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Abstract
Transient signals of instrumental and environmental origins (‘glitches’) in grav-
itational wave data elevate the false alarm rate of searches for astrophysical
signals and reduce their sensitivity. Glitches that directly overlap astrophysical
signals hinder their detection and worsen parameter estimation errors. As the
fraction of data occupied by detectable astrophysical signals will be higher
in next generation detectors, such problematic overlaps could become more
frequent. These adverse effects of glitches can be mitigated by estimating and
subtracting them out from the data, but their unpredictable waveforms and large
morphological diversity pose a challenge. Subtraction of glitches using data
from auxiliary sensors as predictors works but not for the majority of cases.
Thus, there is a need for nonparametric glitch mitigation methods that do not
require auxiliary data, work for a large variety of glitches, and have minimal
effect on astrophysical signals in the case of overlaps. In order to cope with the
high rate of glitches, it is also desirable that such methods be computationally
fast. We show that adaptive spline fitting, in which the placement of free knots
is optimized to estimate both smooth and non-smooth curves in noisy data,
offers a promising approach to satisfying these requirements for broadband
short-duration glitches, the type that appear quite frequently. The method is
demonstrated on glitches drawn from three distinct classes in the Gravity Spy
database as well as on the glitch that overlapped the binary neutron star signal
GW170817. The impact of glitch subtraction on the GW170817 signal, or
those like it injected into the data, is seen to be negligible.
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1. Introduction

In a fairly short time since the first direct detection of a gravitational wave (GW) signal
(GW150914) in 2015 [1] by the twin LIGO [2] detectors, GW astronomy has emerged as
an information-rich field that will revolutionize our understanding of compact objects such as
black holes and neutron stars. By now, the network of LIGO and Virgo [3] detectors has repor-
ted 90 confirmed detections of GW signals from compact binary coalescences (CBCs) across
the first observing run (O1) [4] to the third (O3) [5]. The majority of these are binary black hole
(BBH) mergers but the haul also includes a binary neutron star (BNS) system (GW170817)
[6].

The rate of detectable GW signals will grow as more detectors, namely KAGRA [7] and
LIGO-India [8], join the network and increase its distance reach for GW sources. Design stud-
ies are already underway for the successors to the current generation of GW detectors [9–11]
with the goal of achieving an order of magnitude improvement in sensitivity across the cur-
rent operational frequency band. In addition, next-generation detectors will seek to expand
the operational range to lower frequencies (≈1Hz), thereby increasing the duration of in-band
GW signals across the board: for example, a BNS signal starting at ≈10Hz will last for days
compared to the≈1 min for GW170817. Thus, future detectors will not only see a higher rate
but also longer signals, raising the prospect [12] that there will be no data segment free of
detectable GW signals.

The false alarm rate of searches for CBCs as well as generic short duration GW signals,
or bursts, is dominated [13] by transient non-GW signals of instrumental or environmental
origins, commonly called glitches. This is because glitches that populate the same frequency
band as CBC or burst signals and happen to be transient in duration can falsely trigger the
respective search pipelines. A glitch has a particularly adverse effect if it overlaps with a GW
signal, as happened in the case of GW170817 [6], and triggers the search pipeline to reject
the glitch and possibly discard the signal. Even a non-overlapping glitch can severely degrade
parameter estimation if it is close enough to a GW signal [14]. In the third observing run of
the LIGO and Virgo detectors, ≈20% of detected GW signals overlapped with glitches [15]
due to the high glitch rate in Virgo. For future detectors, the frequency of accidental overlaps
will be enhanced by the higher rate of detectable GW signals as well as, for CBC signals, their
longer durations.

Glitches have dissimilar and unpredictable waveforms but many of the observed ones tend
to fall into distinct morphological classes. This has motivated the investigation of automated
glitch classification using machine learning where a range of different methods have been
proposed, such as support vector machine [16], t-SNE [17], random forests [16], S-means
[18], and deep convolutional neural networks [19]. The Gravity Spy [20] project uses a citizen
science approach to engage the lay public in labeling glitches by visual inspection of their
constant Q-transform (CQT) [21, 22] time-frequency images. This has created a high quality
training dataset for machine learning methods. By now, more than 20 named glitch classes
are available in the Gravity Spy database, collected over multiple observing runs of the LIGO
detectors [17].

Several different approaches have been developed to mitigate the adverse effects of glitches
on GW searches. GW search pipelines typically compute secondary functionals, called vetoes,
of the data besides the primary detection statistic that help in distinguishing genuine GW sig-
nals from glitches. A well-known example is the Chi-square veto [23] used in CBC search
pipelines. For LIGO-Virgo data, a set of data quality flags have been developed that use inform-
ation from a large number of auxiliary sensors to quantify the safety of analyzing a given seg-
ment of GW strain data [24]. For glitches that overlap a GW signal, the gating [25] method
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removes the rectangular time-frequency block, or just the time interval, containing an identi-
fied glitch from the data. Cross-channel regression using data from auxiliary sensors [26–29]
has been used to reduce excess broadband noise and a few types of glitches [30].

A relatively recent approach is that of estimating the waveform of a glitch from the data
time series itself and subtracting it out. Glitch subtraction was of critical importance in the
case of GW170817 and has been shown to be an important requirement in reducing bias in
the estimation of GW signal parameters [31]. The GW170817 glitch subtraction was carried
out using the multi-detector BayesWave pipeline [32, 33], which has also been used for other
types of glitches [15]. Another method, Glitschen [34], follows the approach of constructing
parametrizedwaveformmodels for identified glitch classes using principal component analysis
of training sets. A strong motivation for developing glitch estimation and subtraction methods
is that one could, in principle, preprocess the data to clean out every sufficiently loud glitch of
a known type. As exemplified by GW170817, where prior subtraction of the loud glitch would
have kept the search pipeline from discarding the signal, this would make glitch rejection in
all downstream GW searches safer.

In this paper, we present a method for the estimation and subtraction of broadband, short-
duration glitches that have appeared frequently in the observation runs of the LIGO detectors.
The method is computationally cheap, works with single-detector data, does not require a
training set of pre-identified glitches, and is not predicated on auxiliary sensor data. The core
component of the method is Swarm Heuristics based Adaptive and Penalized Estimation of
Splines (SHAPES), an adaptive spline curve fitting algorithm introduced in [35].1 SHAPES
uses splines with free placement of knots to fit both smooth and non-smooth curves in noisy
data. In particular, point discontinuities in the curve or its derivatives (up to some order) can
be accommodated in the fit by allowing knots to merge. The ability to handle both sharp and
slow changes in a curve is a built-in form of multiresolution analysis in SHAPES and a critical
requirement for effective estimation of broadband glitches. We examine the performance of
our glitch subtraction method on the GW170817 glitch in LIGO-Livingston data and instances
of glitches from three morphologically distinct classes, namely, Blip, Koi Fish, and Tomte, in
the Gravity Spy database. In each of the latter three cases, we inject a BNS signal overlapping
with the glitch to mimic the case of GW170817. We find that the impact of glitch subtraction
on the signals, real or injected, is negligible.

The rest of the paper is organized as follows. Section 2 reviews SHAPES with the goal of
providing a self-contained description of the algorithm that is pertinent to this paper. Further
details, such as the motivation and justification for certain features of the algorithm, can be
found in [35]. Section 3 describes the dataset used in this paper and the details of how SHAPES
is used for glitch subtraction. Section 4 presents the results. Our conclusions and discussion
of future work are presented in section 5.

2. Adaptive spline fitting: the SHAPES algorithm

SHAPES is derived under the following models for the noisy data, y, and the signal s(θ)

y= s(θ)+ ϵ , (1)

where y, s, and ϵ are row vectors with N elements, yi = y(ti) and si(θ) = s(ti;θ), i =
0,1, . . . ,N− 1, are samples taken at ti = i/fs with f s being the sampling frequency, and θ
denotes the set of signal parameters that need to be estimated from the data. The noise samples,

1 The SHAPES code is available from the Github repository mohanty-sd/SHAPES.git.
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Figure 1. Cubic B-spline functions Bj,4(t;τ), j = 0,1, . . . ,11, for an arbitrary choice of
16 knots (τ ) marked by squares. Knots with multiplicity> 1 result in B-splines that are
discontinuous in value or derivatives.

ϵi, are drawn independently from the zero mean and unit variance normal (Gaussian) probab-
ility density function N(0,1). The white Gaussian noise assumption does not entail a loss of
generalization since GW data can always be whitened using the estimated noise power spectral
density (PSD).

The signal s(t;θ) is assumed in SHAPES to be a cubic spline, which is a polynomial of
order 4. The choice of a spline model as well as its order is an ad hoc one, with only an
empirical justification, since a rigorous approach requires restricting the class of functions
being estimated but this may be difficult for glitches. A cubic spline can be represented by a
linear combination of B-spline functions [36],

s(t;θ = {α,τ}) =
P−5∑
j=0

αjBj,4(t;τ) , (2)

where α= (α0,α1, . . . ,αP−5), and τ = (τ0, τ1, . . . , τP−1), τi+1 ⩾ τi, is a sequence of P knots
that marks the end points of the contiguous intervals containing the polynomial pieces of
the spline. Note that knots are allowed to be equal, leading to knots with multiplicity higher
than one. (The knots τ 0 and τP−1 are repeated three times each.) The number of B-splines in
equation (2) corresponds to the number of independent parameters describing the spline after
the continuity and differentiability constraints on the polynomial pieces at the interior knots
are taken into account. Repeating knots create discontinuity in either the value of a B-spline
function or its derivatives (up to order 2). This allows the s(t;θ) in equation (2) to model signals
with point discontinuities in value or derivatives. Figure 1 illustrates cubic B-spline functions
for an ad hoc knot sequence.

The best fit spline parameters, α̂ and τ̂ , are those that minimize a penalized least-squares
function,

Lλ(α,τ) = L(α,τ)+λR(α) , (3)

4



Class. Quantum Grav. 40 (2023) 125001 S D Mohanty and M A T Chowdhury

L(α,τ) =
N−1∑
i=0

(yi − si(α,τ))
2
, (4)

where the penalty term,

R(α) =
P−5∑
j=0

α2
j , (5)

is found to be useful in the suppression of spurious clustering of the knots. These clusters are
observed when the method tries to minimize Lλ(α,τ) by fitting out outlier data points arising
from the noise alone. The strength of the penalty is controlled by the gain factor λ, with higher
values of λ leading to smoother estimates.

The optimization of Lλ(α,τ) over the non-linear parameters τ has been a long-standing
computational barrier [37–40] for adaptive spline fitting. At the same time, the benefits of
optimizing the placement of knots have also been demonstrated extensively [38, 41]. It was
shown in [42], and independently in [43], that particle swarm optimization (PSO) [44, 45], a
widely used nature-inspired metaheuristic for global optimization, has good performance on
the free knot placement problem. Moreover, being a continuous optimization method, PSO
can explore all arrangements of knots, including the ones where knots are sufficiently close
to be merged into a single knot of higher multiplicity. This allows the fitting of functions that
have a mix of smooth and non-smooth parts.

There are many variations [46] among the algorithms that fall under the umbrella of the
PSO metaheuristic but they all share the following common features. (i) They are continuous
optimization methods that seek the global optimum of a function f(x), x ∈ D⊂ RK, called the
fitness function, on an open subset D, called the search space, of the space RK of real K-
tuples. (In the case of SHAPES, the search space coordinates x are the knots τ .) The function
is sampled at multiple locations, called particles, that move iteratively to explore the search
space for the global optimum. The set of particles is called a swarm. (ii) The location of each
particle is updated following a dynamical rule that typically uses the best location found by a
particle in its history, called its personal best, and the best location found by the particles in its
neighborhood, called its local best. Here, the fitness value at a location defines how good it is:
for aminimization problem, the lower the fitness, the better the location. A common form of the
dynamical rule computes the displacement of a particle by linearly combining three vectors:
its previous displacement and the two vectors pointing from its current position to the personal
and local best locations. However, the linear combination is performed with an independent
random weight for each component of the latter two vectors. (iii) Each particle explores the
search space independently but is constantly attracted towards the personal and local bests.
This leads to a form of communication between the particles that speeds up convergence to
a promising region, followed by refinement of the solution until the iterations are terminated.
The PSO algorithm can avoid trapping by local minima due to both the randomness in the
dynamical rule and the parallel exploration of the search space by the swarm.

The best location among all the particles at termination is the final solution found by the
swarm for the global optimum. While there is no guarantee that the final solution is the true
global optimum, the probability of successful convergence can be boosted exponentially by
running multiple independent runs of PSO and picking the one with the best final solution.
Most of the parameters involved in the PSO algorithm, such as the number of particles or
the weights attached to the attractive forces, have very robust values across a wide variety of
benchmark optimization problems [47] and rarely need to be changed. In our experience, there
are typically only two quantities that need tuning: the number of iterations,Niter, to termination
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and the hyper-parameter Nruns, the number of independent PSO runs. In this paper, we fix
Niter = 2000 and Nruns = 8 throughout. The number of particles is always set to 40 and the
settings for the remaining parameters, as well as the definition of the neighborhood used for
the local best, are described in [35].

The description above was for the case where the number of knots, P, is fixed. The complete
SHAPES algorithm incorporates model selection using the Akaike information criterion (AIC)
[48], where the optimum number of knots minimizes,

AIC= 4P+ Lλ(α̂, τ̂). (6)

While, given sufficient computing resources, model selection could be performed over all val-
ues of P until the minimum value of AIC is found, practical considerations dictate that the
set of knot numbers used be a finite and small one. In this paper, for example, we use knot
numbers in the set starting at 5 and ending at 60 in increments of 5. It is important to note that
this restriction of knot numbers is not a fundamental limitation but a technical one meant to
manage the computational burden of model selection. Thus, the only significant free parameter
that needs to be set by the user in the current version of SHAPES is λ.

Since SHAPES assumes that the noise in the data is white, GW strain data must be whitened
prior to glitch estimation and subtraction. The data conditioning steps involved are as follows
(in sequential order). (a) Suppression of the seismic noise below 10Hz, (b) robust estimation
of the PSD noise floor, (c) whitening of the noise floor using the estimated PSD [49], and (d)
automated identification of high-power narrowband noise features (‘lines’) and their suppres-
sion using notch filters. These steps are common to all GW search pipelines, so they do not
need to be elaborated further here.

3. Demonstration data

The glitches considered in this paper for demonstrating the performance of SHAPES are listed
in table 1. The corresponding GW strain data files can be located and downloaded from the
Gravitational Wave Open Science Center (GWOSC) [50] using the information provided in
this table. We have used the standard 4096 s long GWOSC data files sampled at 4 kHz.

The GW170817 glitch presents a particularly interesting example of the deleterious effect
of glitches on GW searches. The GW signal appeared in both LIGO-Hanford (H1) and LIGO-
Livingston (L1) with a combined network signal to noise ratio (SNR) of 32.4. Such a strong
signal would have been detected easily in coincidence across L1 and H1 by the GW search
pipelines in operation at the time. However, a coincident detection was prevented by a large
overlapping glitch in L1 causing the release of only an unusual single-detector GW detection
alert to the astronomical community. About 4.5 hours elapsed between the initial alert and the
release of the first skymap localizing GW170817 obtained by gating the glitch.

In addition to the GW170817 glitch, we have taken three representative glitches from the
Blip, Koi Fish, and Tomte, classes in the Gravity Spy database [51]. These glitches were selec-
ted by taking the loudest five events, in terms of their SNR as given in the Gravity Spy database,
for each class and then picking the first one in this list for which the corresponding GWOSC
file had 100% science data that was also reasonably stationary. As can be seen from table 1,
this results in the selected glitches spanning a wide range in SNR.

After conditioning the data, we use the start time of a glitch, recorded in table 1, to locate
the glitch. Starting from the peak of the glitch, the data time series is scanned visually in both
directions to identify a segment, containing the glitch, that tapers off at both its boundaries to
the general noise level of the conditioned data.
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Table 1. Glitches considered in this paper along with their GPS start times, SNRs, the
detectors in which they appeared, and the observation runs. For the Blip, Koi Fish, and
Tomte glitches, the start times are taken from the Gravity Spy database. To the best of
our knowledge, there is no SNR available in the literature for the GW170817 glitch.

Glitch name GPS start (sec) SNR Detector run

GW170817 glitch 1187008880 — L1 O2
Blip 1182397347 109.1 H1 O2
Koi Fish 1169847108 608.1 H1 O2
Tomte 1173086299 19.6 H1 O2

To mimic the case of GW170817 and to study the effect of glitch subtraction on an over-
lapping GW signal, we injected a whitened restricted-2PN circularized binary inspiral signal
with equal 1.4 M⊙ components in the conditioned data. The SNR (in white noise with unit
variance) of the injected signal is set at 37.3, which is an ad hoc factor of

√
2 higher than the

observed SNR of 26.4 of GW170817 in L1 [6]. The enhancement in SNR allows clearer visib-
ility of the signal in time-frequency images while also posing a stronger challenge to SHAPES
in terms how well it ignores the GW signal when estimating a glitch. The segment containing
the glitch, taken from the conditioned data with the injected signal, is passed to SHAPES for
estimation of the glitch waveform followed by its subtraction.

4. Results

In common with other papers on glitch estimation and subtraction, we present our results in
the form of CQT time-frequency images and time series plots. These are obtained by taking
projections of the data on a set of windowed sinusoids. Thewidth of the window decreases with
an increase in the carrier frequency, fc, such that Q= fc/∆f, where∆f is the−3 dB bandwidth
of the Fourier transform of the window, remains constant. We use the CQT code provided in
the librosa [52] Python package for audio processing. For each glitch, we show CQTs of the
conditioned data with injected signal and the residual after subtraction of the glitch estimate.

Figure 2 shows the data segments that were processed using SHAPES and the correspond-
ing estimated glitch waveforms. Except for GW170817, each segment was processed as a
whole to obtain the glitch estimate. In the case of GW170817, SHAPES was applied inde-
pendently to three separate but contiguous time intervals to estimate the complete glitch. This
was necessitated by the presence of extended wings, preceding and trailing the core broad-
band (and rapidly varying) part in the middle, that dominate the conditioned data for ≈0.5 s
on each side. Applying SHAPES to the complete segment would have required using a very
large number of knots (>60), making it unnecessarily expensive computationally given that
splitting the segment achieves a good solution.

As mentioned in section 2, the penalty gain λ controls the smoothness of the estimate and is
a user-specified parameter of the SHAPES algorithm. Typically, when a glitch is loud and has
a complex shape, λ= 0.01 allows SHAPES to provide a better fit. For low SNR and simple
glitch waveforms, or if the data is just plain white noise, λ= 0.1 does an adequate job. In
general, estimates from SHAPES are not sensitive to small variations of λ around these values
because the model selection is able to compensate for a lower value of λ by selecting a higher
knot number and vice versa. Without much fine tuning, we found that the values of λ listed
in table 2 work well for the glitches studied in this paper. We have also listed in this table the
number of knots for the best fit models selected by the AIC.
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Figure 2. The conditioned strain data and the glitch waveform estimated by SHAPES
for each of the glitches considered in this paper. Top row: GW170817 (left) and Blip
(right). Bottom row: Koi Fish (left) and Tomte (right). The X-axis in each plot shows
the time (sec) since the start of the open data file containing the glitch as provided by
GWOSC. For GW170817, the dashed vertical lines demarcate the three adjacent seg-
ments that were analyzed separately.

Table 2. The penalty gain λ used for the glitches and the number of knots in the best
fit model. For the GW170817 glitch, there are three segments with the middle one con-
taining the principal glitch and adjacent ones containing the wings. The penalty gains
and best fit model are listed for all three segments in sequential order from left to right.

Glitch name Penalty gain (λ) Number of knots

GW170817 glitch 0.1, 0.01, 0.1 60, 40, 50
Blip 0.01 15
Koi Fish 0.01 30
Tomte 0.1 15

Figures 3–6 show the CQTs of the conditioned data and residuals after glitch subtraction
for the glitches in the sequence GW170817, Blip, Koi Fish, and Tomte, respectively. In all
cases, we see that the subtraction of the glitch does not affect the overlapping GW signal
(real or injected) in any significant way. Some overfitting to the data, seen as very small CQT
values, is visible in the residual for the GW170817 glitch at frequencies below≈32Hz but this
band has no overlap with the signal. The overfitted parts are the two wings of the GW170817
glitch mentioned earlier. The CQTs of the residuals for the Blip and Tomte glitches show near
perfect removal of the glitch. (For Tomte, the coalescence time of the GW signal was kept
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Figure 3. Subtraction of the GW170817 Glitch. The top and bottom panels show the
CQT of the data and residual, respectively. The glitch is the vertical feature at≈10.5 sec.
In order to show both the glitch and the signal in the same image, a threshold has been
applied to the CQT as indicated by the maximum value in the colorbar of the top panel.

further away from the glitch in order to create an overlap between the signal track and the
glitch.) The residual for Koi Fish shows effective removal of the glitch with the exception of a
transient and low frequency narrowband component. This leftover component does not overlap
with the signal.

For the GW170817 glitch, it is possible to compare the performance of SHAPES with
BayesWave directly since the residual from the latter has been provided at GWOSC. (This
is the version 2 data for this event from the L1 detector.) Figure 7 shows the outputs of passing
the two residuals through matched filters corresponding to the same BNS parameters. For
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Figure 4. Subtraction of the Blip Glitch. The top and bottom panels show the CQT of
the data and residual, respectively. The glitch is the vertical feature at ≈6 sec. In order
to show both the glitch and the signal in the same image, a threshold has been applied
to the CQT as indicated by the maximum value in the colorbar of the top panel.

this experiment, the matched filter templates are from the same family that we have used
for injections but the parameters are tuned to be close to the ones estimated for GW170817,
namely, the two masses are set at 1.46M⊙ and 1.3M⊙. (Since our conditioning pipeline is not
identical to that used in LIGO, some tuning of the template parameter values is required to get
a reasonable output SNR.) As can be seen, the peak values and their arrival times agree well
with each other, demonstrating that SHAPES has essentially the same effect on the signal as
BayesWave.

10
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Figure 5. Subtraction of the Koi Fish glitch. The top and bottom panels show the CQT
of the data and residual, respectively. The glitch is the vertical feature at ≈9.0 sec. In
order to show both the glitch and the signal in the same image, a threshold has been
applied to the CQT as indicated by the maximum value in the colorbar of the top panel.

The principal computational cost in SHAPES is the global optimization of the fitness func-
tion in equation (3). The time taken by the current MATLAB [53] code for a single PSO run
on a segment with ≈300 samples and knot numbers P ∈ [10,60] (in steps of 5) is ≲10min
on an Intel Xeon E5 processor (clock rate 3GHz). The runtime increases with the number
of knots used, mainly due to an increase in the number of B-spline functions that need to be
computed. With a code currently under construction in the C language, and implementation of
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Figure 6. Subtraction of the Tomte Glitch. The top and bottom panels show the CQT of
the data and residual, respectively. The glitch is the vertical feature at≈8.0 sec. In order
to show both the glitch and the signal in the same image, a threshold has been applied
to the CQT as indicated by the maximum value in the colorbar of the top panel.

further hardware acceleration (e.g. using graphics processing units), the runtime is expected to
decrease substantially. We also note that the segments containing glitches can be processed in
parallel since SHAPES is a purely time-domain method. Hence, the computational cost will
scale slower than linearly with the number of glitches when analyzing data containing multiple
glitches.

12
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Figure 7. SNR time series outputs of matched filters with identical parameters on the
SHAPES (blue) and BayesWave (red) residuals for the GW170817 L1 data. The peak
values in both time series occur close to the time at which the instantaneous frequency
of the signal crosses 35Hz.

5. Discussion and conclusions

We have presented a new approach to glitch subtraction using an adaptive spline fitting method
called SHAPES. The method was demonstrated on the GW170817 glitch as well as other
representative short duration and broadband glitches. In a single detector and in the absence
of strong prior information about the signal, it is not possible to distinguish a GW signal from
a glitch in the part where they overlap. Hence, it is expected that the signal power will be
removed in that part along with the glitch when the latter is estimated and subtracted out.
Nonetheless, as far as the BNS signal used in this paper is concerned, we observe very little
impact on the signal across a wide range of glitch SNRs.

SHAPES is not well adapted to fitting highly oscillatory waveforms since these are are not
represented well by splines without using an inordinate number of knots. Therefore, the direct
use of SHAPES for glitches in the Gravity Spy database such as whistlers or wandering lines is
not viable. However, chirp signals such as these could be estimated using the method proposed
in [54, 55], where adaptive splines figure indirectly in a non-linear signal model. This is an
interesting direction that will be pursued in future work.

Other current limitations of SHAPES, which are technical in nature, are that the penalty
gain parameter λ as well as the segment length to be processed must be specified by the user.
The choice of the latter, along with the nature of the data, influences the number of knots used
in the fit and led to the necessity of breaking up the data for the GW170817 glitch into three
ad hoc parts. Work is in progress to address both of these limitations.

Our results show that SHAPES is a promising addition to the toolbox of glitch subtraction
methods that will become increasingly important as GW detectors become more sensitive.
SHAPES is computationally inexpensive, taking on the order of a few minutes for each glitch,
and will be made much faster by planned code improvements. This could allow, in principle,
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the subtraction of a large number of broadband glitches of known types as part of data condi-
tioning and provide significantly cleaner data for any type of GW search.
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