
Rethinking Tractability for Schedulability Analysis
Kunal Agrawal

Washington University in St. Louis
kunal@wustl.edu

Sanjoy Baruah
Washington University in St. Louis

baruah@wustl.edu

Pontus Ekberg
Uppsala University

pontus.ekberg@it.uu.se

Abstract—Algorithms that have been developed for solving
computationally intractable schedulability analysis problems may
be classified into two broad categories: exact algorithms that
run in exponential time, and polynomial-time algorithms that
provide approximate solutions. If exact algorithms are sought, it
has traditionally been required that these algorithms have pseudo-
polynomial running time. More recently, schedulability analysis
algorithms that have polynomial running time but are allowed to
make calls to an ILP solver have increasingly been considered
tractable. When approximation algorithms are acceptable, an
objective has been to obtain Fully Polynomial-Time Approximation
Schemes, which are ‘tunable’ algorithms that provide a smooth
transition between polynomial time and exponential time by
letting the user of the algorithm set an appropriate value for a
parameter.
In this paper we take a fresh view on the connections between
the various perspectives on what is considered to be tractable
schedulability analysis. We seek to determine when the different
forms of tractable analyses are applicable to a particular problem
and what problem features rules them out, and demonstrate our
findings upon concrete scheduling problems. We also suggest
that ‘pseudo-polynomial time’ is perhaps a rather broad category,
and propose a finer-grained classification of the class of pseudo-
polynomial time algorithms.

I. INTRODUCTION

Safety-critical systems are generally required to have their
safety properties validated correct prior to deployment. For real-
time systems, the process of validating timing safety properties
is commonly called schedulability analysis: GIVEN (i) the
specifications of the computational demands of, and the timing
constraints upon, the workload; (ii) the platform upon which
this workload is to be implemented; and (iii) the run-time
resource allocation and scheduling algorithms that will be
used, DETERMINE (prior to run-time) whether the workload is
guaranteed to always meet all its timing constraints.

In the early years of the discipline of real-time computing,
schedulability analysis algorithms were required to have worst-
case running times that are low-degree polynomials in the size
of their inputs in order to be considered “efficient.” Examples
of efficient algorithms of this first generation include the
utilization-based schedulability tests for Earliest-Deadline First
(EDF) [1], [2] and Rate-Monotonic (RM) [1], [3] scheduling
of collections of independent implicit-deadline sporadic tasks
(“Liu and Layland tasks”) upon preemptive uniprocessors.
While the utilization-based EDF schedulability test is exact
(i.e., necessary and sufficient), the RM test is approximate in
the sense that it is sufficient but not necessary. This is, with

the benefit of hindsight, not surprising: most schedulability-
analysis problems, including RM schedulability analysis, have
been shown [4]–[11] to be NP or coNP hard and hence unlikely
to admit to exact polynomial-time schedulability tests.

By the mid- to late-1980s, however, computing capabilities had
increased enough that schedulability analysis algorithms with
pseudo-polynomial running times were considered efficient.
Early examples of efficient algorithms of this kind include
preemptive uniprocessor Response-Time Analysis that is an
exact test for fixed-priority task systems [12]–[17] and the EDF
schedulability test for 3-parameter sporadic task systems [4],
[6], [18] for bounded-utilization task systems. Since then, there
appears to have been a consensus within the safety-critical real-
time computing community that pseudo-polynomial running
time equates to efficiency, and there has been a continued
quest to identify the most general scheduling algorithms
and associated workload and platform models for which
schedulability analysis can be done in pseudo-polynomial time,
e.g., [19]–[21].

More recently, the increasingly complex nature of many
schedulability-analysis problems that one encounters whilst
seeking to verify the correctness of modern safety-critical
cyber-physical systems, combined with the continued increase
in computing capabilities that are available for the purposes
of performing schedulability analysis, has motivated some
researchers in the real-time computing community to move
beyond this “pseudo-polynomial time barrier.” Many such in-
vestigations seek to transform a schedulability-analysis problem
to some other form such as an integer linear program (ILP –
see, e.g., [22]–[26]), or some satisfiability modulo theories
(SMT) [27], which can then be solved by an appropriate
solver — i.e., an ILP solver or an SMT solver, respectively.
(The real-time scheduling theory community has focused far
more on ILPs than SMTs, and we will do likewise in this
manuscript.) Although solving an integer linear program is
itself computationally intractable (it is strongly NP-complete
to decide if any feasible solution exists), excellent off-the-shelf
solvers exist that, by incorporating a combination of expert
techniques, special-purpose heuristics, and highly optimized
implementation, are able to handle surprisingly large problem
instances in reasonable amounts of time. We believe that the
availability of such amazingly powerful ILP solvers, paired
with advances in theoretical computer science since the mid
1980’s (when the consensus had been reached on pseudo-
polynomial time equating to efficiency), has opened up a

1

2023 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/23/$31.00 ©2023 IEEE
DOI 10.1109/RTSS59052.2023.00011

marvelous opportunity to develop new ILP-based algorithms for
rapidly solving schedulability-analysis problems. The real-time
scheduling community has had some noteworthy successes
in this direction recently; such successes are leading to the
emergence of a fresh community-wide consensus that it be
considered ‘efficient’ to solve a schedulability-analysis problem
by converting it to an ILP and calling an ILP solver.

Does the emergence of this consensus mean that all
schedulability-analysis problems may now be considered
efficiently solvable? By no means: a range of complexity classes
have been defined in computational complexity theory that are
widely believed to contain problems not in NP (in much the
same manner that NP is widely believed to contain problems
not in P, i.e., not solvable by polynomial-time algorithms).
Showing a schedulability analysis problem to be hard for one
of these complexity classes would offer strong evidence that
it cannot be efficiently solved even with an excellent ILP
solver. The complexity class ΣP

2 (we provide a brief primer
on complexity classes in Section II below) is an example:
it is widely conjectured that NP ! ΣP

2 . Woeginger [28]
discusses the implications (our emphasis): “The consequences
of [this conjecture] are devastating: If you hit a ΣP

2 -complete
problem, then there is no way of formulating it (in polynomial
time) as an integer program (of polynomial size). [. . .] As
a consequence, our powerful and well-developed toolkit for
integer programming is of little use in the realm of ΣP

2 -
completeness. ΣP

2 -complete problems are much, much, much,
much, much harder than any problem in NP or coNP and
anything that can be attacked via ILP solvers.”

Summarizing the discussion above, current approaches towards
developing exact schedulability-analysis algorithms appear to
be centered on the following three beliefs:

1) It is ‘best’ (i.e., most efficient) to obtain a polynomial-time
algorithm. If this is not possible, then one should look for
a pseudo-polynomial-time one; failing that, it is becoming
increasingly acceptable to settle for a ‘polynomial-time +
ILP-solver’ algorithm – an algorithm that has polynomial
running time and is additionally allowed to make calls to
an ILP solver. If this, too, is not possible, then the problem
should be considered to be truly intractable.

2) Showing a schedulability-analysis problem to be NP-hard
indicates that it is not likely to be solvable by a polynomial-
time algorithm, but leaves open the possibility that it is
solvable by a pseudo-polynomial-time algorithm. Showing
a problem to be NP-hard in the strong sense rules out this
possibility, but leaves open the possibility that it is solvable
by a ‘polynomial-time + ILP-solver’ algorithm.

3) Showing a problem to be ΣP
2 -hard or ΠP

2 -hard1 rules out
the possibility of polynomial-time, pseudo-polynomial-time,
or ‘polynomial-time + ILP-solver’ algorithms: a ΣP

2 -hard or
ΠP

2 -hard problem is truly intractable (as stated above, it is
considered to be “much, much, much, much, much harder
than any problem in NP or coNP” [29]).

1The complexity class ΠP
2 is also described in Section II.

We have discussed above one approach for dealing with the
fact that many schedulability analysis problems are not in
the complexity class P and therefore unlikely to be solvable
by polynomial-time algorithms: allow for the use of pseudo-
polynomial time algorithms, or even for exponential-time
algorithms provided the exponential part is restricted within
calls to a well-crafted ILP solver. Another popular approach to
dealing with such inherent intractability is via approximation:
continue to enforce the restriction that algorithms have poly-
nomial running time, but settle for sufficient, rather than exact,
schedulability analysis algorithms. A Fully Polynomial-Time
Approximation Scheme or FPTAS is a particularly attractive
option in this regard since its running time is controllable by
a user-set parameter ϵ > 0. That is, the running time of an
FPTAS is polynomial in the size of its input and (1/ϵ), while
its accuracy increases with decreasing ϵ: the smaller the value
of ϵ the closer the FPTAS is to an exact test. By adjusting the
value of ϵ, one thereby achieves a smooth transition between
polynomial and exponential running times. FPTAS’s have been
proposed for both EDF schedulability [30] and fixed-priority
schedulability [31] of sporadic task systems upon preemptive
uniprocessors.

This work. As the discussion above reveals, the perspective
of the real-time systems community as to what should be
considered to be tractable has evolved over the years. Motivated
by recent developments in computing (with regards to both
advances in algorithms, and the availability of computing
hardware and software tools), we believe that the time is right
for another examination; this manuscript reports on our efforts
at doing so. Among the specific contributions with regards to
exact schedulability analysis, we

1) Refute the third of the “beliefs” listed above, by showing
that problems belonging to complexity classes that are
believed to be even more intractable than ΣP

2 or ΠP
2 may

have pseudo-polynomial-time algorithms. Hence, a problem
being ΣP

2 or ΠP
2 hard does not rule out the possibility of

there being a pseudo-polynomial-time algorithm for solving
it.

2) Illustrate the above fact by developing a pseudo-polynomial
time algorithm for a specific example problem– the AD-
VERSARIAL PARTITIONING problem (Definition 1) – that
is known to be ΣP

2 -complete.
3) Make a case that not all pseudo-polynomial algorithms

should be considered ‘equally tractable,’ and propose a finer-
grained classification within the class of pseudo-polynomial
time algorithms.

Our main contributions with regards to approximate schedu-
lability analysis have been to

1) Show that FPTAS’s may exist for problems that are harder
than NP-hard (or coNP-hard), by constructing an FPTAS for
the ΣP

2 -complete ADVERSARIAL PARTITIONING problem.
2) This FTPAS is obtained using a fairly standard technique

for deriving an FPTAS from a pseudo-polynomial time
algorithm (the one listed above as the second contribution

2

for exact schedulability analysis). However, this technique
is not always applicable: we illustrate this on a scheduling
problem, the MEMORY-CONSTRAINED TASK SELECTION
PROBLEM (Definition 5), for which a pseudo-polynomial
time algorithm is easily designed but which cannot have an
FPTAS (under standard complexity-theoretic assumptions).

Taken together, our contributions serve (amongst other things)
as a reminder that to understand tractability in real-time
schedulability analysis, in either the exact or the approximate
sense, we may require a more nuanced view than simply
mapping problems to the traditional computational complexity
hierarchy.

Organization. The remainder of this manuscript is organized as
follows. In Section II we provide a brief background on those
concepts in computational complexity that are relevant to us
in this paper. In Section III, we present our findings regarding
the existence of pseudo-polynomial time algorithms, and the
implications of their existence. We do likewise concerning
approximation algorithms in Section IV, and conclude in
Section V by placing this work within a larger context of
real-time schedulability analysis.

II. SOME BACKGROUND FROM COMPLEXITY THEORY

In this section we briefly review some concepts from compu-
tational complexity theory [32], [33] that we will use in the
remainder of this manuscript.2 The class P of problems that are
known to be solved by algorithms with running time polynomial
in the size of their inputs, and the class NP of problems for
which claimed solutions can be verified by algorithms with
running time polynomial in the size of their inputs, are (along
with coNP, the class of problems whose complements are in
NP) the foundational cornerstones of computational complexity
theory. It is very widely believed that P ! NP (i.e., there are
polynomial-time verifiable problems that cannot be solved
in polynomial time); and that coNP ̸= NP (i.e., there are
problems in NP that are not in coNP, and vice versa). The
polynomial hierarchy [34] extends computational complexity
theory beyond the classes P and NP by considering abstract
computers equipped with an oracle: a “black box” that is able
to solve a specific decision problem efficiently (usually it is
assumed that the oracle solves its problem in constant time,
but for our purposes it would be equivalent if it solves it in
polynomial time). The complexity class PNP (also called ∆P

2) is
the class of all problems that can be solved in polynomial time
by an algorithm that is equipped with an oracle for solving some
NP-complete problem. Since it is NP-complete to determine
whether an integer linear program has a solution, the problems
solvable by what we have referred to as ‘polynomial time + ILP-
solver’ algorithms in Section I are exactly of this complexity

2In order to keep things simple the presentation is intentionally informal
and not always precise: for instance, while most of the concepts discussed
here differ in their applicability to decision problems – those for which there
is a “YES/ NO” answer – and optimization problems, we do not make this
distinction here but treat both decision and optimization problems in similar
fashion.

P
NP

NP-C

coNP

coNP-C
NPNP

(ΣP
2)

ΣP
2-C

coNPNP

(ΠP
2)

ΠP
2-C

PNP (∆P
2)

PH...

PSPACE

EXP

Fig. 1. Some complexity classes.

class. The complexity class NPNP (also called ΣP
2) denotes the

class of all problems that can be verified in polynomial time by
an algorithm that is equipped with an oracle for solving some
NP-complete problem. Similar to how coNP relates to NP,
complexity class coNPNP (also called ΠP

2) denotes the class of
problems whose complement problems are in NPNP. This idea
is generalized for any k ∈ N: ΣP

k and ΠP
k are defined assuming

access to an oracle that is complete for ΣP
k−1. The entire

polynomial hierarchy (PH) is contained in many other classes,
like EXP, the class of all problems solvable in exponential time.
The relationship amongst the complexity classes considered in
this paper is shown in Figure 1 as a Venn diagram.

Strong and weak sense of hardness. The complexity classifica-
tion above may be further sub-divided by specifying hardness in
the weak or strong sense. Somewhat informally, if a problem’s
specification includes numbers, and there is an algorithm for
solving the problem that has running-time polynomial in the
values of the numbers of the input instance – then there is
a pseudo-polynomial time algorithm for solving it. Problems
that are shown to be NP- or coNP-hard in the strong sense
cannot be solved exactly in pseudo-polynomial time (assuming
P ̸= NP), but problems that are (co)NP-hard in the weak (or
ordinary) sense could have such algorithms.

III. PSEUDO-POLYNOMIAL TIME SCHEDULABILITY
ANALYSIS

In this section we investigate the existence of pseudo-
polynomial time algorithms for schedulability analysis prob-
lems. Recall (Section I) that conventional wisdom considers
such problems to be of intermediate complexity: easier than
those with only ‘polynomial-time + ILP solver’ algorithms
(or indeed, ΣP

2 -hard or ΠP
2 -hard problems), but harder than

problems in P. In Section III-A we refute this conventional
wisdom by proving that there are ΣP

2 -hard or ΠP
2 -hard problems

(indeed, even EXP-complete problems) for which pseudo-
polynomial time algorithms exist, but that pseudo-polynomial

3

time algorithms cannot exist outside of EXP. These observa-
tions are made in general terms; in Section III-B we ground
this to real-time scheduling by designing a pseudo-polynomial
time algorithm for a schedulability-analysis problem that is
ΣP

2 -complete.

Although the complexity class P does not distinguish between
problems for which the most efficient algorithms have running
times that are linear, quadratic, cubic, etc., in problem instance
size, we often find it meaningful to provide a finer-grained
characterization of the algorithms within P (e.g., a Θ(n log n)
sorting algorithm such as Mergesort is generally considered to
be more efficient than a Θ(n2) one like Insertion Sort). We will
take a similar finer-grained perspective on pseudo-polynomial
time in Section III-C, drawing from examples in real-time
scheduling theory to illustrate why it it meaningful to do so.

A. On the whereabouts of pseudo-polynomial time algorithms

There are problems in NP that are not solvable via pseudo-
polynomial time algorithms (assuming P ̸= NP); indeed, it
is well known that problems that are NP-complete in the
strong sense cannot have pseudo-polynomial time algorithms
(again, assuming P ̸= NP). But it turns out that there are
problems harder than NP-hard for which pseudo-polynomial
time algorithms exist. Indeed, we can find problems with
pseudo-polynomial time algorithms essentially anywhere in
EXP, as we demonstrate below.

A complexity class C is said to be closed under polynomial-time
reductions if whenever problem X can be reduced to problem
Y in polynomial time, and Y is in C, then X is also in C.
Most of the complexity classes we usually consider are closed
under polynomial-time reductions, for example P, NP, coNP,
all other classes in the polynomial hierarchy, PSPACE and
EXP. The following rather straightforward observation shows
that all such classes in EXP must contain complete problems
(albeit artificial ones) that can be solved in pseudo-polynomial
time.

Observation 1. If C is a complexity class contained in EXP and
C is closed under polynomial-time reductions, then there exist
C-complete problems with pseudo-polynomial time solutions.

Proof. Let L1 be a C-complete language. Since L1 is in C and
C ⊆ EXP, there exists an algorithm for solving L1 that runs
in time

O
(
2n

k)
(1)

for some constant k.

From L1 we define language L2 by padding every instance
with a large number,

L2 =
{
(x, a) | x ∈ L1 and a = 2|x|

k
}
,

where |x| is the length of the representation of x and k is the
constant from Eq. 1.

First, we observe that it is trivial to reduce L1 to L2 in
polynomial time: Given instance x of L1 we simply calculate
a = 2|x|

k

and output (x, a) as an instance of L2. Clearly, we
then have (x, a) ∈ L2 if and only if x ∈ L1. Since L1 is
C-complete, the reduction shows that L2 must be C-hard.

Second, we observe that it is also trivial to reduce L2 to L1

in polynomial time: Given instance (x, a) of L2 we simply
check that a = 2|x|

k

and if so output x as an instance of L1

(or otherwise output some predefined x′ /∈ L1). Since L1 is
in C and C is closed under polynomial-time reductions, L2 is
also in C, and is therefore C-complete.

Finally, we can determine if an instance (x, a) belongs to
L2 in pseudo-polynomial time: We first check that a = 2|x|

k

and if so use the algorithm for L1 to see if x ∈ L1 in time
O(2|x|

k

) = O(a). Therefore L2 is C-complete and can be
solved in pseudo-polynomial time.

The problems constructed above are of course entirely artificial,
in that they contain big numerical parameters that do not
actually have any particular significance for the problem, other
than acting as a way to “cheat” in the existence of pseudo-
polynomial time algorithms. In Section III-B we will, however,
see a scheduling problem that is complete at the second level
of the polynomial hierarchy (ΣP

2 -complete), but still allows a
pseudo-polynomial time algorithm.

An interesting observation to make is that, since there are
EXP-complete problems that are solved by pseudo-polynomial
time algorithms, the Time Hierarchy Theorem [35] tells us that
P ! pseudo-polynomial time, even if P = NP.

On the other hand, problems outside of EXP cannot have
pseudo-polynomial time algorithms, as demonstrated by the
following simple observation.

Observation 2. If problem L is not in EXP, then L cannot
be solved in pseudo-polynomial time.

Proof. Assume to the contrary that L can be solved by a pseudo-
polynomial time algorithm with running time O(max(n,N)k),
where n is the size of the representation of the input and N
the largest numerical parameter. Since we need logN bits to
represent N we must have logN ≤ n and therefore N ≤ 2n.
But then we can solve L in time O(max(n, 2n)k) = O(2kn),
and L must be in EXP.

In fact, the proof of Observation 2 shows that no problem
outside of complexity class E (exponential time with a linear
exponent) can have a pseudo-polynomial time algorithm. Since
E ! EXP, this may seem to contradict Observation 1, which
states that there are EXP-complete problems with pseudo-
polynomial time algorithms. However, these observations are
in fact compatible, a straightforward padding argument (not
dissimilar to the one used for Observation 1) show that all
E-complete problems are also EXP-complete (see, for example,
Theorem 1.1 in [36]).

4

B. A pseudo-polynomial time algorithm for a particular
schedulability problem that is ΣP

2 -complete

We saw in Section III-A above that pseudo-polynomial time
algorithms may exist not just for problems in NP or coNP,
but also for problems that are believed to be strictly harder
than such problems. The problems created to show this in
Section III-A were completely artificial, created by padding
instances with large numbers, but are all such examples
artificial, or are there schedulability problems outside of
NP and coNP that can be solved in pseudo-polynomial
time? A potential candidate for this is the uniprocessor
EDF-schedulability problem for bounded-utilization Digraph
Real-Time (DRT) tasks. A pseudo-polynomial time exact
test was derived in [21], and the problem is coNP-hard as
it generalizes the corresponding schedulability problem for
sporadic tasks [37]. The DRT schedulability problem is however
not obviously in coNP, and we may indeed suspect that it is
outside NP and coNP.

To make a stronger point we systematically derive, below, a
pseudo-polynomial time algorithm for a real-time scheduling
problem3 that is known to be ΣP

2 -complete. This demonstrates
that encountering a ΣP

2 -complete scheduling problem is not
necessarily as “devastating” as the quote from Woeginger [28]
(reproduced in Section I) would suggest.

The ADVERSARIAL PARTITIONING Problem [38] (defined
below) is related to certain problems arising from security
considerations in resource-constrained embedded systems. Let
us suppose that we have set ΓA of implicit-deadline sporadic
tasks that is to be partitioned between a pair of processors,
each of which is scheduled during run-time according to the
preemptive uniprocessor EDF algorithm. A malicious adversary
wishes to launch an attack that requires it to execute all the
tasks in another set ΓB of implicit-deadline sporadic tasks, also
to be partitioned between the same pair of processors. Can we
partition the tasks in ΓA amongst the two processors in such
a manner that all the tasks in ΓB cannot fit upon the capacity
that remains on the two processors?

Let us further suppose that the tasks in ΓA ∪ ΓB are harmonic,
and hence that their utilizations may be expressed as integer
multiples of 1/Tmax, where Tmax is the largest period among
all tasks. We relate this described scheduling problem to the
ADVERSARIAL PARTITIONING decision problem.

Definition 1 (ADVERSARIAL PARTITIONING [38]).
Instance: A positive integer S and two (multi-)sets of positive
integers

A = {a1, a2, . . . , a|A|} and B = {b1, b2, . . . , b|B|}.

Question: Can the elements in set A be partitioned between

3We readily admit that this scheduling problem may also appear somewhat
artificial in terms of immediate practical considerations. Our point is not that it
should be a highly practical scheduling problem, but that it is entirely natural
in its representation. It is a simplified version of patterns that can occur in
security-cognizant scheduling.

two bins, each of capacity S, such that all the elements in set
B cannot be partitioned in the remaining capacity upon these
bins?

Letting S = Tmax and letting multisets A and B denote the
utilizations of the tasks in ΓA and ΓB , respectively expressed
in integer multiples of the basic unit of utilization 1/Tmax, the
scheduling problem described above is directly equivalent to
ADVERSARIAL PARTITIONING. We note that the assumption
of harmonic periods is what makes it possible to (trivially)
reduce from this scheduling problem to ADVERSARIAL PAR-
TITIONING without any exponential blowup in the magnitudes
of numerical parameters (we avoid representing utilizations
as integer multiples of a potentially exponentially-large hyper
period). Reducing in the other direction is also trivial.

ADVERSARIAL PARTITIONING was shown to be ΣP
2 -complete

by Johannes [38, (Corollary 2.2.1, p. 40)], even in the restricted
case of SA + SB = 2S, where SA =

∑
ai∈A ai and

SB =
∑

bi∈B bi. Hence it is one of those problems that, in
all likelihood, cannot by formulated as an ILP in polynomial
time, and cannot even be solved if we allow a polynomial
number of calls to an ILP solver. It nevertheless admits to a
pseudo-polynomial time algorithm; this algorithm is listed in
pseudo-code form as Algorithm 1 and is explained below.

1) First, two for-loops (lines 2–5 and 7–9) apply the standard
pseudo-polynomial time algorithm for SUBSET SUM to
determine all possible sums for subsets of A and B that
are no greater than S. These are stored in the sorted lists
LA and LB .

2) Then, a third for-loop (lines 10–16) considers each such
possible subset sum yA of A, and finds the largest subset
sum yB of B such that yA and yB can be placed together
in the same bin. Then it checks if the remaining subsets
with sums SA−yA and SB−yB can be placed together in
the second bin. If not, we have found a valid partitioning
of A that prevents the partitioning of B.

The running time of this algorithm is pseudo-polynomial. More
specifically, it is O((|A|+ |B|+ logS)S) since the size of the
lists LA and LB never exceeds S, and since the search on line
11 can be done in time O(logS) using binary search.

C. A more fine-grained take on pseudo-polynomial time

Pseudo-polynomial time algorithms are only to be considered
efficient for problems where numerical parameters are actually
expected to be reasonably small. In real-time scheduling
problems, numerical parameters are typically representing time
in some time unit, and hence tend to be fairly small as the
represented time should make sense on timescales for which
systems are designed. For example, we should fully expect
that there will never exist a real-world periodic task with
some numerical parameter on the order of 2100; though such
a parameter takes only 100 bits to represent, it would have a
magnitude that exceeds the age of the universe measured in
picoseconds.

5

1 LA = ⟨0⟩
2 for i← 1 to |A| do
3 LA ← merge(LA, LA + ai, S)
4 /* LA + ai returns a list with ai

added to each element in LA.
Function merge(L1, L2, x) returns the
sorted list obtained by merging
sorted lists L1 and L2, removing
any duplicates and any elements
greater than x. */

5 end
6 LB = ⟨0⟩
7 for i← 1 to |B| do
8 LB ← merge(LB , LB + bi, S)
9 end

10 for each yA ∈ LA do
11 yB ← the largest yB ∈ LB such that yA + yB ≤ S
12 if SA − yA + SB − yB > S then
13 return success
14 /* This partitioning of A

prevents partitioning of B. */
15 end
16 end
17 return failure
18 /* No partitioning of A prevents the

partitioning of B. */

Algorithm 1: A pseudo-polynomial time algorithm for
ADVERSARIAL PARTITIONING.

Even though many numerical parameters in scheduling prob-
lems tend to be fairly small in magnitude, they are often not
very small. For example, the parameters of a periodic task,
if measured in units of CPU clock cycles, easily ranges into
the thousands, millions, or even billions. It is no surprise
then that the practical running time of a pseudo-polynomial
time algorithm, which is polynomial in the size n of the
representation of the instance and the magnitude N of the
largest numerical parameter, depends heavily on the exponent
applied to N . Running times that are linear, quadratic, cubic,
etc. in N all count as pseudo-polynomial, though anything
more than linear could quickly get intractable even with the
reasonably small magnitudes N that we may expect for some
scheduling problems. With this in mind we make the case
that we should strive not just to find pseudo-polynomial time
algorithms for scheduling problems, but to try hard to find
pseudo-linear ones (defined below) whenever possible. We
believe that it is very meaningful to make a clear separation
between pseudo-linear time algorithms and other pseudo-
polynomial time algorithms.

Definition 2 (Pseudo-linear). An algorithm is pseudo-linear
time if its runtime is O(nk × N), where n is the size of
the representation of the problem instance, N is its largest
numerical parameter, and k is a constant.

Many well-known pseudo-polynomial time algorithms in real-
time systems are in fact pseudo-linear, which helps to explain
their good practical performance. Examples of this are the
standard Response-Time Analysis (RTA) for FP-scheduled
constrained-deadline sporadic tasks [12]–[17], and the Pro-
cessor Demand Analysis (PDA) [7], [18] for EDF-scheduled
arbitrary-deadline bounded-utilization sporadic tasks.

But closer examination of prior pseudo-polynomial time
algorithms reveals that some are in fact not pseudo-linear.
A couple of examples come from the EDF-schedulability of
mixed-criticality sporadic tasks. The sufficient test presented
in [39] runs in pseudo-linear time in itself, but is supposed to
be used in conjunction with a virtual deadline-tuning procedure
that makes it pseudo-quadratic. An improved test is presented
in [40], which improves the precision of the test in [39] while
keeping pseudo-polynomial runtime. The improved sufficient
test is however pseudo-quadratic in itself, and the deadline-
tuning procedure is pseudo-cubic.

Clearly, and unsurprisingly, the above examples show a trade-
off between precision and analysis complexity. Another exam-
ple of this comes from the mixed-criticality FP-schedulability
analysis presented in [41], where two different sufficient tests
are presented with different precision, one being pseudo-linear
and the other pseudo-quadratic.

An example of where a pseudo-quadratic algorithm could be
made into a pseudo-linear one without sacrificing any precision
comes from [21]. There, an exact EDF-schedulability test for
DRT tasks was presented that is pseudo-quadratic, but an
optimization was then applied that turned it pseudo-linear,
which led to, in the authors’ words, “a huge performance
improvement using this optimization.”

Another aspect, often overlooked, of pseudo-polynomial time
algorithms is whether they are sensitive to the units in which
numerical parameters are specified. For an example, consider
a task system that is specified with numerical parameters in
units of milliseconds, and consider what happens if we change
the time unit to microseconds instead. For a pseudo-linear
schedulability analysis, as per Definition 2, it would be fine to
take a thousand times longer to analyze the task system when
it is specified in microseconds instead. For a pseudo-quadratic
or pseudo-cubic analysis it could take a million or a billion
times longer. However, this seems like a mostly undesirable
effect, especially if the task systems specified in different units
are in fact semantically equivalent. We would like the running
time of a pseudo-polynomial time algorithm to be robust in this
regard, and dependent on the largest numerical parameter only
in the greatest possible time unit that it could be expressed in.
This motivates the below definition.

Definition 3 (Robust pseudo-polynomial time). An algorithm is
robustly pseudo-polynomial if it runs in time that is polynomial
in the size n of the representation of the instance and in N/G,
where N is its largest numerical parameter and G is the greatest
common divisor among all its numerical parameters.

6

As with pseudo-polynomial time in general, it would be a
good idea to be somewhat flexible in what we consider a
numerical parameter in the above definition. For example, in
a multiprocessor schedulability problem we may be given
as input instance a tuple (Γ,m) consisting of a sporadic task
system Γ and the number of processors m. In this case it seems
most meaningful to consider only the numerical parameters
in the task system Γ, and omit m from the calculation of the
greatest common divisor G, as m does not share a unit with
the other parameters.

To consider some examples again, RTA is easily seen to be
robustly pseudo-linear, and so is PDA for bounded-utilization
task systems if we apply the usual optimization of only
evaluating discontinuous points of the demand bound function.
The pseudo-polynomial time algorithm for ADVERSARIAL
PARTITIONING given in Algorithm 1 is also robustly pseudo-
linear.

On the other hand, the mixed-criticality EDF-schedulability
tests from [39] and [40], exactly as stated, are not robustly
pseudo-polynomial. An interesting middle-ground can be found
in the exact semi-clairvoyant EDF-schedulability test for mixed-
criticality tasks with graceful degradation in [42, Theorem 7],
which is pseudo-quadratic but only linearly robust, i.e., it runs in
time O(poly(n)×N2/G). To highlight some potential sources
of (non-)robustness we dig a bit deeper into [42, Theorem 7]
in the following. There we see that the presented schedulability
test has two nested universal quantifiers. The first of those
is quantifying over every possible integral length t of time
windows, up to a pseudo-linear upper bound, while the other is
quantifying over certain job release time points in such intervals
of size t. The first quantifier is the source of non-robustness:
if every numerical parameter of the tasks are increased by a
joint factor x, then the number of elements quantified over also
increases by the same factor x. The inner quantifier is however
not a source of non-robustness: If all task parameters increase
by a joint factor, then the intervals to consider job releases in
also grow in size, but the total number of jobs stay exactly
the same because the job releases will be further apart by the
same factor. Similar patterns to the above can be seen in other
schedulability tests in the literature, but non-robustness can
also arise in many other ways.

Armed with Definitions 2 and 3, we believe it is reasonable to
consider that robust pseudo-linear time is the “best” kind
of pseudo-polynomial time, which we should, when possible,
strive for when designing pseudo-polynomial time algorithms.
Further, we believe that it is meaningful to differentiate pseudo-
linear from non-pseudo-linear, and robust from non-robust,
when reporting new results in real-time scheduling theory.

IV. SUFFICIENT SCHEDULABILITY ANALYSIS IN
POLYNOMIAL TIME

Whereas Section III mainly dealt with exact tests for schedula-
bility analysis, we now turn our attention to polynomial-time
tests that are sufficient, rather than exact, for determining

schedulability: a task system that is deemed schedulable
by a sufficient schedulability test is guaranteed to indeed
be schedulable, while the remaining task systems may or
may not be schedulable. Speedup factors [43]–[45] are a
commonly used quantitative metric of the effectiveness of
sufficient schedulability tests. The speedup factor of a sufficient
schedulability test A is defined to be the smallest real number
δ ≥ 0 such that if any task system Γ is schedulable upon a unit-
speed processor, then A will determine that Γ is schedulable
upon a speed-(1+δ) processor.4 Smaller speedup factors denote
‘better’ (i.e., closer to optimal in the worst case) sufficient tests.
Thus, obtaining a good sufficient schedulability test may be
thought of as obtaining a good approximation algorithm that
minimizes the speedup factor.

FPTAS’s. In the theory of approximation algorithms [46], [47],
it is widely accepted that an FPTAS (see, e.g., [48, p. 1107]
for a textbook description) is the ‘best’ kind of approximation
algorithm: it allows for approximations that are arbitrarily close
to the optimal by appropriately assigning a value to a parameter
δ. An FPTAS for a sufficient schedulability test may be defined
as follows:

Definition 4 (Schedulability Analysis FPTAS). A fully
polynomial-time approximation scheme (FPTAS) for a schedu-
lability analysis problem is an algorithm that, given as input
any problem instance Γ and a parameter δ > 0, returns
“unschedulable” if Γ is unschedulable on speed-1 processors,
and returns “schedulable” if Γ is schedulable on speed-
(1/(1 + δ)) processors. Its running time is bounded by a
polynomial in the two parameters |Γ| and (1/δ).

A. An FPTAS for Adversarial Partitioning

Recall that in the ADVERSARIAL PARTITIONING problem, we
are given two sets of positive integers, A and B, and two
bins of capacity S. We ask the question, can the set A be
partitioned into the two bins which makes it impossible for
B to be partitioned without exceeding the capacity of at least
one bin. In Section III, we described a pseudo-polynomial
(pseudo-linear) time algorithm (Algorithm 1) for this problem.
We will now see that this pseudo-polynomial algorithm can be
converted into an FPTAS (depicted in its entirety as pseudo-
code in Algorithm 2) for adversarial partitioning.

First, let us understand what it means for an algorithm to be
an FPTAS for adversarial partitioning (this is not immediately
obvious since adversarial partitioning is a decision problem).
We will say that an algorithm X is an FPTAS for this problem
if the following properties hold.

1) If the FPTAS declares success, then A can indeed be
partitioned amongst two capacity-S bins such that B cannot
be accommodated on these bins.

4In the real-time scheduling literature it is more common to refer to 1+δ as
the speedup factor, and not δ. We choose the latter form to make the relation
to the FPTAS approximation parameter more obvious.

7

2) If the FPTAS declares failure, then OPT cannot partition A
amongst two capacity-(1 + ϵ)× S bins such that B cannot
be partitioned on the remaining space on these bins.

By equating bin-size to processor speed, it is evident that an
FPTAS satisfying these properties will serve as an Schedulabil-
ity Analysis FPTAS (Definition 4) for the scheduling problem
discussed just before Definition 1 in Section III.

The basic idea of the algorithm is similar to Algorithm 1, and
is inspired by an FPTAS for the SUBSET SUM problem [48,
p. 1128]. The reason that Algorithm 1 has pseudo-polynomial
running time is that it constructs lists LA and LB which may
each contain as many as S elements. Instead, the FPTAS will
construct smaller lists by ‘discarding’ some possible subsets
of A and B whose sizes are close to other sets whose sum are
maintained in the lists.

In particular, given a list L of integers sorted in increasing order
and a parameter δ > 0, a function trim(L, δ) does (see [48,
p. 1130]) abstractly the following:

• The first element in L is retained.
• If an element y is retained, then all elements in L that

are > y and ≤ (1 + δ) · y are discarded. Hence, the
next retained element is the smallest element in L that is
> (1 + δ) · y.

The FPTAS in Algorithm 2 works as follows. At every step,
it adds ai to all elements of LA and then it trims the list
LA. Let yA be an element in LA; if yA is retained, then all
subsequent elements which are larger than yA but are smaller
than

(
(1 + ϵ

2|A|) · yA
)

are removed. List LB is subject to a
similar process. After these steps, the algorithm is similar to
the pseudo-polynomial algorithm (Algorithm 1). In particular,
for every element yA in LA, we check if we can show that
it generates an adversarial partition by finding an element
yB in LB which barely fits with yA in S. Since yB could
represent an element upto size ((1 + ϵ) · yB) if the remaining
SA−yA elements do not fit with (SB − (1 + ϵ) · yB) remaining
elements of B, then we have found an adversarial partition.

To establish the correctness of the algorithm, we first observe
that the lengths of these trimmed lists remain polynomial in
the size of the input and 1/ϵ. Since the running time of the
algorithm is polynomial in LA, LB , |A|, |B| it follows that the
entire algorithm has polynomial running time:

Observation 3. The size of LA is at most O((|A| logS)/ϵ) at
any time. Similarly for the size of LB .

Proof. If an element y exists in the list, then the next element
is larger than ((1 + ϵ/(2|A|)) · y). The largest element is at
most S. Therefore, if the total number of element is k, then
(1+ ϵ/(2|A|))k ≤ S. Therefore, k ≤ lnS/ ln(1+ ϵ/(2|A|)) =
O((|A| logS)/ϵ).

Now let us look at the properties of these trimmed lists. First,
two observations that are proven in [48, p. 1132]. The first one

is easily seen since we only ever discard elements from LA:

Observation 4. If yA ∈ LA, there is an actual subset of A
with sum yA.

More importantly, we observe that the repeated trimmings are
‘safe.’

Observation 5. If there is a subset of A with sum z, then
there must exist an element y ∈ LA such that z/y ≤ (1 + ϵ).

Proof. After the i’th trimming, if z should be in LA, then
we will have an element y between z/(1 + ϵ/(2|A|))i and
z. This can be seen by doing an induction on i. Therefore,
after we add all element ai and trim A times, for every
possible subset sum z of A we will have an element y between
z/(1+ϵ/(2|A|))|A| and z in the list LA. Applying some simple
algebraic inequalities gives us the result.

We now show that this algorithm is an FPTAS.

Lemma 1. Algorithm 2 satisfies the FPTAS conditions for
adversarial partitioning.

Proof. Due to the previous observation, notionally, an element
yA ∈ LA ‘represents’ all actual subset sums of A in

(
yA, (1 + ϵ) · yA

)

Therefore, for the rest of the algorithm, for every element
yA ∈ LA, we check if putting this subset on one of the
bins satisfies the adversarial partitioning property. We find the
largest subset yB ∈ LB that fits with yA on one bin. Since yB
represents subsets of size upto (1 + ϵ)yB , we optimistically
assume that yA + (1 + ϵ)yB fits on one bin and check if the
rest of A and B fits on the other bin. If it doesn’t, then the
partition yA and SA − yA satisfies the adversarial partitioning
condition since SA − (1 + ϵ)yB was not able to fit on the
second bin even after we optimistically allowed extra volume
to fit on the first bin.

If, on the other hand, say no element yA ∈ LA satisfies this
condition. We must argue that no algorithm can partition A
adversarially on bins of size (1+ϵ)S. Assume for contradiction
that there is some partition z∗A and SA− z∗A of A such that the
remaining volume does not allow a partitioning of B. Therefore,
there is no subset z∗B of B such that z∗A + z∗B ≤ (1 + ϵ)S and
SA − z∗A + SB − z∗B ≤ (1 + ϵ)S

Since z∗A is a subset of A, there must an item yA in LA such
that yA ≥ z∗A/(1 + ϵ). Therefore, Algorithm 2 considers the
partition yA and S − yA and finds that there is a subset yB
such that yA + yB ≤ S and SA − yA + SB − (1 + ϵ)yB ≤ S.
Therefore, (1 + ϵ)yA + yB ≤ (1 + ϵ)S which implies that
z∗A+yB ≤ (1+ϵ)S. In addition, SA−yA+SB−(1+ϵ)yB ≤ S
implies that SA − z∗A + SB − yB ≤ (1 + ϵ)S. Since yB and
SB − yB are partitions of B, this is a contradiction that the
optimal algorithm can create an adversarial partition for bins
of size (1 + ϵ)S using z∗A.

8

1 LA = ⟨0⟩
2 for i← 1 to |A| do
3 LA ← merge(LA, LA + ai, S)
4 /* See Algorithm 1 for definition

of function merge. */
5 LA ← trim(LA,

ϵ
2|A|)

6 end
7 LB = ⟨0⟩
8 for i← 1 to |B| do
9 LB ← merge(LB , LB + bi, S)

10 LB ← trim(LB ,
ϵ

2|B|)

11 end
12 for each yA ∈ LA do
13 yB ← the largest yB ∈ LB that is ≤ S − yA
14 /* SA and SB respectively denote

the total sums of A and B. */
15 if (SA − yA + SB − (1 + ϵ) · yB) > S then
16 return success
17 /* This partitioning of A

prevents partitioning of B. */
18 end
19 end
20 return failure
21 /* No partitioning of A prevents the

partitioning of B. */

Algorithm 2: An FPTAS for ADVERSARIAL PARTITION-
ING.

B. A problem with a pseudo-polynomial time algorithm, but
no FPTAS

In Section III-B, we had derived a pseudo-polynomial time
schedulability analysis test for ADVERSARIAL PARTITIONING;
in Section IV-A, we had used this test as a basis for obtaining
an FPTAS for ADVERSARIAL PARTITIONING. Unfortunately,
obtaining an FPTAS is not always as straightforward as first
obtaining a pseudo-polynomial time test and then transforming
it to an FPTAS: in this section we examine a scheduling
problem that (i) is NP-complete (and hence computationally
‘easier’ than the ΣP

2 -complete ADVERSARIAL PARTITIONING
problem); (ii) has a pseudo-polynomial time schedulability
analysis test; but (iii) does not admit to an FPTAS (assuming
P ̸= NP). This scheduling problem relates to the memory-
constrained tasks model [49], [50], in which we have implicit-
deadline sporadic tasks that are each characterized by two
parameters: a processor utilization that defines the fraction of
the computing capacity of a processor that it needs, and a code
size parameter that defines the amount of memory that must
be reserved for its exclusive use.5

Memory-constrained task selection. We assume that there
are several tasks, for each of which we have a choice of

5Please see [49], [50] for a justification of this model and a discussion of
its applicability in certain situation arising in embedded computing.

multiple implementations. Each implementation is specified in
the memory-constrained tasks model [49], [50] discussed above,
and hence is characterized by its own processor utilization
parameter ui and its code-size parameter si. As we did for
the scheduling problem discussed just before Definition 1
in Section III, we assume that these parameters are integer-
valued. This could, for instance, be because the parameters
for each task are given as integer multiples of some basic
unit of processor capacity and memory size respectively. We
are required to choose one implementation for each task;
the chosen implementations will be executed upon a single
processor using preemptive EDF. Let I denote the set of chosen
implementations. An overall cost bound C is specified, and
the chosen implementations are required to satisfy the cost
constraint (

∑

i∈I
ui

)2

+

(
∑

i∈I
si

)2

≤ C

Observe that
(∑

i∈I ui

)
in the LHS of this expression repre-

sents the total computing capacity needed, and
(∑

i∈I si
)
, the

total memory needed. This cost constraint reflects the reality
that cost of computing tends to be super-linear with capacity:
for instance, it generally costs more than twice as much to
purchase a processor that is twice as fast, or to buy memory
twice as large, etc. (The precise choice of exponent — in the
cost-constraint expression above, two — is not important for
our purposes: our results below will hold for any exponent that
is larger than one.)

Consider now the following problem definition, which is closely
related to the problem we have discussed above:

Definition 5 (THE MEMORY-CONSTRAINED TASK SELECTION
PROBLEM).
Instance: A set of 3-tuples of non-negative integers (vi, ui, si),
denoting respectively the value, utilization, and code-size
parameter of an implementation, partitioned into N disjoint
subsets. A cost bound C. A target value V.
Question: Can one 3-tuple from each partition be chosen such
that (

∑

i∈I
ui

)2

+

(
∑

i∈I
si

)2

≤ C

and
(∑

i∈I vi
)
≥ V, where I denotes the set of N 3-tuples

that are chosen?

It is readily seen that the MEMORY-CONSTRAINED TASK SE-
LECTION PROBLEM generalizes the problem we had discussed
earlier in this section: we can map an instance of that earlier
problem to an instance of the MEMORY-CONSTRAINED TASK
SELECTION PROBLEM by

• for each task in the original problem instance, having
a single partition in the MEMORY-CONSTRAINED TASK
SELECTION PROBLEM instance containing all the different
implementations of the task in the original problem instance,
each assigned a value parameter 1 (i.e., the implementation

9

with utilization ui and code-size si yields the 3-tuple
(1, ui, si)), plus an additional 3-tuple (0, 0, 0);

• setting the cost bound for the MEMORY-CONSTRAINED TASK
SELECTION PROBLEM instance equal to the cost bound for
the original problem instance; and

• setting the value bound for the MEMORY-CONSTRAINED
TASK SELECTION PROBLEM instance to be equal to the
number of tasks in the original problem instance.

We now briefly describe a pseudo-polynomial time algorithm
for solving the MEMORY-CONSTRAINED TASK SELECTION
PROBLEM. Given an instance of the MEMORY-CONSTRAINED
TASK SELECTION PROBLEM with 3-tuples partitioned into N
partitions and cost bound and target value C and V respectively,
this algorithm is essentially a dynamic program that constructs
a table T with N rows, one corresponding to each partition. The
columns in the table are labeled with ordered pairs (U, S) where
U and S are non-negative integers satisfying U2 + S2 ≤ C.
We point out that the number of columns in this table is no
more than C: for U2 + S2 ≤ C, we must have each of U and
S ≤

√
C and hence there are at most (

√
C)2, i.e., C, columns.

The dynamic program seeks to fill in all the entries in the table
to have T [i, (U, S)] = V , where (i) there is a choice of one
3-tuple each for each of the first i partitions for which the
utilization parameters sum to U and the code-size parameters
sum to S; and (ii) from amongst all such choices of 3-tuples,
the choice with maximum cumulative value has cumulative
value V . If there is no choice of one 3-tuple each for each of
the first i partitions for which the utilization parameters sum
to U and the code-size parameters sum to S, then T [i, (U, S)]
should be set equal to −∞. This is achieved by first initializing
each entry in the table to −∞, and subsequently filling in the
table row by row from top (i = 1) to bottom (i = N), in the
following manner:

1) For the first row, T [1, (U, S)] = V only for those columns
with label (U, S) such that there is a 3-tuple in the first
partition with utilization U and code-size parameter S.

2) To fill in the (i+ 1)’th row for each i ≥ 0, examine each
entry the i’th row. If the column labeled (U, S) in this row
has value V ̸= −∞, then for each 3-tuple (v, u, s) in the
(i+ 1)’th partition, set the column labeled (U + u, S + s),
if it exists, in the (i+ 1)’th row to equal the maximum of
the value it currently holds and V + v.

Once the table has been completed, we simply check whether
the largest value in the last row of the table is ≥ V. As we
have at most C columns and N rows, the algorithm runs in
pseudo-linear time.

The non-existence of an FPTAS. Since FPTAS’s are intended
for optimization rather than decision problems, we need to first
define an optimization version of the MEMORY-CONSTRAINED
TASK SELECTION PROBLEM. The natural optimization version
is to not pre-specify a value for V, but rather require that one
3-tuple per partition be chosen in a manner that satisfies the
cost constraint and maximizes the sum of the values of the

chosen 3-tuples.

Above we had obtained a pseudo-polynomial time algorithm
for the MEMORY-CONSTRAINED TASK SELECTION PROB-
LEM. Despite the existence of this pseudo-polynomial time
algorithm, we will now show that there is no FPTAS for
the MEMORY-CONSTRAINED TASK SELECTION PROBLEM,
thereby establishing that simply demonstrating the existence
of a pseudo-polynomial time algorithm for a schedulability
analysis problem does not imply that an FPTAS exists for that
problem.

In order to show that no FPTAS can exist for the MEMORY-
CONSTRAINED TASK SELECTION PROBLEM, we make use of
a similar non-existence result from [29]. The 2-WEIGHTED
KNAPSACK PROBLEM is defined in [29] as follows: “. . . the
input consists of n triples of positive integers (pk, vk, wk) and
a positive integer W . The pk are called profits, the vk and wk

are called weights, and W is called the weight bound. The
goal is to select an index set K ⊆ {1, 2, . . . , n} such that the
selected weight obeys the weight bound

(
∑

k∈K
vk

)2

+

(
∑

k∈K
wk

)2

≤W,

and such that the selected profit
∑

k∈K pk is maximized.” It
was shown in [29] that the 2-WEIGHTED KNAPSACK PROBLEM
does not admit to an FPTAS:

Lemma 2 ([29, Lemma 8.2]). Unless P = NP, the 2-
WEIGHTED KNAPSACK PROBLEM does not have an FPTAS.

Given an instance of the 2-WEIGHTED KNAPSACK PROBLEM,
we define below a reduction to an instance of the MEMORY-
CONSTRAINED TASK SELECTION PROBLEM:

For each tuple (pk, vk, wk) in the 2-WEIGHTED KNAP-
SACK PROBLEM instance, have a task with two imple-
mentations: one of which has value pk, utilization vk,
and code-size wk, and the other has value, utilization,
and code-size all equal to zero. Set the cost bound C to
be equal to the weight bound W of the 2-WEIGHTED
KNAPSACK PROBLEM.

Given this reduction, it should be evident that there is an index
set K for the 2-WEIGHTED KNAPSACK PROBLEM instance
with total profit P if and only if there is a selection of one
3-tuple from each partition of the MEMORY-CONSTRAINED
TASK SELECTION PROBLEM with cumulative value also equal
to P ; it therefore follows that the MEMORY-CONSTRAINED
TASK SELECTION PROBLEM has an FPTAS if and only if
the 2-WEIGHTED KNAPSACK PROBLEM has an FPTAS. But
Lemma 2 above asserts that the the 2-WEIGHTED KNAPSACK
PROBLEM does not haven an FPTAS; it therefore follows that
the MEMORY-CONSTRAINED TASK SELECTION PROBLEM does
not, either.

10

V. CONTEXT AND CONCLUSIONS

Schedulability analysis is amongst the foundational corner-
stones of real-time scheduling theory. The perspective of the
real-time scheduling theory community as to what should be
considered to be a tractable schedulability analysis problem
has not remained static over time: as computing technology
and algorithmic knowledge advance, our interpretation as to
what is considered an efficient algorithm changes. We believe
that recent developments in computing (with regards to both
advances in algorithms, and the availability of computing
hardware and software tools) call for another fresh examination
of this issue; this manuscript has reported on some of the
findings of such an examination that we have been conducting.

Among the findings we have sought to highlight are the proper
place of pseudo-polynomial time algorithms. On the one hand,
we have seen that pseudo-polynomial time algorithms exist
for a far wider class of problems than one might initially
think (while they are, to our knowledge, previously considered
only for problems that are NP or coNP-complete in real-time
scheduling theory, we have seen that pseudo-polynomial time
algorithms may even exist for problems that are EXP-complete).
On the other hand, we have argued that all pseudo-polynomial
time algorithms should not be considered as being more-or-
less equivalent from the perspective of tractability: while a
strong case can be made that pseudo-linear time algorithms are
indeed highly tractable for a range of schedulability analysis
problems, it becomes a lot harder to make a similar case
for pseudo-quadratic time, pseudo-cubic time, or pseudo-some-
higher-power time algorithms. And amongst the class of pseudo-
polynomial time algorithms, those for which the running time
is not dependent on the units chosen for representing the
numerical parameters are further particularly desirable – we
refer to such algorithms as robust pseudo-polynomial time
algorithms.

With respect to approximation algorithms where FPTAS’s
are widely accepted as being the desired ideal, we have
similarly seen that FPTAS’s can exist for harder problems
than may be expected, by deriving an FPTAS for the ΣP

2 -
complete ADVERSARIAL PARTITIONING problem. This positive
observation is accompanied by a negative one illustrating a
point first made in [29], that simply having a pseudo-polynomial
(even pseudo-linear) time algorithm does not in itself imply the
existence of an FPTAS — we have shown that the MEMORY-
CONSTRAINED TASK SELECTION PROBLEM bears witness to
this.

In closing, we point out that this manuscript is by no means
giving any definitive answers to how we should approach
tractability in real-time scheduling theory. Instead it should
be viewed as an attempt to widen and nuance the view of
tractability in this field, and as a complement to some other
recent work in this vein. This recent work include [51], which
applied the algorithmic technique of fixed-parameter tractability
to real-time schedulability analysis problems, and [52], which
instead of focusing, as is usual, on the tractability of solving

schedulability problems, instead considered the tractability
of verifying purported solutions. By nuancing the view of
tractability we may find that tractable problems exist where
we did not expect to find them, and vice versa.

ACKNOWLEDGEMENTS

This research was funded in part by the US National Sci-
ence Foundation (Grants CNS-2141256, CPS-2229290, CCF-
2106699, and CCF-2107280) and the Swedish Research
Council grant 2018-04446.

REFERENCES

[1] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[2] Michael Dertouzos. Control robotics : the procedural control of physical
processors. In Proceedings of the IFIP Congress, pages 807–813, 1974.

[3] Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. Rate monotonic
scheduling: The hyperbolic bound. IEEE Transactions on Computers,
52(7):933–942, 2003.

[4] Joseph Y.-T Leung and M. Merrill. A note on the preemptive scheduling
of periodic, real-time tasks. Information Processing Letters, 11:115–118,
1980.

[5] Joseph Y.-T Leung and Jennifer Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evaluation,
2:237–250, 1982.

[6] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190, Orlando, Florida, 1990. IEEE
Computer Society Press.

[7] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-Time Systems: The International Journal of Time-Critical
Computing, 2:301–324, 1990.

[8] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling:
Response time computation is NP-hard. In Proceedings of the Real-Time
Systems Symposium, Barcelona, December 2008. IEEE Computer Society
Press.

[9] Friedrich Eisenbrand and Thomas Rothvoß. EDF-schedulability of
synchronous periodic task systems is coNP-hard. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, January
2010.

[10] Pontus Ekberg. Models and Complexity Results in Real-Time Scheduling
Theory. PhD thesis, Uppsala University, 2015.

[11] Pontus Ekberg and Wang Yi. Fixed-priority schedulability of sporadic
tasks on uniprocessors is NP-hard. In 2017 IEEE Real-Time Systems
Symposium, RTSS 2017, Paris, France, December 5-8, 2017, pages
139–146. IEEE Computer Society, 2017.

[12] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, October 1986.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In
Proceedings of the Real-Time Systems Symposium - 1989, pages 166–171,
Santa Monica, California, USA, December 1989. IEEE Computer Society
Press.

[14] A. Wellings, M. Richardson, A. Burns, N. Audsley, and K. Tindell.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.

[15] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analysing fixed priority hard real-time tasks. Real-Time Systems: The
International Journal of Time-Critical Computing, 6:133–151, 1994.

[16] Alan Burns, Ken Tindell, and Andy Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Transactions on
Software Engineering, 21(5):475–480, May 1995.

[17] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings.
Fixed priority preemptive scheduling: An historical perspective. Real-
Time Systems, 8:173–198, 1995.

[18] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring
tasks on one processor. Theoretical Computer Science, 118(1):3–20,
1993.

11

[19] Aloysius K. Mok and Deji Chen. A multiframe model for real-time tasks.
In Proceedings of the 17th Real-Time Systems Symposium, Washington,
DC, 1996. IEEE Computer Society Press.

[20] Sanjoy Baruah. A general model for recurring real-time tasks. In
Proceedings of the Real-Time Systems Symposium, pages 114–122,
Madrid, Spain, December 1998. IEEE Computer Society Press.

[21] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph
real-time task model. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 71–80, Chicago, 2011. IEEE
Computer Society Press.

[22] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni
Vincentelli. Definition of task allocation and priority assignment in
hard real-time distributed systems. In 28th IEEE International Real-Time
Systems Symposium (RTSS 2007), pages 161–170, 2007.

[23] Sanjoy Baruah and Enrico Bini. Partitioned scheduling of sporadic task
systems: an ilp-based approach. In Proceedings of the 2008 Conference
on Design and Architectures for Signal and Image Processing, 2008.

[24] Sanjoy Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-
Spaccamela. Ilp-based approaches to partitioning recurrent workloads
upon heterogeneous multiprocessors. In Proceedings of the 2016 28th
EuroMicro Conference on Real-Time Systems, ECRTS ’16, Toulouse
(France), 2016. IEEE Computer Society Press.

[25] Sanjoy K. Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto
Marchetti-Spaccamela. ILP models for the allocation of recurrent
workloads upon heterogeneous multiprocessors. Journal of Scheduling,
Dec 2018.

[26] S. Baruah. An ILP representation of a DAG scheduling problem. Real-
Time Systems: The International Journal of Time-Critical Computing,
2021.

[27] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, pages 825–885.
IOS Press, 2009.

[28] Gerhard J Woeginger. The trouble with the second quantifier. 4OR: A
Quarterly Journal of Operations Research, 19(2):157–181, 2021.

[29] Gerhard J. Woeginger. When does a dynamic programming formulation
guarantee the existence of a fully polynomial time approximation scheme
(FPTAS)? INFORMS Journal on Computing, 12(1):57–74, 2000.

[30] K. Albers and F. Slomka. An event stream driven approximation for
the analysis of real-time systems. In Proceedings of the EuroMicro
Conference on Real-Time Systems, pages 187–195, Catania, Sicily, July
2004. IEEE Computer Society Press.

[31] Nathan Fisher. The Multiprocessor Real-Time Scheduling of General Task
Systems. PhD thesis, Department of Computer Science, The University
of North Carolina at Chapel Hill, 2007.

[32] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[33] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[34] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1976.

[35] J Hartmanis and R. E. Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285–
306, 1965.

[36] Steven Homer. Structural properties of complete problems for exponential
time. Complexity Theory: Retrospective II, 2:135, 1997.

[37] P. Ekberg and W. Yi. Uniprocessor feasibility of sporadic tasks remains
coNP-complete under bounded utilization. In 2015 IEEE Real-Time
Systems Symposium, pages 87–95, 2015.

[38] Berit Johannes. New Classes of Complete Problems for the Second Level
of the Polynomial Hierarchy. PhD thesis, Technischen Universität Berlin,
2011.

[39] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of
mixed-criticality sporadic tasks. In Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS), pages 135–144, jul 2012.

[40] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In 2013 IEEE 34th Real-Time Systems Symposium,
pages 78–87, Dec 2013.

[41] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the 32nd Real-Time Systems
Symposium (RTSS), pages 34 –43, 2011.

[42] Sanjoy Baruah and Pontus Ekberg. Graceful Degradation in Semi-
Clairvoyant Scheduling. In Björn B. Brandenburg, editor, 33rd Euromicro
Conference on Real-Time Systems (ECRTS 2021), volume 196 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–
9:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[43] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
In 36th Annual Symposium on Foundations of Computer Science
(FOCS’95), pages 214–223, Los Alamitos, October 1995. IEEE Computer
Society Press.

[44] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal
time-critical scheduling via resource augmentation. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
140–149, El Paso, Texas, 4–6 May 1997.

[45] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM, 37(4):617–643, 2000.

[46] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi,
Giorgio Gambosi, Marco Protasi, and Viggo Kann. Complexity and
Approximation: Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer Verlag, 1999.

[47] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag,
Berlin-Heidelberg-New York-Barcelona-Hong Kong-London-Milan-Paris-
Singapur-Tokyo, 2001.

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, third edition, 2009.

[49] Sanjoy Baruah and Nathan Fisher. A dynamic-programming approach
to task partitioning among memory-constrained multiprocessors. In
Proceedings of the International Conference on Real-time Computing
Systems and Applications, Gothenburg, Sweden, August 2004. Springer-
Verlag.

[50] N. Fisher, J. Anderson, and S. Baruah. Task partitioning upon memory-
constrained multiprocessors. In Proceedings of the IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications, pages 416–421, Hong Kong, August 2005. IEEE Computer
Society Press.

[51] Sanjoy Baruah, Pontus Ekberg, and Abhishek Singh. Fixed-parameter
analysis of preemptive uniprocessor scheduling problems. In 2022 IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer Society Press,
2022.

[52] Sanjoy Baruah and Pontus Ekberg. Towards efficient explainability of
schedulability properties in real-time systems. In Proceedings of the 35th
Euromicro Conference on Real-Time Systems (ECRTS), pages 2:1–2:20,
2023.

12

