
Testing Intersecting and Union-Closed Families1

Xi Chen £2

Columbia University3

Anindya De £4

University of Pennsylvania5

Yuhao Li £6

Columbia University7

Shivam Nadimpalli £8

Columbia University9

Rocco A. Servedio £10

Columbia University11

Abstract12

Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability13

of other well-studied properties of combinatorial finite set systems, specifically intersecting families14

and union-closed families. A function f : {0, 1}n → {0, 1} is intersecting (respectively, union-closed)15

if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed16

family) of subsets of [n].17

Our main results are that — in sharp contrast with the property of being a monotone set system18

— the property of being an intersecting set system, and the property of being a union-closed set19

system, both turn out to be information-theoretically difficult to test. We show that:20

For ε ≥ Ω(1/
√

n), any non-adaptive two-sided ε-tester for intersectingness must make 2Ω(n1/4/
√

ε)
21

queries. We also give a 2Ω(
√

n log(1/ε))-query lower bound for non-adaptive one-sided ε-testers22

for intersectingness.23

For ε ≥ 1/2Ω(n0.49), any non-adaptive two-sided ε-tester for union-closedness must make24

nΩ(log(1/ε)) queries.25

Thus, neither intersectingness nor union-closedness shares the poly(n, 1/ε)-query non-adaptive26

testability that is enjoyed by monotonicity.27

To complement our lower bounds, we also give a simple poly(n
√

n log(1/ε), 1/ε)-query, one-sided,28

non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness).29

We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when30

ε = Θ(1/
√

n), and for one-sided testing of intersectingness when ε = Θ(1).31

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear32

time algorithms; Mathematics of computing → Combinatorics33

Keywords and phrases Sublinear algorithms, property testing, computational complexity, monoton-34

icity, intersecting families, union-closed families35

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.2936

Related Version Full version available at https://arxiv.org/abs/2311.11119.37

Funding Xi Chen: NSF grants IIS-1838154, CCF-2106429, and CCF-210718738

Anindya De: NSF grants CCF-1910534 and CCF-204512839

Yuhao Li: NSF grants IIS-1838154, CCF-2106429 and CCF-210718740

Shivam Nadimpalli: NSF grants IIS-1838154, CCF-2106429, CCF-2211238, CCF-1763970, and41

CCF-210718742

Rocco A. Servedio: NSF grants IIS-1838154, CCF-2106429, and CCF-221123843

Acknowledgements This work was partially completed while some of the authors were visiting the44

Simons Institute for the Theory of Computing at UC Berkeley.45

© Xi Chen and Anindya De and Yuhao Li and Shivam Nadimpalli and Rocco A. Servedio;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xc2198@columbia.edu
mailto:de.anindya@gmail.com
mailto:yuhaoli@cs.columbia.edu
mailto:sn2855@columbia.edu
mailto:ras2105@columbia.edu
https://doi.org/10.4230/LIPIcs.ITCS.2024.29
https://arxiv.org/abs/2311.11119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Testing Intersecting and Union-Closed Families

1 Introduction46

Monotonicity testing is among the oldest and most intensively studied problems in property47

testing (see e.g. [30, 21, 26, 32, 9, 11, 12, 18, 17, 2, 19, 3, 34, 13, 4, 37, 5, 8] and the numerous48

references contained therein). The simplicity with which the core monotonicity testing49

problem can be formulated—given query access to an unknown f : {0, 1}n → {0, 1}, output50

“yes” if f is monotone and “no” if f is far in Hamming distance from every monotone function—51

belies the wealth of sophisticated technical ingredients and ideas (such as combinatorial52

shifting [30, 21], multidimensional limit theorems [18, 17], and isoperimetric inequalities53

[11, 34, 3, 37, 5, 8]) which have been deployed in both algorithms and lower bounds for this54

problem. Thanks to this body of work the basic problem of monotonicity testing is now55

fairly well understood: [34] gave an Õ(
√

n/ε2)-query non-adaptive testing algorithm, and56

[19] gave an Ω̃(n1/3)-query lower bound which holds even for adaptive algorithms.57

Monotonicity testing has several intriguing features as a property testing problem:58

Since the class of all monotone functions is of doubly exponential size1, the results59

mentioned above tell us that the query complexity of testing this class, which contains60

N = 22Θ(n) functions, is (log log N)c for some constant 1
3 ≤ c ≤ 1

2 . This is an interesting61

contrast with both the O(log N) query complexity which suffices to test any class of N62

functions2 and the constant query complexity (independent of N and depending only on63

the error parameter ε) of a number of other well-studied property testing problems such64

as linearity testing [6], testing linear separability [36], and testing dictatorship [38].65

The monotonicity of f : {0, 1}n → {0, 1} is equivalent to having all pairs of inputs x, y66

satisfy a simple “pair condition,” which is that67

x ≤ y =⇒ f(x) ≤ f(y). (1)68

Given this, it is natural to consider “pair testers” for monotonicity which work by drawing69

a pair of inputs x, y ∈ {0, 1}n with x ≤ y according to some distribution over such pairs,70

and checking whether the pair violates monotonicity. Indeed, all known algorithms for71

testing monotonicity, including the state-of-the-art algorithm of [34], work in this fashion.72

Finally, we observe that a monotone function f : {0, 1}n → {0, 1} can alternately be viewed73

as an upward-closed set system: this is a collection of subsets S ⊆ 2[n], corresponding to74

the satisfying assignments of f , which has the property that for every subset S ⊆ [n], if75

S ∈ S then S ∪ {i} ∈ S for every i ∈ [n].76

This Work. Motivated by monotonicity testing, we propose to study other combinatorial77

property testing problems of a similar flavor. In particular, we are interested in the testability78

of properties which (a) are “very large” (meaning that the number of functions with the79

property is doubly exponential in n); (b) are defined by a natural condition on pairs or triples80

of inputs; and (c) correspond to well-studied properties of set systems. We focus on two81

specific properties of this sort, namely intersecting and union-closed set systems.82

Intersectingness. A set system S ⊆ 2[n] is said to be intersecting if any two sets S1, S2 ∈ S83

have a nonempty intersection, i.e. S1 ∩ S2 6= ∅. Intersecting families are intensively studied84

1 Observe that any assignment of 0/1 values to the middle level of the Boolean hypercube {0, 1} corresponds
to at least one monotone function, and hence there are at least 2Ω(2n/

√
n) many distinct monotone

functions over {0, 1}n.
2 This follows straightforwardly from the fact that O(log N) samples suffice to properly PAC learn any

concept class of N Boolean functions [7] and the well-known reduction from proper PAC learning to
property testing given in [31].

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:3

in extremal combinatorics, where they are the subject of many touchstone results, beginning85

with the seminal Erdös-Ko-Rado theorem [24] and continuing to the present day. Recent86

years have witnessed exciting progress on many problems dealing with intersecting families87

and their generalizations via analytic techniques that are highly relevant to the study of88

Boolean functions in theoretical computer science; see e.g. [28, 20, 22] and more generally89

[23] for a recent and extensive survey.90

Translating the above definition to the setting of Boolean functions, a function f :91

{0, 1}n → {0, 1} is intersecting if the following “pair condition” holds: whenever f(x) =92

f(y) = 1, there is (at least one) coordinate i ∈ [n] such that xi = yi = 1. This is equivalent93

to94

x ≤ y =⇒ f(x) ≤ f(y), (2)95

i.e. if x ≤ y, then having f(y) = 1 implies that f(x) must be 0, where y = (y1, y2, . . . , yn) is96

the point in {0, 1}n that is antipodal to y. Finally, we observe that any n-variable Boolean97

function whose satisfying assignments all have first bit 1 is an intersecting function, so indeed98

the set of all n-variable intersecting Boolean functions is of doubly exponential size (at least99

22n−1).100

Union-closedness. A set system S ⊆ 2[n] is said to be union-closed if whenever S1 and S2101

belong to S then S1 ∪S2 also belongs to S. In the Boolean function setting, this corresponds102

to the “triple condition” that f : {0, 1}n → {0, 1} satisfy103

z = x ∪ y =⇒ f(x)f(y) ≤ f(z), (3)104

i.e. if f(x) = f(y) = 1 then f(x ∪ y) must also be 1. Union-closed families have long been of105

interest in combinatorics, in part due to the well-known “union-closed conjecture” of Frankl106

[27, 10], which states that in any union-closed family some element i ∈ [n] must appear in at107

least half the sets in the family. Dramatic progress was recently made on the union-closed108

conjecture by Gilmer [29], who proved a weaker form of the conjecture with 1/2 replaced by109

0.01 (this constant was subsequently improved to 3−
√

5
2 ≈ 0.38 by [1, 15, 39, 40]). Since every110

monotone function is easily seen to be union-closed, union-closedness is a “large” property,111

with at least 2Ω(2n/
√

n) n-variable functions having the property.112

In this paper we initiate the study of intersectingness and union-closedness from a property113

testing perspective. Given that (like monotonicity) these are “large” properties that are114

defined by a simple “pair” or “triple” property, it is natural to wonder: Is the query complexity115

of testing these properties similar to the query complexity of testing monotonicity, or are116

these properties harder— or easier—to test than monotonicity?117

1.1 Main Results118

As our main results, we show that both intersectingness and union-closedness are significantly119

more difficult to test than monotonicity: We give information-theoretic lower bounds which120

establish that neither of these properties admits a poly(n, 1/ε)-query non-adaptive testing121

algorithm. We also give sub-exponential non-adaptive testing algorithms for each of these122

properties; our algorithms have one-sided error (they never reject functions which have123

the property), while most of our lower bounds are for testing algorithms that are allowed124

two-sided error. We turn now to a detailed description of our main results.125

Positive Results: Algorithms for Testing Intersectingness and Union-Closedness.126

As a warm-up, and to develop intuition for these properties, we give simple testing algorithms127

for intersectingness and for union-closedness which have sub-exponential query complexity:128

ITCS 2024

29:4 Testing Intersecting and Union-Closed Families

I Theorem 1 (Testers for intersectingness and union-closedness). There is a129

poly(n
√

n log(1/ε), 1/ε)-query130

non-adaptive, one-sided3 algorithm for ε-testing whether an unknown f : {0, 1}n → {0, 1}131

is intersecting versus ε-far from every intersecting function. The same is true for union-132

closedness.133

We defer the algorithms as well as their analyses to the full version of this paper.134

Theorem 1 is proved by analyzing a “pair tester” for intersectingness and a “triple tester” for135

union-closedness. The distribution of pairs (respectively, triples) used by our algorithm is136

extremely simple, so it is natural to wonder whether a more sophisticated algorithm, perhaps137

using a cleverer distribution over pairs or triples, could result in a tester with an improved138

query complexity (indeed, this would be analogous to how the cleverer distribution over pairs139

used in [11, 34] resulted in a better query complexity for testing monotonicity than the simple140

distribution that was used in [30]). However, our main results—lower bounds for testing141

intersectingness and union-closedness—indicate that there are strong information-theoretic142

limitations on the possible performance of any non-adaptive testing algorithm for these143

properties.144

Negative Results: Lower Bounds for Testing. Our lower bounds show that both145

intersectingness and union-closedness are significantly harder to test than monotonicity:146

Neither of these properties has a poly(n, 1/ε)-query non-adaptive testing algorithm, even147

if we allow two-sided error. (Recall that in contrast, the algorithms of [30, 11, 34] are all148

poly(n, 1/ε)-query non-adaptive one-sided testing algorithms for monotonicity.) In more149

detail, our main lower bound for intersectingness is the following (in all of our lower bound150

theorem statements, c > 0 represents some sufficiently small absolute positive constant):151

I Theorem 2 (Two-sided lower bound for intersectingness). For c > ε ≥ 1/
√

n, any non-152

adaptive ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is intersecting153

versus ε-far from intersecting must make 2Ω(n1/4/
√

ε) queries to f .154

When ε = 1/
√

n, the lower bound of Theorem 2 essentially matches the performance of155

our algorithm from Theorem 1, and even when ε is a constant, Theorem 2 gives a 2Ω(n1/4)
156

lower bound. In view of the similarity between the defining conditions for monotonicity157

and intersectingness (Equation (1) and Equation (2)), we view Theorem 2 as a potentially158

surprising result.159

By imposing a stricter one-sided error condition, we can establish a stronger lower bound160

which almost matches the one-sided algorithm from Theorem 1 even for constant ε:161

I Theorem 3 (One-sided lower bound for intersectingness). For c > ε ≥ 2−n, any non-adaptive162

one-sided ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is intersecting163

versus ε-far from intersecting must make 2Ω(
√

n log(1/ε)) queries to f .164

Turning to union-closedness, the lower bound we give is not as strong as for intersectingness,165

but it is strong enough to rule out a poly(n, 1/ε)-query non-adaptive algorithm, again even166

allowing two-sided error:167

3 A tester is non-adaptive if the choice of its i-th query point does not depend on the responses received to
queries 1, . . . , i− 1. A one-sided tester for a class of functions is one which must accept every function
in the class with probability 1.

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:5

I Theorem 4 (Two-sided lower bound for union-closedness). For c > ε ≥ 2−n0.49 , any non-168

adaptive ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is union-closed169

versus ε-far from union-closed must make nΩ(log(1/ε)) queries to f .170

As we discuss in Section 6 of the full version, an interesting goal for future work is to171

narrow the gap between our algorithm and our lower bound for testing union-closed families.172

1.2 Techniques173

In this section, we give a technical overview of our main results, starting with the lower174

bounds.175

Lower Bounds. Our two-sided lower bound for intersectingness, Theorem 2, builds on a176

lower bound approach for tolerant monotonicity testing which was introduced in [37] and177

was recently quantitatively strengthened in [16]. As is standard for non-adaptive property178

testing lower bounds, [37] and [16] use Yao’s minimax lemma and define a “yes”-distribution179

Dyes and a “no”-distribution Dno over Boolean functions; in the rest of this discussion we180

focus chiefly on [16]. A function f drawn from either of the [16] distributions Dyes or Dno is181

defined based on a random partition of the n variables into a (large) set of “control” variables182

and a (small) set of “action” variables. In both cases f ∼ Dyes or f ∼ Dno, the definition of183

f involves a “Talagrand DNF,” T = T1 ∨ · · · ∨ Tm, which is essentially a random monotone184

DNF formula over the control variables.4 The crucial assignments to f are the ones for which185

the control variables satisfy exactly one term Ti of the Talagrand DNF; for such an input186

string x, the value of f then depends on the setting of the action variables, and the difference187

between f ∼ Dyes and f ∼ Dno comes from how the function is defined over the action188

variables in each case. The values of the function on the action subcubes are carefully defined189

in such a way as to make it impossible for a testing algorithm to distinguish a “yes”-function190

from a “no”-function unless it manages to query two inputs x, x′ which (i) both have their191

control variables set in such a way as to uniquely satisfy the same term Ti, but (ii) differ on192

“many coordinates” among the action variables: essentially, one of x, x′ must have its vector193

of action bits landing in the top portion of the action subcube while the other one must have194

its vector of action bits landing in the bottom portion. The crux of the non-adaptive lower195

bound of [16] is the tension between requirements (i) and (ii): if x and x′ differ in too many196

coordinates then it is difficult to satisfy (i), but if they differ in too few coordinates then it is197

difficult to satisfy (ii).198

In the setting of monotonicity testing, the [16] construction’s yes-functions are only close199

to, but not actually, monotone; their non-monotonicity essentially comes from assignments200

for which the vector of action bits lands in the middle portion of the action subcube. This201

is why the mildly exponential lower bound proved in that paper only holds for tolerant202

monotonicity testing (indeed, the existence of highly efficient monotonicity testers [30, 19, 34]203

implies that quantitatively strong lower bounds such as those of [16] are impossible for204

“standard” non-tolerant monotonicity testing). The main component of our lower bound for205

intersectingness in this paper is a careful modification of the [16] construction; we show that,206

perhaps surprisingly, for the modification that we introduce, the yes-functions have satisfying207

assignments which form a perfectly intersecting family, while the no-functions are far from208

intersecting. We thus obtain a quantitatively strong lower bound, similar to [16], already for209

4 The earlier work [37] used a different function over the control variables instead of a Talagrand DNF.

ITCS 2024

29:6 Testing Intersecting and Union-Closed Families

the “standard” testing problem of intersectingness rather than the more challenging tolerant210

version.211

Our 2Ω(
√

n log(1/ε))-query one-sided lower bound for intersectingness, Theorem 3, takes a212

related but somewhat simpler approach. In a nutshell, since for one-sided lower bounds it is213

not necessary to give a yes-distribution and establish indistinguishability of yes-functions214

and no-functions, it turns out that we can dispense with the Talagrand DNF part of the215

construction. Instead, our construction “hides” a randomly chosen “small” set of action bits216

in a simpler way (see Section 3.2 for details); since we do not need to use the Talagrand217

DNF, it turns out that we can have the “small” set of action bits be larger than in our218

intersectingness lower bound, and this lets us obtain a quantitatively stronger lower bound.219

Finally, our nΩ(log(1/ε))-query two-sided lower bound for union-closedness, like our two-220

sided intersectingness lower bound, uses the framework of control bits and action bits with a221

Talagrand DNF over the control bits. This construction uses a somewhat different definition222

of the yes- and no- functions over the action bits, which now ensures that a testing algorithm223

can distinguish yes-functions from no-functions only if it manages to query two inputs whose224

control variables satisfy the same term Ti but whose action variables are set to two particular225

antipodal assignments in the action cube. For this construction we use many fewer action bits226

than in the earlier construction (and the quantitative lower bound obtained is correspondingly227

weaker than the lower bound of the earlier construction); this is because in our no-functions,228

the distance to union-closedness is inverse exponential in the dimension of the action cubes.229

Algorithms. Our algorithms for testing intersectingness and for testing union-closedness230

are similar at a high level; for conciseness we only describe the algorithm for testing union-231

closedness.232

As is standard for testing algorithms, we consider the two possible scenarios. In the233

“yes" case, the given function f is union-closed. In the “no" case, the function f is ε-far in234

Hamming distance from any union-closed function.235

At a conceputal level, the first simplification is as follows: given f , we can define a236

truncated version of f , call it ftrunc as follows: for any x such that |x| ∈ [n/2− T, n/2 + T]237

where T =
√

n log(4/ε), ftrunc(x) = f(x). If |x| > n/2 + T , we set ftrunc(x) = 1 and if238

|x| < n/2− T , we set ftrunc(x) = 0. In other words, ftrunc is obtained by keeping it the same239

as f in the middle 2T layers; otherwise, it is set to 1 in the layers above the middle layers240

and 0 below it. Since all but ε/2 fraction of the mass of the discrete cube lies in the layers241

[n/2− T, n/2 + T], the following is immediate: (i) if f is union-closed, so is ftrunc; (ii) if f is242

ε-far from union-closed, ftrunc is also ε/2-far from union-closed. The above property of ftrunc243

ensures that instead of working with f , the algorithm can instead work with ftrunc.244

Now, the main idea behind the algorithm is to search for violations of union-closedness. In245

this sense, our algorithm is similar in spirit to algorithms for monotonicity testing [30, 11, 34]246

which search for violations of monotonicity. In particular, we call a sequence (x1, . . . , xk, x1 ∪247

. . . ∪ xk) a union-closed violating tuple if f(x1) = . . . = f(xk) = 1 and f(x1 ∪ . . . ∪ xk) = 0 –248

we will abbreviate this as a UC-violating tuple. Note that if the algorithm finds a union-closed249

violating tuple in f , then it is a certificate for f not being union-closed.250

The main technical lemma we prove is that if f is ε-far from union closed, then it has251

at least ε · 2n UC-violating tuples which are end-disjoint. This means that for any two252

such tuples (x1, . . . , xk, x1 ∪ . . . ∪ xk) and (y1, . . . , yk, y1 ∪ . . . ∪ yk), the last coordinate253

(x1 ∪ . . .∪xk) 6= (y1 ∪ . . .∪ yk). The proof of this lemma is quite simple – essentially, we show254

that the function f can be changed to a union closed function by only modifying it at points255

which are the last coordinate of a UC-violating tuple. Given this lemma, it follows that f256

must have at least ε · 2n end-disjoint UC-violating tuples. Since f and ftrunc are ε/2-close to257

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:7

each other, it follows that ftrunc also has at least ε/2 · 2n end-disjoint UC-violating tuples.258

We next observe that a UC-violating tuple (x1, . . . , xk, x1 ∪ . . . ∪ xk) for ftrunc is such259

that (i) for each 1 ≤ i ≤ k, ||xi| − n/2| ≤ T ; (ii) ||x1 ∪ . . . ∪ xk| − n/2| ≤ T . Let us call a260

point x = x1 ∪ . . . ∪ xk a witness if there is a UC-violating tuple (x1, . . . , xk, x1 ∪ . . . ∪ xk)261

satisfying the above conditions. From the fact that ftrunc also has at least ε/2 ·2n end-disjoint262

UC-violating tuples, it follows that there are at least ε/2 · 2n points which are a witness.263

Our algorithm now proceeds as follows: We sample a random point x ∈ {0, 1}n conditioned264

on ||x| − n/2| ≤ T . Next, we query f on x as well as all the points in the set x↓ := {y ≤265

x : ||y| − n/2| ≤ T}. We then check if there are any points y1, . . . , yk ∈ x↓ such that266

(y1, . . . , yk, x) is a UC-violating tuple. Note that if f is union-closed, then the algorithm is267

certainly not going to find a UC-violating tuple, i.e., it has perfect completeness. On the268

other hand, if f is at least ε-far from union closed, then the point x sampled above is a269

witness with probability ε/2. If x is a witness then since we are querying every point in x↓,270

the algorithm is going to find a UC-violating tuple.271

Thus, repeating the above procedure say 100/ε times, the algorithm will still have perfect272

completeness. On the other hand, if f is ε-far from union-closed, it is going to find a273

UC-violating tuple with probability at least 0.9. The query complexity of the algorithm is274

given by O(1/ε) · |x↓|. As |x↓| is uniformly bounded by nO(
√

n log(1/ε)), this establishes the275

upper bound on the query complexity of our algorithm. (While the algorithm described276

above is not a “triple tester,” an easy modification of the algorithm and its analysis yields a277

triple tester with similar query complexity.)278

1.3 Related Work279

As mentioned earlier, some of the technical specifics of our lower bound constructions build280

off of the tolerant testing lower bounds of [37] and [16]; in particular, the idea, first introduced281

by [37], of “hiding” a set of action variables among the entire set of input variables was a282

significant influence on the lower bound constructions of the current paper. More generally,283

the entire broad literature on monotonicity testing of Boolean functions (i.e. testing upward-284

closed set systems) provided the conceptual backdrop for a study of the testability of other285

types of combinatorial finite set systems.286

We note that the recent work of Filmus et al. [25] (see also [14]) studies the problem of287

“AND-testing,” which at first glance may seem to be related to the problems we consider.288

The “AND-property” is that of satisfying the implication289

z = x ∩ y =⇒ f(z) = f(x) ∧ f(y) (4)290

for every x, y ∈ {0, 1}n; the main result of [25], roughly speaking, is that the only functions291

which have a high probability of satisfying Equation (4) for uniform random x, y are functions292

which are close to being either a constant-function or an AND of some subset of the n input293

variables.294

Despite the superficial resemblance between Equation (3) and Equation (4), it turns out295

that the AND-property and the properties we consider are of quite different character from296

each other. To see this, observe that the only functions f : {0, 1}n → {0, 1} which perfectly297

satisfy the AND-property are constant functions and AND-functions; hence there are only298

O(2n) many possible yes-functions, and every yes-function must have a very precise and rigid299

structure (and a very simple description). This is quite different from the intersectingness and300

union-closedness properties we study; each of these properties has 22Θ(n) many yes-functions,301

and hence yes-functions do not need to be so highly structured (and by standard counting302

ITCS 2024

29:8 Testing Intersecting and Union-Closed Families

arguments almost all yes-functions require highly complex descriptions). As another point of303

difference, the [25] result mentioned above implies that there is an Oε(1)-query non-adaptive304

one-sided tester for the AND-property. In contrast, our Theorem 4 shows that even two-sided305

non-adaptive testers for the property of union-closedness must have a query complexity which306

not only depends on n, but in fact is at least nΩ(log(1/ε)).307

2 Preliminaries308

We will write309 (
[n]
k

)
:=
{

S ⊆ [n] : |S| = k
}

310

to denote the collection of all k-element subsets of [n], and for a subset I ⊆ [n] we will311

write
([n]

I

)
to denote ∪j∈I

([n]
j

)
. We will denote the 0/1-indicator of an event A by 1{A}.312

All probabilities and expectations will be with respect to the uniform distribution over the313

relevant domain unless stated otherwise. We use boldfaced letters such as x, f , and A314

to denote random variables (which may be real-valued, vector-valued, function-valued, or315

set-valued; the intended type will be clear from the context). We write x ∼ D to indicate316

that the random variable x is distributed according to probability distribution D.317

I Notation 5. Given a string x ∈ {0, 1}n and a set A ⊆ [n], we write xA ∈ {0, 1}A to denote318

the |A|-bit string obtained by restricting x to coordinates in A, i.e. xA := (xi)i∈A, and we319

write |x| to denote the number of 1’s in x.320

We will frequently view strings in {0, 1}n as subsets of [n] and vice versa; i.e. for321

x, y ∈ {0, 1}n we refer to “x ∩ y” to mean the string in {0, 1}n which has a 1 in coordinate i322

iff xi = yi = 1.323

Given two Boolean functions f, g : {0, 1}n → {0, 1}, we define the distance between324

f and g (denoted by dist(f, g)) to be the normalized Hamming distance between f and325

g, i.e. dist(f, g) := Prx∼{0,1}n

[
f(x) 6= g(x)

]
. A property P is a collection of Boolean326

functions; we say that a function f : {0, 1}n → {0, 1} is ε-far from the property P if327

dist(f,P) := ming∈P dist(f, g) ≥ ε.328

2.1 Lower Bounds for Testing Algorithms329

Our query-complexity lower bounds for testing algorithms are obtained via Yao’s minimax330

principle [42], which we recall below. (We remind the reader that an algorithm for the331

problem of ε-property testing is correct on an input function f provided that it outputs “yes”332

if f perfectly satisfies the property and outputs “no” if f is ε-far from the property; if the333

distance to the property is strictly between 0 and ε then the algorithm is correct regardless334

of what it outputs.)335

I Theorem 6 (Yao’s principle). To prove a q-query lower bound on the worst-case query336

complexity of any non-adaptive randomized testing algorithm, it suffices to give a distribution337

D on instances such that for any q-query non-adaptive deterministic algorithm A, we have338

Pr
f∼D

[
A is correct on f

]
≤ 99.9%.339

Here 99.9% can be replaced by any universal constant in [0, 1).340

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:9

2.2 Talagrand’s Random DNF341

We define a useful distribution over Boolean functions that will play a central role in the342

proofs of our lower bounds. The construction is a slight generalization of a distribution343

over DNF (disjunctive normal form) formulas that was constructed by Talagrand [41]. The344

generalization we consider, which was also studied in [16], is that we allow a parameter ε to345

control the size of each term and the number of terms; the original construction corresponds346

to ε = 1.347

I Definition 7 (Talagrand’s random DNF). Let ε ∈ (0, 1] and let L := 0.1 · 2
√

n/ε. Let348

Talagrand(n, ε) be the following distribution on ordered tuples of L monotone terms: for each349

i = 1, . . . , L, the i-th term is obtained by independently drawing a set Ti ⊆ [n] where each set350

Ti is obtained by drawing
√

n/ε elements of [n] independently and with replacement. We use351

T to denote the ordered tuple T = (T1, · · · , TL) which is a draw from Talagrand(n, ε). Then352

a “Talagrand DNF” is given by353

f(x) =
L∨

`=1

 ∧
j∈T`

xj

.354

It is clear that any Talagrand DNF obtained by a draw from Talagrand(n, ε) is a monotone355

function.356

We will frequently view Ti ⊆ [n] as the term
∧

j∈Ti
xj , where we say Ti(x) = 1 if and357

only if xj = 1 for all j ∈ Ti. We may also write T = (T1, · · · , Tk) to represent a DNF, which358

is defined by the disjunction of the terms Ti. We will often be interested in the probability359

of a random input x ∼ {0, 1}n satisfying a unique term Ti in a Talagrand DNF; towards360

this, we introduce the following notation:361

I Notation 8. Given a DNF T = (T1, · · · , Tk) where each Ti is a term, we define the362

collection of terms of T satisfied by x, written ST (x), as ST (x) :=
{

` ∈ [k] : T`(x) = 1
}

.363

The following claim shows that on average over the draw of T ∼ Talagrand(n, ε), an Ω(ε)364

fraction of strings from {0, 1}n satisfy a unique term in the Talagrand DNF (i.e. |ST (x)| = 1365

for Ω(ε)-fraction of x ∈ {0, 1}n). We note that an elegant argument of Kane [33] gives this366

for ε = Θ(1), but this argument does not extend to the setting of small ε which we require.367

The proof of the following appears in [16] and is repeated in the full version of this paper.368

I Proposition 9. For ε ∈ (0, 1], let T ∼ Talagrand(n, ε) be as in Definition 7. Then369

Pr
T ,x

[
|ST (x)| = 1

]
= Ω

(
max{ε, 1/

√
n}
)

.370

3 Lower Bounds for Testing Intersecting Families371

We now present our lower bound for two-sided non-adaptive testers for intersecting families.372

As mentioned earlier, the construction builds closely on the earlier constructions of [37, 16]373

which were used in those papers for tolerant testing lower bounds.374

Let ε ∈ (0, c] be a parameter with c > ε ≥ c0/
√

n for some sufficiently large constant375

c0 and sufficiently small constant c > 0. We start with some objects that we need in the376

construction of the two distributions Dyes and Dno. We partition the variables x1, · · · , xn377

into control variables and action variables as follows: Let a :=
√

n/ε and let A ⊆ [n] be378

a fixed subset of [n] of size a. Let C := [n] \ A. We refer to the variables xi for i ∈ C as379

ITCS 2024

29:10 Testing Intersecting and Union-Closed Families

control variables and the variables xi for i ∈ A as action variables. We first define two pairs380

of functions over {0, 1}A on the action variables as follows (we will use these functions later381

in the definition of Dyes and Dno):382

g(+,0)(xA) =


0 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −
√

a, a
2 +
√

a];

0 |xA| < a
2 −
√

a.

g(+,1)(xA) =


1 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −
√

a, a
2 +
√

a];

1 |xA| < a
2 −
√

a.

383

and384

g(−,0)(xA) =


1 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −
√

a, a
2 +
√

a];

0 |xA| < a
2 −
√

a.

g(−,1)(xA) =


0 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −
√

a, a
2 +
√

a];

1 |xA| < a
2 −
√

a.

385

Now we are ready to define the distributions Dyes and Dno over f : {0, 1}n+2 → {0, 1}.386

We follow the convention that random variables are in boldface and fixed quantities are in387

the standard typeface.388

A function fyes ∼ Dyes is drawn as follows. We start by sampling a subset A ⊆ [n]389

of size a uniformly at random and let C := [n] \ A. Note that there are in total n − a390

control variables. We let L := 0.1 · 2
√

n−a/ε and draw an L-term monotone Talagrand391

DNF T ∼ Talagrand(n − a, ε) on C as described in Definition 7. Finally, we sample L392

random bits b ∈ {0, 1}L uniformly at random. Given A, T and b, fyes is defined by letting393

fyes(x, 0, 0) = fyes(x, 1, 1) = 0 for all x ∈ {0, 1}n, and letting394

fyes(x, 0, 1) =


0 |ST (xC)| 6= 1;

g(+,0)(xA) ST (xC) = {`} and b` = 0;

g(+,1)(xA) ST (xC) = {`} and b` = 1.

395

fyes(x, 1, 0) =


0 |ST (xC)| 6= 1;

g(+,1)(xA) ST (xC) = {`} and b` = 0;

g(+,0)(xA) ST (xC) = {`} and b` = 1.

396

397

(Recall that x is the bitwise complement of string x).398

To draw a function fno ∼ Dno, we sample A, T and b exactly as in the definition of Dyes399

above, but we use g(+,b) and g(−,b) functions in a different way than in the Dyes functions400

described above. In more detail, fno is defined by fno(x, 0, 0) = fno(x, 1, 1) = 0 for all401

x ∈ {0, 1}n, and402

fno(x, 0, 1) =


0 |ST (xC)| 6= 1;

g(−,0)(xA) ST (xC) = {`} and b` = 0;

g(−,1)(xA) ST (xC) = {`} and b` = 1.

403

fno(x, 1, 0) =


0 |ST (xC)| 6= 1;

g(−,0)(xA) ST (xC) = {`} and b` = 0;

g(−,1)(xA) ST (xC) = {`} and b` = 1.

404

405

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:11

See Figures 1 and 2 for illustrations of the yes- and no- functions.406

The proofs of the following lemmas are deferred to the full version:407

I Lemma 10. Every function fyes in the support of Dyes is intersecting.408

I Lemma 11. With probability at least 0.01, fno ∼ Dno is Ω(ε)-far from intersecting.409

3.1 Indistinguishability of Dyes and Dno410

In this section we establish the indistinguishability of the distributions Dyes and Dno. Specific-411

ally, for any nonadaptive deterministic algorithm A with query complexity q = 20.1n1/4/
√

ε,412

we show that413

Pr
fyes∼Dyes

[A accepts fyes] ≤ Pr
fno∼Dno

[A accepts fno] + on(1). (5)414

Our arguments closely follow the approach for proving indistinguishability that was used in415

[16].416

We begin with some simplifying assumptions: for any point u ∈ {0, 1}n+2 that is queried417

by the algorithm A we assume that un+1 6= un+2 (since otherwise the answer to the query418

must be 0), and we assume that for each point u ∈ {0, 1}n+2 that is queried by A the point u419

is also queried as well (since this only affects the query complexity by at most a factor of two).420

So the set of q query points of A can be characterized by a set QA := {x1, · · · , xq} ⊆ {0, 1}n,421

where both (xi, 0, 1) and (xi, 1, 0) are queried for each i ∈ [q].422

A crucial step of the argument is that the only way for A to distinguish Dyes and Dno is to423

query two points xi, xj with ST (xi
C) = ST (xj

C) = {`} for some ` ∈ [L] such that one is in the424

top region and the other is in the bottom region of the action cube, namely |xi
A| > a

2 +
√

a425

and |xj
A| < a

2 −
√

a. We let Bad denote this event (that QA contains two points xi, xj
426

satisfying the above conditions).427

Formally, let us write A(f) to denote the sequence of q answers to the queries made by428

A to f . We write viewA(Dyes) (respectively viewA(Dno)) to be the distribution of A(f) for429

f ∼ Dyes (respectively f ∼ Dno). The following claim asserts that conditioned on Bad not430

happening, the distributions viewA(Dyes|Bad) and viewA(Dno|Bad) are identical.431

I Lemma 12. viewA(Dyes|Bad) = viewA(Dno|Bad).432

Proof. The distributions of the partition of [n] into control variables C and action variables433

A are identical for Dyes and Dno. So fix an arbitrary partition C and A. As the distribution434

of the Talagrand DNF T ∼ Talagrand(m, ε) is also identical, we fix an arbitrary T .435

We divide the points QA into disjoint groups according to xC . More precisely, for every436

` ∈ [L], let QA(`) = {xi | ST (xi
C) = {`}}. The points outside

⋃
`∈[L] QA(`) are not important437

as f will be identically 0 for both Dyes and Dno.438

Let f`(x) denote the function f(x, 0, 1) restricted to points in QA(`), and let f ′`(x)439

similarly denote the function f(x, 1, 0) restricted to inputs x ∈ QA(`). Note that for a fixed440

` ∈ [L], the functions f`(x) and f ′`(x) only depend on the random bit b`. As a result, the441

distributions of functions f`(x) and f ′`(x) for different ` are independent.442

So fix an arbitrary ` ∈ [L]. The condition that Bad does not happen implies that either443

|xA| > a/2 +
√

a for all x ∈ QA(`) or |xA| < a/2 −
√

a for all x ∈ QA(`), which holds for444

both Dyes and Dno. So we have f ′`(x) = 1 − f`(x) for all x ∈ QA(`), which also holds for445

both Dyes and Dno.446

Finally, noticing that the distribution of f`(x) is simply a uniform random bit b` for both447

Dyes and Dno, this finishes the proof. J448

ITCS 2024

29:12 Testing Intersecting and Union-Closed Families

0

0

T`

If b` = 1:

1

0

1

If b` = 0:

0

0

0

xC

0

0
T`

If b` = 1:

0

0

0

If b` = 0:

1

0

1

xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

10 01

11

00

(y1, y2) ≡ {0, 1}2

Figure 1 A draw of fyes ∼ Dyes. All our hypercubes adopt the convention that the bottom-most
point is (0, . . . , 0) and the topmost point is (1, . . . , 1), and horizontal lines denote Hamming levels.
Given an input (x, y1, y2) ∈ {0, 1}n × {0, 1}2 we follow the arrows starting with {0, 1}2 in the center.
The cross-hatched region in the control cube {0, 1}C corresponds to inputs satisfying a unique
Talagrand DNF term T`. The pink regions correspond to 0 assignments and blue regions to 1
assignments.

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:13

0

0

T`

If b` = 1:

0

0

1

If b` = 0:

1

0

0

xC

0

0
T`

If b` = 1:

0

0

1

If b` = 0:

1

0

0

xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

10 01

11

00

(y1, y2) ≡ {0, 1}2

Figure 2 A draw of fno ∼ Dno. Our conventions are as in Figure 1.

ITCS 2024

29:14 Testing Intersecting and Union-Closed Families

Next, we show that the probability that Bad happens is small (recall that q = 20.1n1/4/
√

ε):449

I Lemma 13. For any set of points QA = {x1, · · · , xq} ⊆ {0, 1}n, Pr[Bad] = on(1).450

Proof. Fix any two points x, y ∈ {0, 1}n. We will upper bound the probability that ST (xC) =451

ST (yC) = {`} for some ` ∈ [L] and |xA| < a
2 −
√

a and |yA| > a
2 +
√

a. Call this specific452

event Badxy.453

Let I01 be the set of indices i such that xi = 0 and yi = 1. On the one hand, to have454

Badxy happen, we must have that455

|I01 ∩A| ≥ 2
√

a. (�)456

On the other hand, to have ST (xC) = ST (yC) = {`}, we must have that457

There exists an ` ∈ [L] such that ST (x) = ST (y) = {`}. (?)458

So we have Pr[Badxy] ≤ min(Pr[�],Pr[?]); we will show that min(Pr[�],Pr[?]) ≤ 2−0.05n1/4/
√

ε.459

Let t = |I01|. Then by the random choice of the coordinates defining the action cube A, we460

have461

Pr[�] ≤ Pr
[

Bin
(

a,
t

n− a

)
≥ 2
√

a

]
≤
(

a

2
√

a

)
·
(

t

n− a

)2
√

a

462

≤
(

ea

2
√

a

)2
√

a

·
(

t

n− a

)2
√

a

≤

(
et
√

a

2(n− a)

)2
√

a

≤

(
et
√

a

2(1− 1
c0

)n

)2
√

a

.463

464

To bound Pr[?], we use465

Pr[?] = Pr[ST (x) = ST (y) & ∃` ∈ [L] such that ST (y) = {`}]466

≤ Pr[ST (x) = ST (y) | ∃` ∈ [L] such that ST (y) = {`}]467

≤ max
`∈[L]

Pr[ST (x) = ST (y) | ST (y) = {`}]468

≤
(

1− t

n− a

)√n−a/ε

≤ e−t/(ε
√

n−a) ≤ e−t/(ε
√

n),469

470

where the last line above is by the definition of the random process T ∼ Talagrand(n− a, ε).471

When t ≤ 1
4n3/4/

√
ε, we have Pr[�] ≤ 2−n1/4/

√
ε. When t ≥ 1

4n3/4/
√

ε, we have Pr[?] ≤472

2−0.25n1/4/
√

ε.473

So overall we have

Pr[Badxy] ≤ min(Pr[�],Pr[?]) ≤ 2−0.25n1/4/
√

ε.

By a union bound for all pairs of points of QA, we know that

Pr[Bad] ≤ 2−0.25n1/4/
√

ε ·
(

20.1n1/4/
√

ε
)2

= on(1),

and the lemma is proved. J474

Now we are ready to prove Theorem 2.475

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:15

Proof of Theorem 2. Let D = 1
2{Dyes +Dno}. Then we have476

Pr
f∼D

[A is correct on f] = 1
2

(
Pr

fyes∼Dyes
[A is correct on fyes] + Pr

fno∼Dno
[A is correct on fno]

)
477

= 1
2

(
Pr

fyes∼Dyes
[A accepts fyes] + Pr

fno∼Dno
[A is correct on fno]

)
(6)

478

≤ 1
2

(
Pr

fyes∼Dyes
[A accepts fyes] + 0.99 + 0.01 Pr

fno∼Dno
[A rejects fno]

)
(7)

479

= 1
2

(
Pr

fyes∼Dyes
[A accepts fyes] + 1− 0.01 Pr

fno∼Dno
[A accepts fno]

)
480

≤ 199
200 + 1

200

(
Pr

fyes∼Dyes
[A accepts fyes]− Pr

fno∼Dno
[A accepts fno]

)
481

= 199
200 + Pr[Bad]

200

(
Pr

fyes∼Dyes|Bad
[A accepts fyes]− Pr

fno∼Dno|Bad
[A accepts fno]

)
(8)

482

≤ 199
200 + Pr[Bad]

200483

≤ 199
200 + on(1), (9)484485

where Equation (6) is because of Lemma 10, Equation (7) is because fno is not ε-far486

from intersecting with probability at most 0.99 thanks to Lemma 11, Equation (8) is from487

Lemma 12, and Equation (9) follows from Lemma 13. Theorem 2 now follows from Yao’s488

minimax principle (Theorem 6). J489

3.2 A 2Ω(
√

n log(1/ε)) Lower Bound for One-Sided Non-adaptive Testers490

of Intersectingness491

In this section we prove Theorem 3, by giving a 2Ω(
√

n log(1/ε))-query complexity lower492

bound against any non-adaptive and one-sided algorithm testing ε-intersectingness. This493

almost matches the query complexity of our nO(
√

n log(1/ε))/ε-query one-sided non-adaptive494

algorithm even for constant ε.495

Since we are working against one-sided algorithms, it suffices for us to describe a dis-496

tribution Dno over f : {0, 1}n+2 → {0, 1} of “no”-functions (functions that are far from497

intersecting). Let K =
√

n ln(1/ε). A draw from our Dno distribution is obtained as follows:498

first, we sample a subset A ⊆ [n] of size a = n/100 uniformly at random (looking ahead,499

100 will be an important constant later in the proof). Then fno ∼ Dno is defined by letting500

fno(x, 0, 0) = fno(x, 1, 1) = 0 for all x ∈ {0, 1}n, and501

fno(x, 0, 1) = fno(x, 1, 0) =



0 |x| 6∈ [n/2− 10K, n/2 + 10K];

0 |xA| > n/200 + K;

0 |xA| ∈ [n/200−K, n/200 + K];

1 |xA| < n/200−K.

502

ITCS 2024

29:16 Testing Intersecting and Union-Closed Families

The constant “10” above will also be important vis-a-vis the “100” in the definition of the503

size of A.504

We first show that every fno ∼ Dno is εO(1)-far from intersecting (observe that this505

suffices for our claimed lower bound, since the difference between ε and εO(1) is swallowed506

up by the log and the big-Omega):507

I Lemma 14. Every fno in the support of Dno is εO(1)-far from intersecting.508

Proof. Fix an arbitrary A ⊆ [n] with size a = n/100, which determines a function fno in the509

support of Dno. For the convenience of notations, we use C := [n] \A.510

By the same argument as Claim 12 from the full version, we know for any 0 ≤ w < n/200,
the bipartite graph (Pw, Pn/100−w) with poset relations as edges has a perfect matching.
Next, we use the Chernoff bound (which upper bounds the lower tail of the Binomial
distribution) and a “reverse Chernoff bound” (which lower bounds the lower tail of the
Binomial distribution) to show that

|{x ∈ {0, 1}A | |x| ∈ [n/200− 5K, n/200−K]}| ≥ (ε1800 − ε5000)2a = Ω(ε1800) · 2a.

To this end, for w ∈ [0, n/200], let P≤w to denote {x ∈ {0, 1}A | |x| ≤ w}. Then it suffices
to show that

|P≤n/200−5K | ≤ ε5000 · 2a,

which follows from the standard Chernoff bound, and

|P≤n/200−K | ≥ ε1800 · 2a,

which follows from the following “reverse Chernoff bound:”511

I Lemma 15 ([35], Lemma 4). Let X be the sum of k independent 0/1 random variables.
For any K ∈ (0, pk/2] and p ∈ [0, 1/2] such that K2/(pk) ≥ 3, if each random variable is 1
with probability at most p, then

Pr[X ≤ pk −K] ≥ exp(−9K2/(pk)).

Next, consider any x ∈ {0, 1}n such that |x| ∈ [n/2 − 10K, n/2] and |xA| ∈ [n/200 −512

5K, n/200 − K]. Let y ∈ {0, 1}n be such that yC = xC and yA is the matched point513

of xC in the perfect matching. Then we have |y| ∈ [n/2 − 10K, n/2 + 10K] and |yA| ∈514

[n/200 + K, n/200 + 5K].515

Note that for any such pair (x, y) we have x ≤ y, f(x, 0, 1) = 1 and f(y, 1, 0) = 1,516

which serves as an I-violating pair. Since the edges in a perfect matching are vertex-disjoint,517

we have the number of I-violating pairs is at least the number of x ∈ {0, 1}n such that518

|x| ∈ [n/2− 10K, n/2] and |xA| ∈ [n/200− 5K, n/200−K].519

We have shown that

|{x ∈ {0, 1}A | |x| ∈ [n/200− 5K, n/200−K]}| = Ω(ε1800) · 2a.

Note also that

|{x ∈ {0, 1}C | |x| ∈ [99n/200− 5K, 99n/200]}| = Ω(1) · 2n−a.

This finishes the proof. J520

Below we show that for any nonadaptive deterministic query algorithm A with query521

complexity q = 20.9
√

n log(1/ε) the probability that A succeeds in finding a violation of522

intersectingness is on(1); this proves Theorem 3.523

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:17

Proof of Theorem 3. We establish the following lemma, from which the theorem follows by524

a straightforward union bound:525

I Lemma 16. For any two points x, y ∈ {0, 1}n such that |x|, |y| ∈ [n/2− 10K, n/2 + 10K]
and x ≤ y,

Pr
A

[|x ∩A| < n/200−K and |y ∩A| > n/200 + K] ≤ 2−2K .

Proof. Let I be the indices i such that xi = 0 and yi = 1 and let t = |I|. Then we know526

0 ≤ t ≤ 20K. On the other hand, in order for the event |x ∩A| < n/200−K and |y ∩A| >527

n/200 + K to happen, the set A has to hit at least 2K many indices in I. So528

Pr
A

[|x ∩A| < n/200−K and |y ∩A| > n/200 + K]529

≤ Pr
[
Bin

(
n/100,

20K

0.99n

)
≥ 2K

]
≤
(

n/100
2K

)
·
(

20K

0.99n

)2K

530

≤
(

en/100
2K

)2K

·
(

20K

0.99n

)2K

531

≤
(

10e

99

)2K

≤ 2−2K ,532

533

completing the proof. J534

By a union bound over all pairs of query strings where q = 20.9K = 20.9
√

n log(1/ε), it follows535

that the probability that A succeeds in finding a violation of intersectingness is on(1). Since536

a one-sided tester must find such a violation in order to reject, this finishes the proof. J537

4 Lower bounds for Testing Union-Closed Families538

In this section, we prove a nΩ(log(1/ε))-query lower bound against non-adaptive algorithms539

for testing union-closedness (with either one-sided or two-sided error). We describe the hard540

distributions in Section 4.1 and then prove Theorem 4 in Section 4.2.541

4.1 The Dyes and Dno Distributions542

Our construction of the hard distributions Dyes and Dno are inspired by the constructions543

for the lower bound against intersectingness testing in Section 3; in particular, our hard544

functions will also comprise of a truncated Talagrand random DNF on a set of “control bits”545

C, and then a function tailored to the union-closedness property on a set of “action bits” A.546

We illustrate both Dyes and Dno in Figure 3, and start by describing the Dyes distribution:547

I Definition 17. Given ε > 0, a draw of a Boolean function fyes : {0, 1}n → {0, 1} from the548

distribution Dyes := Dyes(n, ε) is obtained as follows:549

1. Draw a random set of a := log(1/ε) coordinates A ⊆ [n], i.e.550

A ∼
(

[n]
a

)
, and set C := [n] \A.551

Let c := |C| = n− a.552

2. Let L := 0.1 · 2
√

c and draw an L-term monotone Talagrand DNF T ∼ Talagrand(c, 1) as553

defined in Definition 7 on {0, 1}C .554

3. For each ` ∈ [L], independently draw a uniformly random a-bit string s` ∈ {0, 1}A.555

ITCS 2024

29:18 Testing Intersecting and Union-Closed Families

0

1

T`

s`
xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

(a) A draw of fyes ∼ Dyes

0

1

T`

If b` = 1:

r`

r`

If b` = 0:

0

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

xC

(b) A draw of fno ∼ Dno

Figure 3 An illustration of the yes- and no-distributions for the union-closedness lower bound.
Our conventions are as in Figure 1. In (b), if b` = 1 then as long as r` /∈ {0a, 1a} the action cube
{0, 1}A will contain a single violation of union-closedness.

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:19

4. Output the function556

fyes(xC , xA) :=


1 |ST (xC)| ≥ 2
1{xA = s`} ST (xC) = {`}
0 |ST (xC)| = 0

557

where ST is as defined in Notation 8.558

It is straightforward to verify that functions drawn from Dyes are indeed union-closed:559

B Claim 18. Every function fyes in the support of Dyes is union-closed.560

We now turn to a description of the Dno distribution.561

I Definition 19. Given ε > 0, a draw of a Boolean function fno : {0, 1}n → {0, 1} from the562

distribution Dno := Dno(n, ε) is obtained as follows:563

1. Draw a random set of a := log(1/ε) coordinates A ⊆ [n], i.e.564

A ∼
(

[n]
a

)
, and set C := [n] \A.565

Let c := |C| = n− a.566

2. Let L := 0.1 · 2
√

c and draw an L-term monotone Talagrand DNF T ∼ Talagrand(c, 1) as567

defined in Definition 7 on {0, 1}C .568

3. For each ` ∈ [L], independently draw a uniformly random a-bit string r` ∈ {0, 1}A as569

well as a uniformly random bit b` ∈ {0, 1}.570

4. Output the function571

fyes(xC , xA) :=


1 |ST (xC)| ≥ 2
b` · 1

{
xA ∈ {r`, r`}

}
ST (xC) = {`}

0 |ST (xC)| = 0
572

where r` := 1a − r` is the antipode of r`.573

As illustrated by Figure 3, we associated each Talagrand term Ti with a uniformly random574

bit b`. If b` = 1 then the action cube comprises a single union-closedness violation,5 and if575

b` = 0 then the action cube has zero satisfying assignments. This ensures that in expectation,576

the measure of a function drawn from Dno is indistinguishable from that of a function drawn577

from Dyes. The proof of the following is deferred to the full version:578

B Claim 20. With probability at least 0.001, a function fno ∼ Dno := Dno(n, ε) satisfies579

dist(fno, g) ≥ Ω(ε) for every union-closed function g : {0, 1}n → {0, 1}.580

4.2 Indistinguishability of the Hard Distributions581

In this section, we establish the indistinguishability of the distributions Dyes and Dno and582

prove Theorem 4. Our proof will closely follow the approach used in Section 3.1 to prove a583

lower bound against intersectingness testers.584

5 This is with the exception of r` = 0a or 1a; in this case r` ∪ r` = 1a and so the function on the action
bits will indeed be union-closed. Note, however, that this only happens with probability 1/2a.

ITCS 2024

29:20 Testing Intersecting and Union-Closed Families

As before, we will write QA := {x1, . . . , xq} ⊆ {0, 1}n for the set of points queried by the585

algorithm. The argument will crucially rely on the fact that the only way for A to distinguish586

Dyes and Dno is to draw two antipodal points from the same action cube, i.e. if there exist587

xi and xj such that ST (xi
C) = ST (xj

C) = {`} for some ` ∈ [L] and xi
A and xj

A are antipodes;588

as before, we write Bad to denote this event. With viewA defined as in Section 3.1, we have589

the following:590

I Lemma 21. We have viewA(Dyes|Bad) = viewA(Dno|Bad).591

Proof. As before the distributions of the partition of [n] into C tA are identical for both592

Dyes and Dno, so we may fix an arbitrary partition. As the distribution of the Talagrand593

DNF T ∼ Talagrand(c, 1) is also identical, we can fix an arbitrary T . We define594

QA(`) :=
{

xi : ST (xi
C) = {`}

}
.595

Note that the points outside
⋃

`∈[L] QA(`) do not matter as the the function is identically 0596

or 1 for both Dyes and Dno. We will abuse notation and view QA(`) as a subset of the action597

cube {0, 1}a corresponding to the Talagrand term T`.598

We will write f` for the function restricted to inputs in QA(`), and will write A(f`) for599

the sequence of answers to the queries made by A to f` (i.e. the sequence of answers to600

queries by A on inputs in QA(`)). We will write viewA,`(Dyes) (respectively viewA,`(Dno)) to601

be the distribution of A(f`) for f` ∼ Dyes (respectively f` ∼ Dno). Since QA is partitioned602

as QA =
⊔

`∈[L] QA(`), note that in order to show that viewA(Dyes|Bad) = viewA(Dno|Bad),603

it suffices to show that viewA,`(Dyes|Bad) = viewA,`(Dno|Bad); this is what we will establish604

below.605

Fixing an action cube {0, 1}a (which is indexed by ` ∈ [L]), note that the actions cubes606

in the yes- and no-distributions can be equivalently described as follows:607

1. Draw a uniformly random pair of points (y, y) from the 2a−1 pairs (x, x) for x ∈ {0, 1}a,608

and draw a uniformly random bit b`.609

2. We consider the “yes” and “no” cases separately:610

a. In the “yes” case, if b` = 1, then set s` = y; otherwise set s` = y.611

b. In the “no” case, set (r`, r`) = (y, y); and if b` = 0, then the function f |` is defined to612

be identically zero on the action cube (cf. Definition 19 and Figure 3).613

Note that conditioned on Bad not happening, we have that none of the query points in QA(`)614

are antipodes of each other. We now split into two cases depending on whether either y or y615

is in the query set QA(`):616

1. If y, y /∈ QA(`), then note that viewA,`(Dyes|Bad) = viewA,`(Dno|Bad) since f` is identically617

0 on QA(`) in both the “yes” and the “no” cases.618

2. Otherwise, since we conditioned on Bad, only one of y, y can be in QA(`); without loss of619

generality, suppose that it is y. In both the “yes” and the “no” cases, y is a 1-input if and620

only if b` = 1, and the function is identically 0 on all other points. (Recall that we view621

points of QA(`) as a subset of the action cube {0, 1}a corresponding to the Talagrand622

DNF term T`.)623

It follows that viewA,`(Dyes|Bad) = viewA,`(Dno|Bad), and since QA is partitioned by the624

indices ` ∈ [L], we have viewA(Dyes|Bad) = viewA(Dno|Bad), completing the proof. J625

Next, we will show that Bad happens with on(1) probability:626

I Lemma 22. For any set of points QA = {x1, . . . , xq} ⊆ {0, 1}n where q := n0.001 log(1/ε),627

we have Pr[Bad] = on(1).628

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:21

Proof. For x, y ∈ {0, 1}n, let Badxy be the event that ST (xC) = ST (yC) = {`} for some629

` ∈ [L] and xA = yA. We will upper bound the probability of Badxy in what follows.630

Let J ⊆ [n] be the coordinates in which x and y differ, i.e. J := {i ∈ [n] : xi 6= yi}.631

Define the event � as:632

A ⊆ J. (�)633

We also define the event ? as before as634

There exists an ` ∈ [L] such that ST (x) = ST (y) = {`}. (?)635

By definition of Badxy, we have that Pr[Badxy] ≤ min
{

Pr[?], Pr[�]
}
. In the rest of the636

proof, we will establish that637

min
{

Pr[?], Pr[�]
}
≤ Θ

(
1
n

)0.01a

, (10)638

from which the lemma follows immediately by taking a union bound over all q2 pairs639

(x, y) ∈ QA×QA. Note that Pr[�] = Pr [A ⊆ J] ≤
(

e|J|
n

)a

via standard bounds on binomial640

coefficients. On the other hand, proceeding as in the proof of Lemma 13, we have641

Pr[?] ≤ max
`∈[L]

Pr
[
ST (x) = ST (y) | ST (y) = {`}

]
≤
(

1− 1√
c

)|J|
≤ exp

(
−|J |√

c

)
642

643

where the final line follows from the definition of Talagrand(c, 1). In particular, note that if644

|J | ≤ n0.5, then645

Pr[?] ≤
(

e

n0.5

)a

,646

and if |J | > n0.5 then we have647

Pr[�] ≤ exp
(

−n0.5√
n− log(1/ε)

)
�
(

1
n

)Θ(a)
648

where the final inequality uses the fact that ε ≥ Θ
(

1
2n0.49

)
. Putting everything together649

establishes Equation (10) which in turn completes the proof. J650

Theorem 4 follows from Lemmas 21 and 22 mutatis mutandis as Theorem 2 follows from651

Lemmas 12 and 13.652

References653

1 Ryan Alweiss, Brice Huang, and Mark Sellke. Improved Lower Bound for Frankl’s Union-Closed654

Sets Conjecture. Available at https://arxiv.org/pdf/2211.11731.pdf, 2022.655

2 A. Belovs and E. Blais. A polynomial lower bound for testing monotonicity. In Proceedings of656

the 48th ACM Symposium on Theory of Computing, 2016.657

3 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog n Monotonicity658

Tester for Boolean Functions over the Hypergrid [n]d . In Artur Czumaj, editor, Proceedings659

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,660

New Orleans, LA, USA, January 7-10, 2018, pages 2133–2151. SIAM, 2018.661

ITCS 2024

https://arxiv.org/pdf/2211.11731.pdf

29:22 Testing Intersecting and Union-Closed Families

4 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain Reduction for Monotonicity662

Testing: A o(d) Tester for Boolean Functions in d-Dimensions. In Proceedings of the 2020663

ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,664

January 5-8, 2020, pages 1975–1994. SIAM, 2020.665

5 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Directed Isoperimetric Theorems666

for Boolean Functions on the Hypergrid and an Õ(n
√
d) Monotonicity Tester. In Proceedings667

of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,668

USA, June 20-23, 2023, pages 233–241. ACM, 2023.669

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications670

to numerical problems. Journal of Computer and System Sciences, 47:549–595, 1993. Earlier671

version in STOC’90.672

7 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability673

and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(84):929–965, October 1989.674

8 Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonicity675

testers via hypercube embeddings. In 14th Innovations in Theoretical Computer Science676

Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume677

251 of LIPIcs, pages 25:1–25:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.678

9 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity679

testing and shortest-path routing on the cube. Comb., 32(1):35–53, 2012.680

10 Henning Bruhn and Oliver Schaudt. The journey of the union-closed conjecture. Graphs and681

Combinatorics, 31:2043–2074, 2015. URL: https://doi.org/10.1007/s00373-014-1515-0.682

11 Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions683

over the hypercube. In Proceedings of the 45th ACM Symposium on Theory of Computing,684

pages 411–418, 2013.685

12 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz686

testing over hypercubes and hypergrids. In Symposium on Theory of Computing Conference,687

STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419–428. ACM, 2013.688

13 Deeparnab Chakrabarty and C. Seshadhri. Adaptive boolean monotonicity testing in total689

influence time. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,690

January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 20:1–20:7.691

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.692

14 Gilad Chase, Yuval Filmus, Dor Minzer, Elchanan Mossel, and Nitin Saurabh. Approximate693

polymorphisms. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual694

ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages695

195–202. ACM, 2022.696

15 Zachary Chase and Shachar Lovett. Approximate union closed conjecture. Available at697

https://arxiv.org/abs/2211.11689, 2022.698

16 Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Mildly exponential699

lower bounds on tolerant testers for monotonicity, unateness, and juntas. SODA 2024, To700

appear, 2024. URL: https://doi.org/10.48550/arXiv.2309.12513.701

17 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean Function Monotonicity702

Testing Requires (Almost) n1/2 Non-adaptive Queries. In Proceedings of the Forty-Seventh703

Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 519–528, 2015.704

18 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for testing705

monotonicity. In Proceedings of the 55th IEEE Symposium on Foundations of Computer706

Science, pages 286–295, 2014.707

19 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds708

for testing monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT709

Symposium on Theory of Computing (STOC), pages 523–536, 2017.710

20 Irit Dinur and Ehud Friedgut. Intersecting families are essentially contained in juntas. Combin-711

atorics, Probability and Computing, 18(1-2):107–122, 2009. doi:10.1017/S0963548308009309.712

https://doi.org/10.1007/s00373-014-1515-0
https://arxiv.org/abs/2211.11689
https://doi.org/10.48550/arXiv.2309.12513
http://dx.doi.org/10.1017/S0963548308009309

X. Chen and A. De and Y. Li and S. Nadimpalli and R. A. Servedio 29:23

21 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex713

Samorodnitsky. Improved testing algorithms for monotonocity. In Proceedings of RANDOM,714

pages 97–108, 1999.715

22 D. Ellis, N. Keller, and N. Lifshitz. Stability versions of Erdös-Ko-Rado type theorems, via716

isoperimetry. J. Eur. Math. Soc, 21:3857–3902, 2019.717

23 David Ellis. Intersection Problems in Extremal Combinatorics: Theorems, Techniques and718

Questions Old and New, pages 115–173. Cambridge University Press, 2022.719

24 P. Erdös, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math.720

Oxford (Series 2), 12:313–320, 1961.721

25 Yuval Filmus, Noam Lifshitz, Dor Minzer, and Elchanan Mossel. AND testing and robust722

judgement aggregation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,723

Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT724

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages725

222–233. ACM, 2020.726

26 E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.727

Monotonicity testing over general poset domains. In Proc. 34th Annual ACM Symposium on728

the Theory of Computing, pages 474–483, 2002.729

27 Pt́er Frankl. Extremal set systems. In Handbook of combinatorics, page 2:1293–1329, 1995.730

28 E. Friedgut. On the measure of intersecting families, uniqueness and stability. Combinatorica,731

28:503–528, 2008.732

29 Justin Gilmer. A constant lower bound for the union-closed sets conjecture. Available at733

https://arxiv.org/abs/2211.09055, 2022.734

30 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing735

monotonicity. Combinatorica, 20(3):301–337, 2000.736

31 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to737

learning and approximation. Journal of the ACM, 45:653–750, 1998.738

32 S. Halevy and E. Kushilevitz. Distribution-Free Property Testing. SIAM J. Comput.,739

37(4):1107–1138, 2007.740

33 Daniel M. Kane. A monotone function given by a low-depth decision tree that is not an741

approximate junta. Theory Comput., 9:587–592, 2013.742

34 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-743

type theorems. SIAM J. Comput., 47(6):2238–2276, 2018.744

35 Philip N. Klein and Neal E. Young. On the number of iterations for dantzig-wolfe optimization745

and packing-covering approximation algorithms. SIAM J. Comput., 44(4):1154–1172, 2015.746

URL: https://doi.org/10.1137/12087222X, doi:10.1137/12087222X.747

36 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing halfspaces.748

SIAM Journal on Computing, 39(5):2004–2047, 2010.749

37 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating750

the distance to monotonicity of boolean functions. Random Struct. Algorithms, 60(2):233–260,751

2022.752

38 M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae. SIAM J. Disc.753

Math., 16:20–46, 2002. URL: citeseer.ifi.unizh.ch/parnas02testing.html.754

39 Luke Pebody. Extension of a Method of Gilmer. Available at https://arxiv.org/abs/2211.13139,755

2022.756

40 Will Sawin. An improved lower bound for the union-closed set conjecture. Available at757

https://arxiv.org/abs/2211.11504, 2022.758

41 M. Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–759

258, 1996.760

42 A. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc.761

Seventeenth Annual Symposium on Foundations of Computer Science (STOC), pages 222–227,762

1977.763

ITCS 2024

https://arxiv.org/abs/2211.09055
https://doi.org/10.1137/12087222X
http://dx.doi.org/10.1137/12087222X
citeseer.ifi.unizh.ch/parnas02testing.html
https://arxiv.org/abs/2211.13139
https://arxiv.org/abs/2211.11504

	1 Introduction
	1.1 Main Results
	1.2 Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Lower Bounds for Testing Algorithms
	2.2 Talagrand's Random DNF

	3 Lower Bounds for Testing Intersecting Families
	3.1 Indistinguishability of Dyes and Dno
	3.2 A 2(n log(1/)) Lower Bound for One-Sided Non-adaptive Testers of Intersectingness

	4 Lower bounds for Testing Union-Closed Families
	4.1 The Dyes and Dno Distributions
	4.2 Indistinguishability of the Hard Distributions

