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Abstract

We design learning rate schedules that minimize
regret for SGD-based online learning in the pres-
ence of a changing data distribution. We fully
characterize the optimal learning rate schedule
for online linear regression via a novel analysis
with stochastic differential equations. For general
convex loss functions, we propose new learning
rate schedules that are robust to distribution shift,
and we give upper and lower bounds for the regret
that only differ by constants. For non-convex loss
functions, we define a notion of regret based on
the gradient norm of the estimated models and
propose a learning schedule that minimizes an up-
per bound on the total expected regret. Intuitively,
one expects changing loss landscapes to require
more exploration, and we confirm that optimal
learning rate schedules typically increase in the
presence of distribution shift. Finally, we provide
experiments for high-dimensional regression mod-
els and neural networks to illustrate these learning
rate schedules and their cumulative regret.

1. Introduction

A fundamental question when training neural networks is
how much of the weight space to explore and when to stop
exploring. For stochastic gradient descent (SGD)-based
training algorithms, this is primarily governed by the learn-
ing rate. If the learning rate is high, then we explore more of
the weight space and vice versa. Learning rates are typically
decreased over time in order to converge to a local optimum,
and there is now a substantial literature focused on how fast
learning rates should decay for fixed data distributions (see,
e.g., Tripuraneni et al. (2018) and Fang et al. (2018), and
the references therein).

However, what should we do if the data distribution is con-
stantly changing? This is the case in many large-scale online
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learning systems where (1) the data arrives in a stream, (2)
the model continuously makes predictions and computes the
loss, and (3) it always updates its weights based on the new
data it sees (Anil et al., 2022). The goal of such a system is
to always keep the loss low. In this setting, convergence is
less of a priority since the model needs to be able to adapt
to distribution shifts. Intuitively, if the loss landscape is
consistently changing (either gradually or due to infrequent
sudden spikes), then it is sensible for the model to always
explore its weight space. We formalize this idea in our work.

Such an investigation naturally leads to the question of how
high the learning rate should be, and what an optimal learn-
ing rate schedule is in an online learning scenario? These
questions are critical because while tuning the learning rate
can lead to improved accuracy in many applications, it can
also make the online learner widely inaccurate if the wrong
learning rate is used as the distribution changes.

Formally, we study learning rate schedules in the presence
of distribution shifts by considering dynamic regret, a well-
known notion in online optimization that measures the per-
formance against a dynamic comparator sequence. This
regret framework captures the lifetime performance of an
online learning system that makes predictions on incom-
ing examples as they arrive (possibly from a time-varying
distribution) before using this data to update its weights.

Our main contributions can be summarized as follows:

Linear regression. We consider a linear regression setup
with time-varying coefficients {6} },>1, which are chosen
upfront by an adversary such that ||0; — 6;, |2 <, fora
sequence of positive numbers {~y; }+>1. The variation in the
model coefficients results in response shift (while the covari-
ates distribution remains the same across time). We consider
a learner who updates their model estimates via mini-batch
SGD with an adaptive step size sequence {n; };>1 chosen
in an online manner (i.e., only with access to previous data
points). We derive a novel stochastic differential equation
(SDE) that approximates the dynamics of SGD under dis-
tribution shift, and by analyzing it, we derive the optimal
learning rate schedule.

Convex loss functions. We generalize our problem for-
mulation along the following directions: (i) We consider
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Figure 1: SGD trajectories for online linear regression with different constant learning rates. The discrete blue spirals are
the optimal model weights §; € R?, which start at (1,0) and jump clockwise every 100 steps. The orange paths are the
learned weights 6,, starting at 6y = 0 for 0 < ¢ < 17 - 100. The orange squares depict the position every 100 steps. We
use batch size B; = 1 and step sizes 7; € {0.003,0.01,0.03,0.1} from left to right. The rightmost SGD is the most out of
control, but it incurs the least regret because it adapts to changes in 6; the fastest without diverging.

general convex loss functions £(6, z) that measure the loss
of a model § € RP on the data point z € R9. (ii) At
each step the learner observes a batch of data points {z; i }
drawn from a time-varying distribution P;, which means
it can model both response shift and covariate shift. (i)
An adversary can choose the distributions P; adaptively
at each step by observing the history (i.e., the data and
model estimates from previous rounds), in contrast to the
linear regression setup where the sequence of models are
time-varying but fixed a priori. For strongly convex loss
functions, we give a lower bound for the total expected re-
gret that is of the same form as our upper bound and differs
only in the constants, demonstrating that our regret analysis
is nearly tight. We then propose a learning rate schedule
to minimize the derived upper bound on the regret. This
schedule is adaptive, resulting in a time-dependent learning
rate that tries to catch up with the amount of distribution
shift in the moment. We refer to Section 1.1 for a detailed
comparison to the literature on online convex optimization
in dynamic environments.

Non-convex loss functions. For settings with non-convex
loss functions, we modify the notion of regret to use the
gradient norm of the estimated model. We derive an upper
bound for the expected cumulative regret and propose a
learning rate schedule that minimizes it. In our experiments
in Appendix E, we use neural networks and dynamic learn-
ing rates to continuously classify cells arriving in a stream
of small condition RNA data (Bastidas-Ponce et al., 2019).
This work simulates an online and deep learning-based flow
cytometry algorithm. We refer the reader to Li et al. (2019)
for more details about this application. One take-away mes-
sage from our analysis and experiments in all three settings
is that an optimal learning rate schedule typically increases
in the presence of distribution shift.

The organization of the paper is as follows. In Section 1.1,
we proceed with a literature review. In Section 1.2, we

present an overview of our tools, techniques, and informal
statements of our theoretical results. We formally define
the problem in Section 2. We present our results for linear
regression in Section 3, convex losses in Section 4, and
non-convex losses in Section 5. In Section 6, we present
experiments to study the effect of the proposed learning
rate schedules, including high-dimensional regression and a
medical application to flow cytometry. We defer the proofs
of our technical results to the appendix.

1.1. Related work

With deep neural networks now being used in countless
applications and SGD remaining the dominant algorithm for
training these models, there has been a surge of effort to un-
derstand how learning rates affect the behavior of stochastic
optimization methods (Bengio, 2012; Smith, 2015). Most
of the existing literature, however, assumes no shift in the
underlying distribution across the iterations of SGD. Var-
ious trade-offs between learning rate and batch size have
been studied (Keskar et al., 2016; Smith et al., 2018). In
particular, Smith et al. (2018) proposes that instead of the de-
caying learning rate, one can increase the batch size during
training and empirically show that it results in near-identical
model performance with significantly fewer parameter up-
dates. Shi et al. (2020) analyze the effect of learning rate
on SGD by studying its continuum formulation given by a
stochastic differential equation (SDE) and show that for a
broad class of losses, this SDE converges to its stationary
distribution at a linear rate, further revealing the dependence
of a linear convergence rate on the learning rate. Learning
rate schedules for SGD, under fixed distribution, and for the
setting of least squares has been studied in (Ge et al., 2019;
Jain et al., 2019). Decaying learning rate via cyclical sched-
ules has also been proposed for training deep neural models
(see, e.g., Smith (2015); Loshchilov & Hutter (2016); Li &
Arora (2019)).
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The effects of SGD hyperparameters (e.g., batch size and
learning rate) have also been studied for the adversarial
robustness of the resulting models (Yao et al., 2018; Ka-
math et al., 2020). In this setting, a model is trained on
unperturbed samples, but at test time the sample features are
slightly perturbed. In contrast, this paper considers settings
where the data distribution is constantly changing—even
during training—and studies the effect of learning rates in
presence of such distribution shifts.

Connections to online optimization. The notion of dy-
namic regret has been used in online convex optimization
to evaluate the performance of a learner against a dynamic
target, as opposed to the classical single best action in hind-
sight (Zinkevich, 2003; Yang et al., 2016; Jadbabaie et al.,
2015; Besbes et al., 2015). In this setting, nature chooses
a sequence of convex functions f1, ..., fr and the learner
chooses a model (i.e, action) 6; at each round and incurs
the loss f¢(6;). Our problem is closer to non-stationary
approximation (Besbes et al., 2015), in which the learner
only has noisy access to gradients V f;(6;). There is often a
notion of variation to capture the change in the comparator.
For example, Yang et al. (2016) works with “path variation,”
which measures how fast the minimizers of the sequence
of loss functions change, and Besbes et al. (2015) defines
a “functional variation” based on the supremum distance
between consecutive loss functions.

Yang et al. (2016) give a bound for the cumulative dynamic
regret when a constant step size ) o< v/ Vr /T is used, where
T is the horizon length and V7 is the variation budget that
controls the power that nature has in choosing the sequence
of loss functions (see Theorem 7 therein). Besbes et al.
(2015) propose a restarting procedure, which for batch size
A restarts an online gradient descent algorithm every Ap
periods. Their analysis suggests to take Ap = (T/Vp)?/3
and n o< 1/+/A7 (see Theorem 3 therein).

While these results also suggest that in a changing environ-
ment the learning rate should be in general set higher, our
formulation and analysis for the convex setting departs from
these works in the following ways: (¢) Instead of constant
or a pre-determined learning rate, our framework allows for
adaptive schedules where the learning rate at every epoch
can be set based on the history; (i¢) The notion of dynamic
regret is often defined with respect to an arbitrary but fixed
sequence of loss functions that satisfy a variation budget
constraint. In contrast, we allow the data distribution to
shift adaptively at each step after observing the history, and
so the expected loss changes adaptively over time; (4i%)
Besbes et al. (2015) and Yang et al. (2016) establish lower
bounds on the dynamic regret, but these lower bounds are
for the worst-case regret over the choice of loss function
sequences that satisfy the variation budget constraint. The
lower bounds are obtained by carefully crafting a sequence

that is hard to optimize in an online manner. However, there
is a subtle difference in our setting: the loss function £(6, z)
is fixed and the change in the expected loss across time
comes from a shift in the data distribution z. The lower
bound we develop for dynamic regret uses the same fixed
loss function £(6, z).

1.2. Overview of techniques

To analyze the behavior of SGD in this linear regression set-
ting, we derive a novel stochastic differential equation (SDE)
that approximates the dynamics of SGD in the presence of
distribution shift. Using Gronwall’s inequality (Gronwall,
1919), we control the deviation of the SGD trajectory from
the continuous process and relate the regret of SGD to the
second moment of the continuous process, which we char-
acterize using the celebrated Itd’s lemma from stochastic
calculus (Oksendal, 2013) (see Lemma D.2). With this char-
acterization, we derive an optimal learning rate schedule in
a sequential manner.

Our results for general convex loss functions are based on
an intricate treatment of the regret terms, taking the expec-
tation with respect to a proper filtration and using several
properties of convex functions and SGD itself.

Non-convex loss functions can have a complicated land-
scape with potentially many local minima and saddle points.
Even without distribution shifts, first-order methods like
SGD are not guaranteed to converge to a global minimum.
To deal with this, we modify the definition of regret to use
the norm of the gradient of the loss for the estimated mod-
els. Thus, a trajectory that stays close to local minima of
the loss functions has low total regret. To upper bound the
cumulative regret in this setting, we follow a similar proof
technique as in the convex case, but rely only on the SGD
update formulation and first-order optimality conditions on
the sequence of optimal weights {0} };>1.

2. Problem formulation: Dynamic regret

We consider an online sequential learning setting where at
each step ¢ the learner observes a batch of size B, data points
zr = {z, k}kB;l drawn independently from a distribution P;.
The distributions P, can vary with time and are defined on
R?. The batch loss incurred at step ¢ is B% Zf;l 0(0s, 2¢.1)
for a function £ : R? x RY — R>q. The learner then updates
its model weights 6, — 6,1 € RP.

Define the expected loss as ;(0) := Ep, [((0, 2 1)]. Letting
(61,02, ... ) denote the sequence of learned models, the total
expected loss up to time 7 is Zthl ¢(6;). The goal of the
learner is to minimize the above objective. For each step ¢,
we define an oracle model with weights

07 := argmin £;(6). (1)
OcRP
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Since the distributions P; can vary with time, the weights 6}
also shift over time.

Instead of minimizing the total loss, we equivalently work
with the regret of the learner defined with respect to the
comparator sequence (67,65, ...) below:

Reg(T Z reg,, reg, :={i(0;) —L:(07). (2

Note that Reg(t) and reg, are random variables that depend
on 6;. This framework can be seen as a game between nature,
who chooses the distributions P, (and thus the sequence of
oracle models ), and the learner, who must choose the
sequence of models 6; for ¢ > 1.

The learner updates its weights using projected mini-batch
stochastic gradient descent (mini-batch SGD) given by
=1Ile (915

9t+1 - UtVKB(Gt)) 3)

VeP (6:) == Zw O, 21.1) )

where V£(6y, i) are stochastic gradients, © is a bounded
convex set, and Ilg is the projection onto the admissible
weight set © C RP. Observe that E[V{(0y, 21.)] = V£(6),
and therefore the sample average gradient above is an unbi-
ased estimate of the gradient of the expected loss.

Nature is allowed to be adaptive in that she can set §; after
observing the history of the data
z[t—l] = {(Zk,l,zkg, .. -7Zk’,Bk) 01 S k S t— 1}.

The step sizes 1, called the learning rate schedule, can
also change over time in an adaptive manner, i.e., the learn-
ing rate 7, is a function of zj;_;j. Note that by the SGD
update, 6; is a function of 2Z[;—1]» and so 07 can depend
on the previously learned models 6, for s < t. The learn-

ing rate schedule controls how the step size changes across
iterations.

Definition 2.1 (Distribution shift). Recall the definition of
oracle models 6} in (1). We quantify the distribution shift
(variation of P; over time) in terms of the variation in oracle
models, namely

Vo= 107 = Ofpall2 - (6)

This is similar to the notion of path variation introduced
in Yang et al. (2016), except that path variation considers
the total variation in the minimizers of the sequence of loss
functions, whereas we focus on individual changes after
each gradient update.

3. Linear regression

We start by studying the linear regression setting with a
time-varying coefficient model (Fan & Zhang, 2008; Hastie
& Tibshirani, 1993). Each sample 2z, = (4 k, Y1) is a
pair of covariates z; ;, € R? and a label y; 1., with

Yk = (T, 07) + €k, N

where e ~ N(0,0?) is random noise. The covariate
distribution is assumed to be the same across time, and
for simplicity assumed as z;, ~ N(0, ). The model 6y
changes over time, so we have label distribution shift. We
consider least squares loss £(6, 2) = % (y — (z,0))?, for
z = (z,y).

To provide theoretical insight on the dependence of SGD on
the learning rate under distribution shift, we follow a recent
line of work that studies optimization algorithms via the
analysis of their behavior in continuous-time limits (Krich-
ene & Bartlett, 2017, Li et al., 2017; Chaudhari et al., 2018;
Shi et al., 2020). Specifically, for SGD this amounts to
studying stochastic differential equations (SDEs) as an ap-
proximation for discrete stochastic updates. The construc-
tion of this correspondence is based on the Euler—Maruyama
method. We assume that the step sizes in SGD are given
by 1, = e((et), where ((t) € [0, 1] is the adjustment factor
and ¢ is the maximum allowed learning rate. In addition,
the batch sizes are given by B; = ev(et), for sufficiently
regular functions ¢, v : R>g — Rxq.!

We use ¢ to denote the iteration number of SGD and use 7
as the continuous time variable for the corresponding SDE.
We show that the trajectory of SGD updates can be approxi-
mated by the solution of the following SDE:

dX(r) = = (¢(n)X(r) + Y'(r))dr ®)

) 2., 2 T\1/2
S (X @I+ 031+ XX @) aw ().
where X (0) = 6y — 6§ and Y () is a sufficiently smooth
curve so that Y (et) = ;. Further, W (7) is d-dimensional
vector with each entry being a standard Brownian motion,
independent from other entries. To make this connection,
we posit the following assumptions:

A1. The functions ¢(7) and {(7)/+/v(7) are bounded Lip-
schitz: [|C]loc, [I€]|Lip- IIC/\fHoo’ IIC/fIILlp < K.

A2. The function Y (7) is bounded Lipschitz: ||Y'(7)| < K
and ||Y/(7)|] < T'/e, for constants K,I" > 0. Recall
that Y'(7) is the continuous interpolation of the se-
quence models 0} and therefore Y'(7) controls how
fast 0} are changing and is a measure of distribution
shift in the response variable y,, in (7).

"More precisely, B; = [ev(et)] must be an integer, however,
the rounding effect is negligible in the continuous time analysis.
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In (A1) we use the notation || f||Lip := sup,, [f(x) —
f@W)|/|x — y| to indicate the Lipschitz norm of a function
and || f|[oo := sup, |f(z)|-

Proposition 3.1. For any fixed T,u > 0, there exists a
constant C = C(K,T',d,o,T,u), with parameters K,T
given in Assumptions A1-A2, such that with probability at
least 1 — e~ we have

sup ||| Xee|* — 162 — 677) < CVe.
tG[O,T/s]ﬂZZU

We defer the proof of this proposition and the exact expres-

sion for the constant C' to Appendix A.1.

The expected regret at time ¢ works out as:
Elreg,] = E[(:(0:) — £:(67)]
1 1
= iE[«xtka 0, — 07) + e)’] — §E[€?k]
]' *
SElIo.— 61?].

Using Proposition 3.1, |E[reg,] — SE[|| X (te)|?]| < Cy/E.
Henceforth, we focus on analyzing the second moment of
the process X, as € can be fixed to an arbitrarily small value.

For X (7) the solution of SDE (8), we define

my :=E[X(7)] €RY, v, =E[X()|?]. (O

In our next theorem, we derive an ODE for m.; and v, using
1t6’s lemma from stochastic calculus (Oksendal, 2013). The
proof is deferred to Section A.2.

Theorem 3.2. Consider the SDE problem (8), and the mo-
ments m, and v, given by (9). We have

m, = —((t)m, —Y'(1), (10)
' _ ¢(r)?
v = ((@+1) Oy 2(7))vs
+ ﬂazd—%nIY’(T). (11)

v(7)

It is worth noting that from the above ODE:s, larger distribu-
tion shift (quantified by the Y”(7) term) increases the drift
in m, as well as the drift in v, via the term m!Y’(7). In
this case, the learner needs to choose a larger step size (1)
to reduce the drift in m., which is consistent with our mes-
sage that in dynamic environments the learning rate should
often be set higher.

The problem of finding an optimal learning rate can be seen
as an optimal control problem, where the state of the system
(m,,v;) evolves according to ODEs (10)—(11), the control
variables ( can take values in the set of Borel-measurable
functions from [0, 7] to [0, 1], and the goal is to minimize

the cost functional fOT vrd7. The optimal learning rate
schedule can then be solved exactly by dynamic program-
ming, using the Hamilton—Jacobi—Bellman equation (Bell-
man, 1956). However, the optimal learning rate will depends
on Y'(7), which is a d-dimensional time-varying vector.
We next do a simplification to reduce the dependence to
Il

Note that [mIY"(7)| < [Y'(2)] .| < |Y'()]|\/or-
The first inequality becomes tight if the shift Y'(7) is
aligned with the expected error m. The second inequality
becomes tighter as the batch size grows, since it reduces
the variance in X (7), which by (9) is given by v, — ||m. ||%.
Therefore, we have

¢(r)? ¢(r)? 5 /

~2(() Jor+2 ot d 2 Y (7) |/
Gy ) ot oY () VA
With this observation and the fact that our objective is to

e T . ~
minimize the cost fo v,dT, we consider the process v,
defined using the upper bound on v/, namely

v < ((a+1)

; ¢(r)? .
Uy = ((d + 1) V(T) - 2((7-))1}7'
+ﬂ02d+2||y’(r)||\/i. (12)

v(7)

Our next result characterizes an optimal learning rate with
respect to process U.

Theorem 3.3. Consider the control problem

T
minimize / vrdT,  subject to constraint (12).
¢:[0,T]=[0,1] Jg

The optimal policy ( is given by

¢*(7) = min {1, (Cll/?;)lf)-r +

2d -1
Z(T)) ﬁT}. (13)

Using the policy ¢*(7) given by (13) and (12), we get
an ODE that can be solved for v, and then plugged back
into (13) to obtain an optimal policy (*(7) and hence op-
timal learning rate. We formalize this approach in Algo-
rithm 1, where we solve the ODE for v, (after substitut-
ing for optimal ¢*(7)) using the (forward) Euler method.
Translating from the continuous domain to the discrete do-
main, we use the relations 1, = ((et), B, = ev(et), and
1Y ()l = 110741 — 071/ = /e

Remark 3.4. The learning rate schedule proposed in Algo-
rithm 1 is an online schedule in the sense that 7, is deter-
mined based on the history up to time ¢, i.e., it does does
not look into future.

Remark 3.5. The proposed learning rate in Algorithm 1
depends on the distribution shifts ;. In settings where ~;
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Algorithm 1 Optimal learning rate schedule for linear re-
gression undergoing distribution shift.

Input: max step size e, discretization scale x € (0, 1]
Output: step sizes n;
Initialization: v < 0
fort=1,2,... do
forj=1,2,...,[1/k] do

: vBy
7 < min 7((”1)%02(1,6)
2
v v—i—/ﬁ(dBitlrz — 2r)v+ /i”B—:iTQ + 26914/
end for

* . vBy¢
7y < min @ )vro?d e’:‘)
end for

is not revealed (even after the learner proceeds to the next
round), we estimate ; using an exponential moving average
of the drifts in the consecutive estimated models 6;, namely
At = BYt—1+ (1= B)[|0r — 0;—1]|, with a factor 5 € (0, 1).

Figure 2 shows the learning rate schedule 7; given by Algo-
rithm 1:

e Bursty shifts. The left subplot corresponds to the
setting where y; follows a jump process. At the be-
ginning of each episode (40 steps each), v; jumps to
a value s and then becomes zero for the rest of the
episode. Therefore, the distribution remains the same
within an episode but then switches to another distri-
bution in the next episode. In this case, we see the
learning rate restart at the beginning of each episode
with a more aggressive step size (capped at ¢ = 0.1)
but then decrease within the episode as there is no shift.

e Smooth shifts. The right subplot illustrates the setting
where v; changes continuously as vz = 1/t* for a
constant value ov. We see that a smaller value of « (i.e.,
larger distribution shift) induces a larger learning rate.

0 50 100 150 200 0 50 100 150 200

Figure 2: Learning rate schedules 7; devised in Algorithm 1
for online linear regression. The batch size is B; = 100 for
all 1 <t < 200, dimension d = 100, max step size € = 0.1,
and o = 2.

3.1. Case study: No distribution shift

To build further insight about the proposed schedule, we
study the behavior of Algorithm 1 when there is no shift in

the data distribution and the batch size is the same across
SGD iterations. Note that in this case, Y’'(7) = 0 and
v(7) = B/e. The behavior of the learning rate schedule 7;
is described in the next lemma.

Lemma 3.6. Consider the following ODE:

¥ = ()~ 2o +bC(r)” (4
d+1 o

a:=¢

with optimal {(7) given by (13). Define

[0 (552

C:aln(l%a)qtlfafn.

We then have the following:

o [fT < T, then

b b
S —(2—a)T =1
s (vo 2_3)6 to— )
o As T — o0, we have
m 7 =1 fim S )
T—00 T—00 ——=——
T+C a+CHT

Recalling the relation 1, = e((et) and using Lemma 3.6,
we have nf = e fort < t, := [1./e] and

*

s

"t 1.
a+C+et

lim
t—o00

In words, n; asymptotically has the rate 1/¢. In Figure 3,
we plot an example of processes v, and the optimal learning
rate 77; for linear regression without any distribution shift.

1 ; 012

T
p~ *
' —Ur i —
0.8 ' b 0.1 e
! e a+C+et
0.08
0.6
0.06
0.4
0.04
02 0.02
!
0 : 0 :
0 Tt 2 3 4 5 0 t0 20 30 40 50

Figure 3: The process v, defined by ODE (14) if there is
no distribution shift (left). Here we have ¢ = 0.1, a :=
e(d+1)/B =0.1,b := e02d/B = 0.3, and initialization
U9 = 1. Behavior of the learning rate schedule 7; given by
Algorithm 1, which asymptotically has the rate 1/¢ (right).
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4. General convex loss
4.1. Upper bound on the total regret

Here we derive an upper bound on the total regret for gen-
eral convex loss functions. We use this bound to study the
behavior of optimal learning rates (by minimizing the regret
upper bound) with respect to distribution shifts. We proceed
by making the following assumption.

Assumption 4.1. Suppose that

(i) We have Ep,[||V£(0s, 20.1) — VE(6:)]1?] < o2, for
some parameter ¢ > 0. Since the data points in each
batch are sampled i.i.d., this implies that

1 & 7 o2
Er |5 ;wwt,zt,k) - v ] < %

(i) We have V20;(0) < LI for § € ©, or a weaker L-
smooth condition

IVE:(01) = VE(82)]| < LI|61 — O],

for 91, 0, € 6.

(iii) We assume the oracle models 6} are in © and that the
diameter of © is bounded by D,,,x. Alternatively, we
assume that 0 € ©' for all ¢, and D, ax = max{||0 —
0':0€0,0 0.

Note that for all steps ¢, V£(0;, z;1) is an unbiased esti-
mator of V/;(6;) and Assumption (i) bounds its variance.
Assumption (i) is for technical analysis and is satisfied if
the loss function has a continuous Hessian. Assumption
(#i¢) assumes that the oracle models ; remain in a bounded
set as t grows. Since in practice the SGD is run for a finite
number of iterations, this is not a restricting assumption,
e.g., Dnax can depend on the horizon length 7.

Theorem 4.2. Suppose the loss function £(0, z) is convex
in 6, and assume that the oracle model 9} and the learning
rate 1 are adapted to the history z;_1, defined by (5). Let
Dy := |60 —6;] Ln? > 0fort > 1. Under
Assumption 4.1, and assuming n; < % forallt > 1, the
following bound holds on the total regret of SGD:

T
D2 D2
E[Reg(T)| < Y E <atf - ;f) +
t=1

e
Jr”tt'*‘1||+at<0:6’f+1,9t+1 9:>‘| :

o*n;
/ 15
Bra, (15)

a

Here, the expectation is with respect to the randomness in
data points observed in the T steps.

We next discuss how the regret bound (15) can be used to
derive optimal learning rate schedules. We would like to
derive optimal rates n; by minimizing the bound (15) in a
sequential manner. However, the bound depends on D; and
0¢+1, which are not observable. Indeed, 0,4 is defined at
step t 4+ 1 where 7, should have already been determined.
To address this issue, we use the fact that the projected SGD
updates remain in the set © and by invoking Assumption
(#it), we have Dy < Dyax and ||0;11 — 65 || < Dipax. Also
recall our notation vy, = ||6f —6; || for the distribution shift.
Therefore, by rearranging the terms in (15) and telescope
summing over 1/a;, we have

i+;<—af )]

+ 2Dmax’7t>:| ) (16)

E[Reg(T)] < D?

max

-y e[ (G
where z; = max(z, 0) indicates the positive part of z.

We next discuss the choice of learning rates that minimizes
the upper bound (16) in a sequential manner. Conditioned
on z[;_1j, the optimal 7; is given by

1
* : 2
n; = argmln{D (
! 0<n<+ A2 - L?

)
277t—1 - L’r]t271 +

2 2Dmax
it LA
21 — Ln?

0.2 772

B, 2n— L2

Our next proposition characterizes 7; .

Proposition 4.3 (Learning rate schedule). Define the thresh-
olds 71,4 and T 4 as follows:

Tt = 2(,2 (\/ b% L2+ 405 bt — bl,tL> ; (18)
Top 1= 202 (\/ b3 L2+ 405 bo s — bz,tL> ; (19)

b2,t = (’Vt + Dmax)2 .
The optimal learning rate n; defined by (17) is given by:

bl,t = 'Yt2 + 2Dmax"/t7

Tie  Uniog < T
e =M1 e <nf < 1oy (20)
Tot UM > Tox-

Remark 4.4. The proposed learning rate in (17) depends on
o, L and shifts ;. Having access to the loss function ¢(0, z),
the learner can use sample estimates for o, L. Also note that
we can use any upper bound on +; in the bound (16) and
obtain a similar schedule. Of course, if the upper bound is
crude, it results in a conservative learning rate schedule. In
settings where an upper bound on the shifts ~; is not avail-
able, we estimate 7, using an exponential moving average
of the drifts in the consecutive estimated models 6;, namely
At = BA—1 + (1 — B)||0r — 0:—1]|, with a factor 8 € (0, 1).
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Remark 4.5. The values b; ; and by ; in (18) and (19) are
increasing in the distribution shift «; and it is easy to see
that the thresholds 7 ¢, 72 ; are also increasing in ;. As a
result for every value of 7;_1, higher distribution shift ~;
increases the optimal learning rate 7; .

Note that Theorem 4.2 and Remark 4.5 are optimized with
respect to the upper envelope of the optimal regret. We also
prove a corresponding lower envelope result for SGD.

4.2. Lower bound on the total regret

The learning rate schedule in 4.3 is optimized with respect
to the upper bound derived for the cumulative dynamic
regret. We next prove a corresponding lower bound result
for SGD, which matches the upper bound and only differs
by constants. Thus, our analysis of the optimal learning rate
schedules for SGD is tight up to constants.

Before we begin, we make an additional assumption.
Assumption 4.6. We assume that the loss function ¢(6, z)
is pi-strongly convex in 6, for some 1 > 0, i.e., £(6)—4||0]|
is convex in 6.

Theorem 4.7. Suppose the oracle model 8; and the learn-
ing rate 1y are adapted to the history z,_1, defined by (5).
Let Dy := |07 — 0, v¢ = ||0f — ;.| and a} =
2(m: + %nt —n?L). Under Assumptions 4.1 and 4.6, and
assuming ny < % for all t > 1, we have the following
bound on the total regret of the batch SGD:

E[Reg(T)] > iE{ (D - D+) ;

t

2,2
oo
Btaé

2

et 7< b1 O — 07) |, 21
ay ai

where the expectation is with respect to the randomness in

data points observed in the T steps.

5. Non-convex loss

When the loss function £ is non-convex, SGD like any other
first order method can get trapped in a local minimum or a
saddle point of the landscape. When there is no distribution
shift, there is a line of work showing that SGD can efficiently
escape saddle points if the step size is large enough (Lee
et al., 2016; Jin et al., 2017). This superiority of SGD in
non-convex settings is often attributed to the stochasticity
of the gradients, which significantly accelerates the escape
from saddle points.

In non-convex settings one cannot control convergence to a
global minimum without making further structural assump-
tion on the optimization landscape and the initialization of
SGD. In view of that, we propose to consider the following
notion of regret based on the cumulative gradient norm of

the SGD trajectory:

Reg(T Z NZACHIES (22)

In words, the regret is defined with respect to the norm of
gradient at the sequence of estimated models. This notion
does not differentiate between local or global minima.

Further, due to the complex landscapes of non-convex loss,
we work with a more holistic measure of distribution shift,
namely

= sup [6(0) = Ly (0)] (23)

9cRP
Recall that £, = Ep, [((6, 2 )] and obviously if there is no
shift at step ¢, i.e., P, = P,y then v, = 0. In contrast, in
the convex setting, we measure the distribution shift only in
terms of the difference between the global minimizers of /;
and /;, 1, cf. Definition 2.1.

We can now state our regret bound in the non-convex setting.
Theorem 5.1. Suppose the learning rates 1, are adapted to
the history z;_1, defined by (5). Let v; be defined as (23),
and define a; == 2n, — Ln?, for t > 1. Under Assump-
tion 4.1 (i), (ii), and assuming n, < +, for all t > 1, we
have the following bound on the total regret of batch SGD:

E[Reg(T)] < l% +Zzzt (6,) ( ! )

ag a‘tl

+ZT:1E Lo(Lni (24)
Q¢ Bt ¢ '

t=1

The theorem above has a very similar format to the bound
derived in Theorem 4.2. By minimizing the regret of the up-
per bound (24) in sequential manner conditioned on z[;_yj,
the optimal learning rate is given by

20:(0;) +2v;  Lo? ' n?

—. (25
2n — Ln? B; 2n— Ln? 25)

7 1= argmin
1
0<n<¢

The optimal n; admits a closed form solution given below:

N = LB;2 (m-@) , by =Ly +4(61)) .-

The above characterization is derived by noticing that the
function in (25) is convex in 7, for n € (0,1/L] and the
stationary point of the function n* satisfies the boundary
condition 0 < n* < 1/L.

It is easy to see that the learning rate 7] is increasing in
the distribution shift v;. To implement this learning rate,
we estimate £;(0;) by £5¢(6;), its sample average over the
batch at time ¢. The proofs are deferred to the supplementary
materials due to the space constraint.
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6. Experiments

We implement these experiments using TensorFlow (Abadi
etal., 2016) and Keras (Chollet et al., 2015).> We study high-
dimensional regression in Section 6.1 and an application of
neural networks to flow cytometry in Appendix E.

6.1. High-dimensional regression

We use the learning rate schedules in Algorithm 1 and Propo-
sition 4.3 for linear and logistic regression, respectively. We
consider paths {07}, such that for §; € R%i € [d],
. Tap(t)3 cos([i/2]2kmal(t if 7 odd,
05(i) = b )3 os([i/2]2kma(t)) if i 26)
rap(t)? sin([i/2]2kma(t)) if i even,

where 7, () = linspace(a,b,T) controls the radius,
a(t) = linspace(0,1,T), and k is the base frequency.
These paths have linearly independent components due to
their trigonometric frequencies and phases (useful for high
dimensions), and move at non-monotonic speeds if a # b.

Figure 4: SGD trajectories of Algorithm 1 (top); and oscil-
lating learning rates 7); as we discretize the path defined by
0; where 1max = 0.5 (bottom).

Linear regression. We start by investigating Algorithm 1
for online least squares. Setting 6y = 0, at each step ¢ we
generate X € RB+*4 for z;; ~ N(0,1) and get back the
response y = X0; + ¢ fore; ~ N(0,0.1).

Consider the 2-dimensional trajectory in Figure 4 defined
by r1,_1(t), k = 4, and B, = 256. For T = 2000, the
path starts at 07 = (1, 0), spirals into the origin, and returns
to 6% = (—1,0). To study the effect of continuous vs
discrete distribution shifts, we downsample the points by
¢ € {1,4,16} to get the discretized paths

07 = QFt/zua

fort € [T]. As ¢ increases (i.e., from left to right in Fig-
ure 4), the learning rate 7, of Algorithm 1 starts to oscillate—
decreasing when 6; is near 65 and returning to Nymax = 0.5
when 0} shifts.

2The source code is available at https://github.com/
fahrbach/learning-rate—-schedules.

Figure 5: Cumulative regret of Algorithm 1 with 9. =
1/ Vd for increasing dimensions d (top-left); and the first
and second coordinates of the SGD for d = 128 and batch
size By = 256 (top-right). Cumulative regret of Proposi-
tion 4.3 for d-dimensional logistic regression (bottom-left);
and the first and second coordinates of the SGD for d = 128
and batch size B; = 256 (bottom-right).

Next, we increase the dimension d and plot the cumulative
regret of Algorithm 1 in Figure 5. We use the same ¢ = 8
discretized paths and set 9y = 1/ v/d. Note that for all
values of d, the total regret increases, levels off, and then
increases again. This corresponds to 8 spiraling into the
origin, spending time there, and exiting. The initial spike in
regret is due to finding the 6; path, i.e., the first few steps
when 6; moves from the origin to 6; .

Logistic regression. We also empirically study the learn-
ing rate schedule in Proposition 4.3 for d-dimensional lo-
gistic regression with binary cross entropy loss. Similar to
the linear regression experiments, at each step ¢t we gen-
erate the covariates X € RP+*? but now we get back
y = sigmoid(X6;f + €). We note that the learning rate
schedule in Proposition 4.3 is largely parameter-free for
generalized linear models. For example, setting 02 = d/4
and L = 1/4 minimizes the upper bound on the regret in
(16) for logistic regression with log loss, so the only hyper-
parameter we set is Dy = d.

Conclusion

This work explores learning rate schedules that minimize
regret for online SGD-based learning in the presence of
distribution shifts. We derive a novel stochastic differential
equation to approximate the SGD path for linear regression
with model shifts, and we derive new adaptive schedules for
general convex and non-convex losses that minimize regret
upper bounds. These learning rate schedules can increase
in the presence of distribution shifts and allow for more
aggressive optimization.
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A. Proof of theorems and technical lemmas for linear regression
A.1. Proof of Proposition 3.1
The integration form of the stochastic differential equation (8) reads as

¢(s)

v(s)

X(r)=Xo+Yo - / ((s)X (s)ds — Y (1) + / DY2dw (s), (27)
0 0
where D, = ((||[X(s)||2 + o) + X (s)X(s)"). We start by proving some useful bounds on the solution of X (7) process.

Lemma A.1. Consider the process X (1) given by (27) with initialization X satisfying || Xo|| < K. Under Assumptions
A1-A2, with probability at least 1 — e~ we have

sup || X ()| < CVT(Vd + u) exp [C(Tz—i-(\/g—i-u)QT)] . (28)
T€[0,T)
and
sup sup || X (te +u) — X (te)|| < C'VTe(Vd + u)? exp [C’(T2 +(Vd+ u)QTﬂ ) (29)

te[0,T/e]NZ>q uel0,e]

for any fixed u > 0, and constants C = C(K,0), C' = C'(K,0,T").

Proof of Lemma A.1. Define V (r) := [ <L) DY2dW (s). We have

0 Vv(s)
T ((s)?
Cov(V (r :/ Dgds,
vy = [ 5
so then
|Cov(V (7)) lop < K / IDulopds < A, = K2 / (21X, + 02)ds. (30)
0 0

Note that exp «||V(7)||? is a submartingale, and by virtue of Doob’s martingale inequality, we have

P(Sgg V() > A) < Elexp{a|[V(T)||/2}] exp{—aA?/2} < (1 — Ara)~%? exp{—ar?/2}.

Take o = 1/(2A7) and \ = 2¢/A7(V/d + u) to obtain
P (sgg IV (7)|| > 2¢/Ar(Vd + u)> < 242 exp(—(Vd + u)?) < e 31
Using (27) and recalling Assumptions A1-A2, we get
[X () < [ Xoll + [Yoll + 1Y~ + /OT C(s)[[ X (s)[|ds + [V ()l
<3k [ RIX@s+ VO],
We next use the inequality (a 4+ b+ ¢)? < 3(a? + b + ¢?) to get

X < 2K 35 ([ 1XE)s) 31V

< 27K2+3K27/ 1X (s)|2ds + 3|V (7)1,
0

12
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where in the second line we used Cauchy—Shwarz inequality. Define A7 = sup, < || X (7)||*. Taking the supremum over

7 < T of both sides of the previous inequality and using the bound (31), we arrive at

T
Ap < 2TK? + 3K2T/ Agds + 1247 (Vd + u)?
0
T
<2TK? + 3K2T/ Ayds + 1247 (Vd + u)?
0
T T
< 27TK? + 3K2T/ Ads + 12(2K2 / Ayds + o*TK?)(Vd + u)?
0 0
T
= 27TK? + 120°TK*(Vd +u)? + (3T + 24(Vd + u)?) K / Ayds.
0
Using Gronwall’s inequality, the above relation implies that
Ar < K227 +120°T(Vd + u)?) exp((3T + 24(Vd + u)*) KT).
Taking square root of both sides and using v/a + b < v/a + v/b, we get

sup X (0| < K(V27T +V12To(Vd + u)) exp((3T 4 24(Vd + u)?) K*T/2)

which completes the proof of (28).
We next proceed with proving (29). Define A(t,¢) = Suppeqo,e | X (te + h) — X(te)|. Using (27), we have

ts+h te+h
A(t,e) < sup H/ dsH +||Y(te + h) — Y (te)] |+H/ H
he(0,e]
< Kesup [ X(s)[| + sup [Y'(7)[|h + sup ||V(f»h75)||
s<T he[0,e],TE€te, te+h] he(0,e]
< Kesup | X(s)| + T+ sup |[V(t,he)], (32)
s<T he0,e]

with V (¢, h, ) := t;+h \;% 1/2dW( ). In the last step, we used Assumption A2, by which ||Y'(7)|| < T'/e. Similar
to the derivation of (31), we have

P ( sup sup |V (t, h,e)|| > 2v/B.(Vd + u)> <242 exp(—(Vd +u)?) < e ",
[

te[0,T/e]NZ>o hel0,e]

with B, := sup, . K? t8+h(2||X(s)H2 + 0?)ds. Plugging in (32), we have

A(t,¢) < Kesup | X(s)] + 2K¢<2 sup [|X(5)][2 +02)e (Vi -+ )

=T+K <5 +2v2e(Vd + u)) (sup || X (s)]]) + 2Kov/z(Vd + u)
s<T
< O'VTe(Vd + u)? exp [O(T2 + (x/&+u)2T)] (33)
This concludes the proof of Equation (29).

13
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We next rewrite the stochastic gradient descent update as follows:

By
1
9t+1 =0 — ﬁtE ]; Vf(eu Zk:,t)

By

1
=0 + ﬁtﬁ Z(ytk — (@, )2
t =1

By
=0, m(0; — 0) + 5 > (@l — D0 = ) + enan)
t k=1

= 0 + (07 — 0) — m&e, (34)
where the noise term &; has mean zero, given that the data points z; ;, are sampled independently at each step ¢.

Note that &; in (34) is the average of B; zero mean variables and thus can be approximated by a normal distribution with
covariance (1/B;)D;, with

Dy = {E [(zuxl, — D)0 — 0.)(0F — 0,) " (wapaly, — I)T] + 021}
= (16 = 0:lI* + o) I+ (6; = 0.)(6; — 6,)7) , (39)

where the above identity follows from Lemma D.1. We let & = —Dz /2 g with g¢ ~ N(0,1;). Iterating update (34)
recursively, we have

t—1 t—1
* * * e 1/2
Op — 07 = 00— 07 + > (0] —00)+ > ——=D,""g
=0 = VB
t—1

= 00— 07+ C(te) (¥ — 00) + = s¢(ls]) p1/2dW(s)

= o V() s

—QO—Y(st)—f—eZC(&?)(@Z—94)+/E ¢z DPaw (s), (36)
= o v([s])

where we adopt the notation [s] = £|s/e|, and W (s) represents the standard Brownian motion.
We take the difference of (27) and (36). Since 6y = 6y — 6§ + 05 = Xo + Y, for 7 € Z>pe N [0, T], we have:

T/e—1

(07 = 0%) = X(D) < |le C(f»f)(@e*@}.‘)*/TC(S)X(S)dS
£=0 0
D)) Vs ;
L G~ v o) 7
We first treat the first term. We have
)6 — ) — [ ()X (5)ds
EZZ:(:) g 1A v /0
= | O =) = [ X (0105
= | D (O1eses =01y = X(sD)as+ [ DD = X (s + [ (D) = <o) X (o).
We have
‘/TC([SD(X([S])—X(S))dS <Kt  sup sup || X (te + h) — X(te)]|. (38)
0 te[0,T/e]NZ>o he[0,e]
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Note that the right-hand side of (38) and (39) are bounded in Lemma A.1.

Also,

< Ker sup || X(7)]. (39
T€[0,T]

AYM$—«mX@w

We next bound the second term on the right-hand side of (37). Define

RGO Ry
E(r) ._/0 (m m)dW( ).

Note that E(7) ~ N(0,a?I,), where
[T e\
|, (A~ vwtw) =K%

using Assumption A2 by which [[¢/+/v[|Lip < K. By applying Doob’s inequality to the martingale exp(z= || E(7)]|), similar
to derivation of (31), we obtain

P <sup |E(7)|| > 2KVeT(Vd + u)) <e w2, (40)
T<<T
Now we define
A(r) = sup | X (te) — (6 — 6))] -

te(0,7/e]NZ>o

Using Lemma A.1 to bound (38) and (39) and then combining that with (40) into (37) we arrive at
A(r) <K /OT A(s)ds + KrC'VTe(Vd +u)? exp | € (T2 + (Vd + u)°T )|
+ KerOVT(Vd + u) exp [C(T2 + (Vd + u)2T)} +2KVeT(Vd + u)
<K /OT A(s)ds + C"T32 J2(Vd + u)? exp [C (T2 +(Vd+ u)QT)} . 41)
Using Gronwall’s inequality we obtain
A(T) < C"T*2/E(Vd + u)? exp [o (T2 +(Vd+ u)2T) + KT} . 42)

We derive the final claim by noting that

sup ([ X (te)|* )16 — 92‘II2‘ SAT)?+2A(T)  sup | X(te)]
te[0,7/elNZx0 te[0,7/elNZs0
< CyVe(Vd + u)* T3 exp [02 (T2 +(Vd+ u)QT)} , 43)
for some constants C'y, C'y, depending on K, o, I'. This completes the proof. O

A.2. Proof of Theorem 3.2

Recall the SDE for process X (7) given by

¢(7)
V(7)

Let m., := E[X (7)]. Taking expectation of the above SDE, we obtain

dX(r) = —(C(r) X (1) + Y/ (7))dr + 12

((IX(D? +0*)I + X(1)X(1)T) "™ dW(7),

m. = —((t)m, = Y'(7).

T
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Next we define the stochastic process Z(7) = || X (7)||?. By Ito’s lemma (cf. Lemma D.2), we have
dz(r) = (—2C(7)X(T)II2 —2X(n)TY'(7) + CV((TT); ((@+ DX ()] + d02)> dr
25 X ()T (X2 +02)T + XX aw(r).

V(7)

Taking expectation of both sides, we arrive at the following ODE for v, = E[Z(7)] = E[|| X (7)||?]:

vl = =2((T)v, — 2mIY' (1) + CV((TT)) ((d + 1), + do?)
. G N W C, P
= ((d+1) o(7) 2¢( )) e it JY'(7). (44)

A.3. Proof of Theorem 3.3
We start by giving a brief overview of the Hamilton—Jacobi—Bellman (HJB) equation (Bellman, 1956).
Consider the following value function:

T

Vim).m) = min [ Cla(r).C(r))dr + D((T)) 45)

where z(7) is the vector of the system state, {(7), for 7 € [r9, T is the control policy we aim to optimize over and takes
value in a set A, C(-) is the scalar cost function and D(-) gives the bequest value at the final state z(T").

Suppose that the system is also subject to the constraint

a(r) = D), (), V€ I, T, 6)

with ® describing the evolution of the system state over time. The dynamic programming principle allows us to derive a
recursion on the value function V, in the form of a partial differential equation (PDE). Namely, the the Hamilton—Jacobi—
Bellman PDE is given by

0:V(z,7) + min [0:V(z,7) - 8(2,0) + C(2,0] =0, (47)

subjectto  V(z,T) = D(z).

The above PDE can be solved backward in time and then the optimal control (*(7) is given by

¢7(r) = argmin [9.V((7), 7) - ®(2(7), () + C(2(7), )] (48)

We are now ready to prove the claim of Theorem 3.3, using the HIB equation.

Consider 0, as the system state at time 7 (i.e., z(7) = ¥,), and the cost function C (0., ((7)) = ¥,. Also set D(+) to be the
zero everywhere. The control variable (7) takes values in A = [0, 1].

The function ®(-, -) in (46) is given by (12), which we recall here:

¢ 0] i02 "(T)||\/©
S~ K)o e Y DI

Note that in our case, the cost function C' does not depend on {(7). Also, it is easy to see that 0,V (0., 7) > 0 because
larger v, means we are further from the sequence of models and so the minimum cost achievable in tracking the sequence of
models will be higher. Therefore, (48) reduces to

“(r) = in &, ().
¢*(r) = arg Jnin (0r,¢)

o (i, ¢) = ((d+1)
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Since ® is quadratic in ¢, solution to the above optimization has a closed form given by

¢*() = min {1, (dj)l n "(d)) } ,

which completes the proof.

A 4. Proof of Lemma 3.6
Substituting for ¢(7) from (13), it is easy to verify that ¢'(7) < 0 and so ©(7) is decreasing in 7.

Define the shorthand a := (d + 1) /v(7) and b := 02d/v(7). Note that if o, > b/(1 — a), then by (13), {(7) = 1 and in
this case ODE (12) reduces to 0. = (a — 2)9, + b, with the solution

b b
5 — (5 _ = ) pa=2)T
o <Uo+a—2)e a—2"

However, the above solution is valid until o, > b/(1 — a), which is the assumption we started with, which using the above

characterization is equivalent to
1 2—
T< Ty = log | (1 —a) (Do 4 .
2—a b n

For 7 > 7., we have 0, < b/(1 — a) and so {(7) = ¥, /(av, + b) by (13). In this case, ODE (12) reduces to

~2
~/ U7

UT:_aﬁT—i—b'

By rearranging the terms and integrating, the solution to above ODE satisfies
1 b
aln(T)—&—T:T—i—C, (49)
Uy Uy
where C' can be obtained by the continuity condition of v.- at 7, i.e.,

C:aln(l%a)-i-l—a—n.

From (49) we observe that as 7 — 00, 0, — 0 and the term b/7, becomes dominant by which we obtain

Uy

Il
—

lim
T—00

T+C
In addition, invoking definition of optimal policy ¢(7), we obtain

lim C(lT)

T—00

= 1 5
a+C+r

which completes the proof.

B. Proof of theorems and technical lemmas for convex loss
B.1. Proof of Theorem 4.2

We define the shorthand D} = ||0; — 6,]|* and let v, = 6; — 67, be shifts in the optimal models. We also define the
shorthand

By
1
Vﬁf(@t) = B, E VO, z.1) -
k=1
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Since projection on a convex set is contraction, we have
Me (u) — w]| < [lu —wl[,
for any w € ©. Using this property, we have
Dy = e (8 — mVEE (6:)) — 6741

= Mo (8 — 1:VEF (6:)) — 07 + 67 — 07417

= [He (b — 0V (0)) = 07117 + l|vell* + 2(vr, e (0 — 1V EF (0:)) — 07)

<16 = neVEE(80) = 0717 + [[vel|® + 2(ve, e (8 — 1. VEF (6:)) — 67)

= D} =20 (VEZ(61), 00 — 07) + [|vell* + 2(ve, To (0, — e VEE (61) — 07) + nZ IVE7 (00)]1*

I

) =
) =

Define B
6y := VIB(6,) — Vi (6,),

as the difference between the gradient of the expected loss (at step ¢) and the gradient of the batch average loss at that step.

Writing the above bound in terms of this notation, we get

Dy < DF = 20u(Vl(0:) + 64,0 — 07) + [[oa]|> + 2(vs, e (6 — 0 VET (6:)) — 6f)
+ 7 (IV 20012 + 1)1 + 260, VE(61)) ) - (50)

By Zhou (2018, Lemma 4) for any L-smooth convex function f, we have

HIVF) - V@I < (Vi) ~ Vi@)y - ). 61

Since the loss function £(6), z) is convex, the expected loss functions /;(0) are also convex for t = 1,...,T. Using (51)
together with the fact that V£4,(6;) = 0 by optimality of 6}, we get

1 ~
Zvat(atﬂF < (VL (01),0: — 0F) . (52)

Using the above bound, we obtain

D7,y < Df = (20 — Lu?) (Ve (0:),0: — 07) + |[ve]|* + 2(ve, Lo (6 — 1 VEF (61)) — 6F)
+ 07 116¢]1* = 2n¢ (8¢, 00 — 07 — e VE(6,)).

Recall our assumption 7; < 2/L. Using the convexity of £}, we have
e(0;) — £(07) < (VE(0r), 0, — 07), (53)
which along with the above bound implies that
DZ,y < DF — (20 — Lg ) (£e(6s) — £(87)) + [[vell® + 2(ve, o (8 — 0, VEF (6:)) — 6f)

+ 0218 ]|? — 200(8¢, 0 — O — 0 VE(61)) -

Note that Ig (0, — 7: VB (0;)) — 0F = 0,1 — 0. We let a; := 21, — Ln? > 0, and by rearranging the terms in the above
equation we obtain

D? D? wl? 2 216,12 2
Df_Dia fed? 2 g 0P 2
ay ay as a [e23 Q¢

Et(gt) - f_t(f’?) < <5t7 0 — 9: - thg_t(gt» . (54
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We next note that 0y, 07, 7, are adapted to the filtration z[; 1), and therefore,
]E[<6t7 Gt — 0: — mvgt(ﬂt)ﬂz[t,l]] = <]E[5t|z[t71]}7 Ot — 9: — ntVZt(Gt» =0.

Taking iterated expectations of both sides of (54) with respect to filtration z; (first conditional on z;_;) and then with
respect to z[;_1]), we get

D? - D? aZn?  |ve)? 2
Efreg,) <E | —t—1 4 — 1L 4 T80 4 = (v, 0,41 — 0F 55
[reg,] < { a + B, a, + a + a (v, 0141 — 0f) | (55
with reg, = £;(6;) — £;(67). Summing both sides over t = 1, ..., T, we obtain the desired result.

B.2. Proof of Proposition 4.3

Recall the optimization problem for n* given below:

2 1 - 1 + 12 . 772 7,52 + 2Drnaxq/t
max\2m—Ln?2  2m—q — Ln? . B 2m—Lp? 2n — Ln?

n; :=arg min D
0<n<t

(56)

Note that the functions 1/(2n — Ln?) and n?/(2n — Ln?) are convex for < 1/L. Also the pointwise maximum of convex
functions is convex, which implies that the objective function above is convex. With that, we first derive the stationary points
of the objective function and then compare them to the boundary points 0 and 1/L.
Setting the subgradient of the objective to zero we arrive at the following equation:
202 1
20" 72(22Dmax D2H<,)
Bt (2 _ Ln)2 + Vi + Mt + max (77 Mt 1)

We consider the two cases below:

Ln—-1
@n—Lep " °7

e 1 > n.—1: In this case, (57) reduces to
o2
B

which is a quadratic equation in 7. Solving for 7, the positive solution is given by 7 (18). This case happens only
when the solution satisfies the condition of the case, namely 7;—1 < 7y ;.

Ln—1
+ (7152 + 2Dmax7t> 77772 = Oa

e 71 < nm—1. In this case, (57) reduces to
a*
By

which admits the positive solution 75 ; (19). This case happens only when the solution satisfies the condition of the
case, namely 75 ; < 17;_1.

In—1
+ (’YtQ + 2Dmax’}/t + D?nax) nn2 = 0’

If 7+ < m—1 < T2, then in both of the above cases, the solution happens at the boundary value 7,_;. This brings us to the
following characterization for 7; :

T it <1y,
g =moy e <ni_y <oy (58)
Tor N >Toy.
Note that the above characterization was based on the stationary points of the objective. we next examine if the above
solution satisfies the boundary conditions. Obviously n; > 0. We also claim that n; < 1/L. For this, we only need to show
that o ; <1 /L (because n; < To,¢ for all values of 7,_1). Invoking definition of 75 ;, we have

Bt 402
T2t = @ \/ b%,tLQ * Ebz’t - b27tL ’ b2,t = ('775 + DmaX)2 .

It is easy to see that 754 < 1/L follows simply from b3 ,L* + 4;%19% < (% +bo L)%
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B.3. Proof of Theorem 4.7

Recall that -
St = VB (0;) — VI(0y),

as the difference between the gradient of the expected loss (at step ¢) and the gradient of the batch average loss at that step.
Writing D, ; in terms of this notation, we get

D}y = D} — 20,(NV(0;) + 60,00 — 07) + |lvell® + 2(ve, (6 — e VEE (6,)) — 6F)
+ 12 (V802 + 161]1° + 2061, VE(61) ) - (59)

Since the loss function £(#, z) is L-smooth and p-strongly convex, the expected loss £;(6) is also L-smooth and j-strongly
convex and by invoking Zhou (2018, Lemma 3(%77)), we have

B B 1
(VELi(0:), 00 — 0F) < £4(6:) — £:(0F) + EHVft(Qt)Hz :

Using this bound in (59), we obtain
D}y = D7 =20, (£:(00) — £0(67)) + l[oel|® + 2(vr, (00 — 0 VLE (61)) — 07)
+ (a7 = %) IVEOIP + 0215 = 26,60 — 67— mVE(6)) (60)

We next use Zhou (2018, Lemma 4, item 5) and the fact that V@t(é’;‘) = 0 to get
V8 (8] < 2L(€:(6:) — £:(67)) - (61)

Using the above bound into (62), for 7; < 1/u, we obtain

L
Dl 2 D =2 (e e =it D) (00) = 60) + el + 200, (6 = VP (60) = )
1 18el|* — 20¢ (8¢, 0 — 07 — 0V Ee(0:)) - (62)
We recognize that 6; — 1, V¢ (0;) = 0,1 by the SGD update, and let a}, := 2(n; + ﬁnt —n2L), withn, < 1/p.

I}Iext we (_)btain a telescoping series for Reg(T") as before. Continuing as before (in Theorem 4.2), we can (1) isolate
£4(0¢) — £:(0;) on the left-hand side, and (2) take expectations: first conditioned on the filtration z[;_;; and then an
unconditioned expectation, to get:

“ng 12, (ve, O — 07)
E[Reg( Elreg,] > E t+1 oMy [|ve 9 \Ut, U1 i)
s Z &l = Z( i) Bl T

which completes the proof of theorem.

C. Proof of theorems and technical lemmas for non-convex loss
C.1. Proof of Theorem 5.1

We note that by Assumption 4.1,

_ _ L
Ci(Or1) — Le(0r) — (VL(01),0p41 — Op)| < 5H9t+1 0:)° = *Th JIVeZ 0.7 (63)

Therefore,
_ _ _ L
Ci(Or11) — €(0r) < (VE(01), 0041 — 01) + §n§|‘v£?(9t)”2

_ L
< —n(VE(0,), VL (6,)) + §Th2||VftB(9t)H2-
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Recall the notation &; := VP (0;) — VI(6;), by which we get
_ _ _ _ L _ _
C(0r1) = £o(0e) < —nel[VE(O)IP — e (VE(6:), 60) + §7lt2 (IV2(O)? + 2(V 4 (62), 8e) + 1|8¢ 1)
L - - L
=~ (= £ IV — 0 — Li)(TE0), 80 + E P

By condition n; < 1/L, we have a; = n; — Ln? > 0. Rearranging the terms in the above inequality, we obtain

Zt (et) B Zt (et-‘rl)

Qg

_ _ Ln?
V20, < 2 — 2VE(8), 61) + —L |15, > (64)
ay

Since 6y, 0}, n; are adapted to the filtration z[;_;j, we have
E[(Vft(et), 6t>|z[t—1}] = (V?t(Ht), E[6t> |Z[t,1” =0.

Therefore, by taking expectation from the both sides of (65), first conditional on z[; 1) and then with respect to z;_1) we get

_ 0(0:) — 0e(0r41) | Ln? o
2] otV PN T T
E[|VE(00)|]7) < 2-0-0—EEH 4
C(0r) = b1 (Oei1) | [Cer1(Or41) = €(Bea)| | Lif 0°
+ T B
as ag ar By
Ce(0¢) — Ley1(041) i 7t + %i
a at a; By

<2

=2

(65)

Summing both sides overt = 1,...,T, we have

T

E[Reg(T)] = ) E[|V:(6:)]°]

~
Il
—

IA
[M]=
=

[(2&(9,3) 3 2£t+1(9t+1)> +L0277t2 i %}

g Qg Biay Qg

E [%(et) (1 _ )] +E {261(91) - %T“(HT)] +ZT:E {La%ﬁ + %] .

at at—1 ai arT41

t=1

I
[M]=

t

||
N

The result follows by noting that £, 1 (071) > 0.

D. Auxiliary lemmas
Lemma D.1. Let v € R? such that x ~ N(0, I). For any fixed vector u € R%, we have

E[(zz" — Duu"(zz" — 1)7] = ||ul|*T + vu .

Proof. By Stein’s lemma, for any function g : R? — R we have

E[(zz" — I)g(z)] = E[Vg()].
Using the above identity with g(z) = (u'x)? we obtain
Elzz"(u'z)?] = 2uu’ + |Jul|®T. (66)
Using the above characterization, we get
E[(zz" — Duu"(zz" — )] = Elzz" (u'2)?] — w(u"2)z" — z(zTu)u" + uu’
= 2uu" + ||u|*T — 2uu” + uu'
= uu' + |Jul*I,

which completes the proof. O
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We next present Ito’s lemma, which allows to find the differential of a time-dependent function of a stochastic process.
Lemma D.2 (It6’s lemma, (Oksendal, 2013)). Let X; € RP be a vector of Ité drift-diffusion process, such that

dX; = f(t, X¢)dt + g(t, X¢)dWy,

with W, being an q-dimensional standard Brownian motion and f(t, X;) € R? and g(t, X+) € RP*4. Consider a scalar
process Y (t) defined by Y (t) = ¢(t, X (t)), where ¢(t, X) is a scalar function which is continuously differentiable with
respect to t and twice continuously differentiable with respect to X. We then have

dYy = f(¢, Xp)dt + g(t, Xe)dWy
Flt, X0) = ¢ult, Xo) + dult, Xo)TF (2, X2) + %tr (9(t, X0) T duu(t, X1)g(t, Xt))
g(tht) = d)a:(t?Xt)Tg(tht) .

E. Experiments: Flow cytometry

In this section, we explore a medical application called flow cyotometry, which uses neural networks and online stochastic
optimization to classify cells as they arrive in a stream from a shifting data distribution. The features this model receives as
input are measurements based on the RNA expressions of each cell (see, e.g., Li et al. (2019); Hu et al. (2020; 2022) and the
references therein for details). This induces a learning problem with a non-convex loss landscape that changes with time,
where we do not have a tight characterization for an optimal learning rate schedule.

E.1. Background

We start with background on flow cytometry to give more context for this application. A sample of cells from a tissue
is prepared and a small number of selected RNA sequences in the cells are bound to different fluorescent markers. A
laser then illuminates the incoming stream of cells, which can now be separated based on the intensity of the signals from
different fluorescent markers. Using fluorescent markers, however, comes at a cost as they can interfere with normal cellular
functioning. In contrast, marker-free systems that use large convolutional neural nets are often more accurate, but can be
slower to adapt to distribution shifts. See Li et al. (2019) for further details.

We study a two-step system that does initial classification with an inexpensive “student” neural network and only relies on a
small number of fluorescent markers. This is followed by additional analysis using a large pretrained convolutional neural
network (CNN) with near real-time feedback. As a simplification, we assume the expensive CNN is a “teacher” model
whose predictions are ground truth labels. We can achieve real-time feedback for the initial classifier that first sees the
cells by replicating the teacher across servers to increase its inference throughput. The goal is to optimize the (inexpensive)
classifier online and minimize its loss, i.e., the number of misclassified cells.

The distribution of the arriving cells can change based on the sample preparation and tissue characteristics. For example,
for pancreatic tissue, if we stream the cells starting from anterior to posterior, the initial mixture of cells consists of more
non-secreting cells but later will have a higher proportion of secreting cells. Thus, as a simplification, it is worth exploring
the effect of different learning rate schedules for a simple online neural network that classifies the input stream of cells
into different cell types based on a small number of RNA expression markers in each cell. We use the pancreatic RNA
expression data in (Bastidas-Ponce et al., 2019; Bergen et al., 2020).3

Specifically, we use the expression levels of ten RNA molecules (corresponding to genes Pyy, Meg3, Malatl, Geg, Gnas,
Actb, Ghrl, Rsp3, Ins2 and Hspa8) for the 4000 murine pancreatic cells in the scVelo repository. The expression levels of
these genes determines the cell types completely. We slightly perturb the expression levels to generate a stream of cells, and
within this stream we vary the distribution of secreting cells (i.e., alpha, beta, and delta) and non-secreting cells (i.e., ductal),
starting from non-secreting cells dominating the distribution and ending with secreting cells dominating the distribution.
Figure 6 (left) is a two-dimensional embedding of these ten signals labeled by their cell-type. In practice, any stream of cells
undergoes a similar distribution shift depending on how the samples are prepared.

E.2. Experimental setup: Model and cytometry simulation
The following is a description of our simulation setup:

3This data is available at ht tps://scvelo.readthedocs.io/scvelo.datasets.pancreas/.
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Figure 6: Visualization of the 10-dimensional cytometry data and their ground truth labels (left). Cumulative regret of online
models using different initial learning rates and optional Adam restarts at the beginning of each distribution shift (right).

e Training data and distribution shift: Each training example is a 10-dimensional vector € R'® drawn from a mixture
distribution of 4000 murine pancreatic cells and updated by randomly perturbing each of its RNA expressions by a
factor U ~ [0.9, 1.1] drawn i.i.d. The label y is the cell type: ductal, alpha, beta, delta. We consider a shift between
four different mixture distributions:

1. Pi(y) = (0.0,0.0,0.0,1.0) for 100 steps
2. Py(y) = (0.0,0.0,0.1,0.9) for 100 steps
3. P3(y) = (0.1,0.0,0.2,0.7) for 200 steps
4. P4(y) = (0.3,0.5,0.1,0.1) for 200 steps

The first distribution only contains perturbed non-secretory (ductal) cells. Then, each successive mixture distribution
increases the probability of a secretory cell, simulating the cell arrival statistics as we sweep from right to left over a
section of the pancreas for this data.

o Neural network: The input is a 10-dimensional vector of RNA expression levels for the cell. We then use a feedforward
neural network with five hidden layer and dimensions (64, 32, 16, 8, 4). Each hidden layer uses an ELU activation, and
the last 4-dimensional embedding after activation are the logits for the cell type.

e Loss and optimizer: We use categorical cross entropy loss with from_logits=true for stability. Each step uses
a batch of B; = 64 new examples to simulate the data stream. We optimize this model in an online manner using
Adam (Kingma & Ba, 2014) for different initial learning rates and by optionally resetting its parameters at the beginning
of a distribution shift. We plot the cumulative regret in Figure 6 (right), where the regret for each step is defined in (2).

We draw several conclusions from the results of this experiment. First, while larger learning rates are often better for
minimizing the regret of an online SGD-based system, there is a normally a sweet spot before the first step size that causes
the SGD to diverge. In this experiment, an initial learning rate of 0.1 for Adam caused the model to diverge but the total
regret is minimized with an initial learning rate of 0.01, achieving less regret than 79 € {0.001,0.003,0.03}. Second,
resetting the Adam optimizer at the beginning of each distribution shift (which increases its step size) allows us to achieve
less cumulative regret, as these models can more quickly adjust to the new data distributions. Finally, the models get stuck in
local minima without adaptive and increasing learning rate schedules, as evident by the 19 = 0.03 plots in Figure 6 (right),
which have different slopes in the final two phases.

Future works

We propose extending our SDE framework to develop adaptive adjustment schemes for other hyperparameters in SGD
variants such as Polyak averaging (Polyak & Juditsky, 1992), SVRG (Johnson & Zhang, 2013), and elastic averaging SGD
(Zhang et al., 2015), as well as deriving effective adaptive momentum parameter adjustment policies. We also propose
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studying a “model hedging” question to quantify how neutral a model should remain at a given time to optimally trade off
between underfitting the current distribution and being able to quickly adapt to a (possibly adversarial) future distribution.
We believe this area of designing adaptive learning rate schedules is a fruitful and exciting area that combines control theory,

online optimization, and large-scale recommender systems (Anil et al., 2022; Coleman et al., 2023).
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