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ABSTRACT: We present a statistical learning model relying on a small dataset to predict the selectivity of a two state
system toward the same substrate, specifically of redox-switchable metal complexes in the ring opening polymerization
of -caprolactone or trimethylene carbonate. We mapped the descriptor space of several switchable metal complexes
and surveyed a set of supervised machine learning algorithms using different train/test validation methods on a limited
dataset based on experimental studies of ca. 10 metal complexes. Linear discriminant analysis showed an accuracy of
>80% and a F1 score of 0.86 on a test mixture of experimental and predicted molecules, and successfully predicted the
reactivity of three new metal complexes. The established method will be used to guide future studies in recommending
promising new metal complexes for related substrates, reducing the need for blind synthetic trial and error efforts.

Predictive models can determine complex relationships
between chemical structure and activity, and streamline
the proposal and synthesis of new compounds with
optimized properties. Machine learning has become an
attractive tool in chemistry to make predictions such as
reactivity,1-6     optimal reaction conditions,7-10     molecular
properties,11     and mechanistic information.12-13     These
cases typically require large datasets, generated either
through systematic high-throughput experiments14-16 or
large-scale computational studies.17-18 It is, however, less
feasible for organometallic systems19-24 to generate large
quantities of data, given the complexity of syntheses that
may require multiple steps along with catalytic
mechanisms involving several intermediates and
transition states. As such, a general method of producing
a predictive model with a small dataset is desirable.

Small datasets require a simple model relying on a
limited set of interpretable descriptors. The importance of
appropriate descriptors is also key, as models with many
irrelevant descriptors can struggle to generalize,25 leading
to poor performance. Additionally, highly complex models
with a large space of input descriptors tend to be less
human-interpretable, making them less pragmatic in
building new theories of physical systems.

Despite the difficulty in building datasets of
organometallic complexes, quantitative structure-activity
relationships (QSARs) have been previously used;26 for
example, reaction productivity of a data set of 51
zirconocene catalysts was modeled with 6 descriptors.3

Another notable study built a regressive model by
incorporating the rate of 19 zirconocene catalysts using a
combined set of steric and electronic features.
Furthermore, QSAR has     been used     to predict
computationally determined values such as DFT-derived
reactivity27 or supporting ligand effects.3 Recently, Tong
and coworkers reported a Bayesian optimization workflow
on a subset of literature results for stereoselective lactide
ring-opening polymerization, and identified multiple new
aluminum complexes that perform stereoselective
polymerization.28

Figure 1. a) General description of previously studied ring
opening polymerization (ROP) ferrocene catalysts; b)
ROP of cyclic carbonates (X = O) and lactones (X = CH2).

Over the years, our group has studied several redox
active ferrocene-supported metal complexes for their
catalytic activity toward the ring opening polymerization
(ROP) of monomers such as lactones and cyclic
carbonates (Figure 1).29-32 Some metal complexes stood
out for their selective, orthogonal reactivity between
neutral and oxidized states; we define orthogonal
reactivity as a minimum 50% monomer conversion
difference between the two oxidation states. This
selectivity is important as with a controllable, switchable,
and selective catalytic system, diverse block copolymers
can be synthesized.33-38



Table 1. Redox switchable metal complexes and their reactivity and selectivity toward the ROP of ε-caprolactone (CL)
and trimethylene carbonate (TMC) used as training sets.

CL activity TMC activity

Entry Compounds

1 (salfan-H2)Ti(OiPr)2

2 (salfan-H2)Zr(OtBu)2

3 (salfan)Zr(OtBu)2
39

4 (salfen)Ti(OiPr)2

5 (salfen)Zr(OtBu)2
35, 40

6 (salfen)Al(OiPr)34

7 (thiolfan*)Ti(OiPr)2
36

8 (thiolfan*)Zr(OtBu)2
36

9 (thiolfan*)Al(OiPr)37

10 (thiolfan)Zr(OtBu)2
39

Reduced

< 1%

< 1%

5%

90%

< 1%

92%

83%

89%

95%

57%

Oxidized

30%

< 1%

98%

< 1%

< 1%

92%

90%

84%

95%

92%

Reduced

95%

95%

67%*

19%

92%

98%

5%

55%

95%

10%

Oxidized

< 1%

< 1%

81%**

40%

88%

< 1%

91%

56%

74%

80%

*Polymerization was performed with a 6 mM solution of catalyst in C6D6 at room temperature with [monomer]:[catalyst]
= 100:1. Conversion was determined through 1H NMR spectroscopy with 1,3,5-trimethoxybenzene as the internal
standard. **Catalyst reacted with 1 equivalent of oxidant ([acetylferrocenium][BArF] (ArF = 3,5-
bis(trifluoromethyl)phenyl)borate) for 30 minutes prior to use, otherwise the conditions are identical to the reduced state
experiments.

However, the correlation between a metal complex and
orthogonal behavior toward a specific monomer was not
obvious. For example, in the case for ROP of ε-
caprolactone (CL), only 3 out of 10 metal complexes
displayed an orthogonal activity between their reduced
and oxidized states (Table 1, entry 1, (salfan-H2)Ti(OiPr)2

(salfan-H2 = 1,1′-di(2-(aminomethyl)-4,6-di-tert-
butylphenoxy)ferrocene), entry 3, (salfan)Zr(OtBu)2

(salfan                     =                     1,1′-di(2-tert-butyl-6-N-
methylmethylenephenoxy)ferrocene),39     and entry 4,
(salfen)Ti(OiPr)2        (salfen     = 1,1′-di(2,4-bis-tert-butyl-
salicylimino)ferrocene). All other examples34-37,     39-40

showed non-orthogonal selectivity, where both oxidation
states of the catalyst showed either high or low monomer
conversions. Similarly, for trimethylene carbonate (TMC),
of the 10 metal complexes studied, 5 showed switchable
behavior (Table 1, entry 1, (salfan-H2)Ti(OiPr)2, entry 2,
(salfan-H2)Zr(OtBu)2, entry 6, (salfen)Al(OiPr), entry 7,
(thiolfan*)Ti(OiPr)2 (thiolfan* = 1,1′-bis(2,4-di-tert-butyl-6-
thiophenoxy)ferrocene), and entry 10, (thiolfan)Zr(OtBu)2

(thiolfan                  =                  1,1′-bis(2,4-di-tert-butyl-6-
thiomethylenephenoxy)ferrocene)).34-37, 39-40 Herein, we
aim to demonstrate that a statistical learning approach

could be leveraged to understand and predict these
obfuscated trends.

Improvement on monomer selectivity and activity is a
target that can be optimized by continuous studies in
metal and ligand modifications of the precatalysts. Such
efforts come with a synthetic trial and error process of
each new variation that are costly in time and resources.
The outlook for this approach is to iterate between
experiment and a statistical model to minimize the number
of trials for experimentalists.

Our potential chemical space of interest expands to 15
unique examples, including 5 different ferrocene
supporting ligands (Figure 2), which are based on N-type
donors (salfan-H2, salfan, and salfen) and S type donors
(thiolfan* and thiolfan), and 3 catalytically active metal
centers (Al, Ti, and Zr). Of the possible combinations, the
10 metal complexes whose reactivity with CL and TMC
was previously reported are shown in Table 1 and were
used as the training set. DFT geometry optimizations
were performed for all 10 metal complexes in both the
neutral and oxidized states.



Figure 2. List of frameworks explored in this work.

Chemical descriptors (atomic number, charge, i.e.,
Gasteiger-Marsili sigma charges in OpenBabel),41

Pauling electronegativity, coordination number, atomic
radius, percent buried volume (%Vbur; bond radii and H
atoms were included),42-43 and natural population analysis
(NPA) for each metal complex were generated for the
metal center and up to 3 atoms away from the metal
center (Figure 3b). Atomic identity, charge,
electronegativity, coordination number, and atomic radius
were passed through an autocorrelation function to
reduce the input space of our models. NPA at the DFT
level (see SI for details) was also used. This set was the
initial set of potential descriptors, which was narrowed
down by removing low variance and highly correlated
features, and iteratively removing features with train-
testing and assessing where performance in accuracy
and generalizability decreased. In particular, different
ways of expressing the %Vbur were highly correlated, as
well as atomic identity with atom connectivity. Low
variance features included atom connectivity, identity, and
electronegativity beyond the immediate coordination
sphere. Trained regression models can also be used to
perform feature selection of the input space of variables,
thereby allowing us to determine which features are
critical for predictions. We found that descriptors of the
immediate coordination       sphere       were       highly
consequential, in line with standard chemical logic.
Furthermore, the use of %Vbur was also important, in
agreement with this feature’s relevance to other studied
organometallic systems.42, 44 The feature importance was
also used to simplify models to three descriptors
associated with %Vbur, along with the first-degree
autocorrelation functions for charge, electronegativity,
atomic radius, and coordination number prior to using
principal component analysis (PCA).

Figure 3. General protocol for developing a ML classifier
starting from a) DFT calculations to generate structures,
b) descriptor extraction, c) training ML algorithms based
on a small dataset, and finally d) use of the best model to
predict selectivity for the remaining metal complexes.

Four statistical learning algorithms (linear discriminant
analysis, quadratic discriminant analysis, logistic
regression, and support vector machine)45-46 were trained
and tested. In the process of model selection, we opted to
use a leave-one out approach46 to accommodate our
small dataset. For further testing, we also used a stratified
testing and training scheme that included a minimum of
one type of compound in each set, i.e., at least one
orthogonal and one non-orthogonal metal complex.
Compounds were partitioned randomly in four different
trials and average statistics were reported. Metrics for
accuracy/F1/ROC were then taken as the average of all
train/testing runs (Figure 3). Our finalized model uses
quadratic discriminant analysis for prediction, however,
we tested other top performing classification models and
found predictions to be consistent with linear discriminant
analysis with identical features. Due to the large data
imbalance          between orthogonal/non-orthogonal
examples, we used the synthetic minority oversampling
technique     (SMOTE)47        to     increase parity     when
training/testing our model. This algorithm interpolates
between points in descriptor space to generate points
from the minority class.



Table 2. List of predicted compounds and their experimentally determined reactivity toward ε-caprolactone (CL) and
trimethylene carbonate (TMC).

Entry Catalyst CL activity TMC activity

Prediction Reduced Oxidized Prediction Reduced Oxidized

1 (salfan-H2)Al(OiPr)

2 (thiolfan)Al(OBn)

Non 95%
orthogonal

Orthogonal > 99%

90% Non > 99% > 99%
orthogonal

45% Non > 99% > 99%
orthogonal

PCA was also used to simplify our descriptor space as
input to classification models where we used four
components. Previous work used PCA to decompose the
descriptors of different compounds to simple, visual plots
that still encoded the differences between those
compounds.48 Here we found that the metal identity
largely determined the mapping of metal complexes in the
PCA latent spaces (Figure S3-5). It appears that there is
no clear separation between the orthogonal/non-
orthogonal examples. This is, however, not the case when
we project to the 3D component space where the dividing
plane of separation between orthogonal/non-orthogonal
complexes is clear.

reactivity of (thiolfan)Al(OBn) with CL was reported.49 The
algorithm predicted that an orthogonal selectivity will be
observed between the reduced and oxidized states of
(thiofan)Al(OR) for CL and TMC, which was
experimentally validated as true. It also predicted non-
orthogonal selectivity     for     (salfan-H2)Al(OR)     and
(salfan)Ti(OR)2 toward CL and TMC, also confirmed to be
correct (Table 2).

In summary, a predictive machine learning model has
been achieved through a small data set of 10 metal
complexes. The model was validated through the
reactivity studies of 3 compounds for CL and TMC. We
are also currently investigating ML for predicting
orthogonal selectivity toward other monomers.
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Figure 4. The performance of the model with both leave-
one-out testing and stratified testing, where it was
ensured an orthogonal and non-orthogonal example were
in the testing set. F1 score evenly weights different
categories to offset the effects of imbalanced datasets.

Furthermore, we used the algorithm to predict the CL
and TMC reactivity and selectivity of 3 metal complexes:
(salfan)Ti(OR)2, (salfan-H2)Al(OR), and (thiolfan)Al(OR);
R was Me for the computational models and iPr or Bn =
benzyl for the experimental studies. Our group then
synthesized and tested the orthogonality of the new
compounds; while we were conducting our studies, the
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