
Deep Reinforcement Learning-based Scheduling

for Same Day Delivery with a Dynamic Number

of Drones

Boyang Zhou and Liang Cheng

1 Lehigh University
2 University of Toledo

Abstract. Same-Day Delivery (SDD) has emerged as a popular trend
in the retail market, relieving workers from repetitive and monotonous
tasks. Despite these advantages, SDD scheduling is challenging as there is
no prior information available for upcoming tasks. Existing research has
attempted to address this problem using local heuristic search, approx-
imate dynamic programming, and reinforcement learning algorithms.
However, none of these approaches has considered a dynamic number
of drones, which can change due to unforeseen crashes or employing new
drones due to the heavy workload. In this paper, we propose a Same-
Day Delivery with a Dynamic Number of Drones (SD4) problem. To
address this problem, we present a reinforcement learning model using
Double Deep-Q Network (DDQN) to handle both task scheduling with
a dynamic number of drones and drone employment simultaneously.

Keywords: Unmanned Aerial Vehicles (UAV) · Double Deep-Q Net-
works (DDQN).

1 Introduction

The advancement of battery technology and control theory has made Unmanned
Aerial Vehicles (UAVs), or drones, more applicable to commercial settings. Same-
day delivery (SDD) is one of the most important applications of UAVs. Although
SDD is widely investigated by researchers in logistics [1–4, 6], existing research
lacks the consideration of a changing number of vehicles (e.g., drones) during the
delivery. Drones are vulnerable to crashes in harsh and uncertain environments
and can be shared by different depots causing a changing number of drones.
Thus, it is necessary to develop scheduling algorithms that deal with the dynamic
number of drones. We propose a Same-Day Delivery with a Dynamic number of
Drones (SD4) problem, specifically targeting same-day meal delivery.

2 This work is supported by NSF Award No. 2146968. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the author(s)
and do not necessarily reflect the views of the sponsors of the research.



2 Boyang Zhou and Liang Cheng

The SD4 problem involves two main novelties: The first novelty is scheduling
tasks for a dynamic number of drones, while the second novelty involves coordi-
nating drones, including their deployment and release, to enable more efficient
drone utilization, particularly when depots experience peak periods in different
time periods. The main contributions of the paper are as follows:

1. We propose the SD4 problem, which considers the dynamic number of drones
and drone coordination during delivery for more realistic delivery scenarios.

2. We use a reinforcement learning model that employs Double Deep-Q Net-
works (DDQN [5]) to solve the SD4 problem. This model is evaluated in
terms of convergence, solution quality, and real-time performance.

The rest of the paper is organized as follows. Section 2 proposes the SD4 system
for same-day meal delivery. Section 3 and Section 4 demonstrate the reinforce-
ment learning model and environment setup. Section 5 evaluates our solution.

2 System Description for Meal Delivery with SD4

This section provides an overview of the SD4 system. We take same-day meal
delivery as the application scenario of SD4. Figure 1 illustrates the architecture
of the SD4 system for meal delivery.

Depot 1 Depot 2

 d1drone 
crash

 r1

 r2

 c2

 r3

 c3

 r4

 c4

 d4
 d3

 d5

 d6
Released from Depot 1

 d6
Available for Depot 2

 c1

 d2

Service Area 1 Service Area 2

Fig. 1. The system architecture for the same-day meal delivery

A meal delivery task tj in the SD4 system consists of two components: the
restaurant and the customer, denoted as rj and cj , respectively, in Figure 1.
There are two types of delivery in the system: individual delivery and collabora-
tive delivery. Individual delivery occurs when a task can be assigned to a single
drone. For instance, in Figure 1, tasks t1 and t2 are assigned to drone d1 as in-
dividual deliveries. Collaborative delivery, on the other hand, is necessary when
the restaurant and the customer of a task are located in different service areas
of depots. Task t3 is an example of collaborative delivery. Drones may crash
during delivery. Moreover, depots may release their drones (i.e., d6). Depot 2
must estimate whether employing d6 would improve overall system performance
after it is released by depot 1.



3

3 Environment setup for SDD task scheduling

Environment setup plays a crucial role in reinforcement learning. The environ-
ment of a reinforcement learning model consists of state, action, and reward. In
this section, we introduce the environment setup for SDD task scheduling. We
make the following assumptions for the SD4 problem:

1. Drones have a fixed maximum flight time regardless of the payload of a task.
2. Each drone can only deliver a single meal at a time.
3. Depots can reject any request without penalty, except in the case of a col-

laborative delivery where a drone has already picked up the meal.
4. Drones switch their batteries in depots and the switching time is negligible.

3.1 Task and State

Task tj can be described by a five-tuple (arrj , rj , cj , dlj , pj). arrj is the arrival
time of task tj . rj and cj are 2D coordinates for the restaurant and the customer,
respectively. dlj is the deadline for finishing this task. pj is the penalty for tj .
State Sj for task tj in the task scheduling environment is a vector that contains
the following elements:

1. Avl = [avl1, avl2, ..., avln] indicating the ready time for the next departure
of each drone, where n is the number of drones in the system.

2. pj and dlj , representing the penalty and deadline for task tj , respectively,
which are appended to Sj .

3. Fj = [f1j , f2j , ..., fnj ], where fij is the time for the drone i to execute tj .

3.2 Action and Reward

Action aj needs to be taken for task tj . aj can take one of the following values:

aj =

{

0 if tj is rejected
k tj is assigned to the kth drone, 1 ≤ k ≤ n

(1)

The immediate reward R(Sj , aj) is designed to provide feedback action aj
under the current state Sj . It is defined by Equation 2.

R(Sj , aj) =











pj if tj is rejected
1 tfaj

<= dlj

1−
tfaj

−dlj

tmax
Otherwise

(2)

4 Reinforcement Learning Model and Environment

Setup for Drone Employment

This section discusses the reinforcement learning model and the environment
setup for the admission of drones. Figure 2 depicts the model for drone em-
ployment, where the shared environment can adaptively choose the agent and
provide states and rewards based on the task type. The DDQN2 set contains
trained DDQN models for scheduling with different numbers of drones.



4 Boyang Zhou and Liang Cheng

Fig. 2. Reinforcement learning model for drone employment

4.1 Task and State

A two-tuple (darri, davli) describes employable drone dti, where darri is the
time when the depot is notified of the availability of dti, and davli is the time
when dti will be ready for the next task. dSi is the state for drone employment
at darri. It includes the following elements:

1. Avl′ = [avl1,...,avlmaxN ], where maxN is the maximum number of drones
accommodated by the depot. When i > n, then avli = tmax so that no work
can be assigned to the ith drone since it is absent.

2. davli notifies the agent of the time when dti will be ready for meal delivery.
3. End = [end1, ..., endmaxN ] indicates the off-work time for each drone. Drone

i will stop working and leave the depot at endi. N represents the number of
non-employed drones belonging to the depot. Drones belonging to the depot
are not allowed to leave the depot unless they crash.

4.2 Action and Reward

Two decisions must be made for each employable drone: whether to accept it
and the corresponding release time if accepted. Hence, dai is designed to make
these two simultaneous decisions. The values of dai are as follows:

dai =







0 dti is rejected

k
dti is accepted and it needs to work
for tmax∗k

l
, 1 ≤ k ≤ l

(3)

The parameter l is used to divide the time horizon tmax into l equal-length time
intervals. dR(dSi, dai) is the reward when action dai is taken under state dSi.
dR(dSi, dai) contains a immediate cost imci of employing drone dti. imci is
calculated using dp, davli, and dai in Equation 4.

imci =







0 if dai = 0

(min(tmax, davli +
tmax∗dai

l
)

−davli) ∗
dp

tmax
Otherwise

(4)



5

Besides imci, dR(dSi, dai) should also incorpotate the reward for task schedul-
ing. Thus, dR(dSi, dai) can be calculated using Equation 5.

dR(dSi, dai) = imci +
∑

j

R(Sj , aj) (5)

, where darri < arrj < darri+1.

5 Evaluation

This section presents the evaluation of our reinforcement learning-based ap-
proach for SD4, which is divided into two parts: (i) evaluation for SDD task
scheduling, and (ii) evaluation for the model for drone employment.

5.1 Evaluation of DDQN for SDD Task Scheduling

We use simulations to evaluate the performance of our proposed model. Here
is the setup. The service area of a depot is a 30 by 30 plane, where each unit
distance takes one minute for a drone to travel. Euclidean distance is used for
the calculation. The maximum shift duration (tmax) is set to 600 minutes, and
the maximum flight time maxF of a drone is 60 minutes. The rj and cj coordi-
nates are randomly generated, ensuring that the drone can complete tasks in an
individual way or a collaborative way within maxF . The penalty pj is set to 0
for individual delivery tasks and -1 for collaborative ones with food picked up.

Fig. 3. Plots for the rewards vs. training episodes using 5, 10, 15 drones under different
distributions

Convergence Evaluation To investigate how the workload distribution af-
fects the performance of DDQN, we generated workload using uniform, normal,
and bimodal distributions. Figure 3 shows the variation of SDD meal delivery
rewards with trained episodes for 5, 10, and 15 drones under the three workload
distributions. Each episode represents a shift in the system. As we can see, the
model converges well in all scenarios.



6 Boyang Zhou and Liang Cheng

Fig. 4. The average rewards and the average number of scheduled tasks achieved by
DDQN, greedy algorithm 1, and greedy algorithm 2 with different numbers of drones
under the three workload distributions

Solution Quality Evaluation To evaluate the quality of solutions of our
DDQN, we compare our DDQN model with some traditional scheduling algo-
rithms, including the Shortest Execution Time First (SETF), the Earliest Finish
Time First (EFTF), round-robin, and random selection.

SETF: The depot greedily assigns task tj to the drone that has the shortest
task completion time (i.e., aj = argmin

i

fij).

EFTF: In EFTF, instead of greedily choosing the shortest execution time,
the depot assigns the task tj to the drone, which has the smallest avli after
tasking the task (i.e., aj = argmin

i

(avli + fij).

The evaluation for solution quality was conducted by running 100 episodes
for each scenario, and then calculating the average rewards of five algorithms.
Figure 4 (a), (b), and (c) shows the average rewards versus different numbers of
drones achieved by the five algorithms under different workload distributions.

Three workload distributions were used in the evaluation, and all three dis-
tributions have the same workload expectation. DDQN can increase the average
reward by a range from 2.5% to 104.1% compared with the best result from the
four traditional real-time scheduling algorithms.

5.2 Evaluation for the Drone Employment Model

In this section, we mainly evaluate the model for drone employment. The service
area and task generation are inherited from Section 5.1. A depot is assumed to
have 4 drones initially, and maxN is 8. We evaluate the performance of DDQN
for employable drones under normal and bimodal distributions. The uniform
distribution is not included as it cannot benefit from employing drones. There
will be 20 employable drone requests uniformly distributed in each shift. l is set
to 10 for the selection of dai and the calculation of endi.

Convergence Evaluation The first part of the evaluation focuses on the con-
vergence of the DDQN model for employable drones. We set dp to -20 in this



7

example. The rewards vs. training episodes for normal and bimodal workload
distributions are shown in Figure 5, with the mean rewards calculated for the
closest 50 episodes to provide a better measurement of convergence. The results
indicate that the DDQN model for employable drones converges well in both
distributions. It takes fewer than 200 episodes for the model to converge under
the two workload distributions.

Fig. 5. Plots for the rewards vs. training episodes of DDQN for employable drones
under different distributions

Solution Quality Evaluation The solution quality evaluation involves com-
paring the performance of the drone employment model to that of DDQN models
designed solely for SDD task scheduling under different dp values. We use five
DDQN models that can schedule tasks using 4 to 8 drones as baselines. To ensure
a fair comparison, we adjust the reward for the DDQN models for task schedul-
ing by adding dp ∗ (n− 4), where n is the number of drones. We then compare
the gap between the reward obtained from the drone employment model and
the best-adjusted reward derived from the five DDQN models under different dp
values to evaluate the solution quality.

Figure 6 presents the reward achieved by the drone employment model and
the reward gap in different scenarios. As |dp| increases, the reward gap and
reward tend to decrease. There is an outlier of the reward gap when |dp| is 5
under the normal workload distribution. In this case, an additional drone can
always produce a positive effect because |dp| is small. However, the decrement
stops when |dp| reaches a threshold in both distributions since employing a
drone with a high cost will always cause a negative effect. Thus, the model stops
employing any drone in these scenarios, causing a 0 reward gap and a constant
reward. Drone employment in SD4 will not cause a negative effect no matter
how large |dp| is and can increase the reward by up to 21.0% compared with the
best-adjusted reward from DDQN models for static numbers of drones.



8 Boyang Zhou and Liang Cheng

Fig. 6. Reward gap between the drone employment model and DDQN models

5.3 Real-time Performance Evaluation

The evaluation is conducted on a machine equipped with an i9-13900k CPU and
an Nvidia RTX 4080 GPU. The average inference time is less than 50 µs for
both models in all scenarios.

6 Conclusion

This paper introduces a novel approach to solving the SD4 problem using a
reinforcement learning model. The proposed model is capable of dynamic task
scheduling and employment of drones by depots, which can increase the overall
system efficiency. The model is evaluated in terms of convergence, solution qual-
ity, and real-time performance. The results show that the DDQN model for task
scheduling outperforms traditional greedy algorithms under different workload
distributions and numbers of drones, while the drone employment model further
enhances the system efficiency.

References

1. Dayarian, I., Savelsbergh, M.: Crowdshipping and same-day delivery: Employing in-
store customers to deliver online orders. Production and Operations Management
29(9), 2153–2174 (2020)

2. Dayarian, I., Savelsbergh, M., Clarke, J.P.: Same-day delivery with drone resupply.
Transportation Science 54(1), 229–249 (2020)

3. Klapp, M.A., Erera, A.L., Toriello, A.: The dynamic dispatch waves problem for
same-day delivery. European Journal of Operational Research pp. 519–534 (2018)

4. Schubert, D., Kuhn, H., Holzapfel, A.: Same-day deliveries in omnichannel retail:
Integrated order picking and vehicle routing with vehicle-site dependencies. Naval
Research Logistics (NRL) 68(6), 721–744 (2021)

5. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Proceedings of the AAAI conference on artificial intelligence (2016)

6. Voccia, S.A., Campbell, A.M., Thomas, B.W.: The same-day delivery problem for
online purchases. Transportation Science 53(1), 167–184 (2019)


