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Abstract— Disinfection robots have applications in promoting
public health and reducing hospital acquired infections and
have drawn considerable interest due to the COVID-19 pan-
demic. To disinfect a room quickly, motion planning can be
used to plan robot disinfection trajectories on a reconstructed
3D map of the room’s surfaces. However, existing approaches
discard semantic information of the room and, thus, take a long
time to perform thorough disinfection. Human cleaners, on the
other hand, disinfect rooms more efficiently by prioritizing the
cleaning of high-touch surfaces. To address this gap, we present
a novel GPU-based volumetric semantic TSDF (Truncated
Signed Distance Function) integration system for semantic 3D
reconstruction. Our system produces 3D reconstructions that
distinguish high-touch surfaces from non-high-touch surfaces at
approximately 50 frames per second on a consumer-grade GPU,
which is approximately 5 times faster than existing CPU-based
TSDF semantic reconstruction methods. In addition, we extend
a UV disinfection motion planning algorithm to incorporate
semantic awareness for optimizing coverage of disinfection tra-
jectories. Experiments show that our semantic-aware planning
outperforms geometry-only planning by disinfecting up to 20%
more high-touch surfaces under the same time budget. Further,
the real-time nature of our semantic reconstruction pipeline
enables future work on simultaneous disinfection and mapping.

Code is available at: https://github.com/uiuc-iml/
RA-SLAM

I. INTRODUCTION

Scene understanding plays a crucial role in autonomous
robots, as many tasks require the robot to have geometric
and semantic knowledge of its environment. Semantic recon-
struction has become a topic of intense recent interest with
recent developments in deep neural networks [14, 16, 22,
31]. It extends 3D geometric reconstruction by estimating
both the 3D representation of a scene and labeled object
classes or instances using computer vision methods [14, 16].
Applications of 3D reconstruction with semantic awareness
include camera pose estimation [18], Augmented Reality
(AR) [16], and robot navigation [22].

The goal of this paper is to reconstruct and recognize
high-touch surfaces for the purposes of robotic disinfection.
Humans are able to disinfect rooms efficiently by prioritiz-
ing the cleaning of high-touch surfaces [9, 10], which are
pathogen-transmitting surfaces (fomites) that are much more
likely than others to have been touched and therefore contam-
inated. For example, doorknobs, handrails, and switches are
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Fig. 1: Comparison of 3D semantic reconstructions of ScanNet [5] stream
scene0665 00 with high-touch surface segmentation. High-touch objects
such as tables and chairs are colored in the red. Non-high-touch surfaces are
colored in green. The estimated semantic reconstruction (right) produced by
our system captures the majority of high-touch surfaces in the ground-truth
semantic reconstruction (left). (Best seen in color)

commonly handled whereas walls are not. We hypothesize
that robots that use semantic information to identify such
surfaces can disinfect an environment more efficiently than
robots that rely only on geometric 3D mapping [7].

To this end, we present a novel volumetric semantic TSDF
reconstruction system and a semantic-aware disinfection
planner that allows a robot to leverage both semantic and
geometric information to optimize its disinfection paths.
We develop a GPU-based TSDF reconstruction system that
performs attribute segmentation and semantic large-scale
TSDF integration purely on GPU. Exploiting the parallel
computational power of the GPU and voxel hashing, our
system is capable of running at 50 fps on a single consumer-
grade NVIDIA GeForce GTX 1060 GPU. In comparison,
PanopticFusion [16], a notable semantic TSDF reconstruc-
tion system that uses GPU for segmentation and CPU for
semantic TSDF reconstruction, operates at a throughput of
4.3 Hz on two NVIDIA GeForce GTX 1080Ti GPUs. We
evaluate the performance of our system on the ScanNet
dataset [5], demonstrating an Area-Under-the-Curve (AUC)
of 0.73 for high-touch surface prediction. Furthermore, when
semantic-labeling is incorporated as prioritization scores into
the UV disinfection planner of Marques et al. [13], a robot is
able to disinfect up to 20% more of the high-touch surfaces
in the environment given the same time budget.

II. RELATED WORKS

A. 3D Geometric Reconstruction

3D reconstruction generates a representation of an envi-
ronment’s geometry given RGBD frames as input. Common
representations include surfels, point clouds, and volumetric
mapping with Truncated Signed Distance Function (TSDF).
TSDF methods reconstruct a scene by averaging weighted
TSDF observations from individual frames into a global
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frame [17], making it more robust to noise in the camera’s
depth measurements [19]. In addition, visibility determina-
tion and collision detection are more efficient when TSDF-
based representations are used [21].

KinectFusion [17] introduced TSDF-based reconstruction
on a GPU to carry out real-time dense surface mapping over a
dense voxel grid. InfiniTAM [8, 21] overcame limitations of a
fixed voxel grid by utilizing the voxel hashing technique [19]
to create a sparse voxel representation of the environment.
These methods are highly efficient, but produce geometric
reconstruction without any semantic information that can
benefit downstream tasks.

B. 3D Semantic Reconstruction

A pioneering work in semantic reconstruction is Seman-
ticFusion [14], which was extended from ElasticFusion [30],
a surfel-based dense SLAM algorithm. SemanticFusion uses
CNN to predict semantic label maps on RGB images, and
then propagates labels to the surfel integrator, which uses a
Bayesian update scheme to fuse newly predicted probabilities
with existing ones. Finally, a post-processing step is applied
to regularize the map. SemanticFusion leverages the GPU
to update the surfel map, yielding a frame rate of 25.3 Hz.
However, surfel-based representations are less convenient for
visibility determination and collision detection than TSDF-
based representations.

PanopticFusion, by Narita et al. [16], produces a TSDF
volumetric semantic mapping for larger scenes. Besides
semantic labeling, PanopticFusion performs panoptic label
tracking as well, giving countable objects in the scene that
belong to the same class different instance labels. However,
PanopticFusion builds on voxblox [20], a CPU-based TSDF
mapping framework, so it does not fully leverage GPU
parallelism and is reported to run at a throughput of 4.3 Hz
with an Intel Core i7-7800X CPU running at 3.50 GHz and
two NVIDIA GeForce GTX 1080Ti GPUs. In comparison,
our GPU-based semantic-enabled TSDF integrator operates
at approximately 50 Hz for efficient semantic reconstruc-
tion. However, our method does not perform multi-class
segmentation or panoptic labeling, but this is suitable for
our application because only a binary label is needed for
high-touch surface prediction.

The recently released Kimera [22] package provides a
semantic SLAM solution. Kimera is a CPU-based imple-
mentation that provides a per-frame 3D mesh with a latency
of 5 ms, which supports real-time applications such as ob-
stacle avoidance. However, for semantic labeling, Kimera is
reported to operate at 10 Hz using provided segmentation
labels, which is not as efficient as our implementation.

C. Disinfection Trajectory Planning

Researchers have recently been inspired to address the
COVID-19 pandemic by studying the problem of trajectory
planning for UV disinfection. Sanchez and Smart [25] ex-
ecute boustrophedon-style coverage paths [2] over human-
segmented planes. Conte et al. [4] propose a teleoperated
robotic platform for disinfection whose operator is guided

by a real-time 3D disinfection estimated map. Both Ruan
et al. [23] and Vyshnavi et al. [29] propose an autonomous
system that traces a user-specified set of waypoints while
avoiding collisions with dynamic obstacles in the environ-
ment. These methods rely on human expertise, which limits
their convenience and performance.

Others perform optimal coverage path planning on 2D
floor plans. Conroy et al. [3] propose selecting waypoints
on a 2D floor plan via solving a linear program over a
regular grid and formulating the connection of the selected
waypoints as a Travelling Salesman Problem. Similarly,
Tiseni et al. [28] uses artificial random-fields to guide a
robot’s motion according to the estimated disinfection status
of the floor plan, using Genetic Algorithms to optimize the
potential functions used in path generation. 3D geometry is
important to address for disinfecting real environments, and
Marques et al. [13] present a dosage planning and waypoint
selection algorithm that uses a 3D mesh of the environment.
Most related to this work, Hu et al. [7] propose a dense
semantic reconstruction pipeline for predicting high-touch
surfaces on a scene, then using handcrafted disinfection
motion primitives to irradiate predicted high-touch areas. We
extend the work of Marques et al. [13] by using predictions
of high-touch probability to prioritize high-touch surfaces.

III. PERCEPTION SYSTEM

A. System Overview

Fig. 2 presents a flowchart of the proposed semantic
reconstruction pipeline. Our system takes in timestamped
RGBD frames as inputs. During the pre-processing phase,
we feed the RGBD frame into a 2D affordance segmentation
model and a camera pose estimation module run in parallel.
We follow Narita et al. [16] and use an external visual SLAM
algorithm (such as OpenVSLAM [27] or ORB-SLAM [15])
for camera pose estimation. The resulting estimated poses
and the predicted affordance map are then sent to a semantic
TSDF integrator where the estimated geometry and semantic
probabilities are incrementally integrated. As illustrated in
Fig. 2, our system supports various real-time scene extraction
methods such as direct generation of 2D projections of TSDF
via ray casting, rasterization, and meshing with the Marching
Cubes [12] algorithm.

B. 2D Affordance Segmentation

For every RGB image in the RGBD frame, we use a
convolutional neural network (CNN) to predict a pixel-wise
high-touch affordance map. The high-touch affordance map
estimates the likelihood of every observed pixel being a part
of a high-touch surface or a low-touch surface. The input
to the model are the RGB images from the camera, and the
model outputs high-touch/low-touch probability maps of the
same spatial resolution as the input images. For efficiency,
we select lightweight RefineNet [11] with ResNet-18 [6]
backbone as our model.

We use the open-source multi-class dataset ADE20K [32]
and the ScanNet dataset [5] to train our segmentation model,
and then we create a surjective mapping φ to output binary
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Fig. 2: High-level overview of our GPU-based volumetric semantic recon-
struction system. All modules run on GPU except for the external visual
SLAM module in the pre-processing stage. (Best seen in color)

high-touch prediction labels. We divide the set of all classes
in the open-source dataset L into the classes Lht that are
high-touch and Lother which contains the rest (such as wall
and floor). The mapping function φ is given by φ(x) =
I[x ∈ Lht]. The subset Lht of high-touch surfaces from the
ADE20K dataset [32] and the ScanNet dataset [5] are given
in the Appendix. The segmentation model is trained using
multi-class prediction using cross entropy loss. That is, for an
input RGB image of size (H,W ), the segmentation model
predicts a probability tensor P of shape (∣L∣,H,W ). Let
Pc(i, j) be the predicted probability of pixel (i, j) belonging
to the c-th class. Then we define Ŷh(i, j) and Ŷl(i, j) as the
estimated high-touch and non-high-touch probability of pixel
(i, j), respectively. During inference, we max-aggregate the

probability maps using
Ŷh(i, j) =maxc∈Lht

Pc(i, j) (1)

Ŷl(i, j) =maxc∈Lother
Pc(i, j). (2)

C. Dense Semantic Reconstruction - Voxel Hashing

Unlike many previous works in GPU-based semantic re-
construction [14], our system adopts a TSDF representation
of 3D space implemented with sparsely hashed voxels,
leveraging both the parallel computational power from the
GPU and the memory benefits of hashing techniques.

We build a voxel hashing scheme that supports incre-
mental semantic probability integration based on the work
of Nießner et al. [19]. As in [19], the voxel hashing table
manages an intermediate unit called voxel blocks, where each
voxel block manages 83 voxels. To resolve hashing collision,
we followed [19] and use the linked list technique. That
is, we traverse the array representation and find the next
available entry if two voxels are hashed into the same entry.

Different from Nießner et al. [19], in our design, the size
of the voxel hashing table is initialized to support up to
221 voxel blocks. The work of Nießner et al. [19] stores
8 channels in every voxel. To support high-touch surfaces
predictions, we extend the voxel to store 9 channels with
an addition high-touch probability channel. The computation
and integration process of this additional channel is described
in Section III-D.4.

We chose to implement a binary attribute prediction sys-
tem instead of a multi-class prediction system so that our
system can run on consumer-grade GPUs or other edge-
computing platforms. In our current implementation, the size
of the map is fixed and is pre-allocated during initialization
of the system. When the voxel size of 1 cm is used, the
system is measured to occupy 4,367 megabytes of GPU
memory. Every additional float feature for every voxel would
incur an additional 512 megabytes of GPU memory usage,
given the memory overhead of semantic TSDF representation
and all intermediate buffers. To accommodate the NYU40
[26] labels used in the ScanNet [5] dataset, we would need
to introduce 40 semantic classes, which is infeasible for
consumer-grade GPUs.

D. Volumetric Integration

1) Voxel Selection: We follow Nießner et al. [19] and
use a variant of the Digital Differential Analyzer (DDA)
algorithm proposed in [1] to select a subset of voxel blocks
to access. The DDA algorithm sends a ray from the focal
point of the camera and selects voxel blocks that are within
the specified truncation distance from the measured point as
candidates. If voxel blocks selected by the DDA algorithm do
not exist, new voxel blocks will be initialized at that spatial
location with TSDF weight of 0. Existing voxel blocks are
updated as described in the following subsection.

2) TSDF Update: Consider an arbitrary voxel v that is
selected by the DDA algorithm. Let dv be the depth of the
voxel if it were to be observed by the camera. Let d be the
observed depth value of the projected pixel of this voxel on
the camera plane along the casted ray. To fuse the newly



observed TSDF value with the existing value stored in the
voxel. We follow the design of the weighted average scheme
in InfiniTAM [8]. In particular, we use the heuristic that
the values observed by the depth camera become noisier the
further it is from the focal point of the camera. We compute
the TSDF weight wnew for every measurement according to

wnew = (1 −
d

dmax
) ⋅winc (3)

where dmax is the maximum specified range of the depth
camera used and winc = 4 represents the maximum weight
of a single observation. Let TSDFold be the existing TSDF
value and wold be the associated TSDF weight stored in the
voxel. We update the TSDF value by

TSDF = (d − dv) ⋅wnew + TSDFold ⋅wold
wnew +wold

. (4)

After the TSDF update, we update the weight stored in
the voxel by

w = MIN{wold +wnew,wmax} (5)
where we use wmax = 25 ⋅ winc to clip the accumulated
TSDF weight. This is done so that if there are multiple
new measurements of the voxel that are different from the
existing one, the TSDF value can be shifted towards the new
observations.

The TSDF weight w is initialized to 1 when their cor-
responding voxel blocks are first initialized in the GPU
memory.

3) Color (RGB value) Update: In the color update, we
use a similar scheme as the TSDF update in equation 4,

RGB = RGBnew ⋅wnew +RGBold ⋅wold
wnew +wold

(6)

where wnew and wold are the TSDF weights in equation 4.
4) Semantic Probability Update: For semantic probability

integration, we use a different weighting scheme. For any
observed pixel, its semantic probability weight is given by

vnew = −
16d(d − dmax)

d2max
(7)

which is a quadratic function with a negative quadratic
coefficient. Empirically, CNN-based segmentation models
perform best on mid-range objects. When the object is too far
away or too close to the camera, the prediction of the model
becomes less reliable. We introduce this heuristic weighting
to offset the prediction confidence at different ranges.

Let pold be the existing probability and vold be existing
weights. The semantic probability is computed by

pht = exp
vold ⋅ log pold + vnew ⋅ log Ŷh(i, j)

vnew + vold
(8)

plt = exp
vold ⋅ log(1 − pold) + vnew ⋅ log Ŷl(i, j)

vnew + vold
(9)

pnew =
pht

pht + plt
. (10)

Note that when vold = vnew = 1, the equations reduce to
recursive Bayesian update.

Similarly, after semantic probability integration, we update
the weight stored in the voxel by

v = MIN{vold + vnew, vmax} (11)
where vmax = 100.

IV. SEMANTIC-AWARE UV DOSAGE PLANNER

We modify the optimal disinfection trajectory planner by
Marques et al. [13] to consider semantic information in
dosage optimization. The original planning pipeline is as
follows: Given a mesh with N triangles sj and a robot
model, K candidate vantage points xi are proposed within the
workspace of the robot from a 3D grid. For each reachable
candidate point, an irradiance vector Ii is calculated, where
Iij is the irradiance produced by the light source at xi over
the mesh triangle sj . We consider that the robot will stay
on each vantage point for a time ti and those times can
be optimized by the following LP, where Tmax is the total
time budget for disinfection, µmin is the target disinfection
fluence, σj is a slack variable that assures the feasibility of
the LP under tight time limits and mj is a penalty for not
disinfecting triangle sj .

argmin
ti,σj≥0

K

∑
i=1
ti +

N

∑
j=1

mjσj (12)

s.t.
K

∑
i=1
Iijti + σj ≥ µmin ∀j = 1,⋯,N (13)

K

∑
i=1
ti ≤ Tmax, (14)

In Marques et al. [13], since no semantic information was
available, mj was set to be simply proportional to the area
of the surface patch sj . In order to incorporate the high-
touch surface probabilities from semantic reconstruction,
we consider 2 different paradigms: soft thresholding (SoT)
and hard thresholding (HaT). In ST, failure to disinfect a
given surface si, represented by the slack variable σi, is
penalized linearly according to their surface area and high-
touch probability. More concretely, when ST is used, the
penalization terms mj is defined as in Equation 15, where
A(s) is the area of triangle s, pjht is the estimated probability
that sj is a high-touch surface, Ma and Ms are the area and
semantic penalty scale factors, respectively. The area penalty
is normalized by the area of the smallest triangle in the scene
to ensure this penalty is always greater than one and that it
is invariant with respect to the units of the mesh.

mj = (Ms ⋅ pjht)(Ma
A(sj)

minlA(sl)
) (15)

The intuition behind the role of Ms is that, for triangles
with the same area - and in a room where all surfaces have
identical irradiances, a given vantage point would have to
disinfect at least Msp

j
ht low touch surfaces before it would be

considered for the optimal solution instead of another point
that disinfects the high-touch triangle sj . A similar argument
is valid for the area penalty Ma for triangles with the same
high-touch probability, pht. The semantic and area penalties
are multiplied together to preserve this ceteris paribus logic
in this extension of the big M method.

In HaT, the penalty for not disinfecting is set to zero for
all surfaces with pht below a specified cutoff probability α,
while surfaces above that threshold get penalized according
to their relative areas. The penalization terms mj are then



given by,

mj =
⎧⎪⎪⎨⎪⎪⎩

0 pjht < α
Ma

A(sj)
minlA(sl) pjht ≥ α

(16)

After optimizing the dwell times, the tour through all
points with non-zero time is calculated following the pipeline
described in Marques et al. [13].

V. EXPERIMENTS

A. Evaluation Setup

We evaluate our system on the ScanNet V2 dataset [5],
which is a dataset consisting of streams of different scenes
for 3D indoor scene understanding. It contains 1201 sensor
streams for training, 312 streams for validation, and 100
streams for testing purpose. Each stream provides RGBD
frames, ground-truth camera trajectories, and reconstructed
3D representation of the underlying scene with 3D semantic
annotations. Similar to how we trained the high-touch seg-
mentation model, to adapt the dataset for evaluating semantic
disinfection performance, we define a partition which maps
NYU40 [26] classes in ScanNet to either high-touch or low-
touch. The high-touch segmentation model is trained using
the ADE20K [32] dataset, which contains 150 classes from
20,210 images in the training split and 2,000 images in the
validation split. As in previous works such as PanopticFusion
[16], this evaluation uses reference camera poses provided by
the ScanNet dataset to isolate errors introduced by external
visual SLAM algorithms.

B. Segmentation Model Implementation Details

The backbone ResNet-18 was initialized using Ima-
geNet [24] pre-trained weights. Images are downscaled to
(240,320) and a batch size of 16 was used for training. The
training process uses an SGD optimizer to train weights and
runs for 100 epochs. The learning rate is initialized to 0.01
and is reduced by 0.1 every 40 epochs.

We use various augmentation techniques during training to
make the model more robust against robot motion. Besides
standard horizontal flipping, random resizing and random
scaling augmentations, Gaussian blur is also applied prob-
abilistically during training to simulate camera motion.

C. Evaluation of Semantic Reconstruction System

1) Efficiency: Table I illustrates the throughput of our
system compared to existing TSDF-based semantic recon-
struction works. SemanticFusion [14] works real-time on a
GPU and scales to large scenes thanks to its surfel-based
representations. However, it does not support TSDF repre-
sentations, which is an efficient type of 3D representation for
many downstream robotics tasks such as robot navigation.
DA-RNN [31] is based on the KinectFusion [17] work and
fails to scale to large scenes. Moreover, the usage of RNNs
poses heavy computational cost. Finally, CPU-based methods
[16, 22] rely on VoxBlox [20] and their throughput is far
from camera frame rate.

We carried out detailed run-time analysis of our method
using ScanNet stream scene0000 00. We observe that the

main bottleneck of our method is the semantic segmen-
tation module, which is measured to have a latency of
16.91±2.65 ms. In stark contrast to the >100 ms volumetric
integration time of CPU-based semantic TSDF methods [16,
22], our semantic TSDF integration implementation has a
latency of 1.91±0.43 ms on a consumer-grade GPU. In sum,
the throughput of our system is 53.1 Hz.

2) Accuracy: We evaluate accuracy of high-touch area
segmentation on the validation split of the ScanNet dataset
[5]. To create correspondence between vertices in the ground-
truth mesh and the estimated mesh, we use nearest neighbor
(NN) search. Every vertex in the estimated mesh is consid-
ered as the center of the NN search. If the nearest vertex in
the ground truth mesh is within 2 cm of the center, then
the correspondence is established and the labels of these
two vertices are compared. If no vertex in the ground-truth
mesh is within 2 cm of a vertex in the estimated mesh, the
prediction of this estimated vertex is marked as incorrect
regardless of its predicted label.

Figure 3 shows the Precision-Recall curve of voxel high-
touch prediction in the reconstructed meshes. The Area-
Under-Curve (AUC) of the 3D semantic reconstruction sys-
tem is 0.73 with an Intersection-over-Union (IoU) of 54.0
when a cutoff of 0.4 is used. The AUC of the 2D high-touch
segmentation model is 0.45, which is significantly worse
than the AUC of the 3D segmentation. By integrating and
merging 2D semantic predictions from multiple frames, our
semantic reconstruction system produces a 3D segmentation
with higher segmentation quality.

Table II compares the semantic accuracy of our system
with SemanticFusion [14], where ground truth poses and
the same 2D affordance segmentation model are used for
both methods. Our method achieves best performance due
its improved probability integration scheme and different
scene representation than SemanticFusion. Noticeably, our
method largely outperforms the native implementation of
SemanticFusion, which computes segmentation only once
every 10 frames for efficiency. The modified SemanticFusion
runs at a reduced throughput to compute segmentation for
every frame and, as a result, considerably outperforms its
native counterpart but is still worse than our method.
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Fig. 3: Precision-Recall (PR) curve of high-touch surface prediction task.
The orange PR curve is 3D reconstruction from our semantic reconstruction
system. The blue PR curve is generated by the 2D segmentation model in
our semantic reconstruction system. The black dashed line illustrates the PR
curve of a no-skill model that predicts everything in a mesh as high-touch.
(Best seen in color)



Method Multi-Class TSDF Large-scale GPU Integration Throughput
SemanticFusion [14] 3 7 3 3 25.3 Hz
DA-RNN [31] 3 3 7 3 5 Hz
PanopticFusion [16] 3 3 3 7 4.3 Hz
Kimera [22] 3 3 3 7 <10 Hz1

Ours 7 3 3 3 53.1 Hz

TABLE I: Comparisons of semantic 3D reconstruction systems. Results from other works are reported in corresponding publications. 1 Estimate; reported
latency is 0.1 s not accounting for segmentation latency.

Method IoU
SemanticFusion [14] 43.4
SemanticFusion [14]1 46.9

Ours 51.2

TABLE II: Comparisons of 3D IoU between SemanticFusion [14] and our
method on a subset of ScanNet [5] sequences used to evaluate disinfection
efficiency. 1: native SemanticFusion implementation performs segmentation
every 10 frames for efficiency; here we perform segmentation every frame
for fair comparison with our method.

D. Semantic Impact on Disinfection Efficiency

We evaluate the improvements of incorporating semantic
information in UV disinfection by planning disinfection
trajectories for 10 rooms on ScanNet[5] with the largest floor
plans. We consider 3 different planning paradigms: Surface
Agnostic, SoT, and HaT with a cutoff of 0.4. The rooms
were disinfected by the ”Floatbot” robot model proposed in
[13] to obtain a proxy of robot-independent best possible
disinfection result and speed up collision checks during the
experiments, though a 6-DOF arm mounted on a holonomic
base, ”Armbot”, was shown to have comparable disinfection
capabilities [13]. The target fluences for the rooms were
set to 280mj/cm2 and the light source considered was a
spherical 10W UV light source. The penalties Ma and Ms

were both set to 10.
To assess the impact of reconstruction error to disinfection

planning, two experiments were conducted: one using the
estimated mesh produced by our system and the other using
the ground truth meshes (labelled gt). In both cases, the
disinfection coverage was evaluated by executing the plan on
the ground-truth mesh of the environment. Note that for the
ground truth meshes, there is no difference between HaT and
SoT, so only HaT experiments were performed. The plans are
created using time budgets of [1,2,4,6,8,10,15,20,25,30] min-
utes to understand how the fraction of high-touch surfaces
gets sterilized when given different time-budgets. Trajectory
differences are not visualized because they are not very in-
formative due to the probabilistic nature of motion planning
algorithms.

Since different meshes are of different sizes, to compare
results across meshes, we evaluate disinfection progress by
fraction of disinfected high-touch area given constant time
budgets. The results are presented in Figure 4, where uplift is
the difference between the fraction of high-touch areas disin-
fected by the corresponding strategy and the surface agnostic
strategy using the same time budget on the same mesh. The x
axis shows the fraction of high-touch surfaces disinfected in
that budget. As can be seen by the trend lines, all semantic
disinfection planners outperform surface-agnostic planning
(uplift > 0), even when using our estimated meshes instead
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Fig. 4: Increase in disinfected high-touch surface fraction over surface
agnostic planning for different surface-aware disinfection strategies over 10
ScanNet Scenes (Best seen in color)

of the ground truths for planning. There seems to be little
difference between HaT and SoT planning. The uplift is
less pronounced at higher disinfection percentages, since
disinfection has a ”long tail”: large, open areas get easily
disinfected early on, while smaller hidden surfaces often have
poor reachability and visibility, taking longer to disinfect
and enabling the surface-agnostic strategy to ”catch-up” to
semantically informed ones when given ample time.

VI. CONCLUSION

We present a framework to optimize UV disinfection
planning problems in real-world environments. Specifically,
we design an efficient TSDF-based semantic reconstruction
system that is able to run at over 50Hz in consumer-grade
hardware and a semantic-aware UV disinfection planner as
a downstream module that outperforms semantically unin-
formed planners by disinfecting up to 20% more relevant
surfaces in indoor environments under the same time budget.
We, therefore, show that incorporating semantic knowledge
in disinfection planning can provide real efficiency gains,
especially under tighter time budgets.

As future work, we aim to extend our system to an
actively exploring perception system that reconstructs the
environment and disinfects its high-touch surfaces simultane-
ously to further increase the system’s real-world applicability,
and bypass initial mapping steps in planning. The real-time
nature of the proposed semantic reconstruction pipeline is a
core enabler of this future development. Further, extending
this work to multiple lower powered disinfection robots
would also be a fruitful direction to enable disinfection of
larger or more crowded areas, while presenting interesting
challenges in distributed mapping and exploration.
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APPENDIX

A. High-touch Mapping from Classes in the ADE20K dataset
and the ScanNet dataset

As discussed in the perception system section, we create
a high-touch mapping from the 150 classes in the ADE20K
dataset and the 40 NYU40 classes in the ScanNet dataset.

Categories in ADE20K that are mapped to be ‘high-
touch’: bed; cabinet; door; table; chair; sofa; shelf; armchair;
seat; desk; wardrobe; lamp; railing; cushion; chest; counter;
refrigerator; pillow; bookcase; countertop; kitchen island;
swivel chair; towel; pole; bannister; stool; cradle; blanket;
tray; plate.

Categories in ScanNet that are mapped to be ‘high-
touch’: bookshelf; counter; desk; shelves; dresser; pillow;
refrigerator; towel; cabinet; night stand; lamp; otherfurniture;
bed; otherprop; chair; sofa; table; door;

All other categories and unannotated background are
mapped to ‘low-touch’. We acknowledge that our partition
is not perfect and there are controversial categories (e.g.,
whether A.C. outlets are high-touch), but we believe such
problem is out of the scope of this paper and does not affect
the novelty of our technique.
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