10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Testing Intersecting and Union-Closed Families
Xi Chen =

Columbia University

Anindya De =

University of Pennsylvania

Yuhao Li =

Columbia University

Shivam Nadimpalli &

Columbia University
Rocco A. Servedio &

Columbia University

—— Abstract

Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability

of other well-studied properties of combinatorial finite set systems, specifically intersecting families
and union-closed families. A function f: {0,1}" — {0,1} is intersecting (respectively, union-closed)
if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed
family) of subsets of [n].

Our main results are that — in sharp contrast with the property of being a monotone set system
— the property of being an intersecting set system, and the property of being a union-closed set
system, both turn out to be information-theoretically difficult to test. We show that:

For e > Q(1/4/n), any non-adaptive two-sided e-tester for intersectingness must make 2n!/%/V2)
queries. We also give a 290V nlog(1/¢)) -query lower bound for non-adaptive one-sided e-testers
for intersectingness.

For ¢ > 1/ 29(”0'49), any non-adaptive two-sided e-tester for union-closedness must make

n?0o8(1/€) queries.

Thus, neither intersectingness nor union-closedness shares the poly(n,1/e)-query non-adaptive
testability that is enjoyed by monotonicity.

To complement our lower bounds, we also give a simple poly(nV nlog(l/e) 4 /€)-query, one-sided,
non-adaptive algorithm for e-testing each of these properties (intersectingness and union-closedness).
We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when
e = ©(1/y/n), and for one-sided testing of intersectingness when ¢ = ©(1).
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1 Introduction

Monotonicity testing is among the oldest and most intensively studied problems in property
testing (see e.g. [30, 21, 26, 32, 9, 11, 12, 18, 17, 2, 19, 3, 34, 13, 4, 37, 5, 8] and the numerous
references contained therein). The simplicity with which the core monotonicity testing
problem can be formulated—given query access to an unknown f :{0,1}"™ — {0,1}, output
“yes” if f is monotone and “no” if f is far in Hamming distance from every monotone function—
belies the wealth of sophisticated technical ingredients and ideas (such as combinatorial
shifting [30, 21], multidimensional limit theorems [18, 17], and isoperimetric inequalities
[11, 34, 3, 37, 5, 8]) which have been deployed in both algorithms and lower bounds for this
problem. Thanks to this body of work the basic problem of monotonicity testing is now
fairly well understood: [34] gave an O(y/n/e?)-query non-adaptive testing algorithm, and
[19] gave an Q(n'/3)-query lower bound which holds even for adaptive algorithms.
Monotonicity testing has several intriguing features as a property testing problem:
Since the class of all monotone functions is of doubly exponential size!, the results
mentioned above tell us that the query complexity of testing this class, which contains
N = 227" functions, is (loglog N)¢ for some constant % <c< % This is an interesting
contrast with both the O(log N) query complexity which suffices to test any class of N
functions? and the constant query complexity (independent of N and depending only on
the error parameter €) of a number of other well-studied property testing problems such
as linearity testing [6], testing linear separability [36], and testing dictatorship [38].
The monotonicity of f: {0,1}™ — {0,1} is equivalent to having all pairs of inputs z,y
satisfy a simple “pair condition,” which is that

r<y = f(z) < fy). (1)

Given this, it is natural to consider “pair testers” for monotonicity which work by drawing
a pair of inputs @,y € {0,1}" with < y according to some distribution over such pairs,
and checking whether the pair violates monotonicity. Indeed, all known algorithms for
testing monotonicity, including the state-of-the-art algorithm of [34], work in this fashion.
Finally, we observe that a monotone function f : {0,1}" — {0, 1} can alternately be viewed
as an upward-closed set system: this is a collection of subsets S C 2["), corresponding to
the satisfying assignments of f, which has the property that for every subset S C [n], if
S € S then SU{i} € S for every i € [n].

This Work. Motivated by monotonicity testing, we propose to study other combinatorial
property testing problems of a similar flavor. In particular, we are interested in the testability
of properties which (a) are “very large” (meaning that the number of functions with the
property is doubly exponential in n); (b) are defined by a natural condition on pairs or triples
of inputs; and (c) correspond to well-studied properties of set systems. We focus on two
specific properties of this sort, namely intersecting and union-closed set systems.

Intersectingness. A set system S C 2[") is said to be intersecting if any two sets Si, So € S
have a nonempty intersection, i.e. S; N Sy # 0. Intersecting families are intensively studied

Observe that any assignment of 0/1 values to the middle level of the Boolean hypercube {0, 1} corresponds
to at least one monotone function, and hence there are at least 22("/V™) many distinct monotone
functions over {0,1}".

This follows straightforwardly from the fact that O(log N) samples suffice to properly PAC learn any
concept class of N Boolean functions [7] and the well-known reduction from proper PAC learning to
property testing given in [31].
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in extremal combinatorics, where they are the subject of many touchstone results, beginning
with the seminal Erdos-Ko-Rado theorem [24] and continuing to the present day. Recent
years have witnessed exciting progress on many problems dealing with intersecting families
and their generalizations via analytic techniques that are highly relevant to the study of
Boolean functions in theoretical computer science; see e.g. [28, 20, 22] and more generally
[23] for a recent and extensive survey.

Translating the above definition to the setting of Boolean functions, a function f :
{0,1}™ — {0, 1} is intersecting if the following “pair condition” holds: whenever f(x) =
f(y) =1, there is (at least one) coordinate i € [n] such that xz; = y; = 1. This is equivalent
to

<y = f(z) < fy), (2)
i.e. if x <7, then having f(y) = 1 implies that f(z) must be 0, where § = (1, ¥s, ..., 7,,) is
the point in {0,1}" that is antipodal to y. Finally, we observe that any n-variable Boolean
function whose satisfying assignments all have first bit 1 is an intersecting function, so indeed

the set of all n-variable intersecting Boolean functions is of doubly exponential size (at least
227171 ) )

Union-closedness. A set system S C 2/ is said to be union-closed if whenever S; and S,
belong to S then S; U .Sy also belongs to S. In the Boolean function setting, this corresponds
to the “triple condition” that f: {0,1}™ — {0, 1} satisfy

z=zUy = [f(2)f(y) < f(2), (3)

ie. if f(z) = f(y) =1 then f(z Uy) must also be 1. Union-closed families have long been of
interest in combinatorics, in part due to the well-known “union-closed conjecture” of Frankl
[27, 10], which states that in any union-closed family some element ¢ € [n] must appear in at
least half the sets in the family. Dramatic progress was recently made on the union-closed
conjecture by Gilmer [29], who proved a weaker form of the conjecture with 1/2 replaced by
0.01 (this constant was subsequently improved to 3-v5 ~ .38 by [1, 15, 39, 40]). Since every

2
monotone function is easily seen to be union-closed, union-closedness is a “large” property,

with at least 22(2"/v7) p_variable functions having the property.

In this paper we initiate the study of intersectingness and union-closedness from a property
testing perspective. Given that (like monotonicity) these are “large” properties that are
defined by a simple “pair” or “triple” property, it is natural to wonder: Is the query complexity
of testing these properties similar to the query complexity of testing monotonicity, or are
these properties harder— or easier—to test than monotonicity?

1.1 Main Results

As our main results, we show that both intersectingness and union-closedness are significantly
more difficult to test than monotonicity: We give information-theoretic lower bounds which
establish that neither of these properties admits a poly(n, 1/¢)-query non-adaptive testing
algorithm. We also give sub-exponential non-adaptive testing algorithms for each of these
properties; our algorithms have one-sided error (they never reject functions which have
the property), while most of our lower bounds are for testing algorithms that are allowed
two-sided error. We turn now to a detailed description of our main results.

Positive Results: Algorithms for Testing Intersectingness and Union-Closedness.

As a warm-up, and to develop intuition for these properties, we give simple testing algorithms
for intersectingness and for union-closedness which have sub-exponential query complexity:
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» Theorem 1 (Testers for intersectingness and union-closedness). There is a
poly(nV"108(/2) 11 /e)_query

non-adaptive, one-sided® algorithm for e-testing whether an unknown f :{0,1}™ — {0,1}
is intersecting versus e-far from every intersecting function. The same is true for union-
closedness.

We defer the algorithms as well as their analyses to the full version of this paper.
Theorem 1 is proved by analyzing a “pair tester” for intersectingness and a “triple tester” for
union-closedness. The distribution of pairs (respectively, triples) used by our algorithm is
extremely simple, so it is natural to wonder whether a more sophisticated algorithm, perhaps
using a cleverer distribution over pairs or triples, could result in a tester with an improved
query complexity (indeed, this would be analogous to how the cleverer distribution over pairs
used in [11, 34] resulted in a better query complexity for testing monotonicity than the simple
distribution that was used in [30]). However, our main results—lower bounds for testing
intersectingness and union-closedness—indicate that there are strong information-theoretic
limitations on the possible performance of any non-adaptive testing algorithm for these
properties.

Negative Results: Lower Bounds for Testing. Our lower bounds show that both
intersectingness and union-closedness are significantly harder to test than monotonicity:
Neither of these properties has a poly(n, 1/¢)-query non-adaptive testing algorithm, even
if we allow two-sided error. (Recall that in contrast, the algorithms of [30, 11, 34] are all
poly(n, 1/¢e)-query non-adaptive one-sided testing algorithms for monotonicity.) In more
detail, our main lower bound for intersectingness is the following (in all of our lower bound
theorem statements, ¢ > 0 represents some sufficiently small absolute positive constant):

» Theorem 2 (Two-sided lower bound for intersectingness). For ¢ > & > 1//n, any non-
adaptive e-testing algorithm for whether an unknown f : {0,1}™ — {0,1} is intersecting
versus e-far from intersecting must make 292(n'/*/VE) queries to f.

When ¢ = 1/+/n, the lower bound of Theorem 2 essentially matches the performance of
our algorithm from Theorem 1, and even when ¢ is a constant, Theorem 2 gives a 22"
lower bound. In view of the similarity between the defining conditions for monotonicity
and intersectingness (Equation (1) and Equation (2)), we view Theorem 2 as a potentially
surprising result.

By imposing a stricter one-sided error condition, we can establish a stronger lower bound
which almost matches the one-sided algorithm from Theorem 1 even for constant e:

» Theorem 3 (One-sided lower bound for intersectingness). Forc > ¢ > 27", any non-adaptive
one-sided e-testing algorithm for whether an unknown f :{0,1}™ — {0,1} is intersecting

versus e-far from intersecting must make 22(V7108(1/2) gyeries to f.

Turning to union-closedness, the lower bound we give is not as strong as for intersectingness,
but it is strong enough to rule out a poly(n, 1/¢)-query non-adaptive algorithm, again even
allowing two-sided error:

3 A tester is non-adaptive if the choice of its i-th query point does not depend on the responses received to
queries 1,...,7 — 1. A one-sided tester for a class of functions is one which must accept every function
in the class with probability 1.
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» Theorem 4 (Two-sided lower bound for union-closedness). For ¢ > ¢ > 2" any non-
adaptive e-testing algorithm for whether an unknown f : {0,1}™ — {0,1} is union-closed
versus e-far from union-closed must make n(1°8(1/9)) queries to f.

As we discuss in Section 6 of the full version, an interesting goal for future work is to
narrow the gap between our algorithm and our lower bound for testing union-closed families.

1.2 Techniques

In this section, we give a technical overview of our main results, starting with the lower
bounds.

Lower Bounds. Our two-sided lower bound for intersectingness, Theorem 2, builds on a
lower bound approach for tolerant monotonicity testing which was introduced in [37] and
was recently quantitatively strengthened in [16]. As is standard for non-adaptive property
testing lower bounds, [37] and [16] use Yao’s minimax lemma and define a “yes”-distribution
Dyes and a “no”-distribution Dy, over Boolean functions; in the rest of this discussion we
focus chiefly on [16]. A function f drawn from either of the [16] distributions Dyes or D, is
defined based on a random partition of the n variables into a (large) set of “control” variables
and a (small) set of “action” variables. In both cases f ~ Dyes or f ~ Dy, the definition of
f involves a “Talagrand DNF,” T =T V --- V T},,, which is essentially a random monotone
DNF formula over the control variables.* The crucial assignments to f are the ones for which
the control variables satisfy exactly one term T; of the Talagrand DNF; for such an input
string x, the value of f then depends on the setting of the action variables, and the difference
between f ~ Dy and f ~ Dy, comes from how the function is defined over the action
variables in each case. The values of the function on the action subcubes are carefully defined
in such a way as to make it impossible for a testing algorithm to distinguish a “yes”-function
from a “no”-function unless it manages to query two inputs x, 2’ which (i) both have their
control variables set in such a way as to uniquely satisfy the same term Tj, but (ii) differ on
“many coordinates” among the action variables: essentially, one of x, 2’ must have its vector
of action bits landing in the top portion of the action subcube while the other one must have
its vector of action bits landing in the bottom portion. The crux of the non-adaptive lower
bound of [16] is the tension between requirements (i) and (ii): if z and 2’ differ in too many
coordinates then it is difficult to satisfy (i), but if they differ in too few coordinates then it is
difficult to satisfy (ii).

In the setting of monotonicity testing, the [16] construction’s yes-functions are only close
to, but not actually, monotone; their non-monotonicity essentially comes from assignments
for which the vector of action bits lands in the middle portion of the action subcube. This
is why the mildly exponential lower bound proved in that paper only holds for tolerant
monotonicity testing (indeed, the existence of highly efficient monotonicity testers [30, 19, 34]
implies that quantitatively strong lower bounds such as those of [16] are impossible for
“standard” non-tolerant monotonicity testing). The main component of our lower bound for
intersectingness in this paper is a careful modification of the [16] construction; we show that,
perhaps surprisingly, for the modification that we introduce, the yes-functions have satisfying
assignments which form a perfectly intersecting family, while the no-functions are far from
intersecting. We thus obtain a quantitatively strong lower bound, similar to [16], already for

4 The earlier work [37] used a different function over the control variables instead of a Talagrand DNF.

29:5

ITCS 2024



29:6

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Testing Intersecting and Union-Closed Families

the “standard” testing problem of intersectingness rather than the more challenging tolerant
version.

Our 29V 108(1/)_query one-sided lower bound for intersectingness, Theorem 3, takes a
related but somewhat simpler approach. In a nutshell, since for one-sided lower bounds it is
not necessary to give a yes-distribution and establish indistinguishability of yes-functions
and no-functions, it turns out that we can dispense with the Talagrand DNF part of the
construction. Instead, our construction “hides” a randomly chosen “small” set of action bits
in a simpler way (see Section 3.2 for details); since we do not need to use the Talagrand
DNF, it turns out that we can have the “small” set of action bits be larger than in our
intersectingness lower bound, and this lets us obtain a quantitatively stronger lower bound.

Finally, our n®?(°2(1/))_query two-sided lower bound for union-closedness, like our two-
sided intersectingness lower bound, uses the framework of control bits and action bits with a
Talagrand DNF over the control bits. This construction uses a somewhat different definition
of the yes- and no- functions over the action bits, which now ensures that a testing algorithm
can distinguish yes-functions from no-functions only if it manages to query two inputs whose
control variables satisfy the same term T; but whose action variables are set to two particular
antipodal assignments in the action cube. For this construction we use many fewer action bits
than in the earlier construction (and the quantitative lower bound obtained is correspondingly
weaker than the lower bound of the earlier construction); this is because in our no-functions,
the distance to union-closedness is inverse exponential in the dimension of the action cubes.

Algorithms. Our algorithms for testing intersectingness and for testing union-closedness
are similar at a high level; for conciseness we only describe the algorithm for testing union-
closedness.

As is standard for testing algorithms, we consider the two possible scenarios. In the
“yes" case, the given function f is union-closed. In the “no" case, the function f is e-far in
Hamming distance from any union-closed function.

At a conceputal level, the first simplification is as follows: given f, we can define a
truncated version of f, call it fiunc as follows: for any « such that |x| € [n/2 —T,n/2 + T
where T = /nlog(4/¢), fuunc(z) = f(x). If |2| > n/2 + T, we set fyunc(z) = 1 and if
|z] < n/2 =T, we set fiunc() = 0. In other words, fiunc is obtained by keeping it the same
as f in the middle 27T layers; otherwise, it is set to 1 in the layers above the middle layers
and 0 below it. Since all but /2 fraction of the mass of the discrete cube lies in the layers
[n/2 —T,n/2 + T], the following is immediate: (i) if f is union-closed, so is fyrunc; (ii) if f is
e-far from union-closed, fyync is also £/2-far from union-closed. The above property of firunc
ensures that instead of working with f, the algorithm can instead work with firunc-

Now, the main idea behind the algorithm is to search for violations of union-closedness. In
this sense, our algorithm is similar in spirit to algorithms for monotonicity testing [30, 11, 34]
which search for violations of monotonicity. In particular, we call a sequence (1, ..., zg, x1 U
... Uxg) a union-closed violating tuple if f(x1) =...= f(zx) =1and f(x1U...Uxg) =0 —
we will abbreviate this as a UC-violating tuple. Note that if the algorithm finds a union-closed
violating tuple in f, then it is a certificate for f not being union-closed.

The main technical lemma we prove is that if f is e-far from union closed, then it has
at least € - 2" UC-violating tuples which are end-disjoint. This means that for any two
such tuples (x1,...,zk, 21 U ... Uxg) and (y1,...,¥k, 41 U ... Uyg), the last coordinate
(r1U...Uxg) # (y1U...Uyk). The proof of this lemma is quite simple — essentially, we show
that the function f can be changed to a union closed function by only modifying it at points
which are the last coordinate of a UC-violating tuple. Given this lemma, it follows that f
must have at least ¢ - 2" end-disjoint UC-violating tuples. Since f and fyunc are £/2-close to
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each other, it follows that fiunc also has at least £/2 - 2™ end-disjoint UC-violating tuples.

We next observe that a UC-violating tuple (z1,..., 25,21 U...Uxg) for fiunc is such
that (i) for each 1 < i <k, ||z;] —n/2| < T; (ii) ||Je1 U... Uz —n/2] <T. Let us call a
point x = x1 U... Uz a witness if there is a UC-violating tuple (x1,...,zg, 21 U... U x)

satisfying the above conditions. From the fact that fiunc also has at least €/2-2" end-disjoint
UC-violating tuples, it follows that there are at least £/2 - 2™ points which are a witness.

Our algorithm now proceeds as follows: We sample a random point « € {0, 1}" conditioned
on ||| —n/2| <T. Next, we query f on x as well as all the points in the set x| := {y <
x : ||yl —n/2] < T}. We then check if there are any points yi,...,yr € @, such that
(y1,...,yk, x) is a UC-violating tuple. Note that if f is union-closed, then the algorithm is
certainly not going to find a UC-violating tuple, i.e., it has perfect completeness. On the
other hand, if f is at least e-far from union closed, then the point  sampled above is a
witness with probability /2. If  is a witness then since we are querying every point in x|,
the algorithm is going to find a UC-violating tuple.

Thus, repeating the above procedure say 100/¢ times, the algorithm will still have perfect
completeness. On the other hand, if f is e-far from union-closed, it is going to find a
UC-violating tuple with probability at least 0.9. The query complexity of the algorithm is
given by O(1/¢) - |&|. As |z,| is uniformly bounded by n®(V"108(1/9)) "this establishes the
upper bound on the query complexity of our algorithm. (While the algorithm described
above is not a “triple tester,” an easy modification of the algorithm and its analysis yields a
triple tester with similar query complexity.)

1.3 Related Work

As mentioned earlier, some of the technical specifics of our lower bound constructions build
off of the tolerant testing lower bounds of [37] and [16]; in particular, the idea, first introduced
by [37], of “hiding” a set of action variables among the entire set of input variables was a
significant influence on the lower bound constructions of the current paper. More generally,
the entire broad literature on monotonicity testing of Boolean functions (i.e. testing upward-
closed set systems) provided the conceptual backdrop for a study of the testability of other
types of combinatorial finite set systems.

We note that the recent work of Filmus et al. [25] (see also [14]) studies the problem of
“AND-testing,” which at first glance may seem to be related to the problems we consider.
The “AND-property” is that of satisfying the implication

z=z0y = f(z) = f2) A [fy) (4)

for every x,y € {0,1}"; the main result of [25], roughly speaking, is that the only functions
which have a high probability of satisfying Equation (4) for uniform random z, y are functions
which are close to being either a constant-function or an AND of some subset of the n input
variables.

Despite the superficial resemblance between Equation (3) and Equation (4), it turns out
that the AND-property and the properties we consider are of quite different character from
each other. To see this, observe that the only functions f : {0,1}" — {0,1} which perfectly
satisfy the AND-property are constant functions and AND-functions; hence there are only
O(2™) many possible yes-functions, and every yes-function must have a very precise and rigid
structure (and a very simple description). This is quite different from the intersectingness and
union-closedness properties we study; each of these properties has 92° many yes-functions,
and hence yes-functions do not need to be so highly structured (and by standard counting
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arguments almost all yes-functions require highly complex descriptions). As another point of
difference, the [25] result mentioned above implies that there is an O.(1)-query non-adaptive
one-sided tester for the AND-property. In contrast, our Theorem 4 shows that even two-sided
non-adaptive testers for the property of union-closedness must have a query complexity which
not only depends on n, but in fact is at least nf2(ls(1/€)),

2 Preliminaries

We will write
(P;l) = {SCnl:IS| =k}

to denote the collection of all k-element subsets of [n], and for a subset I C [n] we will
write (1)) to denote Uje]([?]). We will denote the 0/1-indicator of an event A by 1{A}.
All probabilities and expectations will be with respect to the uniform distribution over the
relevant domain unless stated otherwise. We use boldfaced letters such as «, f, and A
to denote random variables (which may be real-valued, vector-valued, function-valued, or
set-valued; the intended type will be clear from the context). We write & ~ D to indicate
that the random variable x is distributed according to probability distribution D.

» Notation 5. Given a string x € {0,1}" and a set A C [n], we write x4 € {0,1}* to denote
the |A|-bit string obtained by restricting x to coordinates in A, i.e. x4 := (;)ica, and we
write |x| to denote the number of 1’s in x.

We will frequently view strings in {0,1}" as subsets of [n] and vice versa; i.e. for
x,y € {0,1}™ we refer to “z N y” to mean the string in {0,1}" which has a 1 in coordinate i

Given two Boolean functions f,g : {0,1}" — {0,1}, we define the distance between
f and g (denoted by dist(f,g)) to be the normalized Hamming distance between f and
g, i.e. dist(f,g) := Pry(o,1}» [f(w) #+ g(w)} A property P is a collection of Boolean
functions; we say that a function f : {0,1}" — {0,1} is e-far from the property P if
dist(f, P) := mingep dist(f, g) > €.

2.1 Lower Bounds for Testing Algorithms

Our query-complexity lower bounds for testing algorithms are obtained via Yao’s minimax
principle [42], which we recall below. (We remind the reader that an algorithm for the
problem of e-property testing is correct on an input function f provided that it outputs “yes”
if f perfectly satisfies the property and outputs “no” if f is e-far from the property; if the
distance to the property is strictly between 0 and € then the algorithm is correct regardless

of what it outputs.)

» Theorem 6 (Yao's principle). To prove a q-query lower bound on the worst-case query
complexity of any non-adaptive randomized testing algorithm, it suffices to give a distribution
D on instances such that for any q-query non-adaptive deterministic algorithm A, we have

Pr [A is correct on f] < 99.9%.
f~D

Here 99.9% can be replaced by any universal constant in [0,1).
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2.2 Talagrand’s Random DNF

We define a useful distribution over Boolean functions that will play a central role in the
proofs of our lower bounds. The construction is a slight generalization of a distribution
over DNF (disjunctive normal form) formulas that was constructed by Talagrand [41]. The
generalization we consider, which was also studied in [16], is that we allow a parameter & to
control the size of each term and the number of terms; the original construction corresponds
toe =1.

» Definition 7 (Talagrand’s random DNF). Let ¢ € (0,1] and let L == 0.1 -2V™/*. Let
Talagrand(n, ) be the following distribution on ordered tuples of L monotone terms: for each
i=1,...,L, the i-th term is obtained by independently drawing a set T; C [n] where each set
T; is obtained by drawing \/n/ec elements of [n]| independently and with replacement. We use
T to denote the ordered tuple T = (T, -+ ,Tr) which is a draw from Talagrand(n, ). Then
a “Talagrand DNF” is given by

It is clear that any Talagrand DNF obtained by a draw from Talagrand(n, €) is a monotone
function.

We will frequently view T; C [n] as the term /\; .
only if z; = 1 for all j € T;. We may also write T' = (T, - -+ ,T}) to represent a DNF, which
is defined by the disjunction of the terms T;. We will often be interested in the probability
of a random input x ~ {0,1}" satisfying a unique term T; in a Talagrand DNF; towards
this, we introduce the following notation:

xj, where we say T;(z) = 1 if and

» Notation 8. Given a DNF T = (T1,--- ,Tx) where each T; is a term, we define the
collection of terms of T satisfied by z, written Sr(x), as Sp(z) := {€ € [k] : Ty(z) = 1}.

The following claim shows that on average over the draw of T' ~ Talagrand(n,¢), an €(¢)
fraction of strings from {0, 1}™ satisfy a unique term in the Talagrand DNF (i.e. |Sr(z)| =1
for Q(e)-fraction of x € {0,1}"™). We note that an elegant argument of Kane [33] gives this

for e = ©(1), but this argument does not extend to the setting of small ¢ which we require.

The proof of the following appears in [16] and is repeated in the full version of this paper.

» Proposition 9. For e € (0,1], let T ~ Talagrand(n,e) be as in Definition 7. Then

1?2 [|S7(x)| = 1] = Q (max{e,1/v/n}).

3 Lower Bounds for Testing Intersecting Families

We now present our lower bound for two-sided non-adaptive testers for intersecting families.
As mentioned earlier, the construction builds closely on the earlier constructions of [37, 16]
which were used in those papers for tolerant testing lower bounds.

Let € € (0,c] be a parameter with ¢ > € > ¢g/+/n for some sufficiently large constant
co and sufficiently small constant ¢ > 0. We start with some objects that we need in the
construction of the two distributions Dy and Dy,. We partition the variables x1,--- ,z,
into control variables and action variables as follows: Let a := y/n/e and let A C [n] be
a fixed subset of [n] of size a. Let C = [n] \ A. We refer to the variables z; for i € C as

29:9
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control variables and the variables x; for i € A as action variables. We first define two pairs
of functions over {0,1}# on the action variables as follows (we will use these functions later
in the definition of Dyes and Dy, ):

0 |eal > &+ Va 1 feal > &+ Va
9T @a) =40 |zal€[§—va g +va; ¢V (@a) =10 |eal €l - Ve, §+Va;
0 |za] <§—+a. 1 |zal < § —+a.
and
1 |zal > §+Va; 0 |zal > §+ Va;
970 (@a) = 0 zal€§ - Va §+val ¢V (@a) =10 |eal €[5~ Va g+ Val:
0 |zal <§ -V 1 |zal < § —+a.

Now we are ready to define the distributions Dyes and Dy, over f : {0,1}"2 — {0,1}.
We follow the convention that random variables are in boldface and fixed quantities are in
the standard typeface.

A function fyes ~ Dyes is drawn as follows. We start by sampling a subset A C [n]
of size a uniformly at random and let C := [n] \ A. Note that there are in total n — a
control variables. We let L := 0.1 -2V"~%/¢ and draw an L-term monotone Talagrand
DNF T ~ Talagrand(n — a,e) on C as described in Definition 7. Finally, we sample L
random bits b € {0,1}¥ uniformly at random. Given A, T and b, fys is defined by letting
Syes(2,0,0) = fyes(z,1,1) = 0 for all z € {0,1}", and letting

0 |St(zc)| # 1;
fyes($,07 1) = g(+’0) (xa) St(zc)={¢} and b, = 0;
gV (za) Srlzc)={¢} and by = 1.

0 1St (Tc)| # 1;
Fyes(2,1,0) = § g™V (2a) Sr(Fc) = {¢} and by = 0;
gt (za) Sr(Tc)={(} and by =1.

(Recall that T is the bitwise complement of string ).

To draw a function fno ~ Dpo, we sample A, T and b exactly as in the definition of Dy
above, but we use ¢(t?) and ¢(—? functions in a different way than in the Dy.s functions
described above. In more detail, f,, is defined by fuo(z,0,0) = fuo(z,1,1) = 0 for all
xz € {0,1}"™, and
0 1St (xc)| # 1;
foo(2,0,1) = ¢ g0(xa) Sr(zc) = {£} and b, = 0;
gV (xa) Sr(re)={¢} and by = 1.

0 1St(Tc)| # 1;
fno(xv 1a0) = 9(7,0)(1.14) ST(fC) == {é} and bf = 07
gV (ra) Sr(Tc)={¢}and b, = 1.
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See Figures 1 and 2 for illustrations of the yes- and no- functions.
The proofs of the following lemmas are deferred to the full version:

» Lemma 10. Every function fyes in the support of Dyes is intersecting.

» Lemma 11. With probability at least 0.01, funo ~ Dno is Q(e)-far from intersecting.

3.1 Indistinguishability of D, and D,,

In this section we establish the indistinguishability of the distributions Dy and Dy,. Specific-
ally, for any nonadaptive deterministic algorithm A with query complexity ¢ = 90-1n'/%/ VE,
we show that

Pr  [Aaccepts fyes] <  Pr  [A accepts fuo] + 0n(1). (5)

Fyes~Dyes fno~Dro
Our arguments closely follow the approach for proving indistinguishability that was used in
[16].

We begin with some simplifying assumptions: for any point u € {0,1}"*2 that is queried
by the algorithm A we assume that w41 # u,t2 (since otherwise the answer to the query
must be 0), and we assume that for each point u € {0,1}"*2 that is queried by A the point u
is also queried as well (since this only affects the query complexity by at most a factor of two).
So the set of q query points of A can be characterized by a set Q4 == {x!,--- 29} C {0,1}",
where both (2%,0,1) and (Z%,1,0) are queried for each i € [q].

A crucial step of the argument is that the only way for A to distinguish Dy and Dy, is to
query two points 2, 27 with Sp(zk) = ST(:ch) = {¢} for some ¢ € [L] such that one is in the
top region and the other is in the bottom region of the action cube, namely |z%| > S+ Va
and 27| < % — /a. We let Bad denote this event (that Q4 contains two points z*, 2
satisfying the above conditions).

Formally, let us write A(f) to denote the sequence of ¢ answers to the queries made by
A to f. We write view 4(Dyes) (respectively view 4(Dro)) to be the distribution of A(f) for
f ~ Dyes (respectively f ~ Dp,). The following claim asserts that conditioned on Bad not
happening, the distributions view 4(Dyes|gzg) and view 4(Duolg;g) are identical.

» Lemma 12. view 4(Dyes|gzg) = view.a(Dnolgsg)-

Proof. The distributions of the partition of [n] into control variables C and action variables
A are identical for Dyes and Dy,. So fix an arbitrary partition C' and A. As the distribution
of the Talagrand DNF T ~ Talagrand(m,¢) is also identical, we fix an arbitrary 7.

We divide the points @ 4 into disjoint groups according to x¢. More precisely, for every
¢ e [L],let Qa(f) = {x' | Sr(z) = {¢}}. The points outside Urer) @a(€) are not important
as f will be identically 0 for both Dyes and Dy,.

Let fe(z) denote the function f(x,0,1) restricted to points in Q4(¢), and let f;(z)
similarly denote the function f(Z,1,0) restricted to inputs x € Q 4(£). Note that for a fixed
¢ € [L], the functions fy(x) and f;(z) only depend on the random bit by. As a result, the
distributions of functions fy(z) and f/(x) for different ¢ are independent.

So fix an arbitrary £ € [L]. The condition that Bad does not happen implies that either
|zal > a/2+ /a for all z € Qa(l) or |xa| < a/2 — /a for all x € Q4(¢), which holds for
both Dyes and Dy,. So we have fj(z) =1 — f,(z) for all x € Q(¢), which also holds for
both Dyes and Dy,

Finally, noticing that the distribution of f;(x) is simply a uniform random bit b, for both
Dyes and Dy, this finishes the proof. <
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L 4p

(y1,y2) =10, 1}2

b b

{0,1}¢ = {0, 1}™ {0,1}4 = {0, 1}

Figure 1 A draw of fyes ~ Dyes. All our hypercubes adopt the convention that the bottom-most
point is (0,...,0) and the topmost point is (1,...,1), and horizontal lines denote Hamming levels.
Given an input (z,y1,y2) € {0,1}" x {0,1}* we follow the arrows starting with {0,1}? in the center.
The cross-hatched region in the control cube {0, l}c corresponds to inputs satisfying a unique
Talagrand DNF term Ty. The pink regions correspond to 0 assignments and blue regions to 1
assignments.
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Tpoqp

(ylayQ) = {07 1}2

poqp

{0,1}¢ = {0, 1}™ {0,1}4 = {0,1}°

Figure 2 A draw of fno ~ Dno. Our conventions are as in Figure 1.
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449 Next, we show that the probability that Bad happens is small (recall that ¢ = 20-1n'/%/ VE):
so » Lemma 13. For any set of points Q4 = {z',--- ,x7} C {0,1}", Pr{Bad] = 0,(1).

s Proof. Fix any two points z,y € {0,1}". We will upper bound the probability that Sz(z¢) =
w2 St(yc) = {} for some £ € [L] and |ra| < § —+/a and |ya| > § + /a. Call this specific
w3 event Bady,.

454 Let Ip; be the set of indices ¢ such that x; = 0 and y; = 1. On the one hand, to have
s5  Badg, happen, we must have that

456 |101 N A| > 2\/& (<>)

457 On the other hand, to have St(xc) = St(yc) = {¢}, we must have that

458 There exists an ¢ € [L] such that Sr(z) = St(y) = {¢}. (%)
459 So we have Pr[Bad,,| < min(Pr[¢], Pr[«]); we will show that min(Pr[o], Pr[x]) < 9-0.05n'/*/ e
wo Let t = |Io1|. Then by the random choice of the coordinates defining the action cube A, we
w1 have
t a t o\
462 Pr[¢] < Pr |Bin (a7n—a> >2va| < (2\/§> . <n—a)

o) ) () = ()

s 'To bound Pr[x], we use
266 Pr[x] = Pr[St(x) = St(y) & 3¢ € [L] such that Sr(y) = {¢}]

a67 < Pr[St(x) = Sr(y) | 3¢ € [L] such that St(y) = {¢}]
< max Pr(Sr(x) = Sr(y) | Srly) = {2}

469
n—a

¢ vVn—a/e
< (1 _ ) < ot VI < otV

470

1 where the last line above is by the definition of the random process T ~ Talagrand(n — a, ).
a2 When ¢ < in®/4/\/e, we have Pr[o] < 2-n""*/VE When t > in®/4/\/e, we have Pr[«] <
473 270'25711/4/‘/5.

4

et

So overall we have
Pr[Bad,,] < min(Pr[o], Pr[x]) < 902504/ /e

By a union bound for all pairs of points of @ 4, we know that

)

1 1 2
Pr[Bad] < 279" IV (20'1" /4/ﬁ) =o0,(1)
s and the lemma is proved. |

ats Now we are ready to prove Theorem 2.
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Proof of Theorem 2. Let D = %{Dyes + Dpo}. Then we have

P i t =
fNII')[.A is correct on f]

DN | =

Fyes~Dyes no~Dho

(f P% [A accepts fyes) + i Pr [A is correct on fno}>
(6)

DN | =

o no

29:15

( Pr [Ais correct on fyes] + ; Pr [A is correct on fno])

1
< 3 ( Pr [Aaccepts fyes] +0.99+0.01 Pr [A rejects fn0}>

fyesNDyes no™ no

(7)

2
J19 1
— 200 200 fycsNDyCS Fno~Dno
199 N Pr[Bad]
200 200

fyesNDyes no™~ no

Fyes~Dyes|Bad 10~ Dno|Bad
(8)
199 Pr[Bad]

< 277
— 200 + 200
199
< 77
=500 + On(l)» (9)

where Equation (6) is because of Lemma 10, Equation (7) is because f,, is not e-far
from intersecting with probability at most 0.99 thanks to Lemma 11, Equation (8) is from
Lemma 12, and Equation (9) follows from Lemma 13. Theorem 2 now follows from Yao’s
minimax principle (Theorem 6). <

3.2 A 2%nes(l/2) Lower Bound for One-Sided Non-adaptive Testers
of Intersectingness

In this section we prove Theorem 3, by giving a 2%(V71°8(1/¢)_query complexity lower
bound against any non-adaptive and one-sided algorithm testing e-intersectingness. This
almost matches the query complexity of our n©(V7108(1/2) /e-query one-sided non-adaptive
algorithm even for constant e.

Since we are working against one-sided algorithms, it suffices for us to describe a dis-
tribution Dy, over f : {0,1}"*2 — {0,1} of “no”-functions (functions that are far from
intersecting). Let K = y/nln(1/¢). A draw from our D, distribution is obtained as follows:
first, we sample a subset A C [n] of size a = n/100 uniformly at random (looking ahead,
100 will be an important constant later in the proof). Then f,, ~ Dy, is defined by letting
Sno(2,0,0) = fro(z,1,1) =0 for all z € {0,1}", and

0 |z|&[n/2—-10K,n/2+ 10K];
0 |zal>n/200+ K;

0 |zal € [n/200— K,n/200 + K];
|za] <n/200 — K.

fno(xvoa 1) = .fno(xa 170) =

—_

_1 ( Pr [Aaccepts fyes] +1—0.01 Pr [A accepts fn0]>

Pr [A accepts fyes] — Pr  [A accepts fno}>

Pr  [A accepts fyes| — ; Pr  [A accepts fno}>

ITCS 2024
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The constant “10” above will also be important vis-a-vis the “100” in the definition of the
size of A.

We first show that every fno ~ Dno is e(-far from intersecting (observe that this
suffices for our claimed lower bound, since the difference between e and ¢2() is swallowed
up by the log and the big-Omega):

» Lemma 14. Fvery f.o in the support of Dy is €©M-far from intersecting.

Proof. Fix an arbitrary A C [n] with size a = n/100, which determines a function f,, in the
support of Dy,. For the convenience of notations, we use C := [n] \ A.

By the same argument as Claim 12 from the full version, we know for any 0 < w < n/200,
the bipartite graph (P, Py, /100—w) With poset relations as edges has a perfect matching.
Next, we use the Chernoff bound (which upper bounds the lower tail of the Binomial
distribution) and a “reverse Chernoff bound” (which lower bounds the lower tail of the
Binomial distribution) to show that

{z € {0,1}? | |z| € [n/200 — 5K,1n/200 — K]}| > (1800 — £5000)9a — (1800) . 9a,

To this end, for w € [0,n/200], let P<,, to denote {z € {0,1}* | |z| < w}. Then it suffices
to show that

|P<n/00—sr| < 2000 - 29,
which follows from the standard Chernoff bound, and

|P<njo00—x| > €00 2%,

which follows from the following “reverse Chernoff bound:”

» Lemma 15 ([35], Lemma 4). Let X be the sum of k independent 0/1 random variables.
For any K € (0,pk/2] and p € [0,1/2] such that K*/(pk) > 3, if each random variable is 1
with probability at most p, then

Pr[X < pk — K| > exp(—9K?/(pk)).

Next, consider any = € {0,1}" such that |z| € [n/2 — 10K,n/2] and |z4] € [n/200 —
5K,n/200 — K]. Let y € {0,1}" be such that yo = z¢ and y,4 is the matched point
of z¢ in the perfect matching. Then we have |y| € [n/2 — 10K,n/2 + 10K] and |ya]| €
(/200 + K,n/200 + 5K].

Note that for any such pair (z,y) we have © < y, f(2,0,1) = 1 and f(y,1,0) = 1,
which serves as an |-violating pair. Since the edges in a perfect matching are vertex-disjoint,
we have the number of |-violating pairs is at least the number of z € {0,1}" such that
|z|] € [n/2 — 10K,n/2] and |z 4| € [n/200 — 5K,n/200 — K].

We have shown that

{z € {0,1}* | |z| € [n/200 — 5K,1n/200 — K]}| = Q(18%0) . 22
Note also that
[{z € {0,1}° | |z| € [99n/200 — 5K, 99n/200]}| = Q(1) - 2",
This finishes the proof. <

Below we show that for any nonadaptive deterministic query algorithm A with query
complexity g = 209V7108(1/2) the probability that A succeeds in finding a violation of
intersectingness is o,,(1); this proves Theorem 3.
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Proof of Theorem 3. We establish the following lemma, from which the theorem follows by
a straightforward union bound:

» Lemma 16. For any two points x,y € {0,1}" such that |x|,|y| € [n/2 — 10K,n/2 + 10K]
and x <y,
Prilz N A| <n/200 - K and [y N A| > n/200 + K] < 272K,

Proof. Let I be the indices ¢ such that x; = 0 and y; = 1 and let ¢t = |I|. Then we know
0 <t <20K. On the other hand, in order for the event |z N A| < n/200 — K and |y N A| >
n/200 + K to happen, the set A has to hit at least 2K many indices in I. So

]i’qr[\:cﬂA| <n/200 — K and [y N A| > n/200 + K]
20K n,/100 20K \ K
Bi 100, —— ) > 2K | < .
o (n/ 00, 0.99n) = ] = ( 2K ) (O.99n>
_ (en/100 220K 2K
=\ 2K 0.99n

2K
< (Lo < 272K,
= {99 <

< Pr

completing the proof. |

By a union bound over all pairs of query strings where ¢ = 20-9K = 20-9vnlog(1/) "it follows
that the probability that A succeeds in finding a violation of intersectingness is 0, (1). Since
a one-sided tester must find such a violation in order to reject, this finishes the proof. <«

4 Lower bounds for Testing Union-Closed Families

In this section, we prove a nf2(1°8(1/¢)_query lower bound against non-adaptive algorithms
for testing union-closedness (with either one-sided or two-sided error). We describe the hard
distributions in Section 4.1 and then prove Theorem 4 in Section 4.2.

4.1 The Dy and D,, Distributions

Our construction of the hard distributions Dy.s and Dy, are inspired by the constructions
for the lower bound against intersectingness testing in Section 3; in particular, our hard
functions will also comprise of a truncated Talagrand random DNF on a set of “control bits”
C, and then a function tailored to the union-closedness property on a set of “action bits” A.
We illustrate both Dy and Dy, in Figure 3, and start by describing the Dy, distribution:

» Definition 17. Given € > 0, a draw of a Boolean function fyes : {0,1}" — {0,1} from the
distribution Dyes := Dyes(n, €) is obtained as follows:
1. Draw a random set of a :=log(1/¢e) coordinates A C [n], i.e.

A~ ([n]), and set C :=[n]\ A.
a
Let c:=|C|=n—a.
2. Let L:=0.1-2V¢ and draw an L-term monotone Talagrand DNF T ~ Talagrand(c,1) as
defined in Definition 7 on {0,1}€.
3. For each { € [L], independently draw a uniformly random a-bit string s, € {0,1}4.
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{0,1}¢ = {0, 1} {0,134 = {0, 1}

(a) A draw of fyes ~ Dyes

{0,1}¢ = {0, 1}™ {0,1}4 = {0, 1}

(b) A draw of fuo ~ Do

Figure 3 An illustration of the yes- and no-distributions for the union-closedness lower bound.
Our conventions are as in Figure 1. In (b), if b, = 1 then as long as r, ¢ {0%, 1%} the action cube
{0,1}* will contain a single violation of union-closedness.
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4. Output the function

1 |ST(zc)| > 2
Fyes(zc,za) = { H{za = s} Sr(zc) = {{}
0 |St(zc)| =0

where St is as defined in Notation 8.

It is straightforward to verify that functions drawn from Dy are indeed union-closed:
> Claim 18. Every function fyes in the support of Dy.s is union-closed.

We now turn to a description of the D, distribution.

» Definition 19. Given € > 0, a draw of a Boolean function fno : {0,1}™ — {0,1} from the
distribution Dpo 1= Dno(n, €) is obtained as follows:
1. Draw a random set of a :=log(1/e) coordinates A C [n], i.e.

a

A~ ([”]), and set  C:=[n]\ A.

Let ¢ :=|C| =n—a.

2. Let L :=0.1-2V¢ and draw an L-term monotone Talagrand DNF T ~ Talagrand(c,1) as
defined in Definition 7 on {0,1}€.

3. For each ¢ € [L], independently draw a uniformly random a-bit string vy € {0,1}4 as
well as a uniformly random bit by € {0,1}.

4. Qutput the function

1 |ST(zc)| > 2
Jyes(zo,za) = Qb V{za € {re,Te}}  St(zc) = {0}
0 |ST(zc)| =0

where ¥y := 1% — vy is the antipode of ry.

As illustrated by Figure 3, we associated each Talagrand term T; with a uniformly random
bit b,. If by = 1 then the action cube comprises a single union-closedness violation,” and if
b, = 0 then the action cube has zero satisfying assignments. This ensures that in expectation,
the measure of a function drawn from Dy, is indistinguishable from that of a function drawn
from Dyes. The proof of the following is deferred to the full version:

> Claim 20. With probability at least 0.001, a function fno ~ Dyo := Dpo(n, €) satisfies
dist(fno, g) > Q(e) for every union-closed function g : {0,1}" — {0,1}.

4.2 Indistinguishability of the Hard Distributions

In this section, we establish the indistinguishability of the distributions Dy.s and Dy, and
prove Theorem 4. Our proof will closely follow the approach used in Section 3.1 to prove a
lower bound against intersectingness testers.

5 This is with the exception of 7y = 0% or 1%; in this case ro UT, = 1% and so the function on the action
bits will indeed be union-closed. Note, however, that this only happens with probability 1/2.
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As before, we will write Q 4 := {x!,..., 29} C {0,1}" for the set of points queried by the
algorithm. The argument will crucially rely on the fact that the only way for A to distinguish
Dyes and Dy, is to draw two antipodal points from the same action cube, i.e. if there exist
" and 27 such that Sy (zk) = St () = {¢} for some ¢ € [L] and 2, and 27, are antipodes;
as before, we write Bad to denote this event. With view 4 defined as in Section 3.1, we have
the following:

» Lemma 21. We have view 4(Dyes|gsg) = view 4(Duolgsg)-

Proof. As before the distributions of the partition of [n] into C' U A are identical for both
Dyes and Dy, so we may fix an arbitrary partition. As the distribution of the Talagrand
DNF T ~ Talagrand(c, 1) is also identical, we can fix an arbitrary T. We define

Qa(0) = {a': Sr(at) = {0} }.

Note that the points outside (J,c(z; @a(f) do not matter as the the function is identically 0
or 1 for both Dyes and Dy,. We will abuse notation and view Q 4(¢) as a subset of the action
cube {0,1}* corresponding to the Talagrand term 7.

We will write fy for the function restricted to inputs in @ 4(¢), and will write A(f,) for
the sequence of answers to the queries made by A to fy (i.e. the sequence of answers to
queries by A on inputs in Q 4(¢)). We will write view 4 ¢(Dyes) (respectively view 4 ¢(Dpo)) to
be the distribution of A(f,) for f; ~ Dyes (respectively fo ~ Dyo). Since Q4 is partitioned
as Qa = [yer) Qa(0), note that in order to show that viewa(Dyes|gzg) = view.a(Duolgzg),
it suffices to show that view 4 ¢(Dyes|gzg) = View 4,¢(Dnolgzg); this is what we will establish
below.

Fixing an action cube {0,1}* (which is indexed by ¢ € [L]), note that the actions cubes
in the yes- and no-distributions can be equivalently described as follows:

1. Draw a uniformly random pair of points (y, %) from the 247! pairs (z,Z) for z € {0,1}2,
and draw a uniformly random bit by.

2. We consider the “yes” and “no” cases separately:

a. In the “yes” case, if by = 1, then set s, = y; otherwise set s; = ¥.

b. In the “no” case, set (ry,7¢) = (y,y); and if by = 0, then the function f|, is defined to

be identically zero on the action cube (cf. Definition 19 and Figure 3).

Note that conditioned on Bad not happening, we have that none of the query points in @ 4(¢)

are antipodes of each other. We now split into two cases depending on whether either y or y

is in the query set Q4 (¢):

1. Ify,y ¢ Qa(f), then note that view 4,¢(Dyes|gzg) = View 4,¢(Dnolgzg) since fi is identically
0 on Q4 (¢) in both the “yes” and the “no” cases.

2. Otherwise, since we conditioned on Bad, only one of ¥, % can be in Q 4(£); without loss of
generality, suppose that it is y. In both the “yes” and the “no” cases, y is a 1-input if and
only if by = 1, and the function is identically 0 on all other points. (Recall that we view
points of Q4(¢) as a subset of the action cube {0,1}* corresponding to the Talagrand
DNF term Tp.)

It follows that view 4 ¢(Dyeslgzg) = view a,e(Dnolgsg), and since Q4 is partitioned by the

indices £ € [L], we have view 4(Dyes|g;g) = view 4(Dnolgag), completing the proof. <

Next, we will show that Bad happens with o, (1) probability:

» Lemma 22. For any set of points Q4 = {x*,...,x%} C {0,1}" where q := n0-00los(1/),
we have Pr[Bad] = 0, (1).
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Proof. For z,y € {0,1}", let Bad,, be the event that Sr(z¢c) = St(yc) = {¢} for some
¢ e [L] and x4 =7y 4. We will upper bound the probability of Bad,, in what follows.

Let J C [n] be the coordinates in which x and y differ, i.e. J := {i € [n] : x; # y;}.

Define the event ¢ as:

AC (o)
We also define the event x as before as

There exists an ¢ € [L] such that Sr(z) = St(y) = {¢}. (%)

By definition of Bad,,, we have that Pr[Bad,,] < min {Pr[+],Pr[o]}. In the rest of the
proof, we will establish that

min {Pr[4], Prfo]} < @(1>0'01a, (10)

n
from which the lemma follows immediately by taking a union bound over all ¢ pairs

(z,y) € Qa X Q4. Note that Prfo] = Pr[A C J] < (%)a via standard bounds on binomial

coefficients. On the other hand, proceeding as in the proof of Lemma 13, we have

[J] _
Prle] < maPr [Sr(e) = Sr() | $20) = (0] < (1-72) <o (7))

where the final line follows from the definition of Talagrand(c,1). In particular, note that if
|J| < n®5 then

Pr[+] < (ngs>

and if |J| > n®5 then we have

—_n05 1 O(a)
Pr[¢] < exp (n—log(l/a)) < <n>

where the final inequality uses the fact that ¢ > @(WO%) Putting everything together
establishes Equation (10) which in turn completes the proof. <

Theorem 4 follows from Lemmas 21 and 22 mutatis mutandis as Theorem 2 follows from
Lemmas 12 and 13.
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