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ABSTRACT

Sequential decision-making under uncertainty is present in many important problems. Two popular
approaches for tackling such problems are reinforcement learning and online search (e.g., Monte
Carlo tree search). While the former learns a policy by interacting with the environment (typically
done before execution), the latter uses a generative model of the environment to sample promising
action trajectories at decision time. Decision-making is particularly challenging in non-stationary
environments, where the environment in which an agent operates can change over time. Both
approaches have shortcomings in such settings—on the one hand, policies learned before execution
become stale when the environment changes and relearning takes both time and computational effort.
Online search, on the other hand, can return sub-optimal actions when there are limitations on allowed
runtime. In this paper, we introduce Policy-Augmented Monte Carlo tree search (PA-MCTS), which
combines action-value estimates from an out-of-date policy with an online search using an up-to-date
model of the environment. We prove theoretical results showing conditions under which PA-MCTS
selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a
policy. We compare and contrast our approach with AlphaZero, another hybrid planning approach,
and Deep Q Learning on several OpenAl Gym environments. Through extensive experiments, we
show that under non-stationary settings with limited time constraints, PA-MCTS outperforms these
baselines.
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1 Introduction

Sequential decision-making is present in many important problem domains, such as autonomous driving [Bouton
et al., 2019], emergency response [Mukhopadhyay et al., 2019], and medical diagnosis [Ayer et al., 2012]. An open
challenge in such settings is non-stationary environments, where the dynamics of the environment can change over time.
A decision agent must adapt to these changes to avoid taking sub-optimal actions. Two well-known approaches for
sequential decision-making are reinforcement learning (RL) and online planning [Kochenderfer et al., 2022]. In RL
approaches, an agent learns a policy 7, i.e., a mapping from states to actions, through interacting with the environment.
The learning can also take place before execution using environmental models. Once a policy is learned, it can
be invoked nearly instantaneously at decision time. Deep RL methods, which use a neural network as a function
approximator for the policy, have achieved state-of-the-art performance in many applications [Silver et al., 2016,
Kochenderfer et al., 2022]. However, when faced with non-stationary environments, a policy can become stale and
result in sub-optimal decisions. Moreover, retraining the policy on the new environment takes time and considerable
computational effort, particularly in problems with complex state-action spaces. While RL algorithms have been
designed to operate in non-stationary environments [Ortner et al., 2020, Cheung et al., 2019], there is a delay between
when a change is detected and when the learning framework converges to the updated policy. Depending on the problem
setting, such delays might be very expensive.

An alternative approach is using algorithms such as Monte Carlo tree search (MCTS) to perform online planning. These
approaches perform their computation at decision time using high-fidelity models of the current environment to find
promising action trajectories. These models can be updated as soon as environmental changes are detected, and such
changes can be immediately incorporated into decision-making (assuming that the generative model used to build the
search tree can be updated quickly). MCTS has been proven to converge to optimal actions given enough computation
time [Kocsis and Szepesvdri, 2006], but convergence can be slow for domains with large state-action spaces. The slow
convergence is a potential issue for problem settings with tight constraints on the time allowed for decision-making;
e.g., in emergency response, when an incident occurs, any time used for decision-making increases the overall response
time [Pettet et al., 2021].

As we point out, both RL and MCTS have weaknesses when applied individually to complex decision-making problems
in non-stationary environments. We argue that a hybrid decision-making approach that integrates RL and online
planning can combine their strengths while mitigating their individual weaknesses in non-stationary environments.
The intuition is that if the environment has not changed too much between when an optimal policy was learned
and when a decision needs to be made, the policy can still provide useful information for decision-making. Similar
hybrid approaches have been explored and have achieved state-of-the-art performance in many domains. For example,
AlphaZero [Silver et al., 2018a] integrates a policy and value network within a modified MCTS, and has achieved
state-of-the-art performance in games such as Go. However, to the best of our knowledge, such a hybrid approach has
not been developed specifically for non-stationary environments.

In this paper, we show how hybrid approaches can combine offline learning and online search for decision-making in
non-stationary environments. We present a novel hybrid decision-making approach, called Policy-Augmented Monte
Carlo tree search (PA-MCTS). Our approach is remarkably simple—it combines a policy’s action-value estimates with
the returns generated by MCTS without changing either of the two approaches, i.e., the combination occurs entirely
outside the online search tree. Specifically, we make the following contributions:

1. Conceptually, our core contribution is the idea that offline planning and online search can be combined for
decision-making in non-stationary environments.

2. We present two algorithms to operationalize the proposed idea. The first approach, our core algorithmic
contribution, is a novel algorithm that combines a (relatively) stale policy with MCTS after the search, i.e.,
completely outside the tree. We present several theoretical results for the proposed approach. Second, we
show how existing hybrid approaches, e.g., AlphaZero can also be used for decision-making in non-stationary
environments.

3. We validate our approach using four open-source environments from OpenAl Gym and compare it with other
state-of-the-art approaches. We show that PA-MCTS results in two distinct advantages—first, given a specific
computational budget, our framework converges to significantly better decisions than standard MCTS; and
second, online search makes our approach significantly more robust to environmental changes than standard
state-of-the-art approaches.



2 Background

Motivating Environments: Consider the problem of proactively allocating ambulances in a city in anticipation of
accidents, modeled as an MDP [Mukhopadhyay et al., 2018]. Now, consider that the city experiences unexpected
congestion, changing the underlying MDP’s transition function. First responders cannot wait to re-train a new policy,
and a sub-optimal policy can waste invaluable time to respond to emergency situations. Abstraction of such a problem
can be modeled in simpler settings such as toy environments in OpenAl Gym [Brockman et al., 2016]. For example,
in the cartpole environment, a rigid pole is attached to a cart via a hinge. The cart can move freely on a bounded,
frictionless horizontal track and the agent (i.e., the controller) can apply a force to the cart parallel to the track in either
direction. The goal of the controller is to balance the pole as long as possible. Non-stationarity can be induced by
varying the gravitational constant or the mass of the cart. Similarly, the Frozen Lake environment involves an agent
trying to cross a frozen lake from a start position to a goal position (pre-determined) without falling into any holes (we
show a schematic of the environment in Fig. 1). However, the slippery nature of the surface results in the agent not
always moving in the intended direction. Here, non-stationarity can be induced by changing the coefficient of friction
on the surface, thereby changing how the agent moves. In all settings, we explore how the agent can quickly adapt to
the updated environment.

Monte Carlo Tree Search: Our approach is based on Monte Carlo Tree Search (MCTS), an anytime search algorithm
that builds a search tree in an incremental and asymmetric manner [Coulom, 2006, Kocsis and Szepesvari, 2006,
Browne et al., 2012]. MCTS represents environment states by nodes, with the current state being the root node. Actions
that result in a transition from one state to another are represented as edges between nodes. The fundamental idea of
MCTS is to bias the search toward actions that appear promising. To determine which actions are promising, MCTS
uses a model M, of the environment at the current decision epoch ¢ to simulate a rollout (commonly a randomly
sampled possible future trajectory) to the end of the planning horizon. A tree policy, such as the commonly used Upper
Confidence bound for Trees (UCT) algorithm [Kocsis and Szepesvari, 2006], then uses the averaged returns of these
rollouts as estimates G (s, a) for the value of each action a at each state s, and biases the exploration of future rollouts
towards higher estimated returns. MCTS is proven to converge to the optimal action given infinite time [Kocsis and
Szepesvari, 2006]. However, the number of iterations required can become impractical as the state-action space of the
environment grows.

AlphaZero: One of the most well-known approaches that combine the strengths of MCTS-based planning and deep
learning is AlphaZero [Silver et al., 2018b], which has shown state-of-the-art performance in games such as Chess and
Go. AlphaZero consists of a neural network to estimate the value of states and MCTS is used as a means for policy
improvement. While AlphaZero was not designed as a framework for decision-making in non-stationary environments,
we hypothesize that it is particularly suited to such environments. We refer readers to the seminal work by Silver
et al. [2018b] for a comprehensive description of the AlphaZero framework. While we show experimental results
against AlphaZero as a baseline, we reiterate that showing that AlphaZero can be used as a decision-making tool for
non-stationary environments is one of our contributions.

3 Markov Decision Processes in Non-Stationary Settings

Markov decision processes (MDP) provide a general framework for sequential decision-making under uncertainty. An
MDP can be defined by the tuple (S, A, P(s,a),r(s,a)), where S is a finite state space, A is a discrete action-space,
P(s' | s,a) is the probability of reaching state s’ when taking action a in state s, and r(s, a) is the scalar reward when
action a is taken in state s. The goal of an agent is to learn a policy 7 that maps states to actions (or, more generally,
states to a distribution over actions) that can maximize a specified utility function. Typically, the utility function is
simply the expected cumulative reward, also called the refurn, which is defined as Ep |72  'r(s¢, 7(s))], where ~
denotes the discount factor that weighs immediate rewards more than future rewards. We are interested in settings
where the environment with which the agent interacts changes over time. Specifically, we consider an agent that is
trained on a specific task given a particular setting, but is executed in an environment where the underlying MDP’s
transition function has been modified; e.g., consider the problem of emergency response described in Section 2).

We point out that our interest lies in problem settings where learning a new policy immediately is infeasible in practice.
In complex real-world tasks, learning a new policy takes time, and decisions must be made as the policy is being
updated based on the new environmental conditions. We are interested in understanding how agents can optimize
decision-making during such delays, i.e., between when a change is detected in the environment and when the agent
learns a new (near-optimal) policy. One way to model such a problem is a non-stationary Markov decision process
(NSMDP) [Lecarpentier and Rachelson, 2019]. An NSMDP, as defined by Lecarpentier and Rachelson [2019], can be
viewed as a stationary MDP where the state space is extended with a temporal dimension. Depending on whether the



task is episodic and whether the agent is allowed to explore along the temporal axis, this enhancement can be trivial or
difficult [Lecarpentier and Rachelson, 2019].

The rate of change in the transition function is typically bounded in an NSMDP by assuming Lipschitz continu-
ity [Lecarpentier and Rachelson, 2019], which assumes that the function changes smoothly over time. However, some
situations can cause abrupt, large changes to the dynamics of the environment. We propose a new approach to bound the
non-stationarity of an MDP by instead considering an upper bound on the total change in the transition function between
training and execution; we refer to such a setting as transition-bounded non-stationary Markov decision processes
(T-NSMDP). Consider the transition probability function P;(s" | s, a), where the subscript ¢ denotes the time step under
consideration. Now, consider that the environment undergoes some change between time steps 0 and . We assume that:

Vs, a: Z |P,(s" | a,s) — Py(s' | a,s)| <7 (D)
s'es

where t € T (i.e., some point in time after the original policy was learned), and € R¥ is a scalar bound. In other
words, the total change in the transition function (cumulated over all states s € S and actions a € A) between the
updated environmental conditions and the original environmental conditions is bounded by 7. We also point out that
while our problem definition is agnostic to whether the change is continuous or discrete (we could define an analogous
setting for continuous-time MDPs), our algorithm only tackles discrete changes for now.

Frozen Lake Scenario
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Figure 1: The Frozen Lake environment involves an agent trying to cross a frozen lake from a start position to a goal position
(pre-determined) without falling into any holes

We demonstrate how Eq. (1) can be applied in practice using the Frozen Lake environment described earlier. At each
state, the agent has four actions, i.e., the direction in which it chooses to move. Consider that in the original environment
at time 0, the lake is only marginally slippery such that the agent can always go in the direction it intends. Let us
consider an arbitrary state s 1) which denotes that the agent is in cell (2, 1) (refer to the Fig. 1 on the left where each
cell is marked with a number). In the original environment, if the agent seeks to go right (takes action ayigy), then
Po(5(3,1) | rignt, S(2,1y) = 1. i.e., the agent always moves right if it intends to do so. Now, at time ¢, consider that lake
becomes more slippery, and the agent may not always move in the intended direction due to the slippery nature of
the surface. Let us assume that the agent moves in the intended direction with a probability of 1/3 and in each of its
perpendicular directions with the same probability (i.e., from cell (2,1), if the agent seeks to go right, it can now end up in
cells (3,1), (2,0), or (2,2) with equal probability). In that case, by equation Eq. (1), we can quantify the amount of change®
tobe | Py(s(3,1) | Gright; 5(2,1)) — Po(53,1) | rignts $2,1)) | + | Pe(5(2,0) | Gright; 5(2,1)) — Po(5(2,0) | trights $(2,1)) | +
| Pi(5(3,3) | Grignts S(2,1)) — Po(5(3,3) | rights S(2,1)) | + | Pi(86 | Gright; $(2,1)) — Po(8(2,2) | aright; S(2,1)) | = 1.33. A
similar bound can be computed for the Cartpole environment where the agent is trained in a setting with a certain mass,
but the mass of the cart changes in the updated environment.

Hypothesis: Having described an example of how the bounds in a T-NSMDP can be computed, we now present our
key hypothesis. Let sp € S and ag € A denote the initial state and an action (respectively) at time step 0. Consider
the action-value function @, represented as Q™ (s,a) = Ep{R(so,a0) + >_poq 7 R(s¢,ar = m(s¢))}, which measures
the value of a state s and an action a under policy 7. Our key hypothesis is that with small changes in the transition
function, the () function under an optimal policy does not change much, i.e., “good” actions remain valuable, and “bad”
actions do not suddenly become promising. It is trivial to see that there are exceptions to our hypothesis and its rather

2we show this for one particular state as an example, the same bound applies across all state-action pairs.



simplified explanation; if the ) function stayed the same as before, there would not be any need for the agent to adapt
to changes in the environment. However, we show that the change in ) is bounded with respect to the change in P:

Theorem 1. If Vs,a: >, |P:i(s' | a,5) — Po(s' | a,s)| <n, and
Vs,a: |r(s,a)| < R, and the discount factor v < 1, then |Q° (s,a) — Q3" (s,a)| < € Vs, a, where ¢ = % (The
proof is presented in the appendix).

Theorem 1 considers two environments, one at time 0 and the other at time ¢; then, under the assumptions that Eq. (1)
holds, the rewards are bounded, and v < 1, the difference in the optimal Q values (in the old and new environment)
is also bounded. While this bound is admittedly loose and can be large in many settings, it serves as the basis for
algorithmic decision-making in non-stationary settings if the environment has not changed much. Specifically, if the
optimal Q has not changed significantly, then we can leverage it to inform decision-making even when the environment
has changed.

Problem Statement: Our goal is to find optimal actions (i.e., actions that maximize the temporally discounted sum of

future rewards) at execution time ¢ assuming the following: (1) we are given an optimal action-value function ng (s,a)
for time step 0, which might have been learned under different environmental conditions than those at execution time ¢;

(2) any such change in the transition probabilities between when Q;° (s, a) was learned and time ¢ are bounded by 7
(Eq. (1)); (3) we are given a black-box simulator that is updated to accurately model the environment at execution time
t (we relax this assumption in our experiments); and (4) there is a limited computational budget at execution time that
prevents learning an optimal policy.

4 Policy Augmented Monte Caro Tree Search

Recall that MCTS is proven to converge to the optimal action given infinite time [Kocsis and Szepesvdri, 2006]. The
convergence also holds true for an environment that has changed—this consideration is actually meaningless for a
purely online approach such as MCTS, assuming that the generative model that is used to build the tree has been
updated based on environmental changes. On the other hand, a trained policy has exactly the opposite advantage (and
disadvantage): while it can be invoked in constant time during decision-making, it cannot accommodate environmental
changes without re-training, which is computationally expensive. We raise the following question: can the advantages
of online search procedures (e.g., MCTS) be combined with those of policy learning (e.g., reinforcement learning) to
tackle discrete changes in the environment?

Our approach presents a natural solution to this question. Policy-Augmented Monte Carlo Tree Search (PA-MCTS)
addresses this challenge by integrating an online search with (J-values learned on the environment at an earlier decision
epoch, even if the environment has changed. Rather than selecting an action based on the highest expected return
estimated by the online search, PA-MCTS instead chooses the action that maximizes a convex combination of the

previously learned Q-values and the MCTS estimates G

arg max aQSS (s,a) + (1 — a)Gy(s,a) 2)
a€EA;

where Qgé (s,a) is the optimal® Q-function previously learned by the decision agent. Note that this combination
happens entirely outside the tree.* The hyper-parameter «, chosen such that 0 < ' < 1, controls the tradeoff between
the learned ()-values and the expected returns generated through MCTS estimates: if & = 1, PA-MCTS reduces to the

standard Q-learning action selection policy using the previous ) values: arg max, ¢ 4 ng (s,a). If & = 0, it reduces
to standard MCTS. We essentially seek to balance the dichotomy between using low-variance but biased estimates

through Q;° (generated using an older environment) and potentially high-variance but unbiased estimates through G
(generated using the current environment). If o € (0, 1), then both estimates are considered. Note that we refer to the
action-value from the ()-function as “estimates” due to the change in the environment. We hypothesize that when the

error in ()-values is bounded by ¢ (as described in Theorem 1), Q§3 likely embeds useful information about the updated
environment. The PA-MCTS algorithm essentially uses Eq. (2) for decision-making. We present the algorithm in the
appendix.

3In principle, we do not require the optimal Q-function. As we show in the experiments, an approximation also works well in
practice.

“We also explored approaches to use the learned Q-values inside the tree, but the proposed approach performed at least as well
and simplifies (to some degree) the theoretical analysis.



4.1 Theoretical Analysis

We prove three properties of PA-MCTS: (1) the conditions under which PA-MCTS will return the optimal one-step
action, (2) the conditions under which PA-MCTS will choose an action with a higher estimated return than either MCTS

or selection using ()-values Qgg, and (3) a bound on the total deviation of the expected return from an optimal (updated)
policy when following PA-MCTS. We begin by defining some additional notation and detailing our assumptions.

Let af := argmax,., Q™ (s,a) be the optimal action at an arbitrary time step t. Let a, :=
arg maX,e 4.\ {a:} Q7" (s,a) denote the second best action at an arbitrary time step ¢ (we assume that there are

no ties in Q-values for any actions at a given state). Let 1;(s) := Q;* (s,a}) — Q7" (s, a}); for a state s, 1/;(s) denotes
the difference in @ values when taking actions a} and a, at time ¢ and following the optimal policy 7} thereafter.?
Finally, while MCTS is guaranteed to converge to the optimal expected returns for a given state and action given infinite
time, actions must be taken after a limited time in practice. Let ¢ denote the bound on the error of the values estimated

by MCTS when it is stopped, i.e., Q?‘*(s,a) —Gi(s,a)]e0 <6 VEtET.

We first present Theorem 2, which describes the conditions with respect to ¢, ¢, and ¢;(s) under which PA-MCTS
returns the optimal one-step action.

Theorem 2. If ae + (1 — ) < 1/"7(5) PA-MCTS is guaranteed to select the optimal action at time step t in state s.

(The proof is presented in the appendix).

Theorem 2 essentially shows that PA-MCTS is guaranteed to choose the optimal action if the sum of a-weighted errors
is low enough that the decision agent can differentiate between the best and the next best action. While ;(s) is not
observable at decision time, we can find the relationship between v;(s) and o (s):

Corollary 2.1. ;(s) < 1o(s) + 2¢

Using Corollary 2.1, we substitute ¢;(s) in terms of 1o(s) (which can be computed at decision time using known Qgé
values) in Theorem 2. Then, we can determine when PA-MCTS will select the optimal action using information that
can be computed at decision time:

Corollary 2.2. Ifae+ (1 —a)d < on(s) + €, PA-MCTS is guaranteed to select the optimal action at decision epoch t.

Using 0 < a < 1, Corollary 2.2 can be rearranged to solve for a:
Corollary 2.3. PA-MCTS will choose the optimal one-step action if
{6—_{5 <a< 41 ife>d

>a> 2ol 11 fe <.

2(e—9)

Therefore, given € and 0, a decision agent can determine what values of the hyperparameter « (if any) would guarantee
that PA-MCTS chooses the optimal action at decision time.
Theorem 2 guarantees the conditions under which PA-MCTS will choose the optimal action. We now seek to answer a

more practical question: when does PA-MCTS choose a one-step action with a higher Qf: value than MCTS or the
learned policy in isolation? First, we list conditions under which PA-MCTS chooses a better action than pure MCTS:

Proposition 1. If PA-MCTS and MCTS choose different actions, PA-MCTS’s chosen action will have a higher
Q3" value than MCTS if 2¢ < (™, where® (" == (Qy°(s,a) + Gi(s,@)) — (Qp° (s,am) + Gi(s,am)), @ =
argmax,c 4 aQq’(s,a) + (1 — @)Gy(s,a), and a,, = argmax,c 4 Gi(s,a). (The proof is presented in the
appendix).

Since (" is constructed from terms that can be computed at decision time, Proposition 1 can be used by the decision
agent to determine if it should use PA-MCTS or MCTS when they choose different actions at decision time. A similar
statement can be made regarding action selection using ng .

Proposition 2. If the action chosen by PA-MCTS is different than argmax, Qgg (s,a) at state s, then PA-
MCTS’s chosen action will have a higher Q}' value than selection through Qg” values if 26 < (] where’

SRecall that the optimal policy is indexed with the time step as the environment might change in our setting, i.e., 7} denotes the
optimal policy given the environmental conditions at time step ¢.

Sthe superscript 1 in ;™ represents the bounds with respect to MCTS and is not an index.

7 Again, the superscript g only denotes bounds with respect to the Q-values and is not an index.
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¢ = (QF (5,3) + Gu(5,@)) — (QF (5,ay) + Gils, ap)), @ := argmax,e 4, aQR (s,a) + (1 — a)Gy(s,a), and
(g = argmaX,c 4, ng (s,a). (The proof is presented in the appendix).

Using Propositions 1 and 2, we can determine the conditions under which PA-MCTS chooses an action that is better
than either of its constituent policies. The above propositions consider only one decision epoch. However, typically,
training a new policy takes time, which might consist of several decision epochs. Therefore, we compute the total error
in the expected return when following PA-MCTS compared to an optimal (updated) policy.

Theorem 3. When PA-MCTS is used for sequential decision making, the maximum difference between the return

2(ce—ad+4

from an optimal policy and the return from following PA-MCTS is at most — ). (The proof is presented in the

appendix).

4.2 Experiment Setting

Environments: We use the following four open-source environments from OpenAl Gym [Brockman et al., 2016] to
validate our approach:

1. Cart Pole: In this classic control problem, a pole is attached by an un-actuated joint to a cart, which moves
on a frictionless track. A pendulum is placed upright on the cart. The agent’s goal is to balance the pole
by applying forces either to the left or the right direction on the cart. For the cart pole environment, we set
our original environment with gravitational constant g as 9.8 m/s? and the mass of the pole as 0.1kg. Both
parameters are then varied to induce non-stationarity in the state-action transition function.

2. Frozen Lake: In the frozen lake problem, an agent must traverse from a starting position to the goal position
by avoiding holes. The agent moves on a slippery surface (we describe the setting in section 3). We introduce
non-stationary by making the surface more slippery; in our experiments, we refer to a problem instance of the
frozen lake environment by the vector p1, p2, p3, where p; denotes the probability with which the agent moves
in the intended direction, and p» and ps3 denote the probabilities of moving in directions perpendicular to the
intended direction. For the frozen lake environment, we treat the “original environment” as one with perfect
agent movement, i.e., deterministic movement.

3. CIiff Walking: In the cliff walking environment, an agent must find a path from the start position to the
goal position from start to goal while avoiding falling off a cliff. While the setting is similar to the frozen
lake environment, here, the agent incurs a penalty for each step that it takes, thereby presenting the explicit
dichotomy of choosing between an optimal path (with respect to discounted rewards) and a safe path. Similar
to the frozen lake environment, the original environment involves deterministic agent movement.

4. Lunar Lander: This environment presents a rocket trajectory optimization problem. The agent must control a
rocket and land safely on a known landing pad. While landing outside the pad is possible, the agent incurs a
penalty. The agent’s action at each time step involves firing one of the three engines (main, right, and left) at
full throttle or not doing anything. Here, the original environment does not involve any wind. We induce wind
to simulate non-stationarity; the agent, therefore, must adjust its actions according to the power of the wind.

Baseline approaches and implementation: We implement AlphaZero, a reinforcement learning (RL) agent using
a Double Deep Q-Network (DDQN) [Van Hasselt et al., 2016], and standard MCTS as our baseline approaches.
We reiterate that we do not treat AlphaZero as a baseline per se since our broader conceptual idea of using hybrid
approaches to combat non-stationarity subsumes it. Nonetheless, we compare PA-MCTS with AlphaZero, and show
that our proposed approach outperforms AlphaZero. We implement MCTS and PA-MCTS using UCT [Kocsis and
Szepesvari, 2006] as the tree policy. Our implementation is in Python [Van Rossum and Drake Jr, 1995] and available
at https://github.com/scope-lab-vu/PAMCTS

Hardware: We run experiments on the Chameleon testbed [Keahey et al., 2020] on 4 Linux systems with 32-96 logical
processors and 528 GB RAM. We train AlphaZero using the Google Cloud Platform on a Linux system with 128 logical
processors and 528 GB RAM.

Hyper-Parameters: We implement the neural networks in TensorFlow [Abadi et al., 2015]. For the RL agent, the
Double DQN has 3 hidden layers with ReLU activation, and the output layer has a linear activation. We use a Boltzmann
Q Policy and train the network with the Adam Optimizer[Kingma and Ba, 2014] with a learning rate of 10~ for
300,000 steps while minimizing the mean absolute error of the network. For AlphaZero, we use 5 hidden layers with
ReLU activation and appropriate output layers (e.g., softmax for the policy and dense layer for the value function).
For both PA-MCTS and AlphaZero, we set the discount factor as 0.99, maximum tree depth as 500 (though this is
rarely reached), and the exploration parameter ¢ = 50 (after tuning on holdout data). A more detailed description of the
hyper-parameters is presented in the appendix.



Environment Setting DDQN MCTS AlphaZero PA-MCTS
g=938 2500.0 £+ 0.0 846.456+43.228  2403.261£35.946 2500.0+0.0
Cartpole g=20 2500.0+0.0 918.0221+46.554 2278.90+52.9 2500.0+0.0
(varying g) g=50 22.061£0.729 778.511+£44.90  1920.261+£78.547 2500.0+0.0
g =500 7.08340.126 111.578+17.705  626.178+80.091 954.656+-90.150
m=0.1 2500.0 £ 0.0 846.456+43.228  2403.261+£35.946 2500.010.0
Cartpole m=1.0 500.0+0.0 892.956+42.674  1340.006£86.713 2500.0+0.0
(varying 1) m=12 1249.661+£90.587  802.905+30.748  2093.411+65.519  1715.783+68.101
m=13 475.35+67.96 904.078+38.404  1346.433+86.238  904.078+38.404
m=1.5 2.04+0.0 2.0+0.0 2.04+0.0 2.04+0.0
[1.000, 1.000, 1.000] 1.0 £ 0.0 1.0 = 0.0 1.0 £ 0.0 1.0+0.0
[0.833, 0.083, 0.083] 0.830 £ 0.012 0.806 £ 0.012 0.809+0.013 0.830+0.012
Frozen Lake  [0.633,0.183, 0.183] 0.522 £0.016 0.56 £ 0.017 0.5234+0.017 0.587+0.016
[0.433, 0.283, 0.283] 0.26 £0.014 0.764 £ 0.013 0.2351+0.014 0.796+0.013
[0.333, 0.333, 0.333] 0.12 £ 0.01 0.866 £ 0.01 0.11440.011 0.936+0.009
0.0 0.88 £ 0.00 0.869 £ 0.001 0.874 £ 0.00 0.88 £ 0.00
Cliff Walking 0.1 0.291 £ 0.016 0.7 £ 0.011 0.27 £0.014 0.7 £ 0.011
0.2 0.102 £ 0.011 0.459 + 0.015 0.081 + 0.009 0.459 + 0.015
0.3 0.034 £ 0.006 0.173 £+ 0.012 0.012 £ 0.004 0.173 £ 0.012
0.0 256.034+2.939 -76.867+£3.792  -286.325 £ 16.759  256.034 + 2.939
Lunar Lander 10.0 241.676+4.956 -79.745+£4.697  -250.502 £ 14.967  241.676 + 4.955
15.0 192.877+9.25 -94.906+6.440  -255.377 + 13.234 192.877 + 9.25
20.0 113.431+14.113  -119.177+£8.654  -253.276 = 11.086  113.43 + 14.113

Table 1: Results for all four environments with varying levels of non-stationarity. For each environment, the degree of change
increases from top to bottom. We observe that PA-MCTS comprehensively outperforms the baseline approaches, including
AlphaZero.

4.3 Results

Comprehensive results for all environments and all settings we use to induce non-stationarity are presented in Table 1.
Below, we dive deeper into the cart pole environment to analyze the results in depth and evaluate the nuances of
PA-MCTS. Similar analysis for the other environments can be found in the appendix.

Stationary setting: We train both the AlphaZero network and the DDQN with ¢ = 9.8 m/s? and m = 1.0kg and
evaluate all the approaches in the same environmental settings. We present PA-MCTS and DDQN results in Fig. 2
(different color lines represent different o used by PA-MCTS) and the comparison with AlphaZero in Fig. 5 (the
left-most sub-graph shows the stationary setting). We observe that under stationary conditions, both AlphaZero and
the DDQN (which is a special case of PA-MCTS with a = 1.0) outperform standard MCTS and PA-MCTS with
a € {0.25,0.5,0.75}. This result is expected, as offline learning is able to leverage potentially thousands of training
episodes to learn an optimal policy. However, we do note that PA-MCTS (for 0 < o < 1) is able to leverage the
information stored in the policy to converge significantly faster than standard MCTS. We compute each result by
averaging across 30 samples.

Non-stationary setting: To add non-stationarity to the cart pole environment, we modify g from 9.8 m/s? to 20, 50,
and 500 m/s? (we present results in Fig. 2; additional experiments which modify the mass of the cart are shown in
the appendix). We have several important findings. First, we observe as the change in the environment increases, the
performance of the DDQN policy in isolation (trained on the original environment) degrades as hypothesized—in fact,
it achieves almost 0 utility for g € {50, 500}. Second, we again observe that PA-MCTS converges significantly faster
than standard MCTS for all values of g (with appropriate «); it actually achieves optimal performance except when
g = 500m/s%. The reader might wonder about how to choose the optimal « and the performance of AlphaZero, which
we show below.

Choosing the optimal «:: During execution, the agent must choose actions relatively quickly. Therefore, even when
updated generative models of the system are available, it is unlikely that the agent would be able to afford the time
to compute extensive simulations across a range of a values to select the optimal one. We provide an empirical
approach to alleviate this concern. First, we run simulations for various iteration counts of MCTS in a wide array of
environmental conditions. For each setting, we show the optimal « in Fig. 3. For example, the top rows of the heatmap
show that when the environment has not changed much, it is better for the agent to rely more on the trained policy (i.e.,
« is typically above 0.5). On the other hand, consider the bottom-right cell in the heatmap, which shows that if the
environment changes a lot, the agent must rely more on the online search, as expected. We point out another interesting
finding—it turns out that PA-MCTS, with limited MCTS iterations, is able to approximate the optimal choice of o
fairly well, i.e., observe that the column with iterations=25 (or even with iterations=10) is almost similar to the column
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Figure 2: We show the cumulative reward obtained by PA-MCTS, standard MCTS (o = 0), and DQN (o = 1) for different
environmental changes. Note that as the environment changes, DQN achieves close to 0 rewards. PA-MCTS outperforms both
baseline approaches.

with iterations=100. We use this finding to guide the selection of a. We hypothesize that the agent can use the updated
generative models to perform a hyper-parameter sweep of o with a small number of MCTS iterations; the sweep can be
run in parallel for each o and in our setting takes only 80 seconds (much smaller than re-training the policy, as we show
below). Then, for execution, the agent can choose the « value that provides the highest expected discounted return.
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Figure 4: The performance of PA-MCTS and AlphaZero under varying levels of noise with g = 500 m/s?. PA-MCTS outperforms
AlphaZero in most settings.

Comparison with AlphaZero: We use the proposed selection strategy to tune o and compare our results with
AlphaZero (presented in Fig. 5). First, we observe that except for a drastic environmental change (g = 500 m/s®), both
AlphaZero and PA-MCTS (with a-selection) converge to the optimal policy. However, we see that PA-MCTS (with
a-selection) converges significantly faster than AlphaZero; indeed, when g = 50 m/s?, PA-MCTS takes about a third
of the number iterations that AlphaZero takes to converge. In real-world settings, faster convergence is potentially
invaluable.

Runtime Comparison: We also explore whether re-training the policies by using the updated environmental model is
computationally cheaper than executing PA-MCTS. Table 2 shows the calculated average PA-MCTS execution time for
different iteration counts (with a-selection), and the retraining time for the DDQN network and the Alphazero network.
For a fair comparison, we do not retrain DDQN and AlphaZero from scratch and update the existing networks, which is
considerably faster than training from scratch, given the updated environment. We show that it is significantly faster to
run PA-MCTS than re-training DDQN or AlphaZero.

Noisy settings: In practice, it is difficult to update the environmental model to reflect the exact changes in the non-
stationary environment. While the generative models can be updated online using updated sensor measurements, such
measurements can be noisy, thereby resulting in a noisy model. To simulate such conditions, we repeat the entire
pipeline by adding noise in the updated environmental model, e.g., the agent perceives that g = gyye + N (0, o), (where
N denotes a Gaussian distribution) for different values of o. Note that during execution, the agent must operate under
Juue, thereby making this situation particularly challenging. We show extensive results for this setting in the appendix
but present the key results in Fig. 4. We see that even under noisy settings, PA-MCTS is able to leverage the old policy
and outperforms AlphaZero (it also outperforms standard MCTS and DDQN by a large margin, which we show in the
appendix).
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Figure 5: We compare PA-MCTS with a-selection with AlphaZero. While both approaches find the optimal policy, PA-MCTS
converges significantly faster.

5 Related Work

Sequential decision-making in non-stationary environments has been studied from several perspectives. Satia and
Lave Jr [1973] and White III and Eldeib [1994] consider transition matrices constrained within a pre-specified polytope.
One of the earliest works in this domain, by Satia and Lave [Satia and Lave Jr, 1973], constrains the state transition
function among a set of predefined distributions. White and Eldeib [White III and Eldeib, 1994] consider imprecise
transition probabilities by representing the transition function by a finite set of linear inequalities. In both formulations,
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Method Iterations Execution Time (in seconds)

PA-MCTS 5 2.57
PA-MCTS 10 4.35
PA-MCTS 15 3.51
PA-MCTS 25 9.60
PA-MCTS 50 25.50
PA-MCTS 100 48.73
PA-MCTS 200 100.0
PA-MCTS 300 248.8
Re-Train DQN 200,000 steps 430.0
Re-Train AlphaZero NA 31,800

Table 2: We show the computation time for running PA-MCTS (with a-selection and re-training DQN and AlphaZero (by updating
the existing networks instead of training from scratch for a fair comparison). Even under these settings, we show that PA-MCTS is
significantly faster.

the transition matrix is constrained within a pre-specified polytope. However, as pointed out by Iyengar [2005], they
do not discuss how such polytopes can be constructed. Iyengar [2005] introduces the idea of robust MDPs using the
concept of uncertain priors, where the transition function can change within a set of functions due to uncertainty. Later,
Lecarpentier and Rachelson [2019] introduce Non-Stationary Markov Decision Processes (NSMDP), which extend
robust MDPs by allowing uncertainty in the reward model in addition to the transition function and use a stronger
Lipschitz formulation for the set of possible transition and reward functions. Choi et al. [2000] introduce hidden-mode
MDPs, which consider a formal model for representing changes in the environment, confined with a set of modes.
A broader notion of non-stationarity is introduced by Lecarpentier and Rachelson [2019], who consider that both
the reward function and the transition function can change over time and that the rate of change is bounded through
Lipschitz continuity. Our formulation is inspired by that of Lecarpentier and Rachelson [2019]. The key difference in
our formulation is the representation of that change.

We also point out that decision-making by an agent that is trained on one task (or environmental conditions) and
subsequently provided with another task has also been explored in the domains of transfer learning [Minku, 2019]
and lifelong reinforcement learning [Silver et al., 2013]. However, we specifically look at settings where “learning”
a new policy is not feasible, or even when it is feasible, decisions must be taken while the updated policy is being
learned. Finally, we recognize that approaches combining model-based online search with learning methods have been
explored—for example, AlphaZero integrates MCTS with a policy iteration framework [Silver et al., 2018b], while the
Search with Amortized Value Estimates (SAVE) algorithm combines model-free Q-learning with MCTS [Hamrick
et al., 2019]. To the best of our knowledge, our work is the first that develop such an approach for non-stationary
environments.

6 Conclusion

We explore sequential decision-making in non-stationary environments, where the decision-maker faces the dilemma
of choosing between accurate but obsolete state-action values from a learning-based approach and unbiased but high-
variance estimates from an online search. We present a novel approach, Policy Augmented MCTS (PA-MCTYS), that
combines the strengths of reinforcement learning and online planning in non-stationary environments. We present
theoretical results characterizing the performance of MCTS, demonstrating that there is a range of values that will
work well in practice. We also present bounds on the error accrued by following PA-MCTS as a policy for sequential
decision-making. Through extensive experiments on open-source environments, we show that PA-MCTS outperforms
the baselines in terms of performance and convergence time.
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Appendices

A Extended Theoretical Analysis

This appendix contains detailed proofs for each of the theorems, propositions, and corollaries described in Section 4.2
of the main text.

Theorem 1. If Vs, a: >, ¢|Pi(s' | a,5) — Po(s' | a,s)| <n,Vs,a: |r(s,a)] < R, and the discount factor v < 1,

then |Qg° (s,a) — Q7" (s,a)| < € Vs, a, where € = (“1’17;11)%2 )

Proof. Our goal is to find an upper bound ¢ on the difference between the action values before a change in the
environment’s transition probabilities and after, i.e.:

Vs,a:|Q'(s,a) — Q(s,a)| < e
where () compactly represents the action-value function in the original environment using an optimal policy (i.e.,
Q= QSO) and Q' represents the action-value function in an updated environment at time step t € T (i.e., Q' := Q;*).

Let V,,(s) be the value of state s if we terminate the environment after n steps (following the optimal policy until step
n). Similarly, let Q,,(s, a) be the Q(s, a) if we terminate the environment after n steps.

Forn =1, |V,(s) — V,(s)| = 0and |Q),(s,a) — Qn(s,a)| = 0, since we can assume immediate rewards are the same.
Let k-1 = max, V) _1(s) — V,,—1(s)]| (i.e., £—1 is the upper bound in the difference of the value).

For an arbitrary n, we can bound the action-value function () as follows

|an(s7a) - Qn(sza)| = |:T(57a) +’YZT/(570'7 S/) ’ Vril(s/):| - r(s,a) +VZT(570'7 8/) : Vn—l(s/):| ‘

s’ s’

=7 ZT/(S, a,s)-Vo_1(s) —T(s,a,s)  Va_1(s")

=7 ZT'(s,a, §) (Va1 (s") = Vaoi(s) + T'(s,a,8") - Vaoi(s') = T(s,a,8") - Va1 (s')

=7 ZTI(S, a,8") - (Va1 (s') = Vaoi(s") + Vaor(s') - (T'(s,a,8") — T(s, a, s'))’
=7 ZT'(s, a,s) (Vao1(s') = Vaoa(s')) + Z Va1(s") - (T'(s,a,s") — T(s,a, s/))l

+7
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We can also bound the value function V. First, assume that V! (s) > V,,(s), then for an arbitrary n, we have
Via(s) = Va(s)] = Vii(s) = Vau(s)
=max @} (s,a) — max @Q,(s,a)

= max [Q (5. @) = Qu(5,0) + Qu(s,)] ~ max Qu(s.a)
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Second, assume that V! (s) < V,,(s), then for an arbitrary n, we have
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= max Q,(s,a) — max @, (s,a)
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Theorem 2. If e + (1 — ) < %, PA-MCTS is guaranteed to select the optimal action at time step t.



Proof. PA-MCTS is guaranteed to select the optimal action when the following inequality holds:

aQp (s.a) + (1 — )Gi(s. a}) < aQ (s.a7) + (1 — a)Gi(s, a) ®

Recall that § denotes the bound on the error of the values estimated by MCTS when it is stopped, i.e., |Qf: (s,a) —
Gi(s,a)lee <& ¥ t € T. Using this definition and Theorem 1, Q;" (s, a) can be bounded with respect to the
estimates Q,° (s, a) and G4(s, a):

gg(s,a) —e< Q:: (s,a) < Qgg(s,a) +e

. 4
Gi(s,a) — 6 < Q' (s,a) < Gi(s,a) +6

By substituting Qf: (s, a) for Qgé and G in Eq. (3) by using inequalities in Eq. (4) and rearranging, we can find the
conditions under which PA-MCTS chooses the optimal action (recall that ¥;(s) 1= Q;* (s, a}) — Q; " (s,a})):

< aQy’ (s,a7) + (1 — a)Gi(s,a;)

) Q) (5,a7) — €) + (1 — ) Q] (s,a}) — 6)
2(ae + (1 —)d) < QF (s,a}) — QF (s, )
2( <

*
Ty

= Q" (s,a) +€) +(1—a

=
= 2(ae+ (1 — a)d) < 1y
:ae—&-(l—a)ég%

Corollary 2.1. ¢; < g + 2¢

Proof. It is important to note that the optimal and second best actions with respect to Q;° and Q;* may not be the
same, i.e., it is possible that af, # a; and af, # a}. There exist the following cases depending on the relationship
between ay, and aj:

* If af, = aj}, we first upper bound Qf: (s,a}). We know that for any action a € A

Q' (s,0) < Qp°(s,a) + €
Therefore,
Qi (s,a5) < Qp°(s,a5) + € ®)

We can then simply use the definition of € to lower bound Q;* (s, a}) :

i (s,a1) > Qg (s,ap) — € ©)

Finally, by combining Eq. (5) and Eq. (6), we can upper bound 1),

T (s,ap) — Q7 (s,a)) < (Q5° (s,a8) + €) — (Qp° (5,ah) — )

= Q1" (s,a7) — Q1" (s,a) < Q" (s,a5) — Qg (s, ap) + 2¢
= < by + 2€

* If aj = aj, i.e., the second best action at time step 0 became the optimal action at time step ¢, then this implies
that a§ # a;. This implies:
Py < 2e

as it would otherwise be impossible for the optimal action at timestep O to become sub-optimal at timestep ¢.
Since 1)y is positive by definition, this implies that ¢, < 1)y + 2¢



 If a}y ¢ {a},a,}, then it follows from the definition of @} that Q;° (s,a}) < Qq°(s,ap) and Q' (s,a}) >
i (s,a).

Let us assume that Q;* (s, a;)*< Qo (s,ah) —e Then, by substituting Q° (s, af) — € for Q;* (s, afy) using

Eq. (4), this implies that Q;" (s,a,) < Q;'(s,ap). This is a contradiction given the above inequalities.

Therefore, through proof by contradiction, Q:: (s,a}) > QSS (s,ay) — €. Similar to the af, = a; case above,
we can combine this with the upper bound in Eq. (5) to find that

Py < 2€
In each case, ¥y < 2e. O
Corollary 2.2. If ce + (1 — )6 < % + €, PA-MCTS is guaranteed to select the optimal action at decision epoch t.

Proof. Using Corollary 2.1, we substitute v, in terms of 1)y in Theorem 2.

ac+ (1 —a)d < 1/;
Yo + 2¢
2

éae+(1—a)5<@+e

= ae+(1—-a)f <

Corollary 2.3. PA-MCTS will choose the optimal One-step action if

_5<a< e 5)+1 ife> ¢
6_‘%20422(6_6)4—1 ife < é.

Proof. Using 0 < a < 1, Corollary 2.2 can be rearranged to solve for a:
0<ae+(1—a)d< @Jre

¢0§a67a5+5<@+e

= *5§C¥E*O&5<ﬁ+€*6

= << +1 ife>§
:>{55 *2(5 5)

O

Proposition 1. If PA-MCTS and MCTS choose different actions, PA-MCTS’s chosen action will have a higher
Q3" value than MCTS if 2¢ < (™, where® (" == (Qy°(s,a) + Gi(s,a)) — (Qp° (s,am) + Gi(s,am)), @ =
argmax,c 4 aQ)°(s,a) + (1 — &)Gy(s,a), and ap, := argmax,c 4 Gy(s, a).

Proof. PA-MCTS’s chosen action ¢ has a higher sz value than MCTS’s chosen action a,, when
0 < Q" (s,a) = Q" (s,am) 7

If PA-MCTS and MCTS choose different actions, then it must be that Gt(s am) > Gyi(s,a) and aQO (s,am)+ (1 —
Q)Gy(s,am) < aQO (s,a) + (1 — @)Gy(s,a). Then, we can bound Q;* with respect to QO and €:

QOO (57 a‘) - QOO (Sa Clm) —2¢ S Qtt (Sad) - Qtt (Sa a/m)

8The superscript m in ;™ represents the bounds with respect to MCTS and is not an index.




Next, we rewrite this bound in terms of ;" and e:

(5,@) — QF (s, am)
= Q3% (5,@) — Q5" (5, am) — 2¢ + Gy(5,am) — Gu(s,am) < Q7 (5,@) — Q7 (5,am) )
= Q5% (5,@) — Qg° (5, am) — 2¢ + Gy(5,a) — Ci(s,am) < Q' (5,@) — Q7 (5,am) ©)
= (Q5° (5,@) + Gi(5,@)) — (Q5° (s,am) + Gils,am)) — 26 < Q' (5,@) — Q7 (5, am) (10)
F(s,d) — QT (s,am)

where in Eq. (8) we add and subtract G(s, a,,) to the left hand side, in Eq. (9) we use Gy(s,a,,) > Gy(s,a) to
substitute G (s, a) for G(s, a,,), and in Eq. (10) we rearrange the left hand side.

Therefore, it follows from Eq. (7) that PA-MCTS chooses an action with higher Qf: value when 0 < (/" — 2¢, i.e.,
2e <" O

Proposition 2. [f the action a chosen by PA-MCTS is different than a4 := arg max,¢ 4_ an (s, a) at state s, then PA-
MCTS’s chosen action @ will have a higher Q3 value than action ay if 25 < (! where® ¢ := (Qg° (s, @)+ Gy(s,a)) —
(Q0° (s,a4) 4+ Gi(s,ay)), @ := argmax,c 4 aQq°(s,a) + (1 — @)Gy(s,a), and a, == argmax ¢ 4. Qp° (s, ).

Proof. PA-MCTS’s chosen action a has a higher Qf: value than the action selected through an -values a, when
0<Qy (s,a) — Qp (s, ay) (11

If PA-MCTS and action selection through Qgé -values choose different actions, then it must be that Q§3 (s,aq) >
QF (s,a) and aQ (s,a,) + (1 — a)Gy(s, ag) < aQI0(s,d) + (1 — a)Gy(s,a). Then, we can bound Q' with
respect to G; and 4:

Gi(s,a) — Gi(s,ay) — 26 < Q:;(s,é) — ng (s,aq)
Next, we can rewrite this bound in terms of Cf and J:

Gi(s,a) — @t(s,ag) —20 < Q::(sﬁ) — Q:Z (s,aq)
= Gy(s,a) — Gy(s, ag) — 20 + an (s,aq) — Qgg (s,aq) < Q:;(&d) — Q:: (s,aq) (12)
= Gi(s,d) — Gi(s,a5) — 20 + Qg (5,a) — Q5 (5,a9) < Q" (5,0) — Q[ (s..a9) (13)
= Q5 (5,0) + Gi(s,@)) — (Qf° (5, a9) + Gi(s, a,)) — 20 < Q[ (5,a) — Q7" (s, a) (14)
= ¢f — 20 < Q7 (5,0) — Q" (s,a4)

where in Eq. (12) we introduce Qgg (s,aq) by adding zero to the left hand side, in Eq. (13) we use Qgé (s,aq) >
Q0° (s, a) to substitute Qq° (s, a) for Q° (s, ay), and in Eq. (14) we rearrange the left hand side.

Therefore, it follows from Eq. (11) that PA-MCTS chooses an action with higher sz value when 0 < Cf — 24, 1i.e.,
26 < ¢f. O

Theorem 3. When PA-MCTS is used for sequential decision making, the maximum difference between the return from

an optimal policy and the return from following PA-MCTS is at most z(a%off“;).

Proof. The proof closely follows prior work by Wray [2019]. Let A/, denote the set of actions that can be taken by
PA-MCTS in state s at any decision epoch. Given €, 6, and a € A%, it must be that

OngS (5,a) + (1 — a)Gy(s,a) > anS (s,a}) + (1 — a)Gy(s,a}) (15)

° Again, the superscript ¢ only denotes bounds with respect to the Q-values and is not an index.



for a to be chosen by PA-MCTS. We can substitute Q;* ( a) for QO and G in Eq. (15) to get

aQq (s,a) + (1 — a)Gy(s,a) > a (s7a2‘)+(1—a)Gt(s7a2‘)
Q7 (s,0) +¢) + (1 — )(Q (s,a) + 6) = a(Q] (s,a) — €) + (1 — a)(Q[ (s,a}) — 0)
= 2(ac+ (1 - )d) > Q' (s,a}) — QT (s, a)
= 2ac+ (1 —a)d) > V" (s) — QF (s, a)
where
Vi (s) = Ru(s,m(s)) + 7 Y _ Pu(s']s,a)V7(s") (16)

s'eS
where R, (s, a) is the reward for taking action a at s at time step ¢, 7(s ) is policy 7’s distribution over actions given s, -y
is discount factor, and P;(s’|s, a) is the probablhty of reaching state s’ when taking a at s at time step ¢. From Eq. (16),

the optimal value function can be expressed as V" ( ) = arg max, Q" (s a).
Therefore .

- Qt ' (87
Now, let V,;"*(s) be k apphcatlons of Eq. (16) following PA-MCTS’s policy 7, i.e., 7 € II' where I = {n|n(s) €

AL Vs € S}. Also let Qﬂ‘ (5,7 (s)) be a one-step action deviation following 7, after which an optimal policy 7 is
followed for the remaining k£ — 1 iterations.

AL ={ae A |V (s) a) < 2(ae + (1 —a)d)}

Next, we show that for any state s € S:

k
> v2(ae+ (1 —a)d)

VI () 2 VT (s) (17)
7=0
by induction on £ iterations of Eq. (16).
Base Case: At k = 0, by the definition of 7(s) € .A we have:
V0 (s) = QO (s, 7(5) < 2(ae + (1 - a)9)
= V[0(s) = Ruls,7(5)) < 2(ae + (1 - a)9)
:>V7rt (s) = V;"0s) < 2(ae + (1 — @)d)
= V7 s) 2 V0 (s) = 2(ae + (1~ )9)
Induction Step: Assume for k£ — 1 the induction hypothesis:
k—1
VIR (s) 2 VTP (s) = Do am2(ae + (1 - a))
7=0
is true. We now show that Eq. (17) is true for k:
ViR (s) = Ry(s,7(5)) +7 Y Pi(s']s,a)VTF1(s) (18)
s'eS
i k—1
= VF(s) > Ru(s, 7(s)) + Z Pi(s']s,a) (VTR Z'yTQ ae+ (1 —a)d)) (19)
s’eS =0
i k—1
= V7 (s) 2 (Ru(s,7(5)) +7 Y Pols'ls, a) VT H(s) = 3 077 2(ae + (1 - a)d)) (20)
s'eS =0
~ * k 1
= V" (s) > Q" ’k(s, 7( Z’yTJrlQ ae+ (1 —a)d)) 21
7=0
~ * k
= V7 (s) 2 Q77 (s,7(s) = Y77 2(ae + (1 - a)d)
T=1



where Eq. (18) is by Eq. (16), Eq. (19) is by the induction hypothesis, Eq. (20) is by rewriting and normalizing, and
Eq. (21) is by the definition of Q"
By the definition of A, we have V" *(s) — Q7" *(s,#(s) < 2(ce + (1 — a)8). By rearranging this, applying to
Q' * and grouping 2(ae + (1 — «)d) in the sum, we find

~ * t
VIR (s) > VM (s) = 2(ae + (1 - a)d) = Y 77 2(ae + (1 - a)d)

T=1

= V7R (s) = Y ym2(ae + (1 - a)d)

7=0

Thus, by induction on k, we have shown that Eq. (17) is true for all k. Finally let £ — oo and evaluate Eq. (17):

t
VPH(s) 2 VT ) = Do a2+ (1 o)) 22
7=0
> V7 (s) = 22+ (1= a)0) =
7=0
>V (s) - W (24)
VI (s) = VT Gs) < W -

where Eq. (22) is by Eq. (17), Eq. (23) is by v € [0,1) and 2(ae + (1 — «)d) > 0, Eq. (24) is by geometric series, and
Eq. (25) is by rearranging.

O

B Experimental Results on the CartPole Environment

In the main text, we present results on decision-making in non-stationary settings by varying the gravity parameter in
the cartpole environment. To gather more robust results, we also vary the total mass of the cartpole system by increasing
the mass of the pole. We fix gravity=9.8m/s? and the mass of the cart as 1kg, but we vary the mass of the pole among
{0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}; note that as the mass of the pole increases, the total mass of the system under
consideration (i.e., the mass of the cart and the pole) also increases. We keep all other hyper-parameters the same as the
experiments where gravity is changed (shown in the main text).

B.1 Stationary Environment

The results for the stationary Environment are the same as the stationary environment for the gravity experiments. We
present the results in the main text (Fig. 2 in the main text). We compute each result by averaging across 30 samples.

B.2 Non-Stationary Environment

We represent the non-stationary environment here by changing the mass of the pole on the cart. We show the results in
Fig. 6. We vary the mass of the pole among {0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}. Each « value used for PA-MCTS
is represented by a different color. For each setting, we vary MCTS iterations among { 25, 50, 75, 100, 200, 300 }
on 30 samples (test episodes). As Fig. 6 shows, DDQN achieves maximum reward in the stationary setting but its
performance deteriorates under non-stationarity. We observe that PA-MCTS, given appropriate «, achieves significantly
higher reward than both standard MCTS and DDQN under non-stationary settings. Also, as we observe in the setting
where gravity is changed, PA-MCTS converges significantly faster than standard MCTS by leveraging the pre-trained
policy. Finally, we observe that all approaches (PA-MCTS, standard MCTS, and DDQN) achieve close to 0 utility when
the mass of the pole is set to 1.5kg, presumably because it is extremely difficult to balance the pole in this setting.
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Figure 6: We show the average cumulative reward obtained by PA-MCTS, standard MCTS (« = 0), and DDQN (a = 1) for
different environmental changes. The mass of the pole changes among {0.1kg, 1.0kg, 1.2kg, 1.3kg, 1.5kg}. For mass of the pole
1.5kg, the average cumulative rewards for all iterations are close to 0.

B.3 Choosing the Optimal o

We propose selecting « as before, i.e., we observe how PA-MCTS performs under different computational constraints set
by the number of MCTS iterations. Again, we observe that the optimal « for 100 MCTS iterations is well approximated
(almost perfectly) by 25 MCTS iterations. We show the results in Fig. 7.
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B.4 Comparison with Alphazero

We use the proposed a-selection strategy to find the optimal alpha value for a given non-stationary setting, i.e., for each
mass of the pole. Then, we compare PA-MCTS with the optimal @ with Alphazero and present results in Fig. 8. Both
AlphaZero and PA-MCTS achieve O utility when mass=1.5kg. When mass=1.0kg, we see that PA-MCTS outperforms
AlphaZero by converging significantly faster. When mass=1.2kg, we see that AlphaZero slightly outperforms PA-MCTS.
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Figure 8: We compare between the results of PA-MCTS with optimal alpha and the results of Alphazero

B.5 Noisy settings

We now consider the setting that in practice, it is difficult to observe the environmental change exactly. As a result, we
add noise between the environmental change and how the agent perceives the change. We introduce Gaussian noise
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Figure 9: The performance of PA-MCTS and AlphaZero under varying levels of noise with mass of pole = 1.0kg, 1.2kg. PA-MCTS
converges faster than Alphazero with small MCTS iterations.

(with 0 mean and varying standard deviation) in the mass, i.e., the agent perceives a noisy mass during simulation but
the true non-stationary mass is used for execution. We show the results in Fig. 9. We observe that even under noisy
settings, PA-MCTS achieves higher rewards than AlphaZero in most cases, especially when the agent can afford low
computational time for making decisions.

B.6 Hardware

The experiments were conducted on Chameleon testbed [Keahey et al., 2020] on 4 Linux systems with 32-96 logical
processors and 528 GB RAM.

B.7 Extensive Results for Noisy Settings Changing Gravity

In the main text, due to the space limitation, we only showed partial results for the noisy settings where gravity is
changed. Here, we present complete results (for each value of updated gravity) with noisy settings. We show the
extensive comparison results between PA-MCTS, Alphazero, Standard MCTS, and DDQN (as shown in Fig. 10). We
observe that (as in the main text), PA-MCTS outperforms the baselines even under noisy settings.

C Experimental Results on the FrozenLake Environment

We also conduct experiments using the Frozenlake Environment. The goal of the agent is to travel on a slippery
surface (a frozen lake) from a pre-defined starting position to a pre-defined goal position without falling into any holes.
Due to the slippery nature of the surface, the agent does not always move in the intended direction. We introduce
non-stationarity by changing the probability of moving toward the desired direction. We vary this probability and set
the probability of moving in the two perpendicular directions as equal. We represent an environment by a tuple of three
probabilities which shows the [probability to move towards the desired direction, probability to move towards the
first perpendicular direction, probability to move towards the second perpendicular direction], e.g., [1, 0, 0] refers
to the stationary setting, where the surface is not slippery and the agent moves in its desired direction with certainty
(i.e., probability of 1) and there are no chances of the agent moving in directions perpendicular to its desired direction
(denoted by the two O entries). Given this setting, note that we can calculate 1 (the amount of change in the probability
transition function as defined in the main text); 7,,;, = 0, when there is no change, i.e., the updated environment is the
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Figure 10: We compare the performance of PA-MCTS, Alphazero, Standard MCTS, DDQN for noise among 0.0, 0.1, 1, 10 with
different gravity values among 9.8 m/s?, 20.0 m/s?, 50.0 m/s>, 500.0 m/s>

same as the stationary environment ([1, 0, 0]), and 7,4, = 1.333 when the updated environment is denoted by [0.333,
0.333, 0.333]. We show the environments we use for testing in Table 3. We choose non-stationary environments by
uniformly sampling 7 value from 7,5y, t0 Mimqs. We use a 3x3 map for Frozen Lake, with position indices from 0 to 8
as shown in the main text. The agent starts from cell 0, the goal is set at cell 8, and there are holes in cells 1 and 6. We
show a schematic of the environment in Fig. 11.

As Table 3 shows, we choose probability distributions based upon uniformly sampling 1 value from 7,5, t0 Nimaz-
The map used for this experiment is a 3x3 map, with position index from O to 8 and O is the start position, 8 is the
destination, and position index 1 and 6 are holes.
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Figure 11: The test environment for the FrozenLake experiments. The agent must traverse from cell (0,2) to cell (2,0) without falling
into cell (0,0) and cell (1,2). However, under slippery conditions, the agent does not always move in the desired direction.

probability distribution 7

[1.0, 0.0, 0.0] 0
[0.933, 0.033, 0.033] 0.2
[0.833, 0.083, 0.083] 0.4
[0.733, 0.133, 0.133] 0.6
[0.633, 0.183, 0.183] 0.8
[0.533, 0.233, 0.233] 1.0
[0.433, 0.283, 0.283] 1.2
[0.333, 0.333, 0.333] 1.333

Table 3: Probability distribution of the testing environments and corresponding 7

C.1 Stationary Environment

As described above, the stationary environment corresponds to the setting [1, 0, 0], i.e., the lake is not slippery. As we
see in Fig. 12 shows, standard MCTS, PA-MCTS (with all values of o) and DDQN can achieve maximum rewards. We
compute each result by averaging across 100 samples.

C.2 Non-Stationary Environment

We also show results in non-stationary settings results in Fig. 12. We use different colors to represent different
environments. We show results for five settings in the figure to make the plot readable (the results are consistent across
the other settings). Like the cartpole environment, we observe that the performance of the DDQN deteriorates as the
environment changes.

This behavior is expected, as actions that are favorable in the non-slippery setting can now lead the agent to a hole.
We also see that for most settings, PA-MCTS achieves the optimal utility. In some settings, while PA-MCTS does not
achieve the highest possible utility, it outperforms both standard MCTS and DDQN given the optimal o (we discuss
how to tune « below).

C.3 Choosing the optimal «

As we describe in the main text, during execution, the agent needs to pick an optimal a quickly. Similar to the
cartpole environment, we leverage the finding that the agent can approximate the performance of different values of
o by using a small number of PA-MCTS iterations. We show the results in Fig. 13; note that PA-MCTS with 25
iterations approximates the optimal o with 500 iterations (naturally, this approach is not optimal; we hypothesize that
the a-selection mechanism can be operated in parallel even after an initial « is chosen, and the agent can update the
parameters over time).

C.4 Comparison with Alphazero

Finally, we use the proposed a-selection strategy to select the optimal « value for different environment settings. Then,
we compare PA-MCTS with Alphazero. Fig. 14 shows that as the non-stationary environment deviates further and
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Figure 13: Frozenlake Alpha Selection for different probability distributions

further from the stationary environment, Alphazero performs significantly worse than PA-MCTS. We hypothesize this
loss of performance is due to the fact that AlphaZero uses a pre-trained DDQN (on the stationary environment) to
simulate rollouts, whereas PA-MCTS uses actual rollouts as it grows the search tree.

C.5 Time Constraints

Finally, we explore the time taken to run PA-MCTS (with a-selection, i.e., the additional time to tune « is included
in the computational time we report) in comparison with the baseline approaches. Again, we point out that for a fair
comparison, we re-train both DDQN and AlphaZero starting from the network trained on the stationary setting; we
observed that this method significantly reduces the training time than re-training from scratch. We present the results in
Table 4. Also, to be fair to the AlphaZero framework, we create 100 data generating processes in parallel to feed into its
re-training procedure (we leverage Apache Kafka to achieve this framework). For the DDQN, we use a maximum of
1,000,000 million steps or stop the training if the network converges. For PA-MCTS, we run a-selection in parallel. As
we see, it is significantly faster to run PA-MCTS than re-training the networks.

Method Iterations Execution Time (in seconds)
PA-MCTS 5 0.001
PA-MCTS 10 0.002
PA-MCTS 15 0.005
PA-MCTS 25 0.006
PA-MCTS 50 0.007
PA-MCTS 100 0.012
PA-MCTS 200 0.029
PA-MCTS 500 0.08
PA-MCTS 1000 0.3
PA-MCTS 1500 0.41
PA-MCTS 2000 0.645
PA-MCTS 3000 0.856

Re-Train DDQN 1,000,000 steps 1865.75
Re-Train AlphaZero NA 3900

Table 4: Execution time of PA-MCTS (with a-selection) with varying MCTS iterations in comparison with DDQN and AlphaZero.
We observe that PA-MCTS is significantly faster.

C.6 Hardware

The experiments were conducted on Chameleon testbed [Keahey et al., 2020] on 4 Linux systems with 32-96 logical
processors and 528 GB RAM.
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Figure 14: Comparison of PA-MCTS with Alphazero; we see that PA-MCTS comprehensively outperforms Alphazero in non-
stationary settings.
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D Experimental Results on the Cliff Walking Environment

We also conduct experiments on the Cliff Walking Environment. The environment has 48 possible states. Instead of
Cliff Walking implemented by OpenAl Gymnasium Brockman et al. [2016], which only has deterministic transition
functions, we implement our own Cliff Walking environment, which has stochastic transition functions (our code is
available through the supplementary material). We show a schematic of the environment in Fig. 15; cell 36 is the
start position, and state 47 is defined as the goal position. States in 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, shown in
brown color in Fig. 15 are defined as cliff region. Unlike OpenAl Gymnasium version Brockman et al. [2016], our
environment ends when the agent falls off to a cliff, or the agent reaches the goal position. The agent receives a reward
only if it reaches the goal position, and the corresponding reward is related to how many steps the agent takes to reach
the goal position from the start position. The fewer steps the agent takes, the more reward is received. For instance, the
agent receives more reward by choosing path [36, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47] than choosing path
[36,24,12,0,1,2,3,4,5,6,7,8,9, 10, 11, 23, 35, 47]. We introduce a slippery nature in this environment in the
same manner as the Frozen Lake environment, with one critical difference to account for the fact that the hill has a
specific location. If the slippery factor is 0.1, then there is a 0.1 probability that the agent goes to the cell below its
current location (except when it explicitly wants to go down, in which case it always goes down).

|A/HHHHHHHHHHG

0 1 2 3 4 5 6 7 8 9 10 11

Figure 15: The test environment for the Cliff Walking experiments. The agent must traverse from cell (1,0) to cell (10,0) without
falling into the cliff. Under Slippery conditions, the agent does not always go in the desired direction.

D.1 Stationary Environment

The stationary environment is defined as the slippery factor is 0, i.e. the environment is not slippery. As we see in
Fig. 16, both PA-MCTS and DDQN can achieve maximum rewards. There is some noise in the performance of standard
MCTS. We believe this randomness could be alleviated by introducing more iterations.We compute each result by
averaging across 100 samples.

D.2 Non-Stationary Environment

In Fig. 16, we also show results in non-stationary settings. We use different colors to represent different o values used
for PA-MCTS. Similar to the Frozen Lake environment, the performance of the DDQN deteriorates as the environment
changes. This behavior is expected, as actions that are favorable in the non-slippery setting can now lead the agent to
the cliff region. As the surface becomes more slippery, we observe that using standard MCTS is better than leveraging
learned Q-values. Indeed, PA-MCTS selects O as the optimal «, disregarding the learned Q-values. This shows the
robustness of PA-MCTS, i.e., when the learned Q-values are not useful, it reverts to a fully online search.

D.3 Choosing the optimal «

During execution, the agent needs to pick an optimal o quickly. Similar to previous environments, we utilize the
observation that the agent can emulate the performance outcomes from various « values by executing a limited count of
PA-MCTS iterations. The outcomes are displayed in Fig. 17. For a stationary environment, counting on DDQN could
give a maximum cumulative reward. In non-stationary environments, the selection is more biased towards alpha = 0.0,
as the optimal path chosen by DDQN becomes risky. Given 50 iterations, MCTS results become more reliable.
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Figure 16: We show the cumulative reward obtained by PA-MCTS, standard MCTS (a = 0), and DDQN («a = 1) for different
slippery levels among 0.0, 0.1, 0.2, 0.3

D.4 Comparison with Alphazero

We compare PA-MCTS with Alphazero after we use the proposed a-selection strategy to find the optimal « value for
different environment settings. In Fig. 18, as slippery becomes nonzero, alphazero performance becomes significantly
worse than PA-MCTS. This is reasonable as Alphazero selects actions in UCT by selecting actions preferred by those in
stationary settings.
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Figure 17: Cliff Walking Alpha Selection for different Slippery Levels

D.5 Time Constraints

As in previous environments, we explore the time taken to run PA-MCTS (with a-selection) and compare it with the
time to retrain DDQN and Alphazero. We show the results in Table 5. We retrain DDQN and Alphazero that were
previously trained in the stationary environment setting. For alphazero network, we create 60 data-generating processes
in parallel to feed into its re-training procedure. For DDQN, we use a maximum of 100,000 steps to stop the training.
As we did previously, we run a-selection in parallel, and running PA-MCTS is significantly faster than retraining the
networks.

Method Iterations Execution Time (in seconds)
PA-MCTS 5 0.019
PA-MCTS 10 0.032
PA-MCTS 15 0.038
PA-MCTS 20 0.392
PA-MCTS 25 0.401
PA-MCTS 50 0.071
PA-MCTS 100 0.113
PA-MCTS 200 0.218
PA-MCTS 500 0.570
PA-MCTS 1000 0.919

Re-Train DDQN 100,000 steps 2916.864
Re-Train AlphaZero NA 6097.156

Table 5: Execution time of PA-MCTS (with a-selection) with varying MCTS iterations in comparison with DQN and AlphaZero.
We observe that PA-MCTS is significantly faster.

D.6 Hardware

The experiments were conducted on Chameleon testbed [Keahey et al., 2020] on 4 Linux systems with 32-96 logical
processors and 528 GB RAM.

E Experimental Results on the Lunar Lander Environment

We also evaluated our approach on the Lunar Lander Environment from OpenAl Gymnasium Brockman et al. [2016].
In this setting, the agent must control the lunar module by firing the main engine upwards or the side engines to steer
left or right. We use the discrete version of the environment. The state is an 8-dimensional vector: the coordinates
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Figure 18: Comparison of PA-MCTS with Alphazero; we see that PA-MCTS comprehensively outperforms Alphazero in non-

stationary settings.

of the lander, its linear velocities in its angle, its angular velocity, and two booleans that represent whether each leg
is in contact with the ground or not. We change the windpower parameter in order to represent uncertainty in this

environment.
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Figure 19: The test environment for the Lunar Lander Environment. The agent must land within a given viewpoint without crashing
the body.

E.1 Stationary Environment

The stationary setting in this environment has no wind, i.e., the wind power is set to 0. As Fig. 20 shows, both DDQN
and PA-MCTS with higher « value can achieve relatively high cumulative reward. We compute each result by averaging
across 30 samples.

E.2 Non-Stationary Environment

We show results for different wind power values in Fig. 20 as well. We use different colors to represent different o
values used for PA-MCTS. As the results suggest, it is challenging to use MCTS with a limited number of iterations
to find near-optimal actions. This environment serves as the other end of the spectrum (with respect to cliff walking),
where MCTS is not particularly useful given limited computational budget. In this case, relying on learned Q-values is
the best course of action. Below, we show that PA-MCTS indeed selects a very high «, therefore relying more on the
learned Q-values.

E.3 Choosing the optimal o

As we expected, since the limited number of iterations can not fully explore the future trajectory of the agent, PA-MCTS
relies more on the predictions from trained DDQN.

E.4 Comparison with Alphazero
We deployed Alphazero training with 90 parallel running data-generating processes that feed data to the training process

for 96 hours. However, in our setting, the AlphaZero network, even with multiple hyperparameters, did not converge
and showed worse results than DDQN

E.5 Hardware

The experiments were conducted on Chameleon testbed [Keahey et al., 2020] on 4 Linux systems with 32-96 logical
processors and 528 GB RAM.
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Figure 20: We show the cumulative reward obtained by PA-MCTS, standard MCTS (a = 0), and DDQN (« = 1) for changing
wind power among 0.0, 10.0, 15.0, 20.0.
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Figure 21: Lunar Lander Alpha Selection for different Wind Power
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