25519

protocols on the Cortex-M4 embedded device [19], [20], [21]

or other target processors [22], [23], [24]. However, to the

best of our knowledge, there has not been any work on Ed448

for ARMv7-M architecture. In this work, we propose the first

implementation of the Ed448 DSA on the target architecture

and report our optimized performance results.

The paper is organized as follows: Section II reviews the

preliminaries and the target platform features. The finite
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Public Parameters:p = 2448 − 2224 − 1, E/Fp = ax2+ y2 = 1+ dx2y2, G

Alice Bob

Key Generation

Input: seed

Output: skA, pkA

1. skA ∈seed
R Z/Fp

2. (p, s) ← H(skA)

3. pkA ← [s] · G
Signing

Input: p, skA,M

Output: sign ≡ R||S
1. r ← (H(p||M))(modL)

2. R ← [r] · G
3. k ← (H(R||pkA||M))(modL)

4. S ← (r + k ∗ s)(modL)

Return R||S

sign

−→

Verifying

Input: pkA,M, sign

Output: true/fasle

1. k ← H(R||pkA||M)

Return

[S] · G == R + [k] · pkA

Figure 1. Ed448 algorithm [25]. H denotes SHAKE256. L represents the
order of Ed448 curve. G represents the value of the base point.

field arithmetics and side-channel countermeasures are briefly

presented in Section III and Section IV. Section V presents

evaluation and analysis of the performance results obtained.

Finally, we conclude this work in Section VI.

II. MATHEMATICAL BACKGROUND AND TARGET

ARCHITECTURE

This section describes the EdDSA signature protocol and

reviews the characteristics of the target platform.

A. Preliminaries

The Edwards-Curve Digital Signature Algorithm (EdDSA)

is defined over Ed448 in [25], where the points satisfying

the equation Ed/Fp : ax2 + y2 = 1 + dx2y2 are laying

on the twisted Edwards curve over a finite field, defined

as Fpwith p = 2448 − 2224 − 1 and d = −39081, where

P = (x, y) and x, y ∈ Fp. An Edwards curve Ed448 is

birationally equivalent to a Montgomery curve. The elliptic

curve-based protocols have a pyramid-like structure where

the computational layers consist of finite field arithmetics,

manipulating long integers, and group operation applied on

the curve elements. For the efficient and side-channel secure

design of the ECC protocols, including the EdDSA algorithm,

multiple optimization strategies and countermeasures should

be added to the operation layers of the scheme.

The group operation, base of ECC, is the scalar multipli-

cation, where it can be implemented in different ways such

as Double-And-Add (and its side-channel protected variants).

The Montgomery Ladder technique over Montgomery curves,

however, is the most efficient scalar multiplication algorithm,

computing a point addition and a point doubling in a single

ladder step. This algorithm requires 4M+4S+1k+8A with

M , S, k, and A are the multiplication, squaring, multiplying

by a constant, and addition cost, respectively. Furthermore, the

group operations are performed on the projective coordinates

(X,Y, Z), while the map to affine space (x, y) is defined as

x = X
Z and y = Y

Z .

Graphical representation of the Ed448 DSA protocol, exe-

cuted by both computational parties, is shown in Figure 1.

Table I
ARMV7-M ISA [26] FOR MEMORY ACCESS AND MAC INSTRUCTIONS.

Instruction Functionality
Timing

(CC)

LDR/STR
Rn ←memory

memory← Rn

2

UMULL Rd1, Rd2 ← Rn × Rm 1

UMAAL Rd1, Rd2 ← Rn × Rm + Rd1 + Rd2 1

The key generation procedure receives a seed value and

outputs a key pair skA and pkA. The signing function receives

the value of the secret key skA along with a message value

M and returns the signature, composed by R and S. Finally,

the verification subroutine receives the public key pkA, the

message M , and the signature of the message, to verify the

authenticity of the signing party.

B. ARMv7-M Architecture

The simple and highly efficient ARMv7-M architecture,

implementing Reduced Instruction Set Computer (RISC), con-

verts the Cortex-M4 into the most widely deployed platform.

To evaluate and analyze our implementation performance,

we use the Cortex-M4-based STM32F407VG microcontroller,

recommended by NIST as a target platform for benchmarking

the PQ primitives on low-end devices, which features 192KB

of RAM and another 1MB of flash memory.

The target platform offers performance free of structural

hazards and data dependencies, where the only exception,

resulting in an additional clock cycle, is the use of memory

access instructions. Thus, loaded data should be kept in the 16

32-bit General Purpose Registers (GPRs) – R0-R15 as long

as possible.

The ARMv7-M ISA includes the low-latency Multiply

ACcumulate (MAC) instructions, which allow the execution

of 32× 32-bit multiplication, possibly along with another two

additions, requiring a single clock cycle. Table I details their

functionality and latency.

III. FINITE FIELD ARITHMETIC

For the optimal performance of the Ed448 protocol, as

well as the minimized memory usage, we have focused on

implementing the low-level arithmetic operations, where the

pyramid-like structure of the ECC cryptography ensures that

the optimizations of each particular layer result in overall

execution improvements.

Modular Addition: For the implementation of the modular

addition, we have carefully scheduled the order of the memory

access instructions so that consecutive memory addresses are

accessed without interrupting the loading sequence of instruc-

tions. Our proposed design ensures that the additional clock

cycle, the stall, is absorbed by the following instruction due

to the 3-stage pipeline of the Cortex-M4 processor. Therefore,

accessing n consecutive 32−bit data segments, requires n+1
cycles when properly scheduled.

Multi-precision Multiplication: The invocation rate of the

multi-precision multiplication routine leads to the need for op-

timal design. The long integers required for the storage of the
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Table II
FINITE FIELD OPERATIONS FOR CURVE448/ED448 TARGETING

ARMV7-M.

Ref.

Timing [cc]

Curve448/Ed448 operations

Fp Group

Add Sub Multiply Invert Add Double Multiply

Seo et al. [6] 164 161 821 363,485 6,566 6,567 6,218,135

This work [C] 337 350 2,962 1,369,7543 34,075(total) 15,200,3398

This work [ASM] 139 137 705 325,997 8,465(total) 3,703,755

Ref.
Ed448 Specific operations

Mod l y-Recovery Shake256 Decode Point Multiplication

This work [C] 745,082 41,119 13,966 2,681,880 12,558,965

This work [ASM] - 10,581 - 643,611 3,503,308

operands, however, convert it into a challenging task, since it

suggests more complex and time-consuming implementation.

We propose the Refined-Operand Caching (R-OC) tech-

nique illustrated in Figure 2, where the size of the rows,

i.e. the number of 32-bit words cached in the register set

and operated on, is increased from 3 to 4 by increasing the

register utilization. According to Figure 2, different strategies

are implemented for the beginning (marked with light grey

color), the middle, and the end (marked in blue color) of

each row. Due to the use of UMULL and UMALL instructions

(marked with black and white dots/rectangles, respectively),

the zero initialization of the registers is omitted. Finally,

careful scheduling of the register use has been performed,

eliminating data dependencies always when possible.

Reduction: A modular reduction is required to bring back

the values of the arithmetic operations in the finite field. The

special shape of the prime p allows the implementation of a

highly optimized reduction technique, proposed in [7]. We

also propose an efficient Montgomery reduction for reducing

the SHAKE256 output with respect to the group order. To

reduce the double-length multiplication, the value is split into

chunks, where continuous addition with careful propagation

of the carry bit returns the reduced value.

Table II details the results obtained after running C and

assembly ARMv7-M language implementations. Our design is

more than 100 CC faster for the Fp multiplication, 1.5× more

efficient for point addition and point doubling, and almost

2× better for point multiplication compared to the previous

best work targeting Curve448 [7]. Additionally, we report the

latency of the Ed448 specific functions.

IV. SIDE-CHANNEL AND FAULT ATTACK

CONSIDERATIONS

The side-channel analysis (SCA) attack uses data leakage

based on timing, power consumption, or electromagnetism

information. Therefore, our design shows constant-time ex-

ecution, preventing simple power analysis (SPA) attacks. To

protect against differential power analysis (DPA) attacks, we

have deployed additional countermeasures.

Scalar Blinding: We apply scalar blinding, which hides the

value of the secret scalar by removing the point swapping data

dependency during point multiplication. We randomly generate

A[13]B[13] A[0]B[0]

An Bm

AnBm

UMULL
x

UMULL
UMULL
UMAAL

UMULL
UMAAL
UMAAL

UMULL
UMAAL
UMAAL
UMAAL

UMAAL
UMAAL
UMAAL
UMAAL

UMAAL
UMAAL
UMAAL
UMAAL

. . . . . .

UMAAL

An-1 Bm+1

Acc An-1Bm+1

UMAAL
x

An-1Bm

AnBm

+

+
LOW

UP

Figure 2. Rhombus representation of the multiplication strategy.

r and multiply it by the group order, such that k ← skA + r ·
#Ed, where due to the associative property, it will result in

the point at Infinity and does not modify our result, however,

comes at the cost of an additional multiplication.
Point randomization: Another DPA countermeasure

technique that we have integrated into our design is point

randomization. In particular, we use an integer λ and

obtain the randomized base point Grand = (λ · x, λ)
and Grand = (λ · X,λ · Y, λ) in affine and projective

coordinates, respectively. Upon conversion of the resulting

point coordinates back to affine space, the value of λ is

discarded as x = λX
λZ = X

Z . Thus, our resulting point

(x, y) = skA ·Grand = skA ·G does not change.

Fault attacks are based on modifications in the environment

such as the voltage supply or the frequency of the device’s

clock. They can also be a result of maliciously modified in-

formation (e.g. parameter values), where the erroneous output

serves to obtain the private data.
Repeated Sign: To protect our EdDSA implementation de-

sign, we apply the repeated execution of the signing procedure,

which, considering the EdDSA deterministic property, ensures

that the signature is not faulty. Some literature sources suggest

checking the output of the hash function only, however, it will

not ensure protection when the input value is attacked, thus,

we do not consider it in our analysis.

V. PERFORMANCE EVALUATION

Table Table IV reports the performance results of, to the

best of our knowledge, the first implementation of Ed448 DSA

on the Cortex-M4 target processor, using the STM32F407VG

microcontroller. The target platform offers operation mode

@24MHz and @168MHz, where the former shows precise la-

tency results ensuring zero wait state, eliminating MCU stalls,

and the latter provides a real-world scenario measurement.
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Table III
ED25519/ED448 DSA PERFORMANCE ON IOT PLATFORMS.

Work Platform
Freq. KeyGen Sign Verify
[MHz] [KCCs] [ms] [KCCs] [ms] [KCCs] [ms]

Ed25519 [20] Cortex-M4 84 389.5 4.64 543.7 6.47 1,331.4 15.85

Ed448 [6] AVR 32 103,229 3,225.9 - - - -

Ed448 [6] MSP 25 73,478 2,939.1 - - - -

This work [C] Cortex-M4
24 11,326 471.91 13,828 576.16 22,062 919.25

168 11,694 69.60 14,198 84.51 22,730 135.29

This work [ASM] Cortex-M4
24 4,069 169.54 6,571 273.79 8,452 352.16

168 4,195 24.97 6,699 39.87 8,659 51.54

Table IV
ED448 DSA SIDE-CHANNEL PROTECTED DESIGN PERFORMANCE ON

STM32F407VG.

Scheme
Timing [ms] Memory

KeyGen Sign Verify [B]

No SCA 24.97 39.88 51.54 3,612

Scalar Blinding 25.42 40.33 51.54 3,612

Point Randomization 27.19 42.10 51.54 3,612

Both Countermeasures 27.69 42.60 51.54 3,612

We mark the related work on Ed25519 and Ed448 along

with the target platforms in Table III. Aiming at optimizing

the design for Cortex-M4, our key generation, sign and ver-

ify functions complete in 24.97ms, 39.87ms, and 51.54ms,

respectively, when running @168MHz.

Table IV reports the additional latency when deploying

SCA countermeasures. We note that when applying point

randomization and scalar blinding, the added timing is around

3ms for both - the key generation and the signing function.

We report the constant memory use in bytes.

VI. CONCLUSIONS

In this work, we presented the first implementation of the

Ed448 DSA protocol targeting the highly demanded low-end

device ARM-based Cortex-M4. We evaluate the performance

results based on pure C code implementation design and

target-specific assembly language. Finally, we provide side-

channel and fault attack protected design and report the

performance obtained.

We keep evaluating our proposed countermeasures using

the TVLA technique over Cortex-M4 as future work. We

also would like to report our design’s energy and power

consumption in different scenarios.
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