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ABSTRACT

Gait rehabilitation is a critical aspect of post-stroke recovery, and
emerging technologies such as virtual reality and wearables are
playing a pivotal role in facilitating this process. However, despite
the potential benefits, there is a significant gap in robot-based re-
habilitative systems that facilitate repeated use by maintaining
users’ attention long-term. Our research aims to bridge this gap by
creating a comprehensive system that utilizes different feedback
types and robotic assistance to support users’ gait rehabilitation
outcomes. In this paper, we introduce GARRY (Gait Rehabilitation
Robotic System), a new robotic system that provides interactive
feedback during locomotor training. It promotes engagement by
gamifying the rehabilitation process, offering a fun means for the
user to meet their rehabilitation goals defined and set by physi-
cal therapists. GARRY also incorporates behavioral feedback to
introduce a sense of companionship during a session. We make
GARRY open-source to other researchers in hopes of encouraging
accessibility and to promote research in the field. Our code can be
found here: https://github.com/UCSD-RHC-Lab/GARRY
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« Computer systems organization — Robotics; « Applied com-
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1 INTRODUCTION

Despite recent advancements to reduce the risk of stroke, the inci-
dence continues to rise globally, with over 12.2 million new cases
every year [4]. At an individual level, of the patients who survive a
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Figure 1: A user interacting with GARRY, an interactive
robotic system that provides real-time feedback to users dur-
ing locomotor training.

stroke, roughly 73% will never recover to pre-stroke levels of mo-
bility and stamina, and will retain a residual disability [4]. Stroke
survivors and their families often experience high treatment costs,
changes in social and economic roles, and reduced ability to perform
activities of daily living (ADLs) which can significantly compromise
their independence and quality of life [20, 24].

In particular, the ability to walk independently is a strong indica-
tor of quality of life and overall autonomy for stroke survivors and
is a major goal of post-stroke rehabilitation [25, 26]. Many have
explored robotic systems to support gait rehabilitation [1, 9, 19], as
well as to support stroke rehabilitation more broadly (e.g., upper
limb rehab, ADL training) [3, 5, 10, 13-15, 21]. However, one open
question is how to enable domain experts (e.g., physical therapists
(PTs)) to control specific variables such as feedback valence (i.e.,
positive, negative, binary, explicit) during robot-delivered locomo-
tor training to improve intervention efficacy. To our knowledge,
no existing systems allow PTs to easily investigate this question
experimentally, which is what our work aims to address.

We address this gap by exploring the effectiveness of locomo-
tor training via a robotic system that delivers visual and physical
feedback to users during gait rehabilitation. We introduce new


https://doi.org/10.1145/3610977.3637475
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610977.3637475

HRI 24, March 11-14, 2024, Boulder, CO, USA

User Data (MATLAB) o
-
Step (A2) data, 11
goal value —
ROS
h 4
Déta good Ges‘ture
Processing Node step? Generation Node
- Calculates step : ——
performance + Robot {:
+ Publishes to Behavior @
‘good_step topic
2
J
Feedback Type

Flask Server

T ; - SQLit
\p| * Visual Feedback e | Session/ D |be
+ Feedback Type user data atabase

9O N
Selection %

Tablet Application

Figure 2: An overview of the GARRY software architecture.

means for robots to take on the role of a “rehabilitation partner”,
and automatically adjust their behavior in response to a person
during training sessions. Our system leverages locomotor learning
practices to explore the efficacy of feedback valence as delivered
by a robotic system, and its effect on patients’ recovery.

In this paper, we introduce GARRY (see Fig. 1), a new robotic
system that provides real-time, multimodal feedback during locomo-
tor training. It promotes engagement by gamifying rehabilitation,
offering a fun means for users to meet their rehabilitation goals
defined and set by PTs. We define multimodal feedback as providing
feedback to users through multiple modalities, such as a tablet dis-
play and robot movements. GARRY also incorporates behavioral
feedback to introduce a sense of companionship during a session.
We tested GARRY’s functionality with data from real users.

Ultimately, using our system, we hope to increase user engage-
ment with rehabilitative interventions and reduce the impact of
residual impairment. With little research into this combination of
stimuli (visual and physical), we also hope to promote research into
more novel combinations of accessible and engaging therapeutic
strategies. Given the wide range of applications of robot-assisted
rehabilitation and the growing body of research in developing these
systems [14], GARRY is applicable to many contexts and popula-
tions that are of interest to the HRI community. The current imple-
mentation is thoroughly documented to allow PTs to determine the
long-term efficacy of the individual styles involved in rehabilitation
and focus on emerging ideas in the rehabilitation space.

2 THE GARRY SYSTEM

All aspects of GARRY are customizable, including the robot plat-
form, rehabilitative tasks, software, feedback personalization, and
the gamified feedback mechanism.

The robot platform interacts with the user throughout a training
session, responding with different feedback based on training per-
formance. Our gamified system provides users with personalized
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feedback, rewarding or subtracting points from a user’s overall
score during a session. Furthermore, the robot performs different
gestures based on the feedback valence and user performance. We
define a gesture as a sequence of robot movements specific to the
robot’s capabilities. It can also incorporate data such as the cur-
rent amount of steps taken to influence its actions. The modular
nature of the system enables PTs to integrate other applicable user
behaviors to their work, such as facial expression and gait style.

Our system supports four feedback valences: positive, negative,
binary, and explicit. This is inspired by Banh et al. [1] who suggest
that differing robot-delivered feedback types can enhance motor
learning and retention [6]. Further, research suggests that gamified
rehabilitation systems reduce boredom from repetitive motions and
result in higher user engagement rates [18]. The variety of feedback
types will allow us to explore which approaches are generally more
effective at achieving certain rehabilitation goals.

2.1 Rehabilitative Content

We designed GARRY to be extensible to different rehabilitative con-
texts. Depending on the context, a PT can specify a set of tasks for
GARRY to deliver, focused on the user’s area of interest and goals,
and dictated by their mobility level. In this article, we discuss a
specific example: gait rehabilitation training. Our focus is on ankle
power and the peroneus muscles’ performance during plantarflex-
ion, characterized by the A2 value. The PT might specify that the
user’s goal is to achieve a certain A2 value with each step for 60%
of the steps they take over the course of ten minutes.

The PT can then set the specific type of feedback the user in-
teracts with. GARRY supports four valences of feedback. Positive
feedback rewards the user with points when they perform at or
above the goal. Negative subtracts points from the user when they
perform below the goal. Binary integrates both positive and nega-
tive feedback. Explicit simply displays to the user their real-time
A2 value; it does not utilize the point system.

GARRY provides a database that stores essential components of
a session, enabling PTsto review user data and adjust training as
needed. This might include isolating and identifying the efficacy
of specific types of feedback. The database also allows PTs to view
specific dates, values, and other session data.

2.2 Robot Platform

GARRY can work on any mobile or tabletop robot platform. In this
article, we used a TurtleBot 2 since it can display a screen at human
height and is low cost, providing great accessibility. We used the
Turtlebot as a proof of concept, and implemented gestures such
as moving back and forth and turning left and right. GARRY can
also integrate with other robots such as the Stretch or Quori, which
can move their arms. Our system can be easily extended to support
interactive responses during interventions, including movements,
gestures, and sounds depending on the robot’s capability. The fre-
quency of these responses is based on the user’s progress during
the intervention and can be customized by the PT or roboticist.
We implemented GARRY’s ROS component in ROS Melodic,
Ubuntu version 18.04. The nodes within this environment work
together to determine the gestures and movement of the robot
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Figure 3: The in-session page of GARRY’s tablet application
in the Positive feedback type.

during a session. The robot carries out these actions based on the
last five seconds of session data to avoid overstimulating the user.

2.3 Tablet Feedback System

After starting the intervention, GARRY plays an interactive game
with users. The games are based on the feedback mode chosen by
the PT, which determines how the system rewards users with points
that constitute the score of a session. The scores are tracked and
presented in a leaderboard style to promote self-competition [23].

Throughout a session, users may be encouraged in various ways
when they meet or exceed session goals. This can come in the form
of visuals like confetti when a value hits a certain level, depend-
ing on the feedback valence. The app also displays text feedback—
different phrases that correlate to levels of performance. GARRY
also displays a line chart-a historical visualization of a user’s perfor-
mance in relation to their session goal. This graph allows the user
to see their progress over time, which may implicitly encourage
them. Additionally, users or PTs can view past sessions by feedback
type to view their data and see how they have progressed.

3 SOFTWARE ARCHITECTURE AND
IMPLEMENTATION

Our system utilizes various technologies, including a tablet app,
data management via a Flask server and SQLite database, MATLAB,
and ROS. In our context, PTs use wearable sensors to record a per-
son’s gait patterns during locomotor training. GARRY’s MATLAB
component receives and processes the data to determine the A2
value (and other measures). Based on this A2 value, GARRY adjusts
a) the robot’s gestures and b) the feedback displayed on the tablet. In
addition, the tablet application makes API calls to our Flask server
and stores session and user data in our database for analysis.

3.1 Tablet Application

We implemented our tablet application using Flutter, a cross-platform
mobile application development library. This is deployed as a web
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application, to improve extensibility and accessibility across oper-
ating systems and platforms. Developers thus have the flexibility
to deploy it as an application for other platforms and operating
systems to match the needs of their particular hardware setup.

Its front end is separated into three main categories: setup pages,
an in-session page, and score pages. The setup pages include the
main page, the session page, and the feedback selection page. The
PT starts from the main page and enters the ID of the user or
creates a new one as they see fit. The session page allows the PT to
start a new session or view previous sessions associated with the
current user. The feedback selection page allows the PT to choose
the session’s feedback type, if the PT decides to start a new one.

The in-session page is the main screen displayed during each
session, with a set of widgets that provide real-time feedback dif-
ferently according to each feedback type (see Fig. 3). The widgets
include a custom thermometer that fills to the percentage value of
each step (where 100% represents the goal value), text feedback to
the user based on the value of each step, and a line plot showing
their session progress relative to the goal value.

The score pages are leaderboards. After each session, the app
shows the leaderboard, scrolls to, and highlights the most recent
score in blue. This board includes the scores of every type of session.

3.2 Data Management

Our system manages data via a back-end Flask server and an SQLite
database. The data allows PTs to monitor user performance over
time and analyze the effectiveness of each feedback type across all
users. All data is stored locally to support user privacy and security.

The database is split into the users table and the sessions table.
The scheme for the users table is simple and only contains the
User ID (Primary key) and the Name attributes. On the other hand,
each entry in the session table consists of the Session ID (Primary
key), User ID (Foreign key), Year, Month, Day, Start Time, Duration,
Score, Feedback Type, and Threshold (Goal Value). This distinction
provides room for scalability as other PTs may be interested in
integrating other information about users and/or sessions.

We manage our database via REST API calls to our Flask server,
which accepts requests and makes SQLite queries correspondingly.
For example, a POST call to the route /users/1 will create a user
in our database, while a GET call to the same route will retrieve
that user’s data. In addition, after each session, a POST call to the
route /sessions/< sid > will be made to create a new session with
session ID < sid > linked to the user. The application could then
make GET calls to the same route to display sessions sorted by
non-ascending score on the leaderboard pages.

3.3 MATLAB Implementation

GARRY utilizes MATLAB to process raw sensor data in real-time
and simulate sessions for testing. The MATLAB code sends real-
time, correctly formatted data from users to both our tablet appli-
cation and the robot via websockets. Our code interfaces with the
rest of GARRY to facilitate the rehabilitation session.

Our implementation streams preexisting session data provided
by our clinical collaborators into the app and the robot. This data
is easily replaceable with real-time data received from sensors.
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The current MATLAB code begins the data exchange protocol
upon receiving a keyword from our app. It then continuously sends
the A2 and goal value to both the app and the ROS component.

3.4 ROS Implementation

Our ROS code receives data from the rest of our system and moves
the robot accordingly. It is characterized by 2 nodes, the Data Pro-
cessing Node (DPN) and the Gesture Generation Node (GGN).

The DPN subscribes to /feedback_type and /data, determines if
the user has taken a “good step” (see Sec. 3.4.1) from the A2 and
goal values, and sends the result to the /good_step topic. The GGN
subscribes to the /feedback_type and /good_step topics to direct robot
movement. If the robot receives a “true” message from /good_step
and five seconds have passed since the start of the last gesture, it
will perform a new gesture.

3.4.1 Robot Algorithm. The robot gives feedback based on the
user’s step performance, which we determine by dividing the A2
value by the goal value for each step. The DPN calculates the aver-
age performance over the last five seconds using a sliding window
with no overlap. If this is above the activation threshold, then the ro-
bot gives feedback. We experimentally determined that five seconds
gives the robot ample time to physically respond while minimiz-
ing user disorientation. In addition, while the default activation
threshold is set to 90% (also experimentally determined), the PT
can adjust this value depending on the user’s performance.

The robot’s response is then informed by the current feedback
type. For example, in our work, the robot might express celebration
by turning left and right in the positive feedback type. Those using
GARRY can implement and experiment with different responses
based on their application.

4 USAGE NOTES
Here is GARRY’s basic workflow:

(1) PT enters user information via the tablet application, chooses
“start a new session”, and selects that session’s feedback type.

(2) Once the researcher starts the session through the app, it
sends a message to PT’s MATLAB program to signal that the
session is starting, and the feedback type to /feedback_type.

(3) MATLAB then begins streaming the user’s step data and
threshold to the app, which updates and animates the screen
based on the user’s performance, as well as the /data topic.

(4) When the DPN receives data from the /data topic, it calcu-
lates the proportional A2 values, determines the average of
the last five seconds, and sends that data to the /good_step
topic, which directs the robot’s actions appropriately. Steps
3 and 4 repeat until the PT manually ends the session.

(5) Throughout the program, the app calls the Flask server’s
REST API endpoints and stores, retrieves, and updates both
session and user data in our SQL database as necessary.

In the provided repository, we provided a README and source
code containing detailed instructions to start and test the interface.
Our code supports simulation using pre-existing data in addition
to the real-time system, so both sets of instructions are provided.
Researchers can make adjustments to the feedback type, the point
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system, and the amount allocated. They can also customize the data
source as long as it can connect to our system via websocket.

5 FUTURE WORK AND ETHICAL
CONSIDERATIONS

While GARRY was designed for our context of delivering post-
stroke gait rehabilitation, there are additions we hope to include
that could increase its efficacy and impact on the HRI community
beyond the needs of our clinical collaborators. One next step is to
conduct longitudinal studies with post-stroke survivors to ensure
that GARRY can engage and motivate these users during rehabili-
tation, as well as explore the efficacy of each feedback type.

Other future work will consist of interface and user experience
design improvements. We aim to have the robot respond directly
to additional user behaviors such as physiological responses and
unique gait styles to provide more personalized and effective feed-
back. We also plan to design more interactive visual and aural
experiences (while not being too distracting), to support user en-
gagement. We aim to support more functionality for users, with
improvements like adjusting the goal and text feedback mid-session
and adding filtering to the leaderboard.

Our work raises some ethical considerations, including accessi-
bility, health equity, and privacy. Gait rehabilitation has been linked
to increased independence and quality of life for stroke survivors
[20, 24], and robot-delivered locomotor training has the potential
to significantly improve rehabilitation outcomes [11, 16]. However,
it is important to note that rehabilitation outcomes often depend
heavily on factors such as a person’s severity of stroke and their
pre-stroke abilities [8, 17], so roboticists may need to work with
clinical experts to help users set realistic expectations for their treat-
ment outcomes. In addition, these systems may not be accessible or
culturally contexualized most in need of these interventions [27].
Therefore, more work is required to determine how these systems
can be made affordable and accessible to these populations.

It is also important to consider data privacy, and potentially
contributing to worker displacement with the use of rehabilitative
robotic systems [12]. With regards to privacy, we aimed to engage
in data minimization practices as well as local storage of data. With
regards to worker displacement, if systems like GARRY are effec-
tive, it raises the risk of displacing the rehabilitative workforce
[7, 22], which necessitates careful participatory-centered design
with stakeholders to avoid such outcomes.

Finally, with any robot-delivered health intervention, it is impor-
tant to plan for its eventual end [2]. We are continuing our work
with PTs to explore how to best design GARRY to facilitate its exit.

6 CONCLUSION

In this work, we present GARRY, an open-source robotic system that
provides real-time, multimodal feedback during locomotor training.
We make GARRY open-source to others in hopes of encouraging
accessibility and to promote research in the field. Our personal-
ized robotic system contributes to research related to locomotor
rehabilitation as well as other applications like telehealth. Thus,
this system will ultimately extend the efficacy and accessibility of
robot-delivered rehabilitation interventions.
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