Will Bilevel Optimizers Benefit from Loops
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Abstract

Bilevel optimization has arisen as a powerful tool for solving a variety of machine
learning problems. Two current popular bilevel optimizers AID-BiO and ITD-BiO
naturally involve solving one or two sub-problems, and consequently, whether
we solve these problems with loops (that take many iterations) or without loops
(that take only a few iterations) can significantly affect the overall computational
efficiency. Existing studies in the literature cover only some of those implemen-
tation choices, and the complexity bounds available are not refined enough to
enable rigorous comparison among different implementations. In this paper, we
first establish unified convergence analysis for both AID-BiO and ITD-BiO that are
applicable to all implementation choices of loops. We then specialize our results to
characterize the computational complexity for all implementations, which enable
an explicit comparison among them. Our result indicates that for AID-BiO, the
loop for estimating the optimal point of the inner function is beneficial for overall
efficiency, although it causes higher complexity for each update step, and the loop
for approximating the outer-level Hessian-inverse-vector product reduces the gradi-
ent complexity. For ITD-BiO, the two loops always coexist, and our convergence
upper and lower bounds show that such loops are necessary to guarantee a vanish-
ing convergence error, whereas the no-loop scheme suffers from an unavoidable
non-vanishing convergence error. Our numerical experiments further corroborate
our theoretical results.

1 Introduction

Bilevel optimization has attracted significant attention recently due to its popularity in a variety of
machine learning applications including meta-learning [9, 1, 34, 17], hyperparameter optimization [9,
35, 5], reinforcement learning [22, 15], and signal processing [23, 7]. In this paper, we consider the
bilevel optimization problem that takes the following formulation.

min ®(z) := f(z,y"(z)) st y*(z) = argming(z,y), (1)
z€RP yeRY
where the outer- and inner-level functions f and g are both jointly continuously differentiable. We
focus on the setting where the lower-level function g is strongly convex with respect to (w.r.t.) y
with the condition number k = % (where L and p are gradient Lipschitzness and strong convexity
coefficients defined respectively in Assumptions 1 and 3 in Section 3), and the outer-level objective
function ®(z) is possibly nonconvex w.r.t. z. Such types of geometries arise in many applications
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Table 1: Comparison of computational complexities of four AID-BiO implementations for finding
an e-accurate stationary point. For a fair comparison, gradient descent (GD) is used to solve the
linear system for all algorithms. MV (e): the total number of Jacobian- and Hessian-vector product

computations. Ge(e): the total number of gradient computations. O: hide In £ factors. We write
a(x) = O(b(z)) if cb(z) < a(z) < Cb(x), where ¢, C are universal constants.

Algorithms Q N MV(e) Ge(e)
BA [10] O(kInk) % (k: iteration number) | O(x%¢ ') | O(k%e~12%)
AID-BiO [19] O(klnk) O(klnk) O(k*e™) O(k*e ™)
N-Q-loop AID (this paper) | O(xlnk) O(klnk) O(rk*e™t) O(k*e™)
Q-loop AID (this paper) O(klnk) 1 O(k%™1) O(k%c™Y)
N-loop AID (this paper) O(1) O(klnk) O(ke™?) O(k%cY)
No-loop AID (this paper) 0(1) 1 O(k%1) O(k%Y)

including meta-learning (which uses the last layer of neural networks as adaptation parameters),
hyperparameter optimization (e.g., data hyper-cleaning and regularized logistic regression) and
learning in communication networks (e.g., network utility maximization).

A variety of algorithms have been proposed to solve the bilevel optimization problem in eq. (1). For
example, [14, 36, 32] proposed constraint-based approaches by replacing the inner-level problem
with its optimality conditions as constraints. In comparison, gradient-based bilevel algorithms have
received intensive attention recently due to the effectiveness and simplicity, which include two popular
approaches via approximate implicit differentiation (AID) [4, 33, 11, 19] and iterative differentiation
(ITD) [31, 8, 35]. Readers can refer to Appendix A for an expanded list of related work.

Consider the AID-based bilevel approach (which we call AID-Bi0O). Its base iteration loop updates
the variable x until convergence. Within such a base loop, it needs to solve two sub-problems:
finding a nearly optimal solution of the inner-level function via N iterations, and approximating
the outer-level Hessian-inverse-vector product via @ iterations. If () and N are chosen to be large,
then the corresponding iterations form additional loops of iterations within the base loop, which
we respectively call as Q-loop and N-loop. Thus, AID-BiO can have four popular implementations
depending on different choices of N and @Q): N-loop (with large N = £ 1n x and small Q) = O(1)),
N-Q-loop (with large N = O(kInk) and large Q = ©(klnk)), @Q-loop (with N = 1 and Q =
O(k1nk)), and No-loop (with N = 1 and @ = O(1)). Note that No-loop refers to no additional
loops within the base loop, and can be understood as conventional single-(base)-loop algorithms.
These implementations can significantly affect the efficiency of AID-BiO. Generally, large @ (i.e., a
@-loop) provides a good approximation of the Hessian-inverse-vector product for the hypergradient
computation, and large N (i.e., a N-loop) finds an accurate optimal point of the inner function.
Hence, an algorithm with N-loop and Q-loop require fewer base-loop steps to converge, but each
such base-loop step requires more computations due to these loops. On the other hand, small
and/or N avoid computations of loops in each base-loop step, but can cause the algorithm to converge
with many more base-loop steps. An intriguing question here is which implementation is overall
most efficient and whether AID-BiO benefits from having N-loop and/or Q-loop. Existing theoretical
studies on AID-BiO are far from answering this question. The studies [10, 19] on deterministic
AID-BiO focused only on the N-Q-loop scheme. A few studies analyzed the stochastic AID-BiO,
such as [26] on No-loop, and [15, 21] on Q-loop. Those studies were not refined enough to capture
the computational differences among different implementations, and further those studies collectively
did not cover all the four implementations either.

e The first contribution of this paper lies in the development of a unified convergence theory for
AID-BiO, which is applicable to all choices of N and ). We further specialize our general
theorems to provide the computational complexity for all of the above four implementations
(as summarized in Table 1). Comparison among them suggests that AID-BiO does benefit
from both N-loop and @-loop. This is in contrast to minimax optimization (a special case
of bilevel optimization), where it is shown in [27, 41] that (No-loop) gradient descent ascent
(GDA) with N = 1 often outperforms (N-loop) GDA with N = xIn « (here [NV denotes the
number of ascent iterations for each descent iteration). To explain the reason, the gradient



Table 2: Comparison of computational complexities of two ITD-BiO implementations for finding
an e-accurate stationary point. For a fair comparison, gradient descent (GD) is used to solve the
inner-level problem. The analysis in [19] for ITD-BiO assumes that the inner-loop minimizer y* ()
is bounded at k'" iteration, which is not required in our analysis. j: the strong-convexity constant of
inner-level function g(x, -). For the last two columns, 'N/A’ means that the complexities to achieve an
e-accuracy are not measurable due to the nonvanishing convergence error. We write a(z) = Q(b(x))
if a(z) > cb(x), where c is a universal constant.

Algorithms N Convergence rate MV (e) Ge(e)
ITD-BiO [19] O(klnk) O(% + e) O(x'e™™) | O(kle™)
N-N-loop ITD (this paper) | O(klnk) (’)("“—Ij + e) O(kte™) | O(ste™?)

No-loop ITD (this paper) o(1) o (% n ,»@3) N/A N/A

Lower bound (this paper) o(1) Q(x?) N/A N/A

w.r.t. x in bilevel optimization involves additional second-order derivatives (that do not exist
in minimax optimization), which are more sensitive to the accuracy of the optimal point of the
inner function. Therefore, a large N finds such a more accurate solution, and is hence more
beneficial for bilevel optimization than minimax optimization.

Differently from AID-BiO, the ITD-based bilevel approach (which we call as ITD-BiO) constructs
the outer-level hypergradient estimation via backpropagation along the N-loop iteration path, and
@ = N always holds. Thus, ITD-BiO has only two implementation choices: N-N-loop (with large
N = kInk) and No-loop (with small N = (O(1)). Here, N-N-loop and No-loop also refer to
additional loops for solving sub-problems within the ITD-BiO’s base loop of updating the variable
z. The only convergence rate analysis on ITD-BiO was provided in [19] but only for N-N-loop,
which does not suggest how N-N-loop compares with No-loop. It is still an open question whether
ITD-BiO benefits from N-loops.

e The second contribution of this paper lies in the development of a unified convergence theory
for ITD-BiO, which is applicable to all values of N. We then specialize our general theorem to
provide the computational complexity for both of the above implementations (as summarized
in Table 2). We further develop a convergence lower bound, which suggests that N-N-loop is
necessary to guarantee a vanishing convergence error, whereas the no-loop scheme suffers
from an unavoidable non-vanishing convergence error.

The technical contribution of this paper is two-fold. For AID methods, most existing studies including
[19] solve the linear system with large @ = ©(xlog k) so that the upper-level Hessian-inverse-vector
product approximation error can vanish. In contrast, we allow arbitrary (possibly small) @, and
hence this upper-level error can be large and nondecreasing, posing a key challenge to guarantee
convergence. We come up with a novel idea to prove the convergence by showing that this error,
not by itself but jointly with the inner-loop error, admits an (approximately) iteratively decreasing
property, which bounds the hypergradient error and yields convergence. The analysis contains new
developments to handle the coupling between this error and the inner-loop error, which is critical
in our proof. For ITD methods, unlike existing studies including [19], we remove the boundedness
assumption on y* () via a novel error analysis over the entire execution rather than a single iteration.
Our analysis tools are general and can be extended to stochastic and acceleration bilevel optimizers.

2 Algorithms

2.1 AlID-based Bilevel Optimization Algorithm

As shown in Algorithm 1, we present the general AID-based bilevel optimizer (which we refer to
AID-BiO for short). At each iteration k of the base loop, AID-BiO first executes N steps of gradient
decent (GD) over the inner function g(z,y) to find an approximation point yi', where N can be
chosen either at a constant level or as large as N = x1n x (which forms an N-loop of iterations).
Moreover, to accelerate the practical training and achieve a stronger performance guarantee, AID-BiO



Algorithm 1 AID-based bilevel optimization (AID-BiO) with double warm starts

: Input: Stepsizes «, 8 > 0, initializations zo, Yo, vo.
fork=0,1,2,..., K do
Sety? =y, if k> 0and yo otherwise (warm start initialization)
fort=1,....,N do
Update yf, = yi ' — aVyg(zr, yi™t)
end for
Hypergradient estimation via:

A Rl i

Set vy = v | if k > 0 and vy otherwise (warm start initalization).

Solve v,? from V2 g(zx, yr )v = Vy f(zr, Y& ) via Q steps of iterative algorithms starting from vy

Compute @@(xk) = v/\a:f(xk7yljcv) = VaVyg(ar, yllcv)vl?
8:  Update zx11 = zr — SV P(xk)
9: end for

often adopts a warm-start strategy by setting the initialization yg of each N-loop to be the output
ylY_, of the preceding N-loop rather than a random start.

To update the outer variable, AID-BiO adopts the gradient descent, by approximating the true gradient
V®(xy) of the outer function w.r.t. - (called hypergradient [33, 11]) that takes the following form:

(True hypergradient:)  V®(xx) =V f(zh, y"(2x)) = VaVyg(zr, y* (xx))vE, 2)

where v} is the solution of the linear system V2 g(zx, y* (vx))v = Vy f(2k, y" (z1)). To approximate
the above true hypergradient, AID-BiO first solves v,? as an approximate solution to a linear system

Vig(zr, y{f)v =V, f(@x,yr ) using Q steps of GD iterations starting from vY. Here, Q can also be
chosen either at a constant level or as large as Q = K lng (which forms a Q-loop of iterations).

Note that a warm start is also adopted here by setting 112 = U}?—p which is critical to achieve
the convergence guarantee for small Q. If @) is large enough, e.g., at an order of x1In ﬁ, a zero

initialization with vg = 0 suffices to solve the linear system well. Then, AID-BiO constructs a
hypergradient estimator V&(z;,) given by

(AID-based hypergradient estimate:) V@ () = Vo f (2k, yh ) — VoVyg(zk, y,iv)ka 3)

Note that the execution of AID-BiO involves only Hessian-vector products in solving the linear

system and Jacobian-vector product V.V, g(z, y5 )v,i2 which are more computationally tractable
than the calculation of second-order derivatives.

It is clear that different choices of N and @ lead to four implementations within the base loop of
AID-BiO: N-loop (with large N = x1n x and small Q = O(1)), N-Q-loop (with large N = k1lnk
and Q@ = k1n k), Q-loop (with small N = 1 and large @) = In k) and No-loop (with small N =1
and Q = O(1)). In Section 4, we will establish a unified convergence theory for AID-BiO applicable
to all its implementations in order to formally compare their computational efficiency.

2.2 ITD-Based Bilevel Optimization Algorithm

As shown in Algorithm 2, the ITD-based bilevel optimizer (which we refer to as ITD-BiO)

updates the inner variable y similarly to AID-BiO, and obtains the N-step output y of GD

with a warm-start initialization. ITD-BiO differentiates from AID-BiO mainly in its estima-

tion of the hypergradient. Without leveraging the implicit gradient formulation, ITD-BiO com-

of (gk,y;ﬁy )
Tk

putes a direct derivative via automatic differentiation for hypergradient approximation.

Since y,iv has a dependence on x; through the N-loop iterative GD updates, the execution of
ITD-BiO takes the backpropagation over the entire N-loop trajectory. To elaborate, it can be

Af (@nyp
T

shown via the chain rule that the hypergradient estimate ) takes the following form

f (kv - _ ;
of 2HELI) — 7, f(a, yl) — o 10" VaVyg(an, yh) TN s, (I — aVig(en, ul)) Vo f(@r, ub ). As
shown in this equation, the differentiation does not compute the second-order derivatives directly

but compute more tractable and economical Hessian-vector products Vig(zr,yi )vs,j = 1,.., N



Algorithm 2 ITD-based bilevel optimization algorithm (ITD-BiO) with warm start

1: Input: Stepsize a > 0, initializations zo and yo .
2: fork=0,1,2,..., K do
3 SetyY =y, if k > 0 and yo otherwise (warm start initialization)
4 fort=1,....,N do
5: Update y, = yi ' — aVyg(zr, yi")
6 end for
S of (@rwi) :
7:  Compute VO (x) = == 7%= via backpropagation w.r.t. T
8 Update Tkl = Tk — ﬂV(I)(xk)
9: end for

(similarly for Jacobian-vector products), where each v; is obtained recursively via v, =
y P j y J
(- avzg(xm,yﬁn))vj with vy =V f(zm, yN).

Clearly, the implementation of ITD-BiO implies that N = () always holds. Hence, ITD-BiO takes
only two possible architectures within its base loop: N-N-loop (with large N = x1n £) and No-loop
(with small N = 1). In Section 5, we will establish a unified convergence theory for ITD-BiO
applicable to both of its implementations in order to formally compare their computational efficiency.

3 Definitions and Assumptions

This paper focuses on the following types of objective functions.
Assumption 1. The inner-level function g(x,y) is u-strongly-convex w.r.t. y.

Since the objective function ®(z) in eq. (1) is possibly nonconvex, algorithms are expected to find an
e-accurate stationary point defined as follows.

Definition 1. We say X is an e-accurate stationary point for the bilevel optimization problem given in
eq. () if [V®(Z)||? < €, where T is the output of an algorithm.

In order to compare the performance of different bilevel algorithms, we adopt the following metrics
of computational complexity.

Definition 2. Let Ge(e) be the number of gradient evaluations, and MV (€) be the total number of
Jacobian- and Hession-vector product evaluations to achieve an e-accurate stationary point of the
bilevel optimization problem in eq. (1).

Let z = (x,y). We take the following standard assumptions, as also widely adopted by [10, 17].
Assumption 2. Gradients V f(z) and Vg(z) are L-Lipschitz, i.e., for any z, 2/,

IVf(2) = VI < Lllz =2, [ Vg(2) = Vg()]| < L]z = ||,

As shown in eq. (2), the gradient of the objective function ®(z) involves the second-order derivatives
V. Vyg(2) and V2 g(z). The following assumption imposes the Lipschitz conditions on such higher-
order derivatives, as also made in [10].

Assumption 3. Suppose the derivatives V.V, g(z) and V2 g(z) are p-Lipschitz, i.e., for any z, 2’
IVaVyg(2) = VaVyg(Z) < pllz = 2l 1V59(2) = Vg2l < pllz — 2.

To guarantee the boundedness the hypergradient estimation error, existing works [10, 17, 11] assume
that the gradient V f(z) is bounded for all z = (z,y). Instead, we make a weaker boundedness
assumption on the gradients V,, f (x, y*(z)).

Assumption 4. There exists a constant M such that for any x,

Vyf(z,y*(2))| < M.

For the case where the total objective function ®(-) has some benign structures, e.g., convexity or
strong convexity, Assumption 4 can be removed by an induction analysis that all iterates are bounded
as in [18]. Assumption 4 can also be removed by projecting = onto a bounded constraint set X



4 Convergence Analysis of AID-BiO

As we describe in Section 2.1, AID-BiO can have four possible implementations depending on
whether NV and () are chosen to be large enough to form an N-loop and/or Q-loop. In this section, we
will provide the convergence analysis and characterize the overall computational complexity for all of
the four implementations, which will provide the general guidance on which algorithmic architecture
is computationally most efficient.

4.1 Convergence Rate and Computational Complexity

In this subsection, we develop two unified theorems for AID-BiO, both of which are applicable to
all the regimes of NV and (). We then specialize these theorems to provide the complexity bounds
(as corollaries) for the four implementations of AID-BiO. It turns out that the first theorem provides
tighter complexity bounds for the implementations with small () = ©(1), and the second theorem
provides tighter complexity bounds for the implementations with large () =  In £. Our presentation
of those corollaries below will thus focus only on the tighter bounds. The following theorem provides
our first unified convergence analysis for AID-BiO.

Theorem 1. Suppose Assumptions 1, 2, 3 and 4 hold. Choose parameters «,n and \ such that
A+ - o)V +r(1 + 5 L i) < 1—np, where r = @(,uQC’é) with Cq = ©((1 — nu)Q”# +

w + (1= (1 =nu)?)L). Let Ly = O(k*) be the smoothness parameter of ®(-). Let
W = @(% + ;—4 (127’; 1)), Choose 3 such that 3 = min{i, VE}. Then,
K-1 ) s e
i HV(I)(Q%)HZ _ O(Q(xo) — d(x*) . sEyS I+ ( m + K )) W
. PK npk '
k=0

The complete version of Theorem 1 with full parameter specifications can be found in Appendix H.
Theorem 1 also elaborates the precise requirements on the stepsizes «, 17 and 8 and the auxiliary
parameter A, which take complicated forms. In the following, by further specifying these parameters,
we characterize the complexities for AID-BiO in more explicit forms. We focus on the implemen-
tations with Q = ©(1) (for which Theorem 1 specializes to tighter bound than Theorem 2 below),
which includes the N-loop scheme (with N = O(k In k)) and the No-loop scheme (with N = 1).

Corollary 1 (N-loop). Consider N-loop AID-BiO with N = O(klnk) and Q = O(1), where

K= l% denotes the condition number of the inner problem. Under the same setting of Theorem 1,
4

choosen = +, o = 1, and X\ = 1. Then, we have + 37" |[V®(x)|> = O (% + 3) and the

complexity to achieve an e-accurate stationary point is Ge(e) = O(k°¢ 1), MV(e) = O (ke ™).

Corollary 2 (No-loop). Consider No-loop AID-BiO with N = 1 and QQ = ©(1). Under the same
. S il 1 2 1

semng of Theorem 1, choosﬁe pargzmeters a =3, A= % and n = min{ 55 C;ZHLW g, Tg} Then,

LS VE () |2 = O(% + 52, and the complexity is Ge(e) = O(k%e™1),MV(e) = O(rS ).

The analysis of Theorem 1 can be further improved for the large () regime, which guarantees a
sufficiently small outer-level approximation error, and helps to relax the requirement on the stepsize 7.
Such an adaptation yields the following alternative unified convergence characterization for AID-BiO,
which is applicable for all () and IV, but specializes to tighter complexity bounds than Theorem 1 in
the large @ regime. For simplicity, we set the initialization v) = 0 in Algorithm 1.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold. Define 7 = © (1 —ap)N (1+ X+ (1+A"1) (k> +
C3)K*B%)), w=0((1—ap)N(k* +C3)(1 + A~ ")k?), where Cq is a positive constant deﬁned as in
Theorem 1. Choose parameters o, 8 such that T < 1 and BLs + wB? (5 + BLa) 1= < 1 hold. Then,
the output of AID-BiO satisfies

K-1 *
LY ve@)r = o PRI Lt e yee),
k=0

3K Kl—r1
where 6o = ©((k* + C3) (1 — ap)™ lys — yoll?) is the initial distance.

The complete version of Theorem 2 with full parameter specifications can be found in Appendix K.
We next specialize Theorem 2 to obtain the complexity for two implementations of AID-BiO with



Q = O(kInk): N-Q-loop (with N = ©(xIn x)) and Q-loop (with N = 1), as shown in the following
two corollaries. For each case, we need to set the parameters A, 77 and « in Theorem 2 properly.

Corollary 3 (N-Q-loop). Consider N-Q-loop AID-BiO with N = O(klnk) and Q@ = ©(xIn 2).

Under the same setting of Theorem 2, choose n = a = %, A= 1land g = @(/@73). Then,

LS K11V (2r)||® = O(5 + €), and the complexity is Ge(e) = O(k'e ™), MV(e) = O(r'e ™).
Corollary 4 (Q-loop). Consider Q-loop AID-BiO with N = 1 and Q = ©(x1In £). Under the same
setting of Theorem 2, choose o = = £, A\ = %L and B = ©(k™*). Then, & S 11 |[V®(xi)|? =
O(% + %4 + €), and the complexity is Ge(e) = O(k¢ 1), MV(e) = O (k%)

4.2 Comparison among Four Implementations

Impact of N-loop (N = 1vs N = klnk). We fix (), and compare how the choice of IV affects
the computational complexity. First, let Q = ©O(1), and compare the results between the two
implementations N -loop with ©(x In ) (Corollary 1) and No-loop with N = 1 (Corollary 2). Clearly,

the N-loop scheme significantly improves the convergence rate of the No-loop scheme from (’)(%6) to
(’)(%), and improves the matrix-vector and gradient complexities from O(k5¢~1) and O (k8¢ 1) to

O(k*e~1) and O(k°e 1), respectively. To explain intuitively, the hypergradient estimation involves
a coupled error n||y;” — y*(zx)|| induced from solving the linear system V2 g(zx, yp )v = Vy f(zk, Y )
with stepsize 7. Therefore, a smaller inner-level approximation error ||y; — y* ()| allows a more
aggressive stepsize 7, and hence yields a faster convergence rate as well as a lower total complexity,
as also demonstrated in our experiments. It is worth noting that such a comparison is generally
different from that in minimax optimization [27, 41], where alternative (i.e., No-loop) gradient
descent ascent (GDA) with N = 1 outperforms (N-loop) GDA with N = x In x, where N denotes
the number of ascent iterations for each descent iteration. To explain the reason, in constrast to
minimax optimization, the gradient w.r.t. z in bilevel optimization involves additional second-order
derivatives, which are more sensitive to the inner-level approximation error. Therefore, a larger N
is more beneficial for bilevel optimization than minimax optimization. Similarly, we can also fix
Q = O(k1n k), the N-Q-loop scheme with N = x In k (Corollary 3) significantly outperforms the
Q-loop scheme with NV = 1 (Corollary 4) in terms of the convergence rate and complexity.

Impact of Q-loop (Q = 1 vs Q = O(xIn £)). We fix N, and characterize the impact of the choice of
@ on the complexity. For N = 1, comparing No-loop with @ = ©(1) in Corollary 2 and Q-loop with
@ = ©(kIn k) in Corollary 4 shows that both choices of () yield the same matrix-vector complexity

o (k%1), but Q-loop with a larger () improves the gradient complexity of No-loop with Q@ = ©(1)
from O(k% 1) to O(k%¢~1). A similar phenomenon can be observed for N = ©(x In ) based on
the comparision between N-Q-loop in Corollary 3 and N-loop in Corollary 1.

In deep learning. Also note that in the setting where the matrix-vector complexity dominates the
gradient complexity, e.g., in deep learning, such two choices of () do not affect the total computational
complexity. However, a smaller () can help reduce the per-iteration load on the computational resource
and memory, and hence is preferred in practical applications with large models.

Comparison among four implementations. By comparing the complexity results in Corollaries 1, 2,
3 and 4, it can be seen that N-Q-loop and N-loop (both with a large N = ©(x ln x)) achieve the

best matrix-vector complexity 5(546_1), whereas ()-loop and No-loop (both with a smaller N = 1)

require higher matrix-vector complexity of O(k%~1). Also note that N-Q-loop has the lowest
gradient complexity. This suggests that the introduction of the inner loop with large /N can help to
reduce the total computational complexity.

5 Convergence Analysis of ITD-BiO

In this section, we first provide a unified theory for ITD-BiO, which is applicable for all choices of
N, and then specialize the convergence theory to characterize the computational complexity for the
two implementations of ITD-BiO: No loop and N-N-loop. We also provide a convergence lower
bound to justify the necessity of choosing large N to achieve a vanishing convergence error. The
following theorem characterizes the convergence rate of ITD-BiO for all choices of N.



Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold. Define w = 9("’"—2 (1—ap)V Ay + 1:—122\’) and T =

ap
2 2
+(1+aLN
ik ( L ) ; )7wN:
1-gop—(Q—ap)N(1+5ap)

N N lan
6((1+ ““f_“;f‘;if )> “(11’_(1Ifz)uz )(1 —a,u)%*l). Choose parameters such that > < £ o <

AN +N?)(1—ap)N +wk, where Ay and wy are given by Ax = 6(

o and BLe + % (% + ﬁLq,)wﬁ2 < 1, where Ly = ©(k*) denotes the smoothness parameter of
®(-). Then, we have

5 Ay  7A,  (1—ap)®™  M?*(1- oz;L)QNL2

BK 2K T K au?

1
K
k

= 92 =0

=0

) ®

where Ag = ®(z¢) — min, ®(z) and Ay, = |lyo — y* (o)
The complete version of Theorem 3 with full parameter specifications can be found in Appendix N.
In Theorem 3, the upper bound on the convergence rate for ITD-BiO contains a convergent term

O(+) (which converges to zero sublinearly with K) and an error term 0(1”2(1;7’?)”) (which is
independent of K, and possibly non-vanishing if /V is chosen to be small). To show that such a
possibly non-vanishing error term (when NV is chosen to be small) fundamentally exists, we next
provide the following lower bound on the convergence rate of ITD-BiO.

Theorem 4 (Lower Bound). Consider the ITD-BiO algorithm in Algorithm 2 with o < %, b < ﬁ

and N < O(1), where Lg is the smoothness parameter of ®(x). There exist objective functions
f(x,y) and g(x,y) that satisfy Assumptions 1, 2, 3 and 4 such that for all iterates x (where K > 1)

generated by ITD-BiO in Algorithm 2, |V®(zx)||* > @(% (1- a,u)QN).

Clearly, the error term in the upper bound given in Theorem 3 matches the lower bound given in

Theorem 4 in terms of M; sz2 (1 — au)?N, and there is still a gap on the order of i, which requires

future efforts to address. Theorem 3 and Theorem 4 together indicate that in order to achieve an
e-accurate stationary point, IV has to be chosen as large as N = O(xlog % ). This corresponds to
the N-N-loop implementation of ITD-BiO, where large /V achieves a highly accurate hypergradient
estimation in each step. Another No-loop implementation chooses a small constant-level N =
©(1) to achieve an efficient execution per step, where a large N can cause large memory usage
and computation cost. Following from Theorem 3 and Theorem 4, such No-loop implementation
necessarily suffers from a non-vanishing error.

In the following corollaries, we further specialize Theorem 3 to obtain the complexity analysis for
ITD-BiO under the two aforementioned implementations of ITD-BiO.

Corollary 5 (N-N-loop). Consider N-N-loop ITD-BiO with N = O(x In £). Under the same set-

ting of Theorem 3, choose 3 = min{,/ﬁj—’;, \/ 1;? , ﬁ} a= ﬁ Then, % ZkK:_Ol HV‘D(Q%)HQ _
O(% + e), and the complexity is Ge(e) = (’3(546*1), MV(e) = (5(546*1).

Corollary 5 shows that for a large N = ©(xIn £), we can guarantee that ITD-BiO converges
to an e-accurate stationary point, and the gradient and matrix-vector product complexities are
given by O(k*e¢™!). We note that [19] also analyzed the ITD-BiO with N = O(xIn %), and
provided the same complexities as our results in Corollary 5. In comparison, our analysis has several
differences. First, [19] assumed that the minimizer y* (xy) at the k" jteration is bounded, whereas

our analysis does not impose this assumption. Second, [19] involved an additional error term

2807201 N
max_1,...x ||y ()| 20T

Assumptions 1, 2, 3 and 4. We next characterize the convergence for the small N = O(1).
Corollary 6 (No-loop). Consider No-loop ITD-BiO with N = ©(1). Under the same setting of

Theorem 3, choose stepsizes o = ﬁ and = min {\/ﬁ)—‘;, A/ %, i} Then, we have
K-1 3 272
% Lo IVE(@i)® = O(% + 255).

apd

, which can be very large (or even unbounded) under standard

Corollary 6 indicates that for the constant-level N = O(1), the convergence bound contains a
M?L?

non-vanishing error O( o

). As shown in the convergence lower bound in Theorem 4, under



standard Assumptions 1, 2, 3 and 4, such an error is unavoidable. Comparison between the above
two corollaries suggests that for ITD-BiO, the N-N-loop is necessary to guarantee a vanishing
convergence error, whereas No-loop necessarily suffers from a non-vanishing convergence error.

6 Empirical Verification

Experiments on hyperparameter optimization on MNIST. We first conduct experiments to verify

our theoretical results in Corollaries 1, 2, 3 and 4 on AID-BiO with different implementations. We

consider the following hyperparameter optimization problem.

1
|Dval|

. N 1 A
min L, (V) > L), st =agmin—— > (L(wie) + Fwl),

£€Dw w Dl £ED,

where D, and Dy, stand for training and validation datasets, £(w;¢) denotes the loss function
induced by the model parameter w and sample £, and A > 0 denotes the regularization parameter.
The goal is to find a good hyperparameter A to minimize the validation loss evaluated at the optimal
model parameters for the regularized empirical risk minimization problem.
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Figure 1: Training & test losses v.s. time (seconds) by AID-BiO on MNIST with different ) and N.

From Figure 1, we can make the following observations for AID-BiO. First, the learning curves with
N = 20 are significantly better than those with N = 1, indicating that running multiple steps of
gradient descent in the inner loop (i.e., N > 1) is crucial for fast convergence. This observation is
consistent with our complexity result that N-loop is better than No-loop, and N-Q-loop is better
than @-loop, as shown in Table 1. The reason is that a more accurate hypergradient estimation
can accelerate the convergence rate and lead to a reduction on the Jacobian- and Hessian-vector
computational complexity. Second, N-Q-loop (N = 20, Q = 20) and N-loop (N =20,Q = 1)
achieve a comparable convergence performance, and a similar observation can be made for Q-loop
(N =1, Q = 20) and No-loop (N = 1, @ = 1). This is also consistent with the complexity
result provided in Table 1, where different choices of () do not affect the dominant matrix-vector
complexity.
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Figure 2: Training & test losses v.s. time (seconds) by AID-BiO on MNIST with different ¢ and V.

In Figure 2, we plot the training and test losses versus running time for AID-BiO, where we consider
a hyperparameter optimization problem on MNIST as in Figure 1 and choose loop sizes @ and N
from {1, 50}. Similarly to Figure 1, it can be observed that the empirical results in Figure 2 are also
in consistence with our theoretical results in Table 1.
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Figure 3: Training & test losses v.s. time (seconds) by ITD-BiO on MNIST with different N.

In Figure 3, we plot the performance of ITD-BiO with different choices of N from {1,20} on
the hyperparameter optimization on MNIST. Figure 3 illustrates that N-loop ITD-BiO (i.e., N=20)
converges to a much smaller loss value than No-loop ITD-BiO (i.e., N=1). This is in consistence with
our thereotical results in Table 2.

Experiments on hyper-representation. We consider a hyper-representation problem in [39], where
the inner problem is to find optimal regression parameters w and the outer procedure is to find the
best representation parameters A. In specific, the bilevel problem takes the following form:

1 1
min ®(A) = o= [|A(Xyi A’ = ¥y’ st w’ = avgmin— || A(Xrs \jw = Yr | + g||w||2
P w q

where Xp € R7*™ and Xy € RP*™ are synthesized training and validation data, Y € RY, Yy, €
RP are their response vectors, and A (-) is a linear transformation. The generation of X7, Xy, Yp, Yy
and the experimental setup follow from [39]. For ITD-BiO, we choose N = 20 for N-N-loop ITD
and N = 1 for No-loop ITD. The results are reported with the best-tuned hyperparameters.

[ Algorithm [ k=10 k=50 [ k=100 | k=500 [ k= 1000 |
N-N-loop ITD | 9.32 0.11 0.01 0.004 0.004
No-loop ITD 435 6.9 0.04 0.04 0.04

Table 3: Validation loss v.s. the number of iterations for ITD-based algorithms.

Table 3 indicates that N-N-loop with N = 20 can achieve a small loss value of 0.004 after 500 total
iterations, whereas No-loop with N = 1 converges to a much larger loss value of 0.04. This is in
consistence with our theoretical results in Table 2, where N = 1 can cause a non-vanishing error.

We also conduct the experiment for AID-BiO, where we choose N and @ from {1, 20} for four
different loop implementations. We present the results for AID-BiO in Appendix F, which also
support our theoretical results in Table 1.

7 Conclusion

In this paper, we study two popular bilevel optimizers AID-BiO and ITD-BiO, whose implementations
potentially involve additional loops of iterations within their base-loop update. By developing
unified convergence analysis for all choices of the loop parameters, we are able to provide formal
comparison among different implementations. Our result suggests that N-loops are beneficial for
better computational efficiency for AID-BiO and for better convergence accuracy for ITD-BiO. This
is in contrast to conventional minimax optimization, where No-loop (i.e., single-base-loop) scheme
achieves better computational efficiency. Our analysis techniques can be useful to study other bilevel
optimizers such as stochastic optimizers and variance reduced optimizers.
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Supplementary Materials
A Expanded Related Work

Gradient-based bilevel optimization. A number of gradient-based bilevel algorithms have been pro-
posed via AID- and ITD-based hypergradient approximations. For example, AID-based hypergradient
computation [4, 33, 10, 11, 19] estimates the Hessian-inverse-vector product by solving a linear sys-
tem with an efficient iterative algorithm. ITD-based hypergradient computation [31, 8,9, 6, 35, 17]
involves a backpropagation over the inner-loop gradient-based optimization path. Convergence rate
of AID- and ITD-based bilevel methods has been studied recently. For example, [10, 19] and [19, 17]
analyzed the convergence rate and complexity of AID- and ITD-based bilevel algorithms, respectively.
[18] characterized the lower complexity bounds for a class of gradient-based bilevel algorithms. As
we mentioned before, previous studies on the convergence rate of deterministic AID-BiO [10, 19] fo-
cused only on N-(Q-loop, and the only convergence rate analysis on ITD-BiO [19] was for N-N-loop.
Our study here develops unified convergence analysis for all N and @) regimes.

Some works [30, 28, 25, 38] studied the convex inner-level objective function with multiple minimiz-
ers. [29] proposed an initialization auxiliary method for the setting where the inner-level problem is
generally nonconvex.

Stochastic bilevel optimization. A variety of stochastic bilevel optimization algorithms have
been proposed recently. For example, [10, 15, 19] proposed stochastic gradient descent (SGD)
type of bilevel algorithms, and analyzed their convergence rate and complexity. Some works
[13, 12, 40, 21, 3] then further improved the complexity of SGD type methods using techniques
such as variance reduction, momentum acceleration and adaptive learning rate. [39] proposed a
Hessian-free stochastic Evolution Strategies (ES)-based bilevel algorithm with performance guarantee.
[16] proposed several algorithms for escaping saddle points in bilevel optimization. Although our
study mainly focuses on determinstic bilevel optimization, our techniques can be extended to provide
refined analysis for stochastic bilevel optimization to capture the order scaling with «, which is not
captured in most of the above studies on stochastic bilevel optimization.

Bilevel optimization for machine learning. Bilevel optimization has shown promise in many
machine learning applications such as hyperparameter optimization [33, 9, 19] and few-shot meta-
learning [6, 37, 34,9, 1, 17, 20]. For example, [37, 1] introduced an outer-level procedure to learn a
common embedding model for all tasks. [17] analyzed the convergence rate for meta-learning with
task-specific adaptation on partial parameters.

B Discussion on Setting with Small Response Jacobian.

Our results in Theorem 3 and Theorem 4 apply to the general functions whose first- and second-order
derivatives are Lipschitz continuous, i.e., under Assumptions 2 and 3. Here, we further discuss the
extension of our results to another setting where the response Jacobian is extremely small. This

setting occurs in some deep learning applications [6, 17], where the response Jacobian % (which

N
is estimated by 9 (2) \yith a large N) can be order-of-magnitude smaller than network gradients.

Based on eq. (60) and eq. (62) in the appendix, it can be shown that the convergence error is
proportional to the quantity + Zf:_ol I %(ik) ||I?, and hence the constant-level N = ©(1) can still

achieve a small error in this setting.

C Discussion on Hyperparameter Selection and Stochastic Extension.

For all loop-sizes, we set the hyperparameters to achieve the best complexity as long as the con-
vergence is guaranteed. Let us elaborate on [NV-loop (Corollary 1) and No-loop (Corollary 2). At a
proof level, \ needs to satisfy (1 — o)™ (1 + ) < 1 (see Lemma 2) to guarantee the convergence;
otherwise the inner-loop error will explode. Given this requirement, for N-loop with N = O(xlog k),
A = ©(1) achieves the best complexity. However, for No-loop with N = 1, the requirement be-
comes (1 —ap)(1+ A) < 1, and A = ©(u) achieves the best complexity. The stepsize 7 appears
in (1 — o)V 2lye"y — yi_1]|*) (see Lemma 1) of the error |[v€ — vi||>. Given the requirement

1- a/L)Nﬁ < 1, for N-loop with N = O(klog k), n = ©(1) achieves the best complexity, whereas
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for No-loop with V = 1, the best n = ©(u). At a conceptual level, estimating the hypergradient and
linear system contains the inner-loop error ||y — yi||?>. For N = 1, the per-iteration error is large,
and hence we need smaller stepsizes A, 77, 5 to ensure the accumulated error not to explode. A similar
argument holds for N-Q-loop and @-loop.

Extension to the stochastic setting. If the mini-batch size at each iteration is chosen at an order of
¢!, we have checked that our proof flow and comparisons still hold.

D Comparison to the Analysis in [2]

We note that a similar conclusion for AID-BiO (e.g., N = O(k) is better than N = (1)) has also
been drawn in [2] for the stochastic bilevel optimization. The theoretical comparison in [2] focuses
only on the case @) = O(k), where each algorithm solves the linear system to a good accuracy with
a large @) loop. As a comparison, our theoretical comparison is more general by considering both
Q@ = O(k) and Q = O(1). In addition, we also provide a comparison between @) = O(1) and
Q = O(k) given different N, which is not covered in [2]. Also note that the choice of @ = O(1)
(not covered in [2]) is more challenging to analyze due to the nonvanishing error for ) loop, and is
more often adopted in practice, as seen in NAS [42] (Q = 1), meta-learning [34] (Q) = 5), hyper-data
cleaning [19] (Q = 3).

E Further Specifications on Hyperparameter Optimization Experiments

We follow the setting of [40] to setup the experiment. We first randomly sample 20000 training
samples and 10000 test samples from MNIST dataset [24] with 10 classes, and then add a label
noise on 10% of the data. The label noise is uniform across all labels from label 0 to label 9. We
test algorithms with different values of () and NV to verify our theoretical results. Every algorithm’s
learning rates for inner and outer loops are tuned from the range of {0.1,0.01,0.001} and we report
the result with the best-tuned learning rates. We run 5 random seeds and report the average result. All
experiments are run over a single NVIDIA Tesla P100 GPU. The implementations of our experiments
are based on the code of [19], which is under MIT License.

F More Experiments on Hyper-Representation

In Figure 4, we plot the outer loss of AID-BiO versus the number of matrix-vector products (i.e.,
MYV) and the number of gradient computations (i.e., GC) on the same hyper-representation problem
as in Table 3.
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Figure 4: Outer losses of AID-BiO v.s. MV and GC on MNIST with different () and N.

Similarly to the observation in Figure 1, the curve with N = 20 significantly outperforms N = 1,
while different choices of () do not affect the dominant matrix-vector complexity. This is consistent
with our theoretical results provided in Table 1.

G Proof Sketch of Theorem 1

The proof of Theorem 1 contains three major steps, which include 1) decomposing the hypergradient
approximation error into the N-loop error in estimating the inner-level solution and the @)-loop error
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in solving the linear system approximately, 2) upper-bounding such two types of errors based on the
hypergradient approximation errors at previous iterations, and 3) combining all results in the previous
steps and proving the convergence guarantee. More detailed steps can be found as below.

Step 1: decomposing hypergradient approximation error.

We first show that the hypergradient approximation error at the k*” iteration is bounded by

2

= 3p2 * *
99— Ve@o|® < (322 + 220 )l — o P+ 30200 =01,
~—_———

N Q-loop estimation error
N -loop estimation error

where the right hand side contains two types of errors induced by solving the inner-level problem
and outer-level linear system. Note that for general choices of IV and @, such two errors cannot be
guaranteed to be sufficiently small, but fortunately we show via the following results that such errors
contain iteratively decreasing components which facilitate the final convergence.

Step 2: upper-bounding linear system approximation error.

We then show that the Q-loop error ||v; — v,? |? for solving the linear system is bounded by

log = vl < O(((1+mu)(1 = np)*@ +ws?) o, - viy
+ 21— )N + wpyi s — g2+ wB Ve ) ?). ()

Note that if the stepsize 3 is chosen to be sufficiently small, the right hand side of eq. (7) contains an
iteratively decreasing term (1 +7u)(1 —nu)*? +ws?)|jvg_ | —vji_,||?, an error term (n*(1 — ap)™ +
wh?)||yi_1 — yi_1]|? induced by the N-loop updates, and gradient norm term w3?||V®(zy_1)]?
that captures the increment between two adjacent iterations. Similarly, we upper-bound the N-loop
updating error ||y — yn ||* by

o = w12 < O(((L+ ) = am™ + 1+ A5 9 — i P
(AT = i ? + L+ ATDBVR@)?),  ®)
where 7 =1 + % is inversely proportional to A. Note that we introduce an auxiliary variable A in the
first error term at the right hand side of eq. (8) to allow for a general choice of N. To see this, to
guarantee that (1 + \)(1 — au)N + (1 +271)3? < 1, alarger N allows for a smaller \. As a result,
the outer-level stepsize  can be chosen more aggressively, which hence yields a faster convergence
rate but at a cost of NV steps of N-loop updates. On the other hand, if IV is chosen to be small, e.g.,

N =1, A needs to be as small as A = ©(au). As a result, 3 needs to be smaller, and hence yields a
slower convergence rate but with a more efficient N-loop update.

Step 3: combining Steps 1 and 2.

Combining eq. (6), eq. (7) and eq. (8), we upper-bound the hypergradient estimation error as

k—1
IV®(ar) — VO(zi)|* <O((1 = 1) +wB Y (1= 7)|VO(zx-1-,)]1%),
j=0

which, combined with the Lg-smoothness property of ®(-) and a proper choice of 3, yields the final
convergence result.

H Proof of Theorem 1

We first provide some auxiliary lemmas to characterize the hypergradient approximation errors.
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Lemma 1. Suppose Assumptions 1, 2, 3 and 4 are satisfied. Let v}, = (Vig(mk, yi) IV f (2, vg)
with yj; = arg min, g(x,y). Then, we have

v = vilI? (1 +np) (1 — )@y — v |12
1
+2(1+—)02 yi — |2
” ollvi — i |

IN/L Mp\2/L N2
+2(1 = nu)*? (1 + —) (— + —Qp) (— + 1) e — zp—1]?,
)\ p Iz

where Co = Q(l—nu)uQ’lpMn + 1_(1_n“L§(1+nQ”)pM + (1 _ (1 _ WH)Q)%-

Proof. Letv} bethe ¢ (¢ = 0,...,Q —1) GD iterate via solving the linear system Vg (xx, yp Jv =
Vy f(@k, i), which can be written in the following iterative way.

i = (= nVyg(ar, )i + 0V f (e, i) ©)
Then, by telescoping eq. (9) over ¢ from 0 to () yields

Q-1

v = (I = nV2g(ae, yl )0 + 0 > (I = 129(@r, yi) IV f (2, b)) (10)
q=0

Similarly, based on the definition of v}, it can be derived that the following equation holds.
Q-1
vi = (I = nVag(ee, yi)%vi + 0> (I = n2g(@k, ui) Vo f (2e, vi)- (11

q=0

Combining eq. (9) and eq. (10), we next characterize the difference between the estimate v,? and the
underlying truth v}. In specific, we have

* (l) * * *
o = will <[1(7 = nV5g(@r, yi))? = (I =0V g, yi) ol + (1 =)@l = vi |
Q-1 Q-1
| Yo =gty ) = D2 = gy 190 F @yl
q=0 0

q=

Q-1
T D N [y
q=0

(@)

* M *
< T =nVig(zr, ud)? — (I —nVog(an, yk))QH; + (1 =) ?vg_; —vill

Q-1 Q-1
+77MH > T =g,y ) = Y (T = npg(ar, 7))
q=0 q=0
oLy« N
+ (1 =1 —np) );Ilyk—yk I (12)

where (¢) follows from the strong convexity of g(z,-) and (ii) follows from Assumption 4, the

warm start initialization v) = v, and ||vf|| < |[(V2g(zk, y5) "M IIVySf (@r, yp)l| < . We

next provide an upper bound on the quantity A, := |[(I — n_g(zy, Yy N9 — (I - nag(xk, yi))?| in
eq. (12). In specific, we have

(i)
Ay <(I=n)Ago1+ A =) I Vag(@r,vi) — Vog(zr y)ll
<(1 =) Ag1 + 1 =) npllyr - yill. (13)

where (i) follows from the strong convexity of g(z, -) and Assumption 3. Telescoping eq. (13) yields

Ay < (1=np) D0+ q(1 =) npllyt — vill = ¢(1 = o) npllyy — vill,

17



which, in conjunction with eq. (12), yields

* — M * *
v — vl <Q(1 — nu)? 1np;||yi§ — il + (=)@, — i

Q-1

— * L *
+0M Y gt =) npllyy —yill + (1= (1— W)Q);Hyk - a4
q=0

Based on the facts that Z(?;ol qz?~! = 1_$Q_(?fZ;QI+QxQ > 0, we obtain from eq. (14) that

* Q(l - Uﬂ)QilpMn * *
v = vill < L e = yill + (1 =)oy — vi_i
+ (1= np)?|vi_y — vill + 2 pPMlyi = il

L *
+(1-(01- W)Q);Hyk ~ i |

which, in conjunction with ||v; — v _, || < (ﬁ + %) (% + 1) ||z, — xx—1| and using the Young'’s

inequality that ||a + b]|? < (1 + nu)|la|® + (1 + ﬁ)HbHQ, completes the proof of Lemma 1. [

Lemma 2. Suppose Assumptions 1 and 2 are satisfied.

. . 1\ L?
It = oI < (U= e (L Wy = v+ (= )™ (14 3) 5l =

A
15)

where \ is a positive constant.

Proof. Note that y; = argmin, g(xk,y). Using the strong convexity (i.e., Assumption 1) and
smoothness (i.e., Assumption 2) of g(xy, -), we have

lye = yill> < (1= ap)™lyg — vl (16)

which, in conjunction with the warm start initialization y{ = y;’ ; and using the Young’s inequality,
yields

* * 1 * *
o = vl <O+ N = am) Mgy = vl + (14 5) (1= am) iy - vil?

A
@ Ny, N 12 1 % 2
<N =0V lyly = yial? + (14 3) (- )Y Gl — il
a7
where () follows from Lemma 2.2 in [10]. O

Lemma 3. Suppose Assumptions 1, 2, 3 and 4 are satisfied. Choose parameters such that (1 +
2

A) (1 — ap)V (1 4 4r(1 + #)LQ) < 1 — np, where the notation r = with Cq given in

Co
(£ +L)?
Lemma 1. Then, we have the following inequality.

IV®(xy) — V() ||* <3L(1 - + 6wL?52)* 6

k—1
+6wL?F Y (1= np+6wL?F) [ Ve(eay)[*,  (18)
=0
where 8y := (1 + %) oy — g2 + |[v§ — vi||? and the notation w is given by
B [P M2 L2
w —(1+ )\)(1 Q) (1+ 12,2 ) 2
1\L* PP M2 14(1 — nu)*@ N 1
+4(1+ﬁ)ﬁ(1+ L2u2)( - an) (1+3))- (19)

18



Proof. Combining Lemma 1 and Lemma 2, we have
o = vl <1+ n) (1 = np)*@fviy — iy |

1 .
+2(1 —ap)V (14 N) (1 + ﬁ)cé\lyff_l —ill?

A
1\/L Mp\2/L 2
#20 -m (1 LY (5 M0 (Y
nu/\poop 1
2

L . . . 2 . c .
which, in conjunction with (% +1)2 < 4{:—2 and the notation r = ﬁ, yields
m

r21-aw(1+ ) (14 2) L) 2
—ap - — S | Tk—1 — Tk
/9 2

o =vil1” < (14 m) (1= np)*@lody = vy
1\ L? M2 /4(1 — np)?? 1
+ 2(1 + f>—2(L + p—) (% +r(l— au)N(l + 7)> e — zp_1|?
np/ p 2 1 A
1 M 2 .
F204 00— (14 ) (B84 1) s — vt 20)

Then, combining Lemma 2 and eq. (20), we have
2

2
p M
(1+ g )l = w2 + o — i)

212
N p2M2 N N 9
<+ 0= (1 T Yl — v
1 N p2M2 L2 9
+ (1 + X)(l — op) (1 + LTW) Eka—l — x|

+ (14 ) (1 — )2 Q|vg ) — vi |2
1 p2M? N
Fa(14 )N (22 55 ) (1= e Vel — i P

ni
1y L* pPM2N (AL — np)*? N 1 2
+4(1+ﬁ)?(1+ MQLQ)( 3 (L= an) (1 5)) lw-s =l

which, in conjunction with the definition of w in eq. (19), yields

2 2
pM * .
(12 ) I = il + e = v

L2‘U2
N P2M2 1 2 N 2
<(1+A)(1— (1 )(1 4(1 —)L) Ly
<+ = e (1+ ) (14 a1+ )2 Iy~ il
+ (L + ) (1 —np)* Qo —vi 12+ wlae—r — x> 1)

For notational convenience, we define 0, := (1+ %) y =i )12+ [lv2 — v || as the per-iteration

error induced by y¥ and v,?. Then, recalling that (1 + A\)(1 — au)™V (1 +4r(1 + 2)L?) <1 —npu,
we obtain from eq. (21) that

8 <(1—np)op—1 + 20B?|VO(zx-1) — VO(wr_1)|? + 2w |V (wy_1) % (22)
Based on the form of @fb(xk) and V®(xy) in eq. (3) and eq. (2), we have
IV® () = VO(ax) > <3|V f 2k, 4i) = Vaf e,y + 31 Va Vyg(ar, yi )1 vi — o |

+3(|VaVyg(r, yk) — VaVyg (e, ui )1 vkl
which, in conjunction with Assumptions 1, 2, 3 and 4, yields

1
o)

= 3p>M? N N
V(i) ~ V)| < (312 + g )l —ul I” +3L7 0 % @)

Substituting eq. (23) into eq. (22) yields
Ok <(1 —np+ 6wL?5%)0, 1 + 20|V (x)-1)]?,
which, by telescoping and using eq. (23), finishes the proof. O
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Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1 with full parameter specifications). Suppose Assumpttons 1,
2, 3 and 4 hold. Choose parameters o, 1 and X such that (1 + \)(1 — ap)™ (1 + 4r(1 +3 )Lz)

o
(eL+Ly
2 2 3 25, -
Let Ly = L + 2& TL”M + 2pLM+L + ”LMM be the smoothness parameter of ®(-). Let w :=

U (1+ ) f o+ (14 ) (17 + 230F) (05 o ey Ly

stepsize 3 such that 3 = min { 57— s V 18727‘;75} Then,

15 (g < B2 =2 | PO+ Gl + 5+ 50D

: )@ (@
1 —nu, where r = with Oy = QU= pMn | 1-01 "”Lz(H"Q”)pM-&- (1-( —77,“) @)L,

m

. Choose the outer

< +
K~ BK npk

Proof. First, based on Lemma 2 in [19], we have V®(-) is Lg-Lipschitz, where Ly = L+ M +
LML L g

%3). Then, we have
(zpr1) <P(xr) + (VO(2k), Thy1 — k) + %I)Hﬂfkﬂ — a)?
<) — (5 — 520 ) IVO()I? + (5 + 57La ) IVO(2) — (i)
S0(n) — (5 - 02La) IV + (3 + 8°L0) 3026001 — -+ GuL26%)
+ 6wL262< + B La) kzl 1— np + 6wL2B2) | Vd(zr_1_;)|1%, (24)
=

where (i) follows from Lemma 3, &g is defined in Lemma 3 and w is given by eq. (19). Then,
telescoping eq. (24) over k from 0 to K — 1, denoting x* = arg min, ®(x) and using, we have

(5-6°L0) Z [v2(e)|?

L250(g + ﬂ2L<I>)

<®(z0) — B(z*) +

nu — 6wL?p?
ﬁ K—-1k—1
22 2 2 n2\j 2
+6wL?B (5 +5 Lq>) ;;) 2}(1 — -+ 6wL2B2Y | VD(zr 1)
i
) 3L260(2 + B%La) 3 S V()2
<(b _q) * 2 L2 2( 1~ 2L J= 2
= (o) (27) + nu—GwLQﬁQ +6wl™p (2 +5 ‘i)) np — 6wL? 32 25)

where (i) follows because 3=t =80 a;be 15 < 340" ax > " b;. Rearranging eq. (25) yields

1 6wL2B2(L + BLa)\ 1 )
(5 — Lo ny — 631}L2ﬁ2 )? Z IV ()l

k=0
_ * 26 (L L
< P(zg) — ®(2*)  3L%0o(5 + @)i' 26)
BK nuw —6wl?262 K
Note that (1 + A)(1 — ap)N (1 + 4r(1 + 5 )Lz) <1-—mnpandr > 1, we have
N _1—nu  39°(1+3) L—nun’u
3*(1— 1 < Rl 27
77( a,u,) (+/\>1+/\1+4T(+UM)L2 py rL2’ 27

which, combined with the definitions of w and w given by eq. (19) and theorem 1, yields w < w.

: ~ 7122 ne 6wL?3> 6wL>?s3? .
Then, since we set 6w L5 < = 1n Theorem 1, we have T—6wLZpz < Ti—GwL2B? < 2, which
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combined with eq. (26), yields

L3 | K1 ®(z0) — ®(x*)  9L%§ (1 +BLo)
(Z — §BL¢)? Z IV (x)|* < : BK + OQT]Q[LK - ’

which, in conjunction with 8 < 5 L , yields

K-1
1 8(P(xg) — @(x*))  21L2%5
Vo (x| < : 28
% ;) IV ()] < 7% TR (28)
Based on the updates of y and v, we have
lvo” — wsll* <llvo — volI* = llvo|l®
log’ = w5l <llwgll + l1vg’ = (V3g(wo,96) Vi f(wo, 56| + (V3g(wo,96) ™"V f (0. 33|
OM 2
<o+ L Elsl + ), @9)

where ( ) follows because the initialization v = 0 and y§ = 0. Substituting eq. (29) into &y :=

(

I Proof of Corollary 1

)||y0 —yz]I2 + |08 — vg||? and eq. (28), we complete the proof. O

In this case, first note that all choices of 7, o, A and IV satisfy the conditions in Theorem 1. First
2

recall that r = ﬁ, where
QUL—nuw)® 'pMn 1 -1 —nu)?1+nQu L
R N
7 7 1
which, combined with Q = ©(1) and 1 = (1), yields C3, = ©(x?) and hence r = @(1) Note
- 1—nu 202N (16(1—nu)?®? | 4(1 4
that @ = ¢ n;)nu(1+p1\f )% +(1+ )(L2+PM )( ( #’ZW) + (3/\"2‘2)7”) , which,

combined with = + and A = 1, yields @ = O(x® + £7) = O(x"). Based on the ch01ce of 8, we
have

f=min{o— 12L 18L2 b=
Then, we have the following convergence result.
K-1
1 k* K3
= Vo 2= 0(—=+ —).
7 2 Vel = 0 + )

Then, to achieve an e-accurate stationary point, we have K = O(k*¢~ 1), and hence we have the
following complexity results.
« Gradient complexity: Ge(e) = K (N + 2) = O(r%e1).
* Matrix-vector product complexities (dominant computational cost):
MV(e) =K+ KQ=0 (k*e ).

Then, the proof is complete.

J Proof of Corollary 2

2

Based on the choices of o, A and n < Q, recalling r = and using the inequality that

Cq
(& +L)?
(1—2)9 >1-Quxforany 0 < x < 1, we have
_ (P24 PQ% M + QLY
- oM 2

(2751

< 4n*Q?,
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2
which, in conjunction with < ﬁ%, yields

1+ N1 —ap)N (1 +4r(1+ %)LQ) <(T+ N1 —ap)V (1 +16(1 + i)nQQ%Q)

Slf%glfn:uﬁ

and hence all requirements in Theorem 1 are satisfied. Also, similarly to the proof of Corollary 1, we
have r = ©(1), which, combined with n = ©(x~2), yields w = O(k° + k%) = ©(x?), and hence

. 1 ne —6
5*mm{12L¢’ wrea) = O

Then, we have the following convergence result.

1’ 9 kS K
i 2 Vel =0(% + )

Then, to achieve an e-accurate stationary point, we have K = O(k% 1), and hence we have the
following complexity results.

« Gradient complexity: Ge(e) = 3K = O(x5¢1).
* Matrix-vector product complexities (dominant computational cost):
MV(e)=K+KQ=0 (k%)

Then, the proof is complete.

K Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2 with full parameter specifications). Suppose Assumptions 1,
2, 3 and 4 hold. Define v = (1 — ap)N (1 + X+ 6(1+ X" (L* + p*M?pn > + 2L7C3) L?B*n~?), w =
6(1 — ap)N(L* + p> M?p =2 + 2L2C3) (1 + A1) LPu~?, where Cy is a positive constant defined as in
Theorem 1. Choose parameters o, 3 such that T < 1 and BLs + wB? (5 + BLa) 1= < 1 hold. Then,
the output of AID-BiO satisfies

K-1
1 A(®(zg) — () 3 &y . 2TLEM? )
— > IVO()|® < += + 1—np)*?,
K 2 [V (ag)|l GK X1—~ 2 (1 —np)

where o = 3(L* + % +2L2C3) (1 — o)™ |lys — wol|” is the initial distance.

Proof. Using an approach similar to eq. (14) in Lemma 1, we have
v = vl < 231l — i 117 + 201 — )l = vi]1, (30)

where C is defined in Lemma 1. Using the zero initialization v and based on the fact that
[log]l < /ML we obtain from eq. (30) that

* * 2<1 — 77#)2QM2
o = kll® < 2C8 g — o I + =— 7
which, in conjunction with eq. (23), yields

- 3p? M? 6L%(1 — nu)2@M?
IF8(n) - Vo(on)|? < (32 + 230 o2 ol - i + 0

. (3D
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Then, substituting eq. (31) into Lemma 2, and using the definition of 7 in Theorem 2, we have
* N2 N N * 2 N 1 L2 2 2
I = oI <1 = @™ (4 Ny = il + 200 = ap) (14 3 ) 5 BV
r20 - o™ (145 ) () — V()]

<ol — i+ 20— o) (14 § ) BV ()|

LAM?

+12(1 - ap)V (14 A) B2(1 — nu)*C. (32)

Telescoping eq. (32) over k yields

* * 1 L2 — i
Iyt =21 <7l — w1+ 20— o)™ (14 1) 15 57 D 7 IV (i)l
j=0

LAM?
+%(1—a )N (1+/\) B*(1 — nu)*?

2. the notation of w in

q. ( —u'lI” < (L= am)Nyo — u5
Theorem 2 and 6o = 3(L* + Z5= + ZLZCQ)(I — o)V lys — yol|?, yields

k—1

~ M2 ,
V() — VO(x)]|? <o + 6L (1 — nu)QQF + wp? ZTJ IV®(zr_1-;)
j=0
6wL?M?
—(1 - Q32 33
(I—T)/.L2( np)~<p (33)

Then, using an approach similar to eq. (24), we have

B(ai1) <@(e) — (5~ FLa) VRGP + (5 + 62La ) V(i) — V()|

()
o) — (5 - BLa) IV + (5 + 8L )07

= 6L2M>
(54 9°La) IV -1+ B (5 4 50 ) 1 -
8 6wL2M2
+ ( ﬂ2L<1>) m(l —np)*@ B, (34)

where (4) follows from eq. (33). Then, rearranging the above eq. (34), we have

11 K—1
?(5 - BL<1>> Z HV@(xk)Hz
k=0

B 86 | 1Ly

= BK K

1—71

K—-1k—-1

2
+w52( +BL¢)1 SN Ve (e ? + 61% M ( +BL<1>)(1—W)2Q

k=0 j=0

6wlL?M?
(1 —np)*?p2,

(1 +BL<I>)W
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which, in conjunction with the inequality that 3" S~ asbr 15 < Yor an Y1 by, yields

1 K-1
)7 D Ive)?
k=0

(f—ﬁch - wﬁ2( + BLQ)

O(zg) — P(x*) 1 /1 o 6L2M?
SB—K+§(§+6L‘I’)1—T+ 2 ( +BLa) (1= )2
6wL2M?
( +5L<1>)(1ww(1—77u)w52- (35)

Using SLg + wﬂz( ﬁL@> — < % in the above eq. (35) yields

K-1
1 (@(zo) — o(x")) 3 0o 2712 M? 9
il P 2 < el 1— Q
which finishes the proof. O

L Proof of Corollary 3

Note that we choose N = ¢, xInx and Q) = ¢4k In £. Then, for proper constants ¢,, and ¢y, we have
BLe < §,Cq = O(xk?), 7 =0O(1) and wp? (5 + ﬁLq))— < &. Then, we have

ZHV@ (zp)]|? = (;—1—6).

k:

N

To achieve an e-accurate stationary point, the complexity is given by
« Gradient complexity: Ge(e) = K(N + 2) = O(r*e™?).
* Matrix-vector product complexities (dominant cost): MV (e) = K + KQ = 9] (I{4671) .

The proof is then complete.

M Proof of Corollary 4

Choose Q = ¢4 In £. Then, for a proper selection of the constant ¢,, we have Cg = O(k?). To
guarantee 6(1 + ) 2 (L2 + 250 M + 2L2C2 )52 , we choose 3 = O(xk~%), which implies
1—7=0(au). In addltlon we have w = 0(xk") and hence 50/(1 — 7) = O(k®). Then, we have

4

| Kl
2 _
e kz_o VO (zr)|” = (K + 7 +e)
Then, to achieve an e-accurate stationary point, the complexity is given by

« Gradient complexity: Ge(e) = K (N + 2) = O(r%e1).
* Matrix-vector product complexities (dominant cost): MV (e) = K + KQ = 9] (/{66*1) .

Then, the proof is complete.

N Proof of Theorem 3

We first provide two useful lemmas, which are then used to prove Theorem 3.

24



Lemma 4. Suppose Assumptions 1, 2 and 3 are satisfied. Choose inner stepsize o < % Then, we

have
oyy H .
< _
H &ck &vk Y (xk)”’
where we define
N N
apL(l—(l—au)T)) y o l-(1-op)z
—= 1- 2 : 36
N a(p—l— 1—v1—-au ( o) 1—+v1—-au (36)
Proof. Based on the updates of ITD-based method in Algorithm 2, we have, for j = 1,....,; NV,
oyl oy 1y oyl 1
- = - - vzv ) 7 - L VQ ) . )

which, in conjunction with the fact that ayk = 0, yields

N-1 N—-1

5 _ ‘
ou' _ _, > VaVyglaw ) [[ (I-aViglar,ui). 67

8.%‘;9 X L
7=0 =741

Then, based on the optimality condition of y*(x) and using the chain rule, we have
. y*(x
Va9l o0)) + 2 Vg ) = 0
which further yields
Oy (wx) _ 9y*(an) T )
8$k - 817k jl;[o( aV g(l’k, (xk)))
N-1 N-1
—a Y VuVyglary (@) [ U—aViglary ().  (38)
j=0 i=j+1

For the case where N = 1, based on eq. (37) and eq. (38), we have

Ayy Oyt (xr) Iy* (=
|28 - | < g |2 iyt 9
Next, we prove the case where N > 2. By subtracting eq. (37) by eq. (38), we have
Iy ) N9y (k)
) N—-1 ) N-1
"> Hvzvygm,y;) [T (7 - a¥igan ub) — VaVyg(an v @) T] (- aVigny @),
3=0 i=j+1 i=j+1
A
(40)
where we define A; for notational convenience. Note that A; is upper-bounded by
A <(1 = am)N T pllyg =y ()|
N-1 N-1
+L|| TI (= aVigloryi) = T (1= aViglaony @) @
i=j+1 i=j+1
M1

For notational simplicity, we define a quantity M}, in eq. (41) for the case where the product index
starts from j + 1. Next we upper-bound M;_; via the following steps.

Mjy <(1—ap) Mg + (1= ap)¥ 7 2ap|lyl™ =y ()|
(@) o o .
<(1—ap) Mo + (1= ap)¥ 7 2ap(l — ap) = |y — y* (2|

J

_J_3 *
<(1—ap)Mji+ (1 —ap)V "2 2ap|lyp — y* ()], (42)
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where (i) follows by applying gradient descent to the strongly-convex smooth function g(xy, -).
Telescoping eq. (42) further yields

N-1
e P _iz=2_3 %
M1 < — a2 My + 0 (1 - ap) 721 — aw)N = ~Fap|lyf — v (an)|
i=j+2
N—j7-3 ] )
<1 —op)N T 2My o+ Y (1= ap)i(1 - ap)NTETE S apllyl — (2|
1=0
<(1—ap)N T 2ap(1 — ap) T |y — y* (x|
N—j-3 D s
+ 3 (- ap)NEE R aplyl — v ()
1=0
N—j—2
< 3 (@ —apN T Sapllyd — y* (o),
1=0

. N
which, in conjunction with ZN I72(1 — )t < L0-am 2 yieygs

ST T an
N
ap(l —(L—ap)?)
1—v1—ap
Then, substituting eq. (43) into eq. (41) yields
Ay <(1—ap)N )y — v ()|

L(1—(1—ap)? 5
L GO0 (1 g - () @)

Summing up eq. (44) over j from 0 to NV — 1 yields

N-1 N N
apL(1—(1—ap)2)\, o« N 1—(1—au)z

S ay<(p+ — loau)s 1= " 45

= J —(p 1— 1_au )Hyk Yy (l’k)”( a:u’) 1_m ( )

Then, substituting eq. (45) into eq. (40) and using the notation wy in eq. (36), we have

Mj4 < (1 —ap)V 22yl — y* (zn)|. (43)

Ay 8y Ty) N |10y (zk) H 0
< — —y* . 46
|5 By H —an”| o || T enlvk =y @l (46)
Combining eq. (39) (i.e., N = 1 case) and eq. (46) (i.e., N > 2 case) completes the proof. O

Lemma 5. Suppose Assumptions 1, 2, 3 and 4 hold. Define

4M2w% +4(1 — 2ap)L*(1 4+ aLN)?
1—jou—(1—ap)N(1+ jau)

and w = (1 + (TN) 2(1 —ap)N Ay + AW[QN%, where wy is given in eq. (36). Let 0 =

[V®(zr) — VO (21| + + (AN —4L?(1+ aLN) ) |y — y*(xk) |? denote the approximation error

17
at the k'" iteration. Choose stepsizes 3% < 27 2 and o < 51 Then, we have

AN =

1 k - 1 k—1—j
5 < (1 - Zau) 8o + Ji(1 — ap)®N + 2wp? Z (1 - Z““) V()]
j=0

_ J * 3112
where Ji, = Zf:é (1 — iay) 4M 2‘ M’i’_]) ‘ is related to Jacobian matrix of response function.

Proof. First note that using the chain rule, V®(z;,) and V®(x),) can be written as

S _ N Ay’ N
vq)(wk) *vxf(xka Yk ) =+ Txkvyf(zka Yk )a

oy*(zr)

VO(zi) =Vaf(xr ¥ (zk)) + oy,

Vo f(@r y* (zr))- 47)
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Subtracting two equations in eq. (47), we have
IV@(2x) — Ve (xi) | <Llyy’ —y* (ar)]

0 Oy*(xk) 0O
|2 HLllyk g + ]| 2L ) O ool IRCLY
T
which, in conjunction with Ha”k | = et Ve Vyg(ar, vi) TINS5 (1 — aVyg(xk,yi))H <
oL Ej:() (1 —au)¥~"177 < aLN, yields
= . oy*(z oy
90 () — Vool <L(1+ L)y -y (@] +MH v Qe |
(2 L L2N N _ % k) 1— N
<(L+a Iy — v ( ()
+ Muwy |y =y (@)l (49)
where (i) follows from Lemma 4. Using ||y? —y* (z%)|| = [lyY_, —v* (x| < Iy, —y* (zr—1)| +
%ka — 2k—1|| and taking the square on both sides of eq. (49), we have
- 2 o 2
[90(ex) — Vole)|? <42 (1 + L)l v ()2 + 4027 20 B oo
k

L2
+AMPwR |y, — v (zr-1)II” + 4M2w?v?\\xk — x| (50)
In the meanwhile, based on Lemma 2, we have,

* 1 *
o =y @)l2 <(1 = )™ (1+ San) vy = y* (@)

" (1 T —) 21— ap)N|ap_r — > (51)
apl p

Based on @ < 5 and the form of Ay in Lemma 5, we have Ay > 4L%(1 + aLN)? > 0. Then,
multiplying eq. (51) by Ax and adding eq. (50), we have

~ 2
[90() — Vo) + (A = 4L2 (14 aLN) ) g — y* (@)

)2N

e

<(1= qom) (A =422 (14 aLN) Yl = o )2 + 4022

2 L2 N 2 92 L2 2
(1 @)?(1 — am)V Ay +4M wNﬁ)Hwk —za?, (52)

which, in conjunction with ||z, — z_1 |2 = B2[|V®(zk_1)||? < 282||VP(zx_1) — VO(zr_1)| +
232||V®(zx_1)||* and using the notation of w in Lemma 5, yields

~ 2
[90() — VO + (An = 4L2 (1+aLN) ) g — y* (@)

)2N

o

1 2

<(1_2% _ar2 N o 2 2

<(1 - gom) (A =422 (1 4+ aLN) s — v (@) + 401

+ 28w || V(1) — V(1) [* + 28°0| VO (wp—1)[|*. (53)

Using 32 < % and the notation 0, = H@@(mk)—v(b(xk)ﬂz—i— (An —4L? (1+aLN)2)||y,]€V—
y*(xy)||? in the above eq. (53) yields

y*(xx) H

1
5, < 4M2H —ap)?N (1 - zau>5k_1 2wB VO (zp_1) 2. (54)

Telescoping the above eq. (54) over k yields

(1 Jon) 04 5 (- B | 200

8xk —j
k-1 .
1 k—1—j
2 2
+2wi Y (1= qon) VeI
j=
which, in conjunction with the definition of .Ji, finishes the proof. O
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Proof of Theorem 3

Theorem 7 (Restatement of Theorem 3 with parameter specifications). Suppose Assumptions 1,
b 2,2 2
2, 3 and 4 hold. Define w = (1+ 2)L2(1 — ap)¥ay + P55 and + = N*(1 — ap)™ +
aM?w¥ +4(1—tap) L2 (1+aLN)?
1—fap—(l—ap)N(1+Lap)

N N "
a(p+ %J%)z))(l—au)*’l%. Choose parameters such that 5> < A o < L

2 2 3 2
L+ BLe )wp® < 1, where Lo = L + 2L JL”M + QPLJXJL + pLﬂsM denotes the

whk + Av(1 — ap)V, where Ay and wy are given by Ay = JWN =

and fLg + >

(1[1. 2
smoothness parameter of ®(-). Then, we have
K-1 9 2N
A@ TA (1—au)??N M (1 — aﬂ) L
D)2 <O( G + )
KZHV @l <O(G + Tt + S —

where Ag = ®(x) — min, ®(z) and A, = |lyo — y* (o) ||

Proof. Choose the same stepsizes « and § as in Lemma 5. Then, based on the smoothness of ®(-)
(i.e., Lemma 2 in [19]), we have

@) <o) — (5 — La ) IVREIP + (5 + BLa ) IVO(5) — V(0]
(4)
<d(xy) — (g - 5%) VD ()] + (g + 52L¢)50<1 - iaﬂ)k
B 2 2 = 1 k=1-J 2
+2(5+ 8L )wp Y (1 qan)  Ve(s))]
=0

- (g + 52L¢,)Jk(1 —ap)?N (55)

where (i) follows from Lemma 5 with 85, > ||V ®(21) — V®(z;,)||2. Then, telescoping the above
eq. (55) over k from 0 to K — 1 yields

K-1 1
(8- 5L0) Y IVl < alao) - aa) + 22 ILe)
k=0

ap
K-1 1
+ > SB35+ BLo) (1 —ap)?™
k=0
K—1k—1 1 b1
+2(5 4 82La up? (1=om)  IVE@IIE 56
k=0 j=0

which, combined with Y5 ' 70 (1 - Lap) V()2 < LIV ()2, yields

K—

(3 - 6La= (3 + BLa)u?) 1 X V00|

k=0

[

<(I)(£U0) — (I)({L‘*) i 4(% + ﬁL@)&O
- BK apK

1 1 K—-1
+ (5 + BLa)(1 — aﬂ)m? Do Tk (57
k=0

Based on the definition of J in Lemma 5, we have

K—-1k-1

ij— ZZ(l—f n) 4M2H%H 2 1077 X kZ Hayaxik ‘

k=0 j=0

. (58)

where (i) follows from the inequality that ZkK;()l Z aj br—1—; < Zk o Ok ZKﬁ b;. Choose
[ such that SLg¢ + O% (% + 6L¢,> wh? < %. In addition, based on eq. (49), recalling the definition
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that 6, = [|[V®(x0) — VP (x0)||2 + (Av —4L%(1+ OcLN)Q)HyéV —y*(x0)||%,

|25 Ld | < L we have
Oxg m

using the fact that

L2M2

60 < O((N2(1 = )™ +wh + A (1 = am)™) o = 5" (@o) I + 5 (1 — ap)™™). (59)

Recall the definition 7 = N2(1 — au)™ + w3 + An(1 — ap). Then, substituting eq. (58) and
eq. (59) into eq. (57) yields

K-1

1 D(zo) — 2(z*) | Tlyo —y (@o)|* | (1 —ap)*
= P 2 < (
7 2 Vel < O T2 R g
M? av 1 R~ (| 9y* ()
T S g
+ QL ( a,u) K oxy, ) (60)
k=0
which, in conjunction with || 8y :”) | < L , completes the proof. O
O Proof of Corollary 5
Based on the choice of o and N and using € < 1, we have w = O(/ex?)
In & €+ y/ex?(In )2
S0 e ver SYERDT o), 1)

K4

which, in conjunction with 8 = min{\/%, 1/ %, ﬁ}, yields 3 = O(k~3). Substituting
eq. (61) and 3 = O(x~3) into eq. (5) yields

KZ Va2 = 0% +o).

Then, to achieve an e-accurate stationary point, we have K = O(k3¢~!), and hence we have the
following complexity results.

* Gradient complexity: Ge(e) = K(N 4 2) = O(s*e ' In £).
* Matrix-vector product complexities (dominant computational cost):

MV(e) = 2KN = O(r*¢ L In 2).
€

Then, the proof is complete.

P Proof of Corollary 6

Based on the choice of o and N, we have
wy = O(alp+ apLN)N) = O(1),
4M2w]2\, +4(1 - iau)LQ(l + o<LN)2
T Tap— (1— o) (1+ Sap)

and hence w = O(x*) and 7 = O(k). Then, we have 3 = O(x?), and hence we obtain from eq. (5)
that

)\N - = G(H)a

K- 3 272
M=L
E: Ve (x)]|* = K+ o )

which finishes the proof.
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Q Proof of Theorem 4

We consider the following construction of loss functions.
1
f(xa y) :ixTsz + MlTy
1
9(@,y) =5y" Zyy — La"y + 17y, (62)

0 2} and M is a positive constant. First note that the minimizer of inner-level

where Z, = Z, =
function g(z, -) and the total gradient V®(x) are given by

y*(x) = 2, (Le — 1),

V®(z) = Zyx + LMZ;'1. (63)
Based on the updates of ITD-based method in Algorithm 2, we have, fort =0, ..., N
v =y —a(Zyyp ! - Lok + 1), (64)
Taking the derivative w.r.t. 3 on the both sides of eq. (64) yields
v, dy "
—= = ([ —aZ LI 65
8xk ( @ y) 8:Uk ta ’ ( )

Telescoping the above eq. (65) over ¢ from 1 to /N and using the fact that g—g% = 0, yields

N—
ayy
- ~az,)
8l‘k z:; @
which, in conjunction with the update xp 1 = x5 — ﬂM yields
N-1
Prsr = T — 5(szk +aLM Y (I -aZ, f1) (66)
=0

For notational convenience, let Zy = Zfl Bl(l — aZ,)! and zy = 1. Telescoping eq. (66) over k
from 0 to K — 1 yields

K—-1
=(I - BZ,)"1—LM Y (I - BZ,)"BZn1
k=0

=(I = BZ)"1~LMZ; ' Zy1+ LM > (I - BZ,)*BZx1
k=K
=(I - BZ,) 1 - LMZ; ' ZNy1+ LM(I — BZ,) 21 Zn1. (67)

Rearranging the above eq. (67) yields
| Zo(xx+LM Z; 2 )1
=2.(I = BZ.)51 + LM(I — aZ,)¥ 2,1 + LM(I — 2,)% Zn1|
>LPMP|(I - aZ)V Z; 0P + || Zo(1 - BZ) 51| + L2M2||(I - BZ.)% Zy1 ||

which, in conjunction with a < -+, yields

L2M?
IVO(es)|? 2 LM~ 02,)V 2, 1P = (- an™). (6

which holds for all K.
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