
Breaking Cyclic Dependencies for Network Calculus
using Service Partitioning

Boyang Zhou
boz319@lehigh.edu

Lehigh University

Isaac Howenstine
isaac.howenstine@gmail.com

EAB

Liang Cheng
liang.cheng@utoledo.edu

University of Toledo
Steffen Bondorf

steffen.bondorf@rub.de
Ruhr University Bochum

ABSTRACT
Network Calculus (NC) is a method for providing certifica-
tion evidence in networked systems, ensuring proper func-
tioning of time-critical traffic. Traditional NC analyses focus
on feedforward networks that are networks without cyclic
dependencies. However, some methods, like the fix-point
method and turn prohibition, apply NC to non-feedforward
networks but exhibit limitations in stability, adaptability,
and flexibility. We propose an alternative method, service
partitioning, supported by theorems and lemmas, to ad-
dress these limitations. Service partitioning breaks cyclic
dependencies in non-feedforward networks using a break-
ing method that leverages Quality of Service (QoS) mecha-
nisms (Weighted Round-Robin, Static Priority, Time-Aware
Shaper), by assigning flows that form cycles to distinct buffers
with dedicated service allocations. This method offers en-
hanced flexibility by allocating different network resources
to buffers based on multi-class scheduling during the break-
ing process. In contrast to existing methods, service par-
titioning does not require rerouting or additional hardware
and avoids deriving invalid solutions. The paper investigates
the performance of service partitioning in terms of flexibility,
result tightness, adaptability, and stability to show that ser-
vice partitioning is superior to existing methods. One lim-
itation of service partitioning is that it cannot fully break
cyclic dependencies in some scenarios, requiring the assist
from solving methods, which can be used to apply network
calculus to networks with cyclic dependencies. However,
when combined with solving methods, service partitioning
can still improve solution quality, reducing potentially in-
valid results in simulated ring networks by over 30% com-
pared with results derived by solving methods alone.

1. INTRODUCTION
Network Calculus (NC) is a verification method that has

been utilized to assess the delay performance of flows [1].
There are various toolboxes that implement different NC
techniques for different types of networks [2, 3, 4]. NC can
offer deterministic delay bounds for systems, such as avion-
ics systems [5] and industrial Ethernet [6]. However, tra-
ditional NC methods (Separated Flow Analysis (SFA), To-
tal Flow Analysis (TFA), and Pay Multiplexing Only Once

Copyright is held by author/owner(s).

(PMOO)) are typically applied to feedforward networks [7],
where there is no cyclic dependency. Many systems that
require delay and backlog guarantees have non-feedforward
networks, which makes direct usage of traditional methods
difficult [8, 9, 10].

Various methods have been developed for applying NC
to non-feedforward networks, such as PMOC [11], the fix-
point method [1], turn prohibition, and FP-TFA [10]. These
methods are categorized into two classes, which are break-
ing methods and solving methods. Breaking methods break
the cyclic dependencies in the network and then apply net-
work calculus for analyses while solving methods analyze the
network with cyclic dependencies using mathematical ways.
These approaches, discussed in Section 3, have limitations.
Some solving methods may not provide delay bounds un-
der certain Quality of Service (QoS) mechanisms or produce
valid results, while breaking methods can restrict network
resources or require extra hardware.

To overcome the limitations of existing methods, we pro-
pose a novel breaking method called service partitioning.
This method leverages various QoS mechanisms to break
cyclic dependencies in non-feedforward networks. Modern
switches typically support QoS mechanisms, such as Strict
Priority (SP) and Weighted Round-Robin (WRR), enabling
the implementation of service partitioning without incurring
additional costs. Service partitioning splits nodes into buffer
groups with dedicated resources. Besides QoS mechanisms,
redundancies in MIMO communication can also create in-
dependent buffer groups [12]. In the literature, queues and
buffers are used interchangeably. By assigning flows that
form a cycle to separate buffer groups, service partitioning
effectively eliminates their mutual dependency.

Due to a limited number of buffers, service partitioning
may not always completely break cyclic dependencies. In
cases with residual cycles, solving methods can be employed.
Combining solving methods and service partitioning reduces
invalid results, as discussed in Section 5.4. The service par-
titioning workflow is depicted in Figure 1. Since service
partitioning splits nodes to break cyclic dependencies, the
first step is to find a set of nodes to split so that all cyclic
dependencies can be broken or partially broken. This step
is accomplished by using Johnson’s algorithm [13] to find
all cyclic dependencies, followed by the use of either integer
programming or a greedy algorithm to identify candidate
nodes to split. The second step is to split each node iden-
tified in the first step into several buffer groups and assign

flows that form cyclic dependencies to different buffer groups
in order to eliminate their mutual dependencies. The third
step is to assign dedicated service curves to different buffer
groups in the split nodes. The last step is to choose different
methods to analyze the network performance. The method
selection is based on whether there are remaining cycles in
the network. Further explanation of the diagram is provided
in Section 4. The main challenges of service partitioning are
proving the validity of service partitioning and identifying a
suitable set of nodes to split.

Contributions: Our main contributions are:

1. We propose service partitioning, which utilizes Quality of
Service (QoS) mechanisms to break cyclic dependencies
in non-feedforward networks. Its validity is substantiated
by Theorem 4.1, which proves that cyclic dependencies
can be broken by splitting a set of nodes in the cycle.

2. We propose to use either an integer programming ap-
proach or a greedy algorithm to identify a set of nodes to
split for breaking cyclic dependencies using service parti-
tioning based on Theorem 4.1.

3. We perform comprehensive numerical analyses to exam-
ine the flexibility and scalability of service partitioning.
Furthermore, by comparing the results of service parti-
tioning and existing methods, we demonstrate its superi-
ority in terms of scalability, stability, and adaptability.

4. We demonstrate that even when service partitioning can-
not completely break all cyclic dependencies, it enhances
the performance of solving methods, decreasing the time
complexity of solving methods and reducing invalid re-
sults by over 30%.

Section 2 presents the NC background. Section 3 shows
existing methods for analyzing non-feedforward networks us-
ing NC. Section 4 introduces service partitioning and its im-
plementation details. Section 5 evaluates the performance
of service partitioning. Section 6 concludes the article.

2. BACKGROUND
In this section, the basic knowledge of NC is introduced.

NC provides a set of theorems that derive deterministic de-
lay bounds of networks based on a mathematical model us-
ing min-plus algebra. Min-plus algebra provides convolution
and deconvolution operations of two functions f1 and f2,
which are defined as:

convolution (f1 ⊗ f2)(d) = inf
0≤s≤d

{f1(d− s) + f2(s)}, (1)

deconvolution (f1 ⊘ f2)(d) = sup
u≥0

{f1(d+ u)− f2(u)}. (2)

Since NC is used to derive the worst-case delay bound,
flows are modeled by their worst-case arrival processes (Ar-
rival curves), and nodes (i.e., switches and routers) are as-
sumed to provide minimum service (Service Curves).

Definition 2.1. An arrival curve α(t) is a bounding en-
velope that characterizes all possible arrival processes. Given
an arrival process F (t) describing the cumulative amount of
data arriving at a node in the network up to time t, a non-
negative, non-decreasing function α(t) defined for any t ≥ 0
is an arrival curve of F (t) if and only if

∀t ≥ s ≥ 0 : F (t)− F (s) ≤ α(t− s). (3)

This paper uses leaky bucket arrival curves, shown in Eq. 4.

αρ,b(t) =

{
ρt+ b t > 0
0 otherwise

(4)

Definition 2.2. Given a flow passing a node with an in-
coming arrival process F in(t) and an outgoing process F out(t),
where F in(t) and F out(t) depict the cumulative amount of
data up to time t coming to and leaving the node, a non-
negative, non-decreasing function β(t) is a service curve for
that node if and only if

F in(t) ≥ F out(t) ≥ F in(t)⊗ β(t),where β(t) ≥ 0. (5)

Rate-latency service curves are used in this paper, which is
shown in Eq. 6, where [a]+ equals to max{a, 0}.

βR,T (t) = [R(t− T)]+ (6)

It is ubiquitous that several flows might pass the same
node in real-world applications. In this case, leftover ser-
vice curves need to be calculated. The definition of leftover
service curves is as follows:

Definition 2.3. Suppose two flows f1 and f2, which have
arrival curves α1 and α2, pass a lossless node with FIFO
multiplexing. The service curve of the node is β(t). The
leftover service curve β1

θ of f1 is calculated as follows (Propo-
sition 6.2.1 in [1]):

β1
θ = [β(t)− α2(t− θ)]+1{t>θ}. (7)

θ depends on the latency of the service curve and rates and
bursts of the arrival curves. There are different derivations
for θ [14]. Note that the default calculation for θ from Net-
workCalculus.org DNC [7] is used in this paper.

The arrival curve of a flow will change once it passes a
node. If a flow has a path length larger than one node, it is
necessary to calculate the outgoing arrival curve of the flow
in each node, which is also the incoming arrival curve of the
next node on its path.

Definition 2.4. Given an incoming arrival curve αin of
a flow and a service curve β of a node, the arrival curve of
the outgoing flow can be calculated using Eq. 8.

αout(t) = (αin .
⊘β)(t) =

{
0 t = 0
(αin ⊘ β)(t) otherwise

(8)

After introducing how to calculate the arrival curve and
the service curve. We can then derive the worst-case delay
bound as follows:

delay : ∀t ≥ 0 : D(t) ≤ inf{d ≥ 0|(α⊘ β)(−d) ≤ 0}. (9)

3. RELATED WORK
Finzi et al. [9] identify two types of methods for address-

ing the non-feedforward limitation. One is to break the
cyclic dependencies, which is called the breaking method.
The other is to compute the bounds while taking cyclic de-
pendencies into account, defined as the solving method. Ser-
vice partitioning is a breaking method. Table 1 compares
existing methods with service partitioning. Service parti-
tioning can overcome most of the limitations encountered
by existing methods.

Table 1: Comparison of service partitioning and existing breaking and solving methods

Property
Method

Turn prohibition Regulator insertion Service partitioning solving methods

Rerouting Requires rerouting Not required Not required Not required

Resource restriction
Restrict the usage
of some resources

No restriction No restriction No restriction

Extra hardware Not required Required (regulators) Not required Not required
Invalid results No No No May produce invalid results

Applicability
Not applicable to
some scenarios [9]

High applicability High applicability
Applicability to WRR or TAS QoS

mechanisms is an open research topic

Flexibility No flexibility No flexibility
High flexibility by allocating
service curves arbitrarily

No flexibility

Figure 1: The workflow for applying service parti-
tioning to non-feedforward networks

3.1 Turn Prohibition
Turn prohibition [8] relies on graph-theoretic methods to

strategically underutilize certain network resources to pre-
vent cyclic dependencies. It restricts the usage of network
resources and requires rerouting to break the cyclic depen-
dencies. However, this method does not always work, as in
some cases, the traffic load might be higher than the avail-
able capacity after the restriction [9], preventing the usage of
turn prohibition. Additionally, these methods are topology-
based and do not consider the actual flow paths, resulting
in suboptimal solutions. Better results can be achieved by
taking the flows into consideration.

3.2 Regulator Insertion
Thomas et al. [10] propose a method to break the cyclic

dependencies by inserting regulators into the non-feedforward
network. Due to the “shaping-for-free” principle [1, 10],
adding regulators does not induce extra delays. However,
“shaping-for-free” is not always a fair claim because it ig-
nores the processing delay of the shaper (See Lemma 1.5.2
in [1]). Since regulators need to parse the header and cal-
culate the sending time of each packet, the influence of the
processing delay still needs to be evaluated. Furthermore,
this method requires additional hardware.

3.3 Solving Methods
The three solving methods are the fix-point method [15,

1], PMOC [11], and FP-TFA [10]. The fix-point method
is a standard method for dealing with non-feedforward net-

works. PMOC is another method for non-feedforward net-
works. The difference between the fix-point method and
PMOC is that PMOC considers how flows are serialized by
paying the bursts only at convergence points, which are the
nodes where two flows join and begin traveling down a com-
mon subpath [11]. Both methods are applied to networks
with arbitrary multiplexing. FP-TFA is a method to de-
rive the worst-case delay bound in both feedforward and
non-feedforward networks with FIFO multiplexing based on
TFA++ [16]. It uses a similar technique to the fix-point
method. Applied to a network without cyclic dependencies,
it derives the same result as TFA++ mentioned above [17].

These methods may provide unrealistically large results
and produce negative results due to the necessary matrix
inverse calculation (Section 6.3.2 in [1]). Moreover, these
methods cannot bound the delay of flows in switches with
QoS mechanisms that assign proportional service curves,
such as WRR and TAS, as discussed in Section 5.2.

4. SERVICE PARTITIONING
Service partitioning essentially involves subdividing nodes

into independent buffers or groups of buffers. Depending on
the QoS mechanisms implemented by the switches in a net-
work, a single output port can be transformed into multiple
parallel subnodes or groups of buffers. These groups oper-
ate concurrently, each with its own dedicated leftover ser-
vice curve for the flows that pass through them. Although
a buffer group shares network resources with other groups,
these shared resources are isolated from one another via QoS
mechanisms. Contention for network resources among indi-
vidual flows only occurs within the same buffer group. Ser-
vice partitioning can be effectively implemented using the
existing QoS mechanisms, including Strict Priority (SP),
Weighted Round Robin (WRR), and Time-Aware Shaper
(TAS). To illustrate this concept, consider Figure 2 (a),
which represents a network with three flows, f1, f2, and f3,
forming a cyclic dependency. In NC, the dependency occurs
when multiple flows share the resources of the same node.
Thus, dependencies between f1 and f2, between f2 and f3,
and between f3 and f1 occur at ports 5, 10, and 20, respec-
tively. Consequently, the cyclic dependency in this network
becomes 10 → 20 → 5 → 40, where → denotes the order and
direction since directed graphs are used. Disrupting the de-
pendency of flows among ports 10, 20, or 5 effectively breaks
the cyclic dependency. Figure 2 (b) provides an example of
service partitioning, where port 5 from Figure 2 (a) is sub-
divided into lower-level buffer groups, thereby eliminating
the cyclic dependency in the network. Port 5 is split into
two buffer groups with no contention for network resources
between them. A reassignment of violating traffic flows to
different buffer groups can break the cyclic dependency. In

Switch

Port

Buffer
(priority
queue)

(a)

(b)

`

10

20
30

5

15

35

Buffer
Group 1

10

20
30

5

15

35

Buffer
Group 2

Ethernet Cable

f1

f2

f3

f1

f2

f3

40

40

45

45

fi fj

fi and fj have a
dependency

Flow path

f1 f3

f1 f2

f2 f3

f1 f3

f2 f3

Figure 2: This figure illustrates the working mech-
anism of service partitioning. Part (a) shows the
scenario where there is a cyclic dependency formed
by three flows in the network. The transition from
part (a) to (b) shows that converting certain output
ports to buffer groups can break the cycles. This
is done by eliminating the dependency/contention
between f1 and f2 at port 5 .

this scenario, flow f1 is assigned to Buffer Group 1, and flow
f2 is assigned to Buffer Group 2.

Without loss of generality, we assume that flows in non-
feedforward networks are not assigned specific priorities in
advance, meaning that all flows can be assigned to any pri-
ority. In case there is a pre-defined priority assignment, we
may create new contention in another buffer group. Then,
service partitioning needs to be run repeatedly. This scheme
terminates when either the scheme converges (i.e., no new
contention among individual flows is created in a buffer
group) or a solving method is applied to compute the delay
bound despite the presence of cyclic dependencies.

Service partitioning involves three key steps: identifying
nodes to split, reassigning flows to different buffer groups,
and partitioning the service curve. The choice of NC method
applied depends on whether there are remaining cyclic de-
pendencies after the breaking process. Figure 1 depicts the
workflow for applying service partitioning. Identifying nodes
is a critical component of the process, as the other two steps
are relatively straightforward in comparison.

In order to proceed with the breaking process of service
partitioning, it is necessary to clarify the definitions of three
terms: sides, shared nodes, and penalty nodes. Figure 2 (a)
is used to clarify these definitions.

Definition 4.1. A side refers to the set of nodes in a
cycle that intersects with the nodes along a specific flow path.
Let’s consider a cycle C with nodes 1 → 2 → ... → n and a
flow f with a path of fp1 → fp2 → ... → fpm. Then, the

side s with nodes s1 → s2 → ... → sk of flow f and cycle C
must meet the following conditions:

k ≥ 2, (10)

si ∈ C ∧ si ∈ f , ∀1 ≤ i ≤ k, (11)

s(i+1)%n − si =

{
1 1 ≤ i < n
1− n i=n

. (12)

10 ensures that each side must have at least two nodes.
11 indicates that all nodes in a side must be in both the cor-
responding cycle and the corresponding flow. 12 guarantees
that the consecutive nodes in a side must appear consecu-
tively in the corresponding cycle without any skipped nodes
in between. For example, f2 in Figure 2 (a) has a side of
5 → 40 → 10 with the cycle. One flow can have multiple
sides with a cycle.

Sides can be classified into two types: sub-sides and super-
sides. In a cycle, a sub-side is a side that is fully contained
within another side in the same cycle. Any side that is not
a sub-side can be considered a super-side.

Definitions of shared nodes and penalty nodes are defined
below:

Definition 4.2. Shared nodes within a cycle are defined
as the nodes that are traversed by more than one of the flows
that form the cycle, which are flows having validated sides
with the cycle.

In Figure 2 (a), ports 5, 10, and 20 are shared nodes since
each of them is traversed by two flows, while port 40 is not
a shared node.

Definition 4.3. Penalty nodes are shared nodes that are
crossed by more than eight flows forming the same cycle,
under the assumption that there are at most eight queues in
each node when using WRR, SP, or TAS.

There is no penalty node in Figure 2 (a) because ports 5,
10, and 20 are only traversed by two flows forming the cycle,
while at least nine flows are required for penalty nodes.

Splitting a non-penalty shared node can partition the shared
node into a set of non-shared subnodes. This can be achieved
by simply assigning flows forming the cycle to different queues.
However, splitting a penalty node cannot fully eliminate the
competition for network resources among the flows form-
ing the cycle, because at least two flows are assigned to the
same queue in a penalty node, which means that the compe-
tition still exists after splitting a penalty node. Therefore,
a penalty is applied when a penalty node is split. Know-
ing the definition of sides, shared nodes, and penalty nodes,
we leverage a collection of theorems and lemmas to demon-
strate the process of breaking cyclic dependencies through
service partitioning. This is accomplished by manipulating
and managing the sides, shared nodes, and penalty nodes
involved in the cycle.

Theorem 4.1. Splitting any k−1 non-penalty shared nodes
of any super-side will break the cycle, where k is the number
of shared nodes on the super-side. If there are fewer than
k− 1 non-penalty shared nodes in any super-side, the cyclic
dependency cannot be fully broken.

The correctness of the theorem is proved by the following
three lemmas.

Lemma 4.1.1. A side must have at least two shared nodes.

Proof. A cyclic dependency is caused by the contention
for network resources. A side must have at least two shared
nodes because flows have to touch each other at two nodes
to form a cycle.

Lemma 4.1.2. Splitting all shared nodes of a side except
one will break the side if all split shared nodes are not penalty
nodes.

Proof. Based on Lemma 4.1.1, there should be at least
two shared nodes for each side that forms the cycle. If a non-
penalty shared node is split, it can be partitioned into several
non-shared subnodes. Thus, splitting all shared nodes ex-
cept one can break the side because there is only one shared
node left if all split nodes are non-penalty nodes.

Lemma 4.1.3. Breaking any super-side of a cycle will break
the cyclic dependency.

Proof. When breaking a super-side s1 of a cycle, only
one shared node remains within s1. If the cycle still exists,
it implies the existence of another side s2 that encompasses
all nodes from s1 with two or more shared nodes. However,
this contradicts the definition of a super-side, which states
that a super-side cannot be fully contained within another
side in the same cycle (as per Lemma 4.1.2).

Service partitioning cannot fully break the cyclic depen-
dency if and only if all super-sides of a cycle have more than
one penalty node. In this case, the penalty nodes can be
split to partially break the cycles. A key challenge in ser-
vice partitioning is determining the set of nodes to split in
order to break or partially break all cyclic dependencies in
the network. Thomas et al. [10] propose a minimum feed-
back arc set (MFAS) problem for finding the fewest edges
to break a set of cycles using regulator insertion. However,
since service partitioning breaks super-sides instead of edges,
MFAS cannot be applied to service partitioning. Thus, we
propose two methods, integer programming and a greedy
algorithm, to identify nodes to split.

4.1 Identifying the Subset of Nodes to Split
In this section, we propose integer programming and a

greedy algorithm for identifying nodes to split to break cyclic
dependencies. Theorem 4.1 provides a guideline for split-
ting nodes to break cyclic dependencies. However, there
are different sets of nodes that can be split to break cyclic
dependencies based on the theorem. The greedy algorithm
greedily selects one set of nodes without a global view, while
integer programming tries to minimize the overall splitting
cost, which is the weighted sum of the number of nodes to
split and the penaly for splitting penalty nodes (see Eq. 13).
Table 2 denotes all notations we use.

4.1.1 Integer Programming
An integer programming problem is formulated to identify

the nodes that need to be split while minimizing the cost.

min

m∑
i=1

ci +W ·
m∑
i=1

ϵi · ci (13)

Objective Function: Function 13 is the objective func-
tion, aiming to minimize the cost function.

∑m
i=1 ci is the

Table 2: Table of Notations
m Number of shared nodes in all cycles
n Number of cycles
Ni Number of super-sides in cycle i

Sk
ij

Binary: Sk
ij = 1 indicates that the shared node

k is on the jth super-side of cycle i. Otherwise,
Sk
ij = 0

nfij
The number of flows forming cycle j at shared
node i

ϵi
Penalty parameter for splitting shared node i,
where ϵi = max{max

j
{nfij} − 8, 0}

tij
Number of shared nodes of the jth super-side
in cycle i, where tij =

∑m
k=1 S

k
ij

W Weight parameter for the objective function

Decision Variables

ci
Binary Variable: ci = 1 indicates that the ith
shared node is split. Otherwise, ci = 0

Bij

Binary Variable: Bij = 1 indicates that the
jth super-side of cycle i is broken or partially
broken. Otherwise, Bij = 0

number of shared nodes to split, and
∑m

i=1 ϵi · ci is the sum
of the penalty for splitting penalty nodes. A shared node
i might be a penalty node in one cycle, while it might be
a non-penalty node in another cycle. In order to simplify
the problem, a positive ϵi is assigned if node i is a penalty
node in any cycle. Different penalties are given to differ-
ent penalty nodes. ϵi equals max

j
{nfij} − 8 when node i

is a penalty node and 0 otherwise. W is a weight to bal-
ance the importance of the number of split nodes and the
penalty. When W is large, splitting nodes with less penalty
is dominant. Otherwise, splitting fewer nodes is preferred.
Constraints: 14-15 are the constraints for the optimization
problem. Constraint 14 guarantees that each cyclic depen-
dency should have at least one super-side broken or partially
broken. Constraint 15 ensures that when the jth super-side
of cycle i is broken or partially broken (i.e., Bij = 1), there
should be at least tij − 1 shared nodes split on the side. In
this way, a super-side can be successfully broken or partially
broken according to Lemma 4.1.2.

s.t.

Ni∑
j=1

Bij ≥ 1, for all 1 ≤ i ≤ n (14)

m∑
k=1

Sk
ij · ck ≥ Bij · (tij − 1),for all 1 ≤ i ≤ n,

1 ≤ j ≤ Ni

(15)

4.1.2 Greedy Algorithm
Since integer programming is np-hard, we also propose an

alternative greedy algorithm to identify nodes to split. The
greedy algorithm splits one super-side of each cycle greed-
ily. For each cycle, one of two cases is encountered. In the
first case, the cycle can be fully broken. There must be a
set of super-sides containing less than two penalty nodes in
the cycle. In this case, the greedy algorithm will select the

shortest super-side in the set to break. In the second case, all
super-sides have no fewer than two penalty nodes. Then, the
greedy algorithm will break the shortest super-side among
all super-sides in the cycle.

4.2 Traffic Class Reassignment
Once the set of nodes to split has been identified, the

next step is to reassign traffic classes for the flows pass-
ing over the split nodes. To prevent service contention,
flows forming a cyclic dependency must be allocated to sep-
arate buffers, allowing for dedicated service curves to be
assigned to each flow. If the network uses TAS, WRR, or
SP, eight queues corresponding to eight different priorities
are assumed. Therefore, if no more than eight flows causing
a cyclic dependency cross the same node, the flows can be
easily assigned to different buffers.

If a penalty node is split, the cyclic dependency cannot
be fully broken, and solving methods can be stacked on
top of service partitioning. In this case, the network after
the breaking process is a new non-feedforward network with
fewer cyclic dependencies compared with the original one.
Solving methods can be directly applied to the network.
However, service partitioning can still benefit the solving
methods in three ways: i) the flows forming the cycles can
be allocated to the same FIFO queues, so all three solving
methods can be used to bound the delay performance of
the remaining cycles; ii) it reduces flows formulating cyclic
dependencies in the network, which can reduce the matrix
size in solving methods, shortening the time consumption of
solving methods; iii) it can reduce the invalid solutions pro-
duced by solving methods (See Section 5.4). Since service
partitioning reduces the time consumption of solving meth-
ods and invalid solutions produced by solving methods, it
increases the scalalability of solving methods.

4.3 QoS Mechanisms for Service Allocation
Once the nodes are split and traffic flows are reassigned,

the next step is to determine the service allocation. There is
no fixed scheme for service allocation, as it can vary based
on the specific requirements of the network. Service par-
titioning enables flexible control of delay performance by
utilizing various QoS mechanisms. In this paper, we intro-
duce three QoS mechanisms for service allocation: Strict
Priority (SP), Time-Aware Shaper (TAS), and Weighted
Round Robin (WRR). The calculations for service alloca-
tion in these mechanisms are outlined as follows.

4.3.1 Strict Priority
SP always forwards the packets in the highest priority

queue among non-empty queues. Suppose the service curve
of the node is β, and αi is the sum of arrival curves of
flows having priority i. Priority j has a higher priority than
priority i if j < i. The service curve βi assigned to the
queue with priority i can be calculated using Eq. 16. Note
that [a]+ = max{0, a}. Each priority queue is allocated its
own service curve if the arrival curves and priorities of all
flows are known.

βi = [β −
∑
j<i

αj]
+ (16)

4.3.2 TAS Node Splitting
TAS can reserve service curves for different groups by as-

signing different time slots to different groups of buffers.

Service curve calculations for different buffer groups are pro-
posed in [18] [19]. TAS allocates proportional service curves
to different groups, meaning that the rates of service curves
assigned to buffer groups are the proportions of the rate of
the output port. The sum of rates assigned to all groups
should be no greater than the rate of the output port.

4.3.3 Weighted Round-Robin
WRR is a QoS mechanism that can allocate network re-

sources to different groups of buffers by assigning different
weights. A larger weight assigned to the group means that
this group of buffers is allotted more network resources.
Suppose there are m groups of buffers in WRR. wi is the
weight assigned to group i. Suppose C is the bandwidth
of the node, and the node has 0 s latency. The leftover
service curve βi for group i can be calculated using Eq. 17
[20]. WRR allocates proportional service curves to differ-
ent buffers. IWRR, or Interleaved WRR, is a variation of
the WRR QoS mechanism that serves groups of buffers in a
round-robin way. In IWRR, the leftover service curve βi for
group i can be calculated using Eq. 17 [20], where lmin

i and
lmax
i represent the smallest and largest packet size of group i,
respectively. WRR, including IWRR, allocates proportional
service curves to different buffers.

βi = [
wil

min
i

wilmin
i +

∑
j ̸=i wj lmax

j

·C(t−
∑

j ̸=i wj l
max
j

C
)]+ (17)

In this section, we have introduced service partitioning and
verified its validity using Theorem 4.1. Since service parti-
tioning is built upon graph theory to break cyclic dependen-
cies, it can be applied to any network topology and traffic
pattern if switches support WRR, SP, TAS, or other QoS
mechanisms that provide dedicated service to queues.

5. EVALUATION
Section 5.1 evaluates the scalability of service partition-

ing by investigating the performance of integer programming
and the greedy algorithm for identifying split nodes. Note
that in the other three subsections, we use balanced ring
networks for evaluation. The greedy algorithm and inte-
ger programming will produce the same set of nodes to split
since there is only one cyclic dependency and all nodes in the
network have the same traffic load in each scenario. Thus,
using integer programming or the greedy algorithm does
not influence the final analysis result. Section 5.2 contains
the evaluation of the flexibility of service partitioning using
IWRR and an explanation of why the fix-point method and
PMOC cannot bound delays in networks using QoS mech-
anisms with proportional service curve allocation. Section
5.3 compares service partitioning against existing methods.
Section 5.4 illustrates how solving methods benefit from ser-
vice partitioning in terms of stability and adaptability.

5.1 Scalability of Service Partitioning
In this section, we aim to evaluate the scalability of ser-

vice partitioning and the tradeoff between the splitting cost
and time consumption for this technique. The main factor
that could impact the scalability of service partitioning is its
time consumption, which comprises two components: (i) the
time consumption of network calculus calculation and (ii)
the time consumption for identifying nodes to split. Since
the time complexity of network calculus calculation with
leaky bucket arrival curves and rate-latency service curves

Figure 3: The impact of shared nodes on the time
consumption using integer programming. Note that
the median time consumption of the greedy algo-
rithm is less than 10 ms in all scenarios

is relatively low (i.e., O(MN̄), where M is the number of
flows and N̄ is the average path length of all flows), the dom-
inant factor of the time consumption of service partitioning
is the time consumption of identifying nodes to split.

To evaluate the scalability, we generate different traffic
patterns and network topologies. In the simulated networks,
each cycle contains 12 shared nodes and four flows. Every
increment of eight shared nodes will create a new cycle be-
cause the new cycle will share the 4 shared nodes with one
of the previous cycles. This setup guarantees that more
shared nodes generate more cycles. We use Johnson’s al-
gorithm to find cycles and OR-Tools [21] to solve the inte-
ger programming problems. We conduct 10 experiments for
each network and create box plots of the time consumption.
Evaluations ran on a machine with an i7-10870H CPU.

We evaluate the time consumption of both integer pro-
gramming and the greedy algorithm running on the simu-
lated network. The time consumption of the greedy algo-
rithm is negligible compared to that of the integer program-
ming algorithm. Even when there are 100 shared nodes
in the network, the median time consumption is still less
than 10 ms by applying Johnson’s algorithm and our greedy
algorithm. Thus, it is not shown in Figure 3. Figure 3
depicts the impact of the number of shared nodes on the
time consumption of identifying nodes to split using integer
programming. The median time consumption generally in-
creases as the number of shared nodes grows, though there
are instances where a network with fewer shared nodes has a
longer time consumption. Additionally, the time consump-
tion of solving the same optimization problem has a wide
range, as seen in the network with 76 shared nodes, where
the solving time ranges from 71 s to 1691 s. This variation
is attributed to the heuristic solving algorithm, which is in-
fluenced by the number of iterations, which in turn depends
on the number of branch and bound nodes and can vary
across solving processes for the same problem. As a result,
there is no guarantee for the time consumption of solving
the optimization problem.

Generally, the greedy algorithm is much faster than in-
teger programming algorithms in service partitioning, often
being hundreds to thousands of times faster. However, there
is a tradeoff between splitting cost and time consumption in
service partitioning. The splitting cost is defined in Function

13. Figure 4 shows the comparison of splitting cost between
integer programming and the greedy algorithm. Since the
greedy algorithm is stochastic when there is a tie, we con-
sider both the worst-case and expected splitting costs of
the greedy algorithm for comparison. Integer programming
achieves optimal results (see Figure 4) while the greedy al-
gorithm has a much higher splitting cost. The gap between
the costs of integer programming and the greedy algorithm
scales with the number of nodes.

Service partitioning demonstrates excellent scalability when
using the greedy algorithm, enabling its application to large
systems. However, the greedy algorithm lacks a global view,
and its results are usually suboptimal. On the other hand,
integer programming can achieve an optimal solution at the
cost of high time consumption. Users should select the ap-
propriate algorithm based on their specific needs.

Figure 4: Comparison of integer programming and
the greedy algorithm in terms of splitting cost

5.2 Flexibility of Service Partitioning
In the existing solving methods, FP-TFA only works for

FIFO multiplexing. PMOC and the fix-point method fail to
provide a bounded delay performance for QoS mechanisms
that allocate proportional service curves, such as WRR and
TAS, since the methods do not consider the proportional-
ity of the service curves. PMOC and the fix-point method
will derive the same invalid delay bounds for all weight as-
signments in IWRR. However, service partitioning can be

(a) Original Network (b) Service Partitioning

2

0
f0 f1

f2f3

1

3 2

0
f0 f1

f2f3

1

3

Figure 5: An example of a four-node ring network.
Part (a) shows the network topology and the traf-
fic pattern. Part (b) shows how to break the cyclic
dependencies using the service partitioning by split-
ting Node 3. See Figure 2 for symbol definitions

used in such cases, providing flexible control of the delay
performance in the network by adjusting the service curve
allocations at the split nodes.

A ring network was utilized to demonstrate the flexibility
of service partitioning in the study. Figure 5 (a) depicts a
ring network comprising four nodes (i.e., output ports) [9],
labeled from 0 to 3, which form a cyclic dependency. Flows
f0, f1, f2, and f3 are involved in the cycle, with each flow
having a side of length 2 with the cycle. The study assumed
that all flows had the same leaky bucket arrival curve with
a 10 Mbps rate and a 1 Mb burst. Each node in this ring
network had a bandwidth of 100 Mbps and a latency of 0
s. Setting the latency to be 0 s was to avoid the dominant
influence of the invariant service latency of nodes on the
total delay bounds and better reflect the impact of weight
assignments on the delay bounds. To break the cyclic de-
pendency, Node 2 is split, as shown in Figure 5 (b). To
examine how service partitioning affects the delay perfor-
mance of the network, IWRR was employed to partition the
service curve of Node 2 into two groups. Weights w1 and
1− w1 were assigned to f1 and f2, respectively.

Figure 6 shows the influence of weight assignment on the
delay performance of the network. The delay bound of f1
is approximately 100 ms when w1 is 0.15, and decreases to
less than 40 ms as w1 increases to 0.85. Delay bounds of f0
and f3 change slightly with w1 because the outgoing arrival
curve of f2 at Node 3 is influenced by w1, which has an
impact on f3 at Node 3 and then f0. Figure 6 shows that
service partitioning enables the control of delay performance
by different service curve allocations.

5.3 Comparison between Service Partitioning
and existing methods

This section evaluates the performance of service par-
titioning by comparing its results with those from turn-
prohibition, the fix-point method, FP-TFA, and PMOC.
Regulator insertion is not evaluated because its influence
on the processing delay is unknown. We employ SP as the
QoS mechanism for all methods except FP-TFA, since it
only supports FIFO. The performance of all methods is as-
sessed in a series of ring networks, considering the tightness
and validity of the results, as well as the limitations of each
method. It is important to note that only the tightness of
delay bounds derived by PMOC, the fix-point method, and
service partitioning can be compared, as turn prohibition
utilizes rerouting and FP-TFA only supports FIFO.

The ring topology is used in the evaluation. Each ring
network is characterized by two parameters, N and L. N is
the number of nodes/output ports in the network, and L is
the number of nodes passed by each flow (i.e., side length).
Each node in the ring topology is an entry point of a flow.
Thus, there is a total of N flows in a ring network, and each
node is passed by L flows. The topology shown in Figure
5 (a) is a ring topology with N = 4 and L = 2. This type
of ring network has been used in the evaluation of breaking
and solving methods in [11, 9].

To assess the performance of all five methods, evalua-
tions are conducted using topologies with varying N and
L parameters. Each node in the network is equipped with
a rate-latency service curve, featuring a bandwidth of 100
Mbps and a latency of 0.1s. The chosen 0.1s latency value
is intended to highlight the impact of flow length on delay
performance, as rerouting in turn prohibition can alter the

Figure 6: The influence of weight assignment on the
delay performance of the network in Figure 5

flow length. All flows possess identical burst sizes of 0.1 Mb,
while their rates range from 1 Mbps to 10 Mbps. For service
partitioning, the service curve assigned to each queue is com-
puted using Eq. 16. In the evaluation, the maximum value
of the worst-case delay bounds across all flows, referred to
as the maximum delay bound, is utilized to effectively con-
strain the delay experienced by all flows.

Figure 7 shows the influence of L on the largest worst-case
delay bounds of the five methods when N = 8 and N = 16.
L ranges from 2 to N − 1. The x-axis shows L, and the
y-axis shows the largest worst-case delay bound of all flows.
All flows have a rate of 1 Mbps. Figure 7 (a) presents the
largest worst-case delay bounds of the five methods when
N = 8. In these instances, all cyclic dependencies can be
resolved using service partitioning since L ≤ 8 and L is
the number of flow passing each node. Consequently, the
minimum result from FP-TFA and SFA is considered as the
outcome of service partitioning after the breaking process.
Service partitioning yields similar results to PMOC and the
fix-point method. Additionally, FP-TFA can also produce
feasible outcomes in such cases, although its results cannot
be compared with others.

The maximum delay bound derived by turn prohibition
initially decreases and then increases as L increases. This
behavior can be attributed to rerouting. Rerouted flows
have a flow length of N−L. when L < 4, rerouted flows have
the largest flow length, leading to large delay bounds. This
shows the limitation of turn prohibition in some scenarios,
where the network topology is a sparse graph with limited
path selections for rerouting.

Figure 7 (b) illustrates the largest worst-case delay bounds
of the network when N = 16. It is worth noting that when
L > 8, all shared nodes become penalty nodes. Conse-
quently, the minimum feasible delay bound derived by FP-
TFA, PMOC, and the fix-point method is utilized to model
the remaining cyclic dependencies in service partitioning.

The largest worst-case delay bound of the turn-prohibition
method exhibits a similar trend to that shown in Figure 7
(a). However, a noteworthy observation is found at L =
2. At this point, the largest delay bound is smaller than
that when L = 3. This occurrence can be attributed to an
increased number of flow reroutings contending for network
resources when L = 3 compared to L = 2.

(a) Maximum delay bound varying with
length when N = 8 and the rate is 1 Mbps

(b) Maximum delay bound varying with
length when N = 16 and the rate is 1 Mbps

Figure 7: The largest delay bounds of five methods with different flow lengths when N = 8 and N = 16

In terms of the tightness of delay bounds, the fix-point
method outperforms PMOC and service partitioning when
L ≤ 13. The curves of the fix-point method and FP-TFA
terminate at L = 13 and L = 12, respectively, as both meth-
ods yield unrealistically large or negative results beyond
these points. Service partitioning provides results slightly
larger than those from PMOC.

Figure 8 illustrates the impact of flow rates on delay per-
formance in two distinct scenarios. The rate of all flows
varies from 1 Mbps to 10 Mbps. The x-axis represents the
rate of each flow, while the y-axis denotes the largest worst-
case delay bound. Due to producing invalid solutions in
most cases, the results of the fix-point method and FP-TFA
are not displayed in this figure.

Figure 8 (a) shows the scenario with N = 8 and L = 4. As
the flow rate increases, the largest worst-case delay bounds
derived by all three methods also increase. Notably, service
partitioning yields tighter delay bounds than PMOC when
the rate exceeds 5 Mbps. However, when the rate is no
greater than 5 Mbps, both methods exhibit similar perfor-
mance. Figure 8 (b) portrays the scenario when N = 16 and
L = 8. In this case, PMOC achieves tighter delay bounds
than service partitioning when the rate is below 4 Mbps.
However, when the rate reaches or exceeds 9 Mbps, PMOC
yields invalid results. It is worth mentioning that turn pro-
hibition performs well in both scenarios, as the rerouting
does not increase the flow length when L = N/2.

In this part of the evaluation, we have shown that ser-
vice partitioning is superior to existing methods. Compared
with turn prohibition, service partitioning does not lead to
a significant increase in the delay bound caused by rerout-
ing. Compared with solving methods, service partitioning
does not produce invalid solutions and provides competitive
delay bounds.

5.4 Adaptability & Stability by Combination
of Service Partitioning & Solving Methods

Based on the previous evaluation, it was observed that
FP-TFA, the fix-point method, and PMOC may produce
invalid results in certain scenarios. Therefore, we further
investigate the adaptability and stability of these methods.

A method is considered to have good adaptability if it avoids
generating negative results, while good stability implies that
the method does not result in a significant increase in the
delay bound when there is minimal network variation, lead-
ing to unrealistically large outcomes. Both unrealistically
large results and negative results are categorized as invalid
outcomes.

In service partitioning, when there are remaining cyclic
dependencies, it becomes necessary to combine the solving
methods. The analysis in this section demonstrates that the
combination of solving methods and service partitioning ex-
hibits superior stability and adaptability compared to using
solving methods alone. For the evaluation, a total of 880
ring scenarios were generated. The parameters used include
N = 16, L ranging from 2 to 12, flow rates ranging from 1
Mbps to 8 Mbps, and burst sizes ranging from 0.1 Mb to
1 Mb. All nodes in the network have a bandwidth of 100
Mbps and a latency of 0.1 s. In order to evaluate the sta-
bility, we need to define unstable results. A delay bound is
considered unstable if it increases by a factor of 1.5 given
a minimal change in the network parameters. The minimal
changes in this evaluation are: an increase in flow length
by one hop, an increase in burst size by 0.1 Mb, and an
increase in flow rate by 1 Mbps. Unstable results are more
likely to become unrealistically large results (observe the de-
lay bound derived by the PMOC when the rate is 8 Mbps
in Figure 8 (b)). When the number of unstable results for
a method is large, it means that the stability of the method
is poor. When the number of negative results is large, the
adaptability is limited. Both negative and unstable results
are treated as potentially invalid solutions.

As shown in Table 3, PMOC outperforms the other two
solving methods even though it provides potentially invalid
solutions in 37.2% of the experiments. FP-TFA performs the
worst, which derives potentially invalid solutions in 80.3% of
the experiments. Service partitioning combined with PMOC
only produces 5.7% potentially invalid results, significantly
less than applying solving methods directly.

The greater presence of valid results when using service
partitioning with solving methods has two causes: i) there is
no unstable or negative solution when all cyclic dependen-

(a) Maximum delay bound varying with
length when N = 8 and L = 4

(b) Maximum delay bound varying with
length when N = 16 and L = 8

Figure 8: The largest worst-case delay bounds of three methods with different flow rates

Table 3: Evaluation of stability and adaptability of
the four methods in 880 ring scenarios

Method FP-TFA PMOC
Fix-point
method

Service
partitioning

Unstable
results 267 257 107 50

Negative
results 440 70 370 0

Valid
results 173 553 403 830

cies can be broken; ii) service partitioning can reduce the
cumulative arrival rate of flows forming the cycle by remov-
ing seven flows from the cycle. This is achieved by assigning
seven flows to seven lower priority queues and assigning the
remaining flows which are still in the cycle to the highest
priority queue in SP. The service curve assigned to these re-
maining flows is unchanged because they receive the highest
priority service (see Equation 16), while the sum of rate of
the flows forming the cycle decreases because seven flows
are removed from the cycle. Figure 9 shows the impact of
the sum of arrival curve rates for flows forming the cycle on
the number of potentially invalid solutions produced by the
three solving methods. This experiment keeps N as 16 and
node bandwidth as 100 Mbps. The y-axis represents the
number of potentially invalid solutions from 100 experiment
instances. All three methods generate more potentially in-
valid solutions when the sum of rates increases. Service
partitioning can reduce the sum of rates of flows forming
the cycle, so it can help reduce the number of potentially
invalid solutions.

6. CONCLUSIONS
In this paper, we propose service partitioning to enable

the application of NC to non-feedforward networks. It is
a breaking method, which can be combined with existing
solving methods. Service partitioning has a limitation. Due
to the limited number of buffers in each output port, service
partitioning may not be able to fully break cycles in some
networks. This will be addressed in our future work.

However, service partitioning does have a lot of advan-

Figure 9: The influence of the sum of arrival curves’
rate on the number of invalid solutions

tages. Compared with PMOC and the fix-point method,
it can provide competitive delay bounds. Moreover, it can
bound the networks with proportional service curve alloca-
tion, which could not be solved using all solving methods.
Compared with turn prohibition, service partitioning does
not require rerouting or restricting the usage of links. Com-
pared with FP-TFA, service partitioning can be applied to
networks with arbitrary multiplexing. Service partitioning
will not produce invalid solutions when it can break all cyclic
dependencies, meaning that it has better adaptability and
stability than solving methods. Although service partition-
ing may not be able to break all cyclic dependencies in some
scenarios, stacking solving methods on top of service parti-
tioning has better adaptability and stability than solving
methods alone, reducing the occurrence of potentially in-
valid solutions. Moreover, service partitioning has better
flexibility than existing methods by allocating network re-
sources in the breaking process.

Acknowledgment
This work is supported by NSF Award No. 2146968. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the author(s) and do not
necessarily reflect the views of the sponsors of the research.

7. REFERENCES
[1] Jean-Yves Le Boudec and Patrick Thiran. Network

calculus: a theory of deterministic queuing systems for
the internet. Springer, 2001.

[2] Boyang Zhou, Isaac Howenstine, Siraphob
Limprapaipong, and Liang Cheng. A survey on
network calculus tools for network infrastructure in
real-time systems. IEEE Access, 8:223588–223605,
2020.

[3] Alexander Scheffler and Steffen Bondorf. Network
calculus for bounding delays in feedforward networks
of FIFO queueing systems. In Proc. of QEST, 2021.

[4] Raffaele Zippo and Giovanni Stea. Nancy: an efficient
parallel network calculus library. SoftwareX, 19, 2022.

[5] Boyang Zhou and Liang Cheng. A reality-conforming
approach for QoS performance analysis of AFDX in
cyber-physical avionics systems. In Proc. of
IEEE/ACM IWQOS, 2021.

[6] Sven Kerschbaum, Kai-Steffen Hielscher, Ulrich
Klehmet, and Reinhard German. Network calculus:
Application to an industrial automation network.
2012.

[7] Steffen Bondorf and Jens Schmitt. The DiscoDNC v2:
A comprehensive tool for deterministic network
calculus. In Proc. of EAI ValueTools, 2014.

[8] David Starobinski, Mark Karpovsky, and Lev A.
Zakrevski. Application of network calculus to general
topologies using turn-prohibition. IEEE/ACM Trans.
Netw., 11(3):411–421, June 2003.

[9] Anäıs Finzi and Silviu S. Craciunas. Breaking vs.
solving: Analysis and routing of real-time networks
with cyclic dependencies using network calculus. In
Proc. of RTNS, 2019.

[10] Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem
Mifdaoui. On cyclic dependencies and regulators in
time-sensitive networks. In Proc. of IEEE RTSS, 2019.

[11] Ahmed Amari and Ahlem Mifdaoui. Worst-case
timing analysis of ring networks with cyclic
dependencies using network calculus. In Proc. of IEEE
RTCSA, 2017.

[12] Kashif Mahmood, Amr Rizk, and Yuming Jiang. On
the flow-level delay of a spatial multiplexing MIMO
wireless channel. In Proc. of IEEE ICC, 2011.

[13] Donald B Johnson. Finding all the elementary circuits
of a directed graph. SIAM Journal on Computing,
4(1):77–84, 1975.

[14] Anne Bouillard. Trade-off between accuracy and
tractability of network calculus in FIFO networks.
Elsevier Performance Evaluation, 153, 2022.

[15] Rene L Cruz. A calculus for network delay. ii. network
analysis. IEEE Trans. Inf. Theory, 37(1):132–141,
1991.

[16] Ahlem Mifdaoui and Thierry Leydier. Beyond the
accuracy-complexity tradeoffs of compositional
analyses using network calculus for complex networks.
In Proc. of the CRTS workshop, 2017.

[17] Stéphan Plassart and Jean-Yves Le Boudec.
Equivalent versions of total flow analysis. arXiv
preprint arXiv:2111.01827, 2021.

[18] Xiaoyu Liu, Chi Xu, and Haibin Yu. Network
calculus-based modeling of time sensitive networking
shapers for industrial automation networks. In Proc.

of IEEE WCSP, 2019.

[19] Luxi Zhao, Paul Pop, and Silviu S Craciunas.
Worst-case latency analysis for IEEE 802.1 Qbv time
sensitive networks using network calculus. IEEE
Access, 6:41803–41815, 2018.

[20] Seyed Mohammadhossein Tabatabaee, Jean-Yves
Le Boudec, and Marc Boyer. Interleaved weighted
round-robin: A network calculus analysis. IEICE
Transactions on Communications, 2021.

[21] Google. OR-tools official website, July 2022.
https://developers.google.com/optimization.

