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Abstract

We derive upper bounds for random design linear regression with dependent (�-
mixing) data absent any realizability assumptions. In contrast to the strictly re-
alizable martingale noise regime, no sharp instance-optimal non-asymptotics are
available in the literature. Up to constant factors, our analysis correctly recovers
the variance term predicted by the Central Limit Theorem—the noise level of the
problem—and thus exhibits graceful degradation as we introduce misspecifica-
tion. Past a burn-in, our result is sharp in the moderate deviations regime, and in
particular does not inflate the leading order term by mixing time factors.

1 Introduction

Ordinary least squares (OLS) regression from a finite sample is one of the most ubiquitous and
widely used technique in machine learning. When faced with independent data, there are now sharp
tools available to analyze its success optimally under relatively general assumptions. Indeed, a
non-asymptotic theory matching the classical asymptotically optimal understanding from statistics
[van der Vaart, 2000] has been developed over the last decade [Hsu et al., 2012, Oliveira, 2016,
Mourtada, 2022]. However, once we relax the independence assumption and move toward data that
exhibits correlations, the situation is much less well-understood—even for a problem as seemingly
simple as linear regression. While sharp asymptotics are available through various limit theorems,
there are no general results matching these in the finite sample regime.

In this paper, we study the instance-specific performance of ordinary least squares in a setting with
dependent data—and in contrast to much contemporary work on the theme—without imposing
realizability.1 If in addition to a realizability assumption the noise forms a martingale difference
sequence, it is now well-known that martingale methods can be used to demonstrate that dependent
linear regression is no harder than its independent counterpart [Simchowitz et al., 2018]. Furthermore,
as long as one maintains such an assumption on the noise, a similar observation even holds true for
generalized linear and bilinear models [Kowshik et al., 2021, Sattar et al., 2022], and regression with
square loss more generally [Ziemann and Tu, 2022].

However, barring any such strong realizability assumption, martingale methods are no longer directly
available, and neither are there any sharp non-asymptotics in the learning theory literature. Absent
martingale techniques, a natural approach is to use the blocking technique [Bernstein, 1927, Yu,
1994] to port concentration inequalities valid for independent data to the dependent setting. However,
since blocking effectively reduces the sample size by a factor of the degree of dependence of the data,
a judicious application is necessary in order to recover the correct noise level of the problem—the
level predicted by the Central Limit Theorem (CLT).

1A distribution PX,Y is (linearly) realizable if the regression function x 7! E[Y | X = x] is linear.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



1.1 Contributions

This paper serves to explain how the combination of two simple yet powerful observations sidestep
the aforementioned issues with blocking. To better appreciate these observations, we recall that the
analysis of random design linear regression decomposes into: (1) controlling the lower tail of the
empirical covariance matrix; and (2) controlling the interaction between the noise and the covariates.

First, as noted by Mendelson [2014], the dominant contribution to the error rate is due to the interaction
of the noise with the covariates via the hypothesis class. In linear regression this interaction term
takes the form of a random walk (see (2.6) and (2.8) below). While one must also analyze the lower
tail of the empirical covariance matrix, its contribution to the final error tends to be lower order. This
is exactly the point: the empirical covariance matrix tends to dominate its population counterpart
under very mild assumptions [see e.g. Koltchinskii and Mendelson, 2015, Oliveira, 2016, Simchowitz
et al., 2018]. Hence deflating the sample size for this purpose by using dependency is of relatively
minor consequence and only amounts to an additional burn-in.

Second, turning to the random walk—the noise-class interaction term—the above issue with blocking
can be remedied if one restricts its use to control only the largest scale of deviation. This observation
can be traced to the moderate deviations literature, but does not seem to have made its way into
the learning theory literature [see e.g. Merlevède et al., 2011]. To explain this idea, let us recall
Bernstein’s inequality: for b > 0, � 2 (0, 1), and a sequence of n 2 N iid mean zero b-bounded
scalar random variables V1:n,

P

 
1

n

nX

i=1

Vi � 2

r
EV 2

1 ln(1/�)

n
+

4b log(1/�)

3n

!
 �. (1.1)

In the moderate deviations bandwidth (� & exp(�nEV
2
1 /b

2
)), the leading term of (1.1) is exactly

of the expected order, seen from a central limit heuristic:
q

EV 2
1 ln(1/�)

n
. Assume now for sake of

argument that k 2 N divides n and set m = n/k. Applying (1.1) instead to the bk-bounded variables
V̄i:m, V̄i ,

P
ik

j=ik�k�1 Vj we find instead:

P

 
1

n

nX

i=1

Vi � 2

r
k�1E(V̄1)

2 ln(1/�)

n
+

4bk log(1/�)

3n

!
 �. (1.2)

The (normalized) variance of iid random variables tensorizes nicely (k�1E(V̄1)
2
= EV
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1 ), and so

the only difference between (1.1) and (1.2) is that the large deviations term has been inflated by a
factor k. More generally, however, (1.2) remains valid as long as every k samples are blockwise
independent. The leading term of (1.2) already captures the correct variance term in the blockwise
independent, one-dimensional and bounded setting.

The above two paragraphs illustrate the core of our argument: by combining the above two ob-
servations we can entirely relegate any dependence on mixing to additive burn-in factors. In the
sequel, we produce a more general version of this argument. To allow for arbitrary dimensions and
handle unbounded processes, we first replace Bernstein’s inequality with a corollary to Talagrand’s
inequality due to Einmahl and Li [2008]. To allow for �-mixing processes, we replace the blockwise
independence assumption with the blocking strategy of Yu [1994]. By combining with control of
the lower tail, which as noted above holds under mild assumptions, this leads to our main result
Theorem 3.1, captured informally below.

Informal version of Theorem 3.1. Past a mild burn-in, polynomial in relevant problem quantities
including the �-mixing coefficients of the data, and for a fixed failure probability � 2 (0, 1), OLS with
one-dimensional targets and dX-dimensional covariates enjoys the following excess risk guarantee:

Excess Risk (OLS) . �
2
(dX + log(1/�))

n
. (1.3)

Moreover, the term �
2 in (1.3) accurately captures the noise level of the problem solely via the

relevant second order statistics; it is not inflated by any mixing times.

The crux of this result is that past a burn-in, the OLS excess risk does not directly depend on mixing
times, but only on the relevant second order statistics. Put differently, the effect of slow mixing has
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been relegated to a small additive term with higher order dependence on 1/n. This stands in stark
contrast to the usual invocation of the blocking technique where the effect of mixing typically enters
multiplicatively, thereby degrading the rate of convergence uniformly across all sample-sizes and
past any burn-in times [see e.g. Steinwart and Christmann, 2009, Kuznetsov and Mohri, 2017, Wong
et al., 2020, Roy et al., 2021].

Applicability. Before we proceed with the main development, we remark that the class of �-mixing
is quite broad; a few examples where Theorem 3.1 can be instantiated are as follows:

• all �-mixing processes are �-mixing [Doukhan, 2012],
• stationary uniformly ergodic Markov chains are �-mixing,
• stationary Gaussian vector autoregressive moving average (ARMA) processes are �-

mixing [Mokkadem, 1988],
• many other sub-classes of GARCH models, often studied in the economics and finance literature,

are �-mixing [Carrasco and Chen, 2002].

The list is far from exhaustive and further examples can for instance be found in Doukhan [2012].
The stationarity assumptions above can also typically be dropped. We also point out that it is precisely
because we can handle misspecification that our result is of interest for many of these examples.

Outline. The rest of this article is structured as follows. Section 2 fixes our notation and yields a
more formal problem formulation. We provide our main result, Theorem 3.1, in Section 3. After
stating our main theorem, we highlight its features and then proceed to compare it to related work
in Section 3.1. We outline the proof of Theorem 3.1 and provide supporting results in Section 4,
including separate analyses of the noise-interaction and the lower tail of the empirical covariance
matrix. Section 5 concludes and technical details are relegated to Appendix A.

2 Preliminaries

Notation. Expectation (resp. probability) with respect to all the randomness of the underlying
probability space is denoted by E (resp. P). For two probability measures P and Q defined on the
same probability space, their total variation is denoted kP� QkTV. Maxima (resp. minima) of two
numbers a, b 2 R are denoted by a_ b = max(a, b) (resp. a^ b = min(a, b)). For an integer n 2 N,
we also define the shorthand [n] , {1, . . . , n}.

The Euclidean norm on Rd is denoted k · k2, and the unit sphere in Rd is denoted Sd�1. The standard
inner product on Rd is denoted h·, ·i. We embed matrices M 2 Rd1⇥d2 in Euclidean space by
vectorization: vecM 2 Rd1d2 , where vec is the operator that vertically stacks the columns of M
(from left to right and from top to bottom). For a matrix M , the Euclidean norm is the Frobenius
norm, i.e., kMkF , k vecMk2. We similarly define the inner product of two matrices M,N by
hM,Ni , hvecM, vecNi. The transpose of a matrix M is denoted by M

T—and if M is square—
trM denotes its trace. We also write kMkop for the induced (Rd

, k · k2) ! (Rd
, k · k2) norm. For

two symmetric matrices M,N , we write M � N (M ⌫ N) if M �N is positive (semi-)definite. If
M is positive semidefinite we write @M , {x 2 Rd | xT

Mx = 1} for the boundary of the ellipsoid
induced by M (note that Sd�1

= @Id).

Problem Formulation. We are given n input-output tuples: X1:n ⇠ PX
1:n (taking values in RdX)

and Y1:n ⇠ PY
1:n (taking values in RdY ). Using these samples, the goal of the learner is to estimate

the best linear hypothesis:

M? 2 argmin

M2RdY⇥dX

n
EkY �MXk22

o
(2.1)

where the distributions of X and Y in (2.1) are specified via:

X ⇠ 1

n

nX

i=1

PX

i
and Y ⇠ 1

n

nX

i=1

PY

i
. (2.2)
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Note that (2.2) is equivalent to sampling from the uniform mixture over (X1:n, Y1:n) with the index
i 2 [n] sampled uniformly. The operator ⌃X , E[XX

T
] is the averaged covariance operator (with

X as in (2.2)). The excess risk of a linear hypothesis M can then be written as:

Excess Risk (M) , EkY �MXk22 �EkY �M?Xk22 = k(M �M?)

p
⌃Xk2

F
. (2.3)

We now define the noise variable Wi , Yi �M?Xi but, as mentioned above, do not impose any
(conditional) mean zero assumptions on the noise. To simplify the exposition, we will henceforth
assume that ⌃X � 0, but our results easily extend to the case ⌃X ⌫ 0 by restricting attention to the
span of ⌃X . With these preliminaries in place, on the event that the design is nondegenerate, the OLS
and its error equation can be specified as follows:

cM ,
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T
i

!�1

=) cM �M? =

 
nX

i=1
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i
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nX

i=1

XiX
T
i

!�1

.

(2.4)

Our task in the sequel is to establish that the choice cM renders the excess risk (2.3) small. We note in
passing that cM is an empirical risk minimizer:

cM 2 argmin

M2RdY⇥dX

(
1

n

nX

i=1

kYi �MXik22

)
.

The Noise Term. Let us also define the following prefiltered noise-class interaction variables:

Vi , WiX
T
i
⌃

�1/2
X

i 2 [n]. (2.5)

The square of the following (weighted and possibly biased) random walk effectively characterizes the
noise level in our problem:

Sn , 1

n

nX

i=1

Vi. (2.6)

We remark that by construction ESn = 0 using the optimality of M? in (2.1). To see this, simply in-
voke the optimality equation for M? and note that RdX⇥dY induces a convex class in the corresponding
L
2-space over the mixtures (2.2). Note however that the increments of (2.6) are not necessarily mean

zero unless X1:n and Y1:n are stationary. However, since ESn = 0, we also have with V̄i , Vi�EVi:

Sn =
1

n

nX

i=1

V̄i. (2.7)

In light of (2.4) and (2.6), we have that the empirical excess risk depends on the norm of:

(cM �M?)

p
⌃X = Sn
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Hence, we need to control the random walk in (2.7) and the lower tail of

⌃̃n , 1

n

nX

i=1

⌃
�1/2
X

XiX
T
i
⌃

�1/2
X

, (2.9)

the prefiltered empirical covariance matrix. As mentioned previously, lower uniform laws for (2.9)
are valid under mild assumptions [Koltchinskii and Mendelson, 2015, Oliveira, 2016], and blocking
such results does not incur more than a worsening of the burn-in. Hence, the noise level of the
problem is very much dictated by the random walk (2.6).

�-mixing and the Blocking Technique. In the sequel we demonstrate that the standard blocking
device combined with a (functional) version of Bernstein’s inequality allows us to pass the distribu-
tional (or coarse) measure of dependency to a higher order additive term, yielding non-asymptotic
rates consistent with the CLT as described in Section 1. We will also use blocking to derive our lower
uniform law, controlling the lower tail of (2.9). To make these ideas rigorous we require the following
standard measure of dependence (take Z1:n = (X,Y )1:n below).
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Definition 2.1. Let Z1:n be a stochastic process. The �-mixing coefficients of Z, �Z(i), are:
�Z(i) = sup

t2[n]:t+in

EkPZi+t
(· | Z1:t)� PZi+t

kTV, i 2 [n]. (2.10)

Intuitively, the coefficients �Z(i) in (2.10) measure the dependence at range i of the process Z1:n.
This measurement is done in total variation distance by comparing the distribution of Zt+i with the
conditional distribution Zt+i | Z1:t. More concretely, the notion of �-mixing allows us to use the
blocking technique Yu [1994]. This technique splits the process Z1:n into blocks, such that every
other block is approximately independent, leaving us with two separate processes, consisting of odd
and even blocks, that are almost independent (see (4.1) below). One then proceeds to use �-mixing
to construct a “parallel” probability space, approximating the original one, but in which the odd and
even blocks are independent. The price we pay for this is measured in terms of the coefficients (2.10).
The essence of this idea—to use that data points sufficiently separated in time are often roughly
independent—can be traced back to Bernstein [1927].

3 Main Result

To give our main result for general target dimension we require one last preliminary notion. Given a
d-dimensional square, symmetric positive semidefinite matrix M 2 Rd⇥d, we say that its effective
dimension is edim(M) , trM/kMkop. Our main result is the following theorem.
Theorem 3.1. Fix � 2 (0, 1) and n,m 2 N with 2m  n. Let a1:2m be a monotone partition of [n]
such that if k 2 ai, l 2 aj , and i > j, then k > l holds. Set amax 2 argmax

i2[2m]|ai|. Fix also a
�-mixing sequence (X,Y )1:n of which each element admits at least s 2 [4,1) moments. Assume
that there exists a positive number h 2 R such that for every v 2 @⌃X and i 2 [n] we have that
Ehv,Xii4  h2hv,E[XiX

T
i
]vi. Define also the noise interaction terms:
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0
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X
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V̄j

1

A
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3

75 , �
2 , k⌃kop . (3.1)

There exist universal positive constants c1, c2, c3, c4, c5, c6 such that with probability at least 1� �:

k(cM �M?)

p
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F
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(edim(⌃) + log(1/�))

n
(3.2)

as long as the following burn-in conditions hold:

n
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c
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P
i2[2m]\2N |ai|P

i2[2m]\(2N�1) |ai|
< c4;

X

i2[2m]\(2N�1)

c
�1
5 ⌃i �

X

i2[2m]\2N
⌃i �

X

i2[2m]\(2N�1)

c5⌃i;

(3.4)
2m�1X

i=2

�X,Y (|ai|)  c6�; (3.5)

and where �X,Y are the �-mixing coefficients of (X,Y )1:n.

To interpret Theorem 3.1 we proceed with a sequence of remarks, discussing its features. These
remarks also serve to parse the terminology above and lead us to a simplified statement for stationary
data and 1-dimensional targets. We present this simplified version as Corollary 3.1 below.

• The dimensional scaling in (3.2) is captured by the effective dimension term edim(⌃), which
always lies in the interval [1, dXdY]. For one-dimensional targets and benign noise interaction,
and since the Xi in the noise term Vi have been whitened (see (2.5)), we expect ⌃ to be roughly
isotropic. Indeed, whenever dY = 1, the trivial bound edim(⌃)  dX produces the familiar
behavior: k(cM �M?)

p
⌃Xk22 . �

2
dX/n with high probability.
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• The scaling with dX, dY,�
2 and n thus scales as expected in the iid regime, but also degrades

gracefully with dependence. We reiterate that (3.2) does not depend directly on mixing in the
leading order term. For comparison, under suitable regularity conditions, the noise term predicted
by the CLT is:

⌃CLT , lim sup
n!1

n
�1E

2

64vec

0

@
nX

j=1

V̄j

1

A vec

0

@
nX

j=1

V̄j

1

A
T
3

75 , (3.6)

and one can achieve ⌃ = ⌃CLT + o(1) in most situations of practical interest by tuning the
block-length; therefore, our analysis of OLS essentially matches the optimal asymptotics.

• Moreover, the constant c1 appearing in (3.2) is quite benign and can be made arbitrarily close to
2 by suitably inflating our burn-in constants c2, c3, c4, c5, c6. We have however not been able to
approach the optimal leading constant 1 in front of edim(⌃). This can be traced to an application
of the triangular inequality in Corollary 4.1.

• The moment bound Ehv,Xii4  h2hv,E[XiX
T
i
]vi (v 2 @⌃X) is easily satisfied for e.g., Gaussian

or bounded processes but is of course much milder than either assumption. The assumption that
s � 4 can be relaxed to s > 2 by replacing our result controlling the lower tail, Theorem 4.3. We
have chosen to present our result for s � 4 to strike a balance between expositional clarity and
generality.

• The first burn-in condition of (3.3) is standard for control of the lower tail—beside the deflation
factor |amax|, it is necessary even for iid data to guarantee that the "denominator" (2.9) is nonsingu-
lar. The second condition of (3.3)—in which a ratio of s:th and 2nd moment of the noise variable
appears—is the price we pay in the moderate deviations bandwidth for only having s moments: it
controls the rate at which the random walk (2.6) approaches asymptotic normality and reduces to
the condition of Oliveira [2016] in the iid regime. This latter condition can in principle be removed
with slightly modified constants if sufficiently many moments of the data-generating process satisfy
a sub-Gaussian type moment equivalence condition (in which case the above-mentioned ratio
is constant). Without such an assumption, we note that some polynomial dependence on 1/� is
necessary under our tail assumptions and is not an artifact of our analysis; OLS is not deviation-
optimal in the entire range of � 2 (0, 1)—due to the presence of the random walk (2.6) in the
numerator—unless the noise variables have Gaussian-like tails [cf. Mendelson, 2018, Section 6.4].

• The conditions in (3.4) and (3.5) relate to dependence. The last condition (3.5) simply asks that our
process mixes sufficiently fast. If the mixing coefficients �X,Y (|ai|) are exponential, this amounts
to a logarithmic burn-in in 1/�. However, we can still handle slow, polynomial mixing rates, at the
cost of a polynomial burn-in in 1/�. The conditions in (3.4) asks that the odd and even blocks are
balanced in terms of their length and second order statistics. It is trivially satisfied for (weakly)
stationary processes analyzed using a uniform blocking length (length of the ai).

In light of the above remarks, we are now in position to simplify Theorem 3.1. If we impose
stationarity, quite a few terms in the burn-in conditions (3.3),(3.4) and (3.5) either simplify or vanish.
Further restricting to the case where targets are 1-dimensional and letting the sample-size be divisible
by the block-length yields the corollary below.
Corollary 3.1. Fix � 2 (0, 1) and n, ⌧ 2 N and let 2⌧ divide n. Fix also a joint distribution of
1-dimensional targets and dX-dimensional covariates PX,Y with at least s 2 [4,1) moments. Let
(X,Y )1:n be a stationary �-mixing sequence with marginals equal to PX,Y . Assume further that
there exists a positive number h 2 R such that for every v 2 @⌃X we have that Ehv,Xi4  h2

where X ⇠ PX . Define also the noise interaction term: �
2 , 1

⌧
sup

v2SdX�1 E
h�P

⌧

i=1hV̄i, v
�2i.

There exist universal positive constants c1, c2, c3, c4 such that with probability at least 1� �:

k(cM �M?)

p
⌃Xk22  c1�

2
(dX + log(1/�))

n

as long as the following burn-in conditions hold:

n

⌧
� c2(dX + h2 log(1/�));

⇣
n

⌧

⌘1�2/s
� c3s

2

⇣
E
��� 1p

⌧dX

P
⌧

i=1 V̄i

���
s

2

⌘2/s

�2�2/s
;

n

⌧
�X,Y (⌧)  c4�.

(3.7)
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Corollary 3.1 takes a very similar form to—by now—standard results in the iid regime [Hsu et al.,
2012, Oliveira, 2016]. Indeed, if the data is stationary the price we pay for dependence is that:

• variance and moment terms need to be computed in blocks;
• the burn-in is deflated by a factor of the block-length (the first two parts of (3.7)); and
• we incur an additional burn-in penalizing slow mixing—the last part of (3.7) asks that the

block-length is not "too small".

3.1 Comparison to Related Work

Having established our main result, Theorem 3.1, we now provide a more detailed comparison to the
relevant literature. Most closely related to our results is Nagaraj et al. [2020], who study bounded
linear regression models in which the data comes from an exponentially ergodic Markov chain. They
find that strictly realizable linear regression is no harder than its iid counterpart in this setting, and
show that a parallelized gradient algorithm achieves the optimal rate. More interestingly, in the
absence of realizability, they also establish a lower bound demonstrating that the worst-case (global
minimax) excess risk across all Markov chains with a given mixing time is deflated by said mixing
time, thereby establishing a gap between realizable and non-realizable learning from dependent data.

Of course, their lower bound is no longer valid if one drops the requirement that the predictor
performs uniformly well across all distributions with a prescribed mixing time. It is exactly herein
that our analyses differ. While Nagaraj et al. [2020] characterize the worst-case (or global) complexity
of linear regression, we focus on the instance-specific (or local) complexity. In other words, they
compete against the worst distribution at a given level of mixing, whereas we compete against a fixed
distribution. To appreciate this distinction, let us momentarily assume that dX = dY = 1. The noise
term �

2 in Theorem 3.1 can be upper-bounded as:

�
2
=

1

n

2mX

i=1

E

2

64

0

@
X

j2ai

V̄j

1

A
2
3

75  max
i2[2m]

|ai| ·max
i2[n]

EV̄
2
i

(3.8)

by the Cauchy-Schwarz inequality. The right hand side of (3.8) is precisely inflated by the (maximal)
block-length maxi2[2m] |ai|.
Seen in this light, our results being sharper in terms of the measure of dependency reduces to stating
that our results are sharper by an application of the Cauchy-Schwarz Inequality. Moreover, the
statement that the global complexity is worse than its iid counterpart by a factor of the mixing time
amounts in our setting to stating that there exists a distribution achieving equality in (3.8). We remark
that such a distribution is easily constructed by taking X1:n and Y1:n to be constant within each
block and stationary across the blocks; this is precisely when the application of the Cauchy-Schwarz
inequality in (3.8) turns to equality. To further appreciate the distinction between our results, note
that our result measures dependence through correlation. By contrast, a result scaling with the mixing
time measures dependence in a stronger variational sense. That is, the former measures dependence
at the level of orthogonality of the random variables themselves, whereas the latter measures it at the
level of orthogonality of all measurable functions of these random variables.

Further Related Work. Another closely related line of work studies parameter identification in
auto-regressive models [for a recent survey, see Tsiamis et al., 2022]. When the noise model is
strictly realizable—the variables W1:n form a martingale difference sequence with respect to the
filtration generated by X1:n—identification is possible at the iid rate even in the absence of mixing
[Simchowitz et al., 2018, Faradonbeh et al., 2018, Sarkar and Rakhlin, 2019]. Naturally, our results
do not cover the mixing-free regime as we consider: (1) the agnostic setting in which self-normalized
martingale arguments [Peña et al., 2009, Abbasi-Yadkori et al., 2011] are not available; and (2) excess
risk bounds instead of parameter identification—it seems unlikely that (3.2) holds without some
notion of stochastic stability due to the presence of ⌃X on the left hand side.

More generally—moving beyond linear time-series models—several authors have considered learning
under various weak dependency notions. Kuznetsov and Mohri [2017] give generalization bounds in
a more general setting using the same blocking technique—due to Yu [1994]—used here. Statements
similar in spirit can also be found in e.g., Steinwart and Christmann [2009], Duchi et al. [2012] and
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most recently Roy et al. [2021]. However, they all suffer the dependency deflation discussed above
and in our introduction (Section 1). We also note that Ziemann and Tu [2022] obtain rates for strictly
realizable square loss that—similar to ours here—relegate mixing times into additive burn-in factors.
While they treat more general hypothesis classes, they do not go beyond strict realizability, and their
analysis rests on the assumption that the noise interaction term is a martingale difference sequence.

4 Proof Overview

Theorem 3.1 is the direct consequence of two separate results: Theorem 4.2, which controls the
centered noise (2.7) term, and Theorem 4.3, which bounds the lower tail of the normalized empirical
covariance matrix (2.9). We prove Theorem 4.2 by blocking the Fuk-Nagaev inequality of Einmahl
and Li [2008], and Theorem 4.3 by a truncation argument combined with blocking. These results are
found in Section 4.2 and Section 4.3. Our proof idea is heavily inspired by that of Oliveira [2016] and
the idea is very much to adjust his approach in such a way that blocking does not affect the leading
term in the rate.2 As either result relies on blocking, it is now pertinent to describe this technique in a
little more detail.

4.1 Blocking

Recall that we partition [n] into 2m consecutive intervals, denoted aj for j 2 [2m], so thatP2m
j=1 |aj | = n. Denote further by O (resp. by E) the union of the oddly (resp. evenly) indexed

subsets of [n]. We further abuse notation by writing �Z(ai) = �Z(|ai|) in the sequel.

We split the process Z1:n as:

Z
o

1:|O| , (Za1 , . . . , Za2m�1), Z
e

1:|E| , (Za2 , . . . , Za2m). (4.1)

Let Z̃o

1:|O| and Z̃
e

1:|E| be blockwise decoupled versions of (4.1). That is we posit that Z̃o

1:|O| ⇠ P
Z̃o

1:|O|

and Z̃
e

1:|E| ⇠ P
Z̃e

1:|E|
, where:

P
Z̃o

1:|O|
, PZa1

⌦ PZa3
⌦ · · ·⌦ PZa2m�1

and P
Z̃e

1:|E|
, PZa2

⌦ PZa4
⌦ · · ·⌦ PZa2m

. (4.2)

The process Z̃1:n with the same marginals as Z̃o

1:|O| and Z̃
e

1:|E| is said to be the decoupled version of
Z1:n. To be clear: P

Z̃1:n
, PZa1

⌦ PZa2
⌦ · · ·⌦ PZa2m

, so that Z̃o

1:|O| and Z̃
e

1:|E| are alternatingly
embedded in Z̃1:n. The following result is key—by skipping every other block, Z̃1:n may be used in
place of Z1:n for evaluating scalar functions at the cost of an additive mixing-related term.

Proposition 4.1 (Lemma 2.6 in Yu [1994]; Proposition 1 in Kuznetsov and Mohri [2017]). Fix a
�-mixing process Z1:n and let Z̃1:n be its decoupled version. For any measurable function f of Zo

1:|O|
(resp. g of Ze

1:|E|) with joint range [0, 1] we have that:

|E(f(Z
o

1:|O|))�E(f(Z̃
o

1:|O|))| 
X

i2E\{2m}

�Z(ai),

|E(g(Z
e

1:|E|))�E(g(Z̃
e

1:|E|))| 
X

i2O\{1}

�Z(ai).

(4.3)

The following corollary to Proposition 4.1 is convenient for controlling norms of random walks.

Corollary 4.1 (Lemma 3 in Kuznetsov and Mohri [2017]). Let Z1:n be a �-mixing process
taking values in a normed space (Z, k · k), and let Z̃1:n be its decoupled version. For any

2At a high level, for iid data, this proof strategy first appeared in the journal version of Oliveira [2016].
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" � E
��� 1
|O|
P

i2O
Z̃i

��� _E
��� 1
|E|
P

i2E
Z̃i

��� we have that:

P

 �����
1

n

nX

i=1

Zi

����� > "

!


2mX

i=1

�Z(ai)

+P

 �����
1

|O|
X

i2O

Z̃i

����� > E

�����
1

|O|
X

i2O

Z̃i

�����+ "o

!
+P

 �����
1

|E|
X

i2E

Z̃i

����� > E

�����
1

|E|
X

i2E

Z̃i

�����+ "e

!
,

(4.4)

where "o = "�E
��� 1
|O|
P

i2O
Z̃i

��� and "e = "�E
��� 1
|E|
P

i2E
Z̃i

���.

In short, up to a mild failure additional failure probability term, we only need to control the tensor
product processes (4.2).

4.2 Dependent Random Walks

Once equipped with Corollary 4.1, we still require control of the independent blocks. The following
Fuk-Nagaev inequality due to Einmahl and Li [2008] provides such control.
Theorem 4.1 (Theorem 4 in Einmahl and Li [2008]). Fix s > 2, a separable normed space (U, k · k)
and a U-valued sequence U1:n of independent random variables. Assume that EkUiks < 1 for
i 2 [n]. Then for any " 2 (0,1), ⌘ 2 (0, 1], and t � 0, we have that:

P

 
max
k2[n]

�����

kX

i=1

Ui

�����  (1 + ⌘)E

�����

nX

i=1

Ui

�����+ (1 + 9")t

!

 exp

✓
� t

2

(2 + ⌘)⇤

◆
+ C",⌘,s

nX

i=1

EkUiks

ts
, (4.5)

where ⇤ , supv2S ⇤ E
P

n

i=1 v
2
(Ui) and where S ⇤ is unit disk in the dual space of (U, k · k).

Moreover, we may take C",⌘,s =
�
1 + (2s/e)

2s
(2(1 + 2/")(3 + 4/⌘))

2
+ "

�s
�
.3

If our data were drawn independently, Theorem 4.1 would give us the required control of the random
walk (2.7). The right hand side of (4.5) consists of a mixed tail: (1) a sub-Gaussian term with a
CLT-like weak variance term ⇤; and (2) a polynomial term accounting for the fact that we only
imposed the existence of s moments. With the preliminary results Corollary 4.1 and Theorem 4.1 in
place, we are now in position to control dependent random walks of the form (2.7).
Theorem 4.2. Fix s > 2, a separable normed space (Z, k · k), constants ", ⌘ > 0, and set C",⌘,s =�
1 + (2s/e)

2s
(2(1 + 2/")(3 + 4/⌘))

2
+ "

�s
�
. Fix also a consecutive partition a1:2m of [n] and let

Z1:n be a mean zero, �-mixing process taking values in Z with block decoupled version Z̃1:n. Let O
be the union of the odd ai and E be the union of the even ai. Assume that EkZiks < 1 for i 2 [n].
For every ", ⌘ > 0 and � 2 (0, 1), we have that:

P

 �����
1

n

nX

i=1

Zi

����� � max
sgn2{O,E}

s
⇤sgn

|sgn|

⇣
(1 + 2⌘)

p
r + (1 + 9")

p
(2 + ⌘) log(1/�)

⌘!

 2� +

2m�1X

i=2

�Z(ai) +
C",⌘,s(1 + 9")

s

rs/2⌘s

X

sgn2{O,E}

X

i2[2m]:ai⇢sgn

E
���
P

j2ai
Zj

���
s

|sgn|s/2⇤s/2
sgn

, (4.6)

where ⇤sgn , supv2S ⇤
1

|sgn|
P

ai⇢sgn Ev
2
⇣P

j2ai
Zj

⌘
for sgn 2 {O,E}, S ⇤ is unit disk in the

dual space of (Z, k · k), and
p
r � maxsgn2{O,E}

E

����
1p
|sgn|

P
i2sgn Z̃i

����p
⇤sgn

.

3The constant C",⌘,s is not specified exactly in Einmahl and Li [2008]. This constant is easy to obtain by
observing that their Ks, which may be taken to be the best constant such that (log x)2s  Ksx for x � 1, is
upper-bounded by (2s/e)2s.
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In Theorem 4.2 we have combined the blocking technique with the Fuk-Nagaev inequality (4.5). The
right hand side of (4.6) is exactly as in (4.5) but instantiated to our setting and with extra additive
mixing-related term.

4.3 The Lower Tail of the Empirical Covariance Matrix

We now proceed to analyze the lower tail of the empirical covariance matrix (2.9).
Theorem 4.3. Fix � > 0 and a consecutive partition a1:2m of [n]. Let X1:n be a sequence of �-mixing
random variables taking values in RdX with finite fourth moment. Assume that there exists a positive
number h 2 R such that for every v 2 @⌃X and i 2 [n], we have Ehv,Xii4  h2hv,E[XiX

T
i
]vi.

There exists a positive universal constant C 2 R such that as long as

n � C max
j2[2m]

|aj |(dX + h2 log(1/�)) and
2m�1X

i=2

�X(ai) 
�

2
, (4.7)

then

P

 
8v 2 RdX :

1

n

nX

i=1

hv,Xii2 � 1

2n

nX

i=1

Ehv,Xii2
!

� 1� �. (4.8)

It is by now a well-established fact that lower uniform laws of the form (4.8) hold under mild assump-
tions for various function classes (linear functions on RdX in this case). Since these assumptions are
quite mild and only affect burn-in conditions, deflating the sample-size via blocking does not deflate
the final convergence rate. The particular approach we have chosen here to establish Theorem 4.3 is
to combine blocking with the approach found in [Wainwright, 2019, Theorem 14.12]. We remark that
similar statements hold if one instead blocks the arguments of say Oliveira [2016] or Koltchinskii
and Mendelson [2015].

5 Summary

The leading order term of our main result, Theorem 3.1, does not directly depend on any mixing-time
type quantities. It mimics the asymptotic rate and scales solely in terms of the second order statistics
of the process at hand. To arrive at this result, we rely on two facts:

• The lower tail of the empirical covariance matrix (2.9) is well-behaved under mild assump-
tions. In an excess risk bound, the contribution of the lower uniform law to the overall
error is not of leading order. Hence, incurring a sample size deflation for this purpose is not
critical.

• By combining blocking with a version of Bernstein’s inequality, we are able to push the
effect of blocking to only affect the large deviations regime. In the moderate and small
deviations regimes, control of the leading order of the random walk in (2.7) is not directly
impacted by slow mixing.
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A Proofs

A.1 Proof of Theorem 4.2

Let Z̃i:n be the block-decoupled version of Z1:n. Let sgn 2 {O,E}. For i 2 O we define
Ui =

1
|O|
P

j2ai
Z̃j and similarly for i 2 E we define Ui =

1
|E|
P

j2ai
Z̃j .

In light of Corollary 4.1 to control P
��� 1

n

P
n

i=1 Zi

�� > u
�

it suffices to control

P

0

@

������
1

|sgn|
X

i2sgn

Z̃i

������
 E

������
1

|sgn|
X

i2sgn

Z̃i

������
+ usgn

1

A

for both sgn 2 {O,E} and where usgn = u � E
��� 1
|sgn|

P
i2sgn Z̃i

���. Introduce now the change of

variables (1 + 9")tsgn = usgn � ⌘

⇣
E
��� 1
|sgn|

P
i2sgn Z̃i

���
⌘

.

We invoke Theorem 4.1 twice; we do so once for the even blocks and once for the odd blocks. This
yields for sgn 2 {O,E} that for any " 2 (0,1), ⌘ 2 (0, 1] and tsgn � 0 we have that:

P

0

@

������
1

|sgn|
X

i2sgn

Z̃i

������
 (1 + ⌘)E

������
1

|sgn|
X

i2sgn

Z̃i

������
+ (1 + 9")tsgn

1

A

 exp

 
�

|sgn|t2sgn

(2 + ⌘)⇤sgn

!
+ C",⌘,s

X

ai⇢sgn

E
���
P

j2ai
Zj

���
s

|sgn|stssgn
(A.1)

with ⇤sgn as announced and where we used that
P

j2ai
Zj is equal to

P
j2ai

Z̃j in distribution for
every ai ⇢ [n].

Consequently, with u = (1+9")tsgn+(1+⌘)E
��� 1
|sgn|

P
i2sgn Z̃i

���we find that (A.1) and Corollary 4.1
together yield that:

P

 �����
1

n

nX

i=1

Zi

����� � u

!


2m�1X

i=2

�Z(ai)

+

X

sgn2{O,E}

exp

 
�

|sgn|t2sgn

(2 + ⌘)⇤sgn

!
+ C",⌘,s

X

ai⇢sgn

E
���
P

j2ai
Zj

���
s

|sgn|stssgn
(A.2)

where summation over ai ⇢ sgn is restricted to a1:2m. If for some c > 0 we choose

tsgn � max
sgn2{O,E}

p
⇤sgn ⇥

s
c _ (2 + ⌘) log(1/�)

|sgn|

and let
p
r � maxsgn2{O,E}

E

����
1p
|sgn|

P
i2sgn Z̃i

����p
⇤sgn

then (A.2) reads for either sgn 2 {O,E}:

P

 �����
1

n

nX

i=1

Zi

����� � max
sgn2{O,E}

s
⇤sgn

|sgn|

⇣
(1 + ⌘)

p
r + (1 + 9")⇥

p
c _ (2 + ⌘) log(1/�)

⌘!


2mX

i=1

�Z(ai) + 2� +
C",⌘,s

cs/2|O|s/2
X

ai⇢O

E
���
P

j2ai
Zj

���
s

⇤
s/2
O

+
C",⌘,s

cs/2|E|s/2
X

ai⇢E

E
���
P

j2ai
Zj

���
s

⇤
s/2
E

.

The result follows if we choose c = r⌘
2
/(1 + 9")

2. ⌅
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A.2 Proof of Theorem 4.3

We will argue by truncation. This rests on the observation that for any sequence F1:n of measurable
sets:

X

i2a

XiX
T
i
⌫
X

i2a

XiX
T
i
1Fi

. (A.3)

where as before we let a ⇢ [n]. The idea is that once we truncate we do not have to worry about the
upper tail of the empirical covariance matrix. We begin by showing below that a well-chosen level of
truncation still preserves most of the mass of the lower tail.

A.2.1 Truncation step

We will want to choose the events Fi to be constant across each block. We require the following
simple observation. It states that the moment condition Ehv,Xii4  h2hv,E[XiX

T
i
]vi extends

naturally to the situation where each block is our basic unit of randomness.

Lemma A.1. Under the hypotheses of Theorem 4.3 for every subset a ⇢ [n] we have that:

E

 
1

|a|
X

i2a

hv,Xii2
!2

 h2
 

1

|a|
X

i2a

Ehv,Xii2
!
.

Proof. By direct calcuation:

E

 
X

i2a

hv,Xii2
!2


 
X

i2a

p
Ehv,Xii4

!2

(Cauchy-Schwarz)

 h2
 
X

i2a

p
Ehv,Xii2

!2
�
Ehv,Xii4  h2hv,E[XiX

T
i
]vi
�

 h2|a|
X

i2a

Ehv,Xii2. (Cauchy-Schwarz)

(A.4)

To finish the proof, divide both sides of (A.4) by |a|2. ⌅

As announced above, let now the Fi be constant on each block a ⇢ [n]. In what follows, we abuse
notation in the obvious way and write Fa = Fi for any i 2 a. The next lemma shows that suitable
truncation preserves most of the mass of the lower tail.

Lemma A.2. Impose the hypotheses of Theorem 4.3, fix ⌧ > 0 and let Fa ,n
1
|a|
P

i2a
hv,Xii2  ⌧

2
o

. For every subset a ⇢ [n] we have that:

✓
1� h2

⌧2

◆
E

"
X

i2a

hv,Xii2
#

X

i2a

Ehv,Xii21Fa
.
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Proof. As announced, fix ⌧ > 0 and let Fa ,
n

1
|a|
P

i2a
hv,Xii2  ⌧

o
. We have that:

1

|a|E
"
X

i2a

hv,Xii2 �
X

i2a

hv,Xii21Fa

#

= E

"
1

|a|
X

i2a

hv,Xii21F c
a

#



vuutE

"
1

|a|
X

i2a

hv,Xii2
#2

P(F c
a
) (Cauchy-Schwarz)

 h

vuutE

"
1

|a|
X

i2a

hv,Xii2
#
p
P(F c

a
) (Lemma A.1)

 h

vuutE

"
1

|a|
X

i2a

hv,Xii2
#
r
E
h

1
|a|
P

i2a
hv,Xii2

i2

⌧2
(Markov’s Inequality)

 h2

⌧2
E

"
1

|a|
X

i2a

hv,Xii2
#
. (Lemma A.1)

(A.5)

To finish the proof, multiply both sides of (A.5) above by |a| and re-arrange. ⌅

We now proceed with the truncation argument. Define the function

�⌧ (u) ,
⇢
u
2 if |u|  ⌧,

⌧
2 if |u| > ⌧.

The truncation is combined with an approximation. Namely, notice that we have

1

n

nX

i=1

hv,Xii2 � 1

n

nX

i=1

�⌧ (hv,Xii)

=
1

n
E

nX

i=1

�⌧ (hv,Xii)�
1

n

"
E

nX

i=1

�⌧ (hv,Xii)�
nX

i=1

�⌧ (hv,Xii)
#

� E
nX

i=1

�⌧ (hv,Xii)� sup
v2@⌃X

1

n

"
E
X

i2O

�⌧ (hv,Xii)�
X

i2O

�⌧ (hv,Xii)
#

� sup
v2@⌃X

1

n

"
E
X

i2E

�⌧ (hv,Xii)�
X

i2E

�⌧ (hv,Xii)
#

(A.6)

where the last step uses the assumption that v 2 @⌃X .

By invoking Lemma A.2 and noticing that �⌧ can be lower-bounded via the indicators of the Fa we
have that:

1

n

nX

i=1

E�⌧ (hv,Xii) �
1

n

nX

i=1

Ehv,Xii21Fa
�
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(A.7)
since v 2 @⌃X . Consequently by combining (A.6) and (A.7) we obtain the deterministic decomposi-
tion:
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(A.8)
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for every v 2 @⌃X .

The decomposition (A.8) sets the stage for the last step of the proof: we will apply the block
decoupling result of Proposition 4.1 to replace the empirical processes appearing on the right of (A.8)
and pay an additional failure probability of

P2m�1
i=2 �X(ai).

Consequently, it only remains to control the supremum of the following truncated and decoupled
empirical process (sgn 2 {O,E}):

sup
v2@⌃X

1

n

2

4E
X

i2sgn

�⌧ (hv, X̃ii)�
X

i2sgn

�⌧ (hv, X̃ii)

3

5 . (A.9)

A.2.2 Approximation step: bounding (A.9)

We now intend to invoke Talagrand’s inequality for independent but not necessarily equally distributed
variables [see Klein and Rio, 2005, Theorem 1.1]. To do so, we first need to control the expectation
and then the weak variance of the process (A.9). For future reference, we also point out that by
construction:

�����
X

i2a

E�⌧ (hv, X̃ii)� �⌧ (hv, X̃ii)

�����  2⌧
2|a|. (A.10)

We now turn to controlling the expectation of (A.9). Using that the odd (resp. even) blocks of
the decoupled process are independent, a straightforward symmetrization argument yields [see e.g.
Wainwright, 2019, Proposition 4.11]:
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(A.11)
for a sequence ⌘j , j 2 [2m] of Rademacher random variables. Since the map (Rd

, k · k2) 3 x 7!P
d

j=1 �⌧ (xj) 2 (R, | · |) is 2
p
d⌧ -Lipschitz, the vector version of the Ledoux-Talagrand contraction

principle now yields [see Maurer, 2016, Theorem 2]:
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(A.12)
for another sequence ⌘

0
i
, i 2 [n] of Rademacher random variables.

Obviously,
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Combining (A.11),(A.12) and (A.13) we find that:
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As announced, we also need an upper bound on the variance of the truncated empirical process (A.9):

sup
v2@⌃X

Var

2

4E
X

i2sgn

�⌧ (hv, X̃ii)�
X

i2sgn

�⌧ (hv, X̃ii)

3

5

= sup
v2@⌃X

X

j2[2m],aj⇢sgn

Var

2

4E
X

i2aj

�⌧ (hv, X̃ii)�
X

i2a

�⌧ (hv, X̃ii)

3

5 (Blockwise Indep.)

 sup
v2@⌃X

X

j2[2m],aj⇢sgn

E

2

4
X

i2aj

�⌧ (hv, X̃ii)

3

5
2

(Jensen’s Ineq.)

 sup
v2@⌃X

X

j2[2m],aj⇢sgn

⌧
2|aj |

X

i2aj

Ehv, X̃ii2 (|�⌧ (·)|  ⌧
2
)

 ⌧
2
max
a⇢sgn

|a| sup
v2@⌃X

X

i2sgn

Ehv, X̃ii2

 ⌧
2
n max

j2[2m]
|aj |.

(A.15)

Combining Klein and Rio’s version of Talagrand’s inequality with our estimates (A.10), (A.14) and
(A.15), we find for any u 2 [0,1) that:
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(A.16)

with v = ⌧
2
nmaxj2[2m] |aj |+ 8

p
2ndX maxa⇢sgn |a|.

A.2.3 Finishing the proof of Theorem 4.3

Fix a positive constant ↵ 2 R to be determined later. We now set u = ↵n. Let us further fix a positive
constant " 2 R and assume that n � (1/"

2
)dX maxj2[2m] |aj |. Under these additional hypotheses:
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and
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(A.18)

We now decouple using Proposition 4.1 and instantiate our upper bound (A.16) to control (A.8). This
step combined with the estimates (A.17) and (A.18) yields:
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By choosing ↵ and " sufficiently small and ⌧ sufficiently large, we find that there exists a universal
positive constant C 2 R such that if

n � C max
j2[2m]

|aj |(dX + h2 log(1/�)) and
2m�1X
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�X(ai) 
�

2
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then
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� 1� �.

The result follows by rescaling to arbitrary v 2 RdX . ⌅

A.3 Finishing the of Theorem 3.1

The proof of Theorem 3.1 now easily follows from Theorem 4.3 and Theorem 4.2. We translate the
necessary conditions below.

First, we note that in light of Theorem 4.3 if (4.7) holds then we may estimate ⌃̃
�1
n

� cIdX for some
universal positive constant c > 0. We remark that (4.7) holds by (3.3) and (3.5). Consequently, it
suffices to control the random walk (2.6).

Second, we turn to the control of the random walk (2.6), which is provided by Theorem 4.2, by
instantiating it to the case of the Euclidean space (RdY⇥dX , k · kF ). We identify this space by linear
isometry (vec) with (RdYdX , k · k2) and hence in the notation of Theorem 4.2 we have that the weak
variances are:
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.

Using monotonicity of the operator norm over symmetric positive semidefite matrices and the
condition (3.4) we also have for either sgn 2 {O,E}:

c
0
�
2  ⇤sgn  �

2 (A.20)

for some universal positive constant c0. Condition (3.4) also implies that the constant r in Theorem 4.2
can be chosen as c00edim(⌃) for some universal positive constant c00. The final step is to note that
the last two terms on the right hand side of (4.6) are less than c

000
� for some third universal positive

constant c000 if the respective second parts of (3.3) and (3.4) hold. ⌅
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