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Abstract—We consider the question of Gaussian mean
testing, a fundamental task in high-dimensional distribu-
tion testing and signal processing, subject to adversarial
corruptions of the samples. We focus on the relative
power of different adversaries, and show that, in contrast
to the common wisdom in robust statistics, there exists
a strict separation between adaptive adversaries (strong
contamination) and oblivious ones (weak contamina-
tion) for this task. Specifically, we resolve both the
information-theoretic and computational landscapes for
robust mean testing. In the exponential-time setting, we
establish the tight sample complexity of testing A(0, )
against N (av, ), where ||v||z = 1, with an e-fraction of
adversarial corruptions, to be
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while the complexity against adaptive adversaries is

e

which is strictly worse for a large range of vanishing
e,a. To the best of our knowledge, ours is the first
separation in sample complexity between the strong
and weak contamination models.

In the polynomial-time setting, we close a gap in
the literature by providing a polynomial-time algo-
rithm against adaptive adversaries achieving the above
sample complexity ©(max(vd/a? de?/a?)), and a low-
degree lower bound (which complements an existing
reduction from planted clique) suggesting that all
efficient algorithms require this many samples, even
in the oblivious-adversary setting.
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I. INTRODUCTION

Among all high-dimensional distribution testing (i.e.,
hypothesis testing) problems, Gaussian mean testing is one
of the most basic, with connections to signal processing
where it corresponds to signal detection under white noise.
Given n independent samples X7, ..., X,, € R? the goal
is to decide between two hypotheses:

Hy: Xi,..., X, were drawn from A(0,I), an

origin-centered identity-covariance Gaussian.

H;: X1,...,X, were drawn from N (u,I) for

some vector p with |pull, > a.
The following simple tester uses only ©(v/d/a?) samples,
the information-theoretic optimum: reject the null iff the
norm of the empirical mean H% Z?:l XZ'H2 is larger than
some well-chosen threshold. The number of samples scales
as the square root of the dimension: in contrast, ©(d/a?)
samples (linear in the dimension) are needed to learn the
mean p of a Gaussian N (u, ) up to ¢ error o.. This d-vs-
Vd gap is a prime example of a core theme in the literature
on distribution testing: testing requires fewer samples than
learning.

This simple tester is not robust to even a small fraction
of adversarially corrupted samples. Concretely, suppose
that an e-fraction of the samples X1,..., X, are chosen
by a malicious adversary. Even after preprocessing the
dataset by removing obvious outliers — say, X; such that
[ Xill, > E[Xi|l, & v/d - the simple tester with ©(v/d/a?)
samples can be fooled by just a single corrupted sample.

Robust distribution testing has been extensively studied
in robust statistics (the sub-field of statistics dealing
with adversarially-corrupted data) [18], [20], and yet basic
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questions about robust mean testing remain open. Most
importantly: what is the sample-optimal robust mean tester?
As we show, the answer to this question is intimately
intertwined with another unanswered question in robust
statistics: how much does it matter if the adversary sees
the uncorrupted portion of the dataset?

We find the latter question interesting for (at least) two
reasons. First, it is a foundational question about the power
of statistical adversaries — since modeling assumptions can
have a strong effect on algorithm design, it is important
to understand the consequences of basic assumptions. We
are not the first to ask the question from this perspective;

see also recent work of Blanc, Lange, Malik, and Tan [5].

Second, the question is pertinent to data poisoning attacks
in machine learning [11], [25], where an adversary injects
a small amount of malicious training data into a machine
learning pipeline. Such attacks can be feasible in practice
and hence are a significant concern [29]. If an oblivious
adversary is strictly less powerful than an adaptive one,
then keeping the training data secret is a potential (partial)
defense against data poisoning.

It turns out that oblivious and adaptive adversaries
have equal power for robust mean testing’s close (and
intensely studied [18]) cousin, robust mean estimation.'
Here, the goal is to estimate p up to ¢s error @ — in both

adaptive and oblivious cases this requires 6(%) samples.

Indeed, this appears to be the case for a range of robust
estimation problems, including covariance estimation and
linear regression. This suggests a conventional wisdom
in robust statistics: adaptivity does not buy statistical
adversaries additional power.

Returning to robust mean testing, recent work by
Narayanan [31] shows that the sample complexity of

robust mean testing against an adaptive adversary is
O(max(vd/a?,de?/a*)).? This brings us to:

Main Question: What is the optimal robust mean tester
against an oblivious adversary? Are the sample
complexities of testing against adaptive and oblivious
adversaries the same, as they are in robust estimation?

We answer this question by showing that the common
wisdom — being resilient to stronger adversaries comes
essentially “for free” — does not extend to mean testing,
where being robust against an oblivious adversary is strictly
easier than against a fully adaptive one (Theorem I.1)! In
fact, we resolve (up to log factors) the sample complexity
of robust Gaussian mean testing in the presence of an
oblivious adversary, by designing a new robust mean tester

1Here we mean that the sample complexity of robust mean
estimation is insensitive to details of the adversary’s power. However,
some separations are known, for instance between additive versus
additive and subtractive adversaries in the polynomial-time setting
[14]. See Section I-C for further discussion.

2Narayanan’s work focuses on differentially private mean testing,
but this result can be extracted using known reductions between
robustness and privacy.
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and proving a nearly-matching information-theoretic lower
bound.

To make the landscape even more interesting, we also
show that this separation vanishes when one requires
the tester to be computationally efficient. We first give
a polynomial-time (in fact, quadratic time) variant of
Narayanan’s tester, and then we obtain a lower bound
against a large class of efficient algorithms (“low-degree
algorithms”) which shows a matching sample complexity
against both oblivious and adaptive adversaries (Theo-
rem [.4). (This complements a reduction from planted
clique by Brennan and Bresler [6] which also suggests
that efficient algorithms require 75 samples even against
oblivious adversaries.) One consequence is a new statistical-
computational gap for robust mean testing against an
oblivious adversary.

In order to discuss our results in more detail, we describe
in the next section the standard adversarial corruption
models we consider in our work, and how they relate.
Then we state our results and provide an overview of the
new techniques and ideas that underlie our proofs and
algorithms.

A. Types of Adversaries

We focus on two main types of adversarial corruptions:
namely, the adaptive (strong) and oblivious corruption
models. These have a long history in Statistics and
Algorithmic Robust Statistics; see [16], [18] for a more
thorough discussion. In what follows, we assume that the
corruption rate ¢ is provided to the algorithm. Note that
this is without loss of generality, as, given d, «, and the
expressions of the sample complexities, the algorithm can
compute the largest value of € it can tolerate for a given
number n of samples.

The first corruption model allows an adaptive adversary
to look at the samples, and choose an e-fraction of them to
alter arbitrarily. Which subset of the samples was corrupted
is unknown to the algorithm.

Definition 1 (Strong contamination model). In the strong
contamination model, n iid. samples X{,..., X/ are
drawn from the underlying unknown distribution D. The
adversary, upon observing X7,..., X/, chooses en indices
i1, ien and values X', ..., X" . The algorithm then
receives the sequence X1i,..., X, where X;, = XZ’; for all
j € [en], and X; = X| otherwise. Crucially, both the en
indices and the values X' can depend on the “uncorrupted”
samples X7, ..., X/.

In contrast, in the oblivious contamination model, the
adversary must commit to which fraction of the samples it
will corrupt, and how, before observing the actual realiza-
tion of the samples. (It is, however, allowed knowledge of
both the specification of the algorithm and the underlying
distribution.)

Definition 2 (Oblivious contamination model). The adver-
sary chooses en indices iy, ..., %z, and values X7’ ..., X7

’ Ten '’
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Then n ii.d. samples X7,...,X] are drawn from the
underlying unknown distribution D, and the algorithm is
provided with the sequence Xy, ..., X,, as in Definition 1.

This definition does allow the corrupted samples to be
chosen in a correlated fashion; however, they cannot depend
on the realizations of the uncorrupted points themselves.
This oblivious model can be further weakened, leading to
what is known as the Huber contamination model where
the corrupted data points themselves must be chosen
independently of each other:

Definition 3 (Huber contamination model). In the Huber
contamination model, the adversary chooses a corruption
distribution D (possibly a function of the algorithm and
underlying unknown distribution D). Then n i.i.d. samples
X1,..., X, are drawn from the mixture (1—&)D+¢eD, and
provided to the algorithm.

While the focus of our work is on the adaptive and
oblivious contamination models, some of our lower bounds
apply even to the weaker Huber contamination model.

B. Our Results

Our main result settles the sample complexity of robust
mean testing under oblivious contamination, and estab-
lishes a strict separation between oblivious and adaptive
contamination models. In what follows, O, ©, hide poly-
logarithmic factors in the argument, and we always assume?
a < 0(1) and ¢ < a/(logn)°M (except in Theorem 1.3),
which is information-theoretically necessary, up to the
factor (logn)©M).

Theorem 1.1 (Obliviously-robust mean testing (Informal;
see full paper for formal statement)). In the oblivious
contamination model, there is a mean tester which is robust
to e-contamination, which uses

))) LW

Vd de® . <
min

© (max <a ot
samples in the oblivious contamination model, and this
is information-theoretically tight up to logarithmic factors.
vd de?
a2 ot
the weaker Huber contamination model.

d2/362/3 de

a3 7 2

Moreover, Q(max( ) samples are needed even in

We offer a little interpretation of the (surprisingly com-
plex) expression (1). If d dominates the other parameters,
i.e., d > 1/poly(«), 1/poly(e), then %f is the dominant
term. But if d, 1/«, 1/ are within small polynomial factors,
any of the four terms in (1) can dominate.

To see that Theorem 1.1 implies a strict separation
between the oblivious and adaptive models, we recall:

3We note that, for identity-covariance Gaussian distributions, mean
Uy distance a corresponds (for small «) to total variation (TV)
distance ©(a). Thus, ¢> mean testing corresponds to TV testing,
which motivates the regime o < 1 as of particular interest.
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Fig. 1. The various phases of the sample complexity of robust
mean testing in the oblivious contamination model, as stated
in Theorem I.1: each area of this plot corresponds to which term
of the sample complexity dominates, as a function of d, ¢, a.
The separation between adaptive and oblivious contamination
occurs at the red dashed line (to the right, the oblivious sample
complexity is strictly smaller). The lower half corresponds to
a < g, where testing is information-theoretically impossible.

Theorem 1.2 ( [31]). In the adaptive contamination model,
the optimal sample complexity of e-robust mean testing is

)

a?’ ot
The sample complexity (1) is strictly smaller than (2) for
a range of vanishing ¢, a, e.g., with € = Q(df‘ﬁ)

For completeness, in the full paper we show explicitly
how to obtain Theorem [.2 by combining Narayanan’s
result on differentially-private mean testing with known
robust-privacy equivalence results (as in e.g. [2], [24], [26]).
We further conjecture that a similar separation holds
between the oblivious and Huber contamination models; to
establish such a separation, it would be enough to prove a
(non-efficient) O(max(v/d/a?,de®/a*)) sample complexity
upper bound in the latter, which in light of Theorem I.1
would be nearly tight. We leave this as an interesting open
problem.

A subtle difference between our strong and oblivious
contamination models concerns which “good” samples
are removed by the adversary. In the strong model, the
adversary chooses adaptively which of the good samples to
remove, whereas the oblivious adversary can only choose
good samples to remove at random. Thus, the oblivious
adversary could be equivalently defined as merely adding
samples and doing no removals at all. One might ask
whether the separation in sample complexities we establish
between adaptive and oblivious adversaries actually arises
from the ability of the adaptive adversary to remove

© (2)
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samples, rather than from adaptivity itself.* We show in
the full paper that the lower bound of Theorem [.2 actually
holds even against adaptive adversaries that may only add
data points, meaning that the sample complexity separation
between adaptive and oblivious adversaries really is caused
by the difference in addaptivity for the added samples. This
extension to additive-only adaptive adversaries also readily
follows from results proven in [31].

Turning now to efficient algorithms, we provide the
first polynomial-time algorithm which nearly matches the
optimal sample complexity in the adaptive model. Prior to
our work, the best polynomial-time approach was to learn
the mean using O(d/a?) samples, or to apply a polynomial-
time algorithm of Narayanan [31] which works only when
e<a-d V4

Theorem 1.3 (Adaptively-robust efficient mean testing
(Informal; see full paper for formal statement)). In the
adaptive contamination model, there is a quadratic-time
algorithm for e-robust mean testing with sample complexity

Vd dely) og long as o > O(e/log(1/¢)).

a2’ ol

This computationally efficient analogue of Theorem 1.2
raises the question of whether a similar analogue of Theo-
rem 1.1 is possible. (The tester described in Theorem I.1
relies on a computationally inefficient “filtering step”;
see Section I-D). Our next result shows strong evidence that
this is not possible, and that the separation between adap-
tive and oblivious contamination models vanishes when
restricting oneself to computationally efficient algorithms.

O(max(

Theorem 1.4 (Computational lower bound (Informal;
see full paper for formal statement)). In the oblivious
contamination model, any e-robust low-degree mean testing
algorithm in the Huber contamination model has sample

complexity

Theorem [.4 complements a reduction from planted
clique [6] which suggests that n?(1°8") time is required
to beat ‘iif samples, even in the Huber model. The
quantitative version of our result (see the full paper)
suggests something stronger (albeit for a restricted class
of algorithms, rather than via reduction) — namely, that
exp(n() time is needed to use (%2)1*9(1) samples, even
in the Huber model. We hope that our results, by uncover-
ing a richer landscape in robust statistics than previously
known and showing that the choice of contamination
setting is much less innocuous than commonly believed,
will spark interest in revisiting these modelling assumptions
for various other tasks.

Vd de?

oo

PeRivy (3)

4For instance, one could consider an oblivious adversary which is
allowed to replace the good distribution D with D conditioned on
any event of probability 1 — &, thus obliviously “removing” part of D.
We thank Guy Blanc for pointing this out.
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C. Related Work

Gaussian Mean Testing. Gaussian mean testing is
known in statistics as the Gaussian sequence model [4],
[22], [27]; the understanding that it is possible to use
fewer samples than dimensions appears relatively recent
[33]. A recent influential work, [20], records the sample-
optimal mean tester and the “folklore” Q(v/d/a?) lower
bound, and initiates the study of the complexity of robust
mean testing. More recent work focuses on variants such as
mean testing under a sparsity assumption [23], testing with
unknown covariance [9], [19], testing subject to differential
privacy [10], [31], robustly testing the covariance [17], or
(distributed) testing giving partial observations from each
sample [1], [34].

(Algorithmic) Robust Statistics. Algorithmic robust
statistics, especially in high dimensions, has experienced
a recent renaissance following a range of algorithmic
breakthroughs; see the book [18]. Robust mean estimation
has played a fundamental role; the quest for efficient
algorithms for robust mean estimation led to the invention
of the filter technique [13].

Connection to (Differential) Privacy. A recent line of
work [2], [24], [26] established a (two-way) correspondence
between adversarially robust and differentially private
algorithms for a range of tasks, a connection we use
to obtain Theorem I.2. Importantly, this correspondence
applies to adaptive adversaries, and does not, to the best of
our knowledge, differentiate between oblivious and adaptive
adversaries.

Noise Models in Statistics and Learning. Many
developments in computational learning theory have been
guided by the mission to design algorithms which work in an
array of noise models [3]. For instance, the statistical query
model was invented to capture a class of PAC learning
algorithms which tolerate random classification noise [28].
A full survey is out of scope, but some highlights include
nasty noise, which is essentially the adaptive contamination
model we consider here [8], [21], and Massart noise, which
has led to exciting recent algorithmic advances [12], [15],
[32]. While computational separations are known between
these noise models in classification settings (e.g., random
classification noise is much easier to handle algorithmically
than adversarial label noise), separations in sample com-
plexity seem unlikely, because empirical risk minimization
handles even the nastiest noise models.

Two works in particular study questions related to ours.
First, [5] shows some equivalences between adaptive and
oblivious adversaries up to polynomial factors in sample
complexity, for restricted classes of algorithms (SQ) or
adversaries (additive). [14], [20] together show a computa-
tional separation between what error « is achievable for
robustly learning a high-dimensional Gaussian when the ad-
versary can only add samples versus when they can add and
remove samples. We emphasize that while previous work
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showed evidence for a computational gap, we believe ours is
the first demonstration of an (unconditional) information-
theoretic separation in a natural robust statistics setting.

D. Overview of Techniques

1) Exploiting Obliviousness to Robustly Test with Fewer
Samples:

a) Our Approach.: We focus first on our main technical
contribution, the mean tester from Theorem I.1. To get an
improved testing algorithm for oblivious contaminations
(compared to adaptive contaminations), we need to exploit
that the adversary must commit to the contaminated points
before the remaining datapoints are drawn. A consequence
is that the correlation between the sums of good points (G)
and bad points (B) is comparable to independent random
vectors of comparable norm:

> !

< ZiEBXi ZieGXi ~
[Eien Xill, [Sica Xill, /— Vd

By contrast, an adaptive adversary can make this correla-
tion as large as 1.

Hence, the only way the adversary can have a sub-
stantial effect on || il Xng is by making ||>,c 5 X,»H2
larger than it would be for a set of en good sam-
ples. Building on this idea, we can design a tester us-
O g, ‘iif,min dz:;iim,%))) samples under
(roughly) the additional assumption that the sum of every
subset of the adversary’s vectors has about the same norm
it would if the samples were uncorrupted.

The second challenge is to remove this additional as-
sumption. The standard approach in robust statistics to
make bad samples “look like” good ones according to
some tests (e.g. norms of sums of subsets of points) is
to remove samples in subsets which violate those tests; this
is often called “filtering”. This risks removing about en
good samples as well, but in many settings this isn’t an
issue.

However, removing any good samples after looking at all
the samples potentially breaks obliviousness by introducing
dependencies between good and bad samples! We develop
a novel obliviousness-preserving filtering technique. We
(iteratively) split the samples into two subsets, U, V.
Looking only at U, we devise a rule for which samples
to keep and which to remove (keeping those contained in
a certain intersection of halfspaces); then we apply this
rule to V' and show that it preserves obliviousness while
ensuring that V' now satisfies the assumption about sums
of subsets of corrupted vectors. We turn now to a more
detailed overview.

ing © (max (

Background: Narayanan’s Robust Tester. To un-
derstand quantitatively how we can exploit obliviousness
of the adversary, we first review a robust mean tester
which uses O(max(v/d/a?,ds?/a*)) samples in the strong
contamination model, as long as ¢ < « (all of which is
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information-theoretically necessary).” Our polynomial-time
algorithm is also an adaptation of the following robust
tester.

As in many robust statistics settings, the overall scheme
relies on finding a “good enough” subset of (1—¢&)n samples
S C [n], to then apply a non-robust algorithm on S —
in this case, the simple tester based on ”Zies XZHE For
X1,..., X, € R? which are clear from context and 7' C [n],
let Sum(T) = >, Xi.

Definition 4 (Good Enough Subset (Informal)). For
X1y, Xy € RY we say S C [n], |S| = (1 —¢)n is good
enough if, for every T'C S with |T'| < en,

|Sum(T)|5 < |T|d + O(e**n'*Vd + £2n?)
and
|(Sum(S \ T), Sum(7T))| < O(en'®>Vd + 2n?).

The choice of parameters in the definition guarantees that
any subset of size (1 — e)n of n independent samples
from AN(0,I) or N(u,I), for small-enough pu, is good
enough with high probability. To see why this holds
intuitively, observe that if S consists of good samples
only, then [(Sum(S\ T'), Sum(T"))| is roughly distributed
as N(0,en?d), and we need a union bound over a n"
choices of T

~
~

Definition 5 (Narayanan’s tester). Given n e-
contaminated samples, Narayanan’s tester finds
any good enough subset S and outputs Hy if
HSum(S)Hg — (1 —&)nd < &*n? and H; otherwise.

Analysis Sketch. Let X;,..., X,, be an e-contaminated
draw from either N'(0,1) or N (y,I) for some ||pll, = o
Let G C [n] be the uncorrupted samples. (For simplicity,
in this overview we assume the adversary has only added
samples; removed samples can be handled without much
more difficulty.) Let S C [nl be any good enough subset;
we want to show [|[Sum(9)[; — (1 —e)d > Q(an?) in the
alternative case, and ||Sum(S)H§ —(1—¢)d < a?n? in the
null. First,

E[|Sum(G)[|5 — (1 —e)d =
{E Sipiec (Xi X;) ~ a?n?

0
and standard concentration arguments show that this holds
with high probability so long as n > v/d/a?. So we just
have to show that [|[Sum(S) |5 —[|Sum(G)||3| < a2n?. This
is doable using the following lemma.

in the alternative case
in the null case

Lemma 1 (Main Lemma for Narayanan’s Tester). For
any two good-enough subsets S,S" of X1,...,X, € R?,

5A similar tester can be extracted from [31]. While Narayanan’s
paper focuses on differentially private mean testing, the tester can
be shown to be robust by virtue of its privacy guarantees. The tester
we describe here is simpler than Narayanan’s original tester, in part
because we need only robustness, not privacy.
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[Sum(S)||3 — ||Sum(S)|3
de?/a*.

Proof. We divide S into SN.S" and S\ S’ and S’ into S'NS
and 5"\ S, so we have

< a?n?, so0 long as n >

ISum(S)|[5 — [Sum(s")]

= ||Sum(S N S')||§ + 2 (Sum(SN.S"),Sum(S \ S))
+|ISum(S\ 85 — [[Sum(S" N S)|I3
—2/(Sum(S' N S),Sum(S"\ S)) — [[Sum(S" \ S)H; .

Now, [|Sum(S N S’)H2 — ||Sum(S' N S)||2 = 0, and
since |S \ S| = |8\ S|, also |HSuIn(S\5”)||2 —
[Sum(S’\ S)|5] < O(e'*n'5Vd + £2n?), using
good-enough-ness. By using good-enough-
ness again, both [(Sum(S N .S’),Sum(S \ S))|
and  [{(Sum(S’'N.S),Sum(S"\ S))| are at most
O(en'®Vd + £?n?). Since £ < a, we have &2 n < a?n?,
and since n > de?/a?, we have en'®vd < a?n?. []

This completes the analysis of Narayanan’s tester. We
record two important observations:

1) The reason that the tester requires de?/a* samples lies
in the term (Sum(S N S’),Sum(S\ S’)). Let’s think
of " = @G, the good samples, and S as some good-
enough subset which contains around en corrupted
samples, S\ G. The adaptive adversary could choose
the samples in S\ G to make Sum(S \ G) too (anti)-
correlated with Sum(S N G). There is a limit to how
large he can make the (anti)correlation before S is
no longer “good enough” — namely, he can make
(Sum(S N G),Sum(S \ G)) as large as the largest in-
ner product of the form (Sum(G\T'),Sum(7")) for
T C G with |T| = en, which is around en'>v/d by
standard concentration.

2) Narayanan’s tester requires finding a good-enough
subset of (1 — )n samples; prima facie this requires
exponential-time brute-force search, but we describe
a polynomial-time variant of his approach later.

Using Only ds/a? Samples if the Adversary is
Oblivious and Not “Too Big”. Narayanan’s tester is
information-theoretically optimal (up to log factors) against
adaptive adversaries. As our first taste of improved testing
against an oblivious adversary, consider the following
toy setup. Suppose the adversary is not only oblivious
but also promlses us that the end bad samples B will
satisfy [[Sum(B )H2 < O(end); roughly, this constraints
the adversary to add en vectors of norm v/d which are
approximately pairwise orthogonal. (If the adversary adds
any vector of norm much larger, we can remove it before
proceeding.) We will show how to test using v/d/a?+ds/a?
samples, improving on Narayanan’s tester for e > o?.

We revisit the simple tester using just HSum([n])Hg
Dividing [n] into good and corrupted samples G, B,

ISum(n) I3 = nd = (|ISum(G) |3 — (1 - )nd)
+ 2 (Sum(G), Sum(B))
+ HSum(B)Hg —end.

As usual, [[Sum(G)[2 — (1 — e)nd > Q(a®n?) in the
alternative case and < o*n? in the null; we want to show
the remalnlng terms are < a?n? in magnitude. Trivially,
[|[Sum(B )H2 —end| < O(end) << a?n? when de/a® < n,
using our promise on |[Sum(B )H2

Now let’s look at the term where we make the improve-
ment over Narayanan’s tester: (Sum(G), Sum(B)); we are
looking to use obliviousness to beat the bound en'®v/d.
We fix Sum(B) and then sample the random vector
Sum(G), which is distributed either as A(0, (1 — &)nl)
or N((1 —¢&)nu, (1 — )nI), meaning in the null case

(Sum(G), Sum(B)) ~ N(O, (1- €)n||Sum(B)H§)

and in the alternative case

(Sum(G), Sum(B))
~ N (1= ) (s, Sum(B)) , (1 = £)n||Sum(B)]3)

So, \(Sum(G) Sum(B))| < O(na - Vend + nved) < o’n?
as [[Sum(B )H2 < O(end) and n > de/a?.

From this simple reasoning, we draw the following impor-
tant conclusion:

If the adversary is oblivious and is constrained to
add samples B which aren’t “too big”, then we can
test using fewer samples than against an adaptive
adversary.

This leads us to two key questions, whose answers form
the main technical ingredients in our oblivious tester.
Can we take an obliviously-corrupted dataset and remove
samples in some way to ensure that in the resulting filtered
dataset, the adversary has added samples B which aren’t
“too big”, but do so in a way which doesn’t introduce
dependencies between good and bad samples which would
break the obliviousness we're relying on? And, what is
the right definition for “too big” — could a more refined
definition lead to a tester using fewer than de/a? samples?

Friendly  Oblivious Adversaries and The
Sum-+Variance Tester. We will tackle the above
questions in reverse order. We introduce a key definition:

Definition 6 (Informal, see full paper for formal state-
ment). A friendly oblivious adversary introduces {X;}icn
such that
1) For disjoint S, 7 C B with [S|,|T]
|(Sum(S), Sum(T))| < O(\/|5| [T+ (Vend + en)).
2) For distinct i,j € B, X;)| < O(Vd), and for
every i € B, ||X ||2 = d).

IA

en,

(X,
d =+ O(
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The parameters are chosen so that every pair of subsets
S, T of good samples would satisfy these conditions.

To clarify why friendliness refines the “not too big”
condition HSum(B)Hg < O(end) from above, observe that
subject to friendliness, for any S C B,

[Sum(S)[|3 = |S| - (d + O(Vd))
+ O(E51,52 (Sum(Sl), Sum(52)>)
= d|S| + O(|S|Vend + |S|Vd)

where 51,55 is a random partition of S. In particular,
||Sum(B)||§ = end + o(a?n?) whenever n > de?/a*.

Now we can in2t/r30(21/uslce our robust mean tester which
uses g + ‘i% d —5— samples (up to log factors) in the
presence of a friendly oblivious adversary.

The Sum-+ Variance Tester: Given X1, ..., X, € R4, if
[Sum([n])||2 — nd > Q(a?n?), or if
(Xi, Sum([n])) a'n

(S ool

return Hy, otherwise return Hy.

1

P> )
i€[n]

Analysis Sketch. For starters, we need to make sure
that in the null case, HSum([n])Hg —nd < o?n?. Split-
ting S into good samples G and corrupted samples
B, we know HSum(G)H; (1 — e)nd £ O(nVd) and
| (Sum(G),Sum(B))| < O(nved) using standard con-
centration tools and obliviousness, and [|Sum(B)]>
end + O(e"®n*®\/d 4 env/d) by friendliness. All together,

|Sum([n]) |3 — nd = ||Sum(G)||; + 2 (Sum(G), Sum(B))

+ [|Sum(B)||3 — nd
= O(nVd+£*n'>Vad)

which is at most a?n? exactly when n > f + e

Ideally, we would show next that in the alternamve case
ISum([n ])H2 —nd > oa®n?, but even a friendly, oblivious
adversary can ensure this doesn’t happen when n < %
With knowledge of the vector u, he can introduce samples
{X;}iep such that (X;,pu) —<, which introduces
cancellations with ESum(G) that reduce HSum([n])H;
2

[[Sum([n]) ed

~
~

Overall, he can ensure HSum([n])Hg —nd| < o®n

But now we encounter a typical theme in robust statistics:
the adversary has had to introduce a small set of X;’s such
that (X, Sum([n])) is more negative than typical, thereby
increasing the variance among {(Xj;, Sum([n]))};c[n). For
i € B, we expect (X;,Sum([n])) to be "%“2 smaller than
usual, so heuristically,

_ d> 2

1 X, Sum([n
HZ(< ([n]))

2\ Sum())l,

where we used ||Sum([n ])||2 ~ nd. Addmg the contribution
from the samples in G gives us 14 Q(%;*). We make this
idea rigorous in the full paper.

a'n?

e2nd

a4n

ed ’

CEN -

2165

Of course, outputting H; when
2
1 Z( ])> d) :1_‘_9((1:(;7,
2 D,

only makes sense if the adversary cannot make this happen
in the null model. We show that no friendly oblivious ad-

(X, Sum(n))y—d ) _ otn
[Sum(]Tl; ) =1+Q(3)

(X, Sum(]
|[Sum([n

)

1
versary can make -3 .. B(
J2/3.2/3
o8/3

if n>

Friendliness via Obliviousness-Preserving Filtering.
We're still missing a key ingredient: how can we force an
oblivious adversary to be friendly? Ensuring condition 2 of
friendliness is straightforward. If we see any \HX,Hg —d| >
Vd, that X; must have been introduced by the adversary
and can be safely removed, and similarly if any pair ¢, j
has | (X;, X;) | > V/d then (by obliviousness) both X, X;
must be corrupted samples and can be removed. (We are
using > to hide logarithmic factors.)

But what about condition 1?7 A natural idea is to
preprocess Xi,..., X, by removing any subsets S,T of
size at most en which violate condition 1. If we had
a subset S which grossly violated 1 in the sense that
HSum(S)Hg > 100end, we could conclude that S contains
at least 99% bad samples. This might seem good enough —
indeed, a common paradigm in robust statistics is filtering,
removing samples in way which removes at least as many
bad samples as good ones, since any such procedure can
ultimately remove at most en good samples. However,
removing any good samples after looking at all the samples,
including the corrupted ones, creates dependencies between
good and bad samples, thus breaking obliviousness!

Sample-Splitting to Preserve Obliviousness. We
introduce an obliviousness-preserving filter. We:

1) Randomly split Xi,..., X, into U and V.

2) Using only U, identify a set of unit vectors vy, . ..
R4,

3) For all j < /, remove from V any X; such that
[ (X;,v;) | > vlogn, then return V.

The idea is that the returned V' will (with high probability)
be a set of samples corrupted by a friendly oblivious
adversary. The threshold /logn is chosen so that with
high probability no good sample is removed from V. This
means that with high probability the scheme preserves
obliviousness, since we could have gotten the same outcome
by drawing the good samples in V only after performing
filtering.’

The challenge is ensuring friendliness, which of course
rests on the implementation of step 2. In this step, the
basic idea is to find a family of subsets T1,...,Ty; C U such
that, for each i € [(],

,Vp €

SIn reality we will perform several rounds of obliviousness-
preserving filtering, splitting V' again into U’, V'’ and so on; as rounds
progress we ensure friendliness for pairs of subsets S, T of increasing
size. We will ignore this detail in our technical overview.
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o |Tj] < en/(logn)°M (here < hides constants; the
(logn)®W is crucial, as explained below), and

o if we choose v; = Sum(7;)/||Sum(7;)||, and remove
from U any X such that (X;,v;) > /logn, then U
satisfies condition 1 of friendliness. If this happens,
we'll say that Ty, ...,T,, “cleans” U.

We need to establish two things: first, that such a family

Ty,...,T, which cleans U exists, and second, with high
probability over the random split U, V', any Th,...,Ty C
{X1,...,X,} which cleans U also cleans V. However, these

are in tension. For the first, we would like to be able to
choose the sets T1,...,T} as large as possible, as this gives
more flexibility in the choice of filtering directions and
hence makes it easier to clean U. But, for the second,
we need tight control over how many different choices of
Ti,...,T; the cleaning algorithm could make, because we
will need to make a union bound over all such choices; the
smaller the sets Ti,...,T; have to be, the fewer choices
there are.

Compression and Small Witnesses. The key idea to
balance these concerns is to show that if 57,55 violate
O-friendliness condition 1, then we can compress S; to
a smaller set S} such that removing all X; € Sy with
<X Sum(Sy)

v HSum(S{)H2
means we can add S} to our list of T;s. The following
lemma shows this, as long as S; U Sy already satisfy \-
friendliness for some A\ > 6 — we will be able to ensure
that they already do via induction.

> makes progress in cleaning U, which

Lemma 2 (Small Witness Lemma). Let Si,S, C R?
have |S1|,|Ss| = en and (Sum(S;), Sum(Sy)) > en - VAd.
Suppose S1USs is A-friendly, for some X\ > 6, and that there
is some parameter C' > 0 such that | (X, X')| < 6/d/C
and || X;||?> = d+6d/C for all X, X' € S1US,. Then there
is 8] C Sy with |S1] < en/C and Q(en) vectors X € Sy

such that <X Sum(S}) > > Q(@)

* [[sum(sDIl,

In Lemma 2, we think of § ~ en(logn)®M), so that
(Sum(Sy), Sum(Ss)) > env/@d is a violation of friendliness,
and C ~ (logn)°™M) so that S is significantly smaller than
S1. Proving Lemma 2 is outside the scope of this overview,
but the strategy is to first show that a large number of
vectors in Sy are correlated with Sum(Sy), and then show
this is preserved when we replace S; with a random subset
S} C S1. Lemma 2 shows that adding S to the list of T}’s
will result in removing Q(en) vectors; this can only happen
O(1) times before all bad samples would be removed, so
that we can think of ¢ = O(1).

Small Filters Generalize from U to V. Lastly, we
need to establish that, if we find a short list of small
Ty, ..., T, which cleans U, then with high probability it also
cleans V. Consider the set 7T of all possible (T7,...,Ty) €

(m/(logn)o(l))é; note that |7 < 9en/(logn) ™ pocause ¢ =
1).
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Fixing some (T1,...,Ty) € T, our goal is to show that
with probability at least 1 — 2=4en) gyer the random split
U, V,if Ty,..., Ty cleans U then it cleans [n]; then we can
take a union bound over all of 7. By contrapositive, it
is enough to show that, if after removing all X; from
X1,...,X, such that (Sum(7}),X;) > +/logn, some
subsets 51,52 C [n] remain which violate A-friendliness,
then with probability 1 — 27" the random set U also
contains some S}, S5 which violate 6-friendliness, for some
6 not too much less than A. (This distinction between 6, A
is the origin of the two different friendliness levels in the
small witness lemma.)

For the latter, standard concentration arguments show
that, with probability 1 —27%(*")the offending sets S1, So
get split evenly between U and V, and this in turn is
enough to show that some subsets of U N Sy, U N Sy also
violate friendliness.

2) Lower Bounds: Information-Theoretic Lower
Bound for Obliviously-Robust Testing. Among our
lower bounds, the greatest conceptual innovation lies in our

proof that robust mean testing with an oblivious adversary
d2/362/3 de
a8/3 1 a?

Vd

terms in the lower bound, ¥z and %3, come respectively
from the complexity of non-robust mean testing and from
a simpler argument using a Huber adversary, respectively.
(The latter we describe below.)

To prove the lower bound, we will describe a distribution
over mean vectors p and adversarial vectors {X;};cp such
that the joint distribution of {X;};cp together with (1 —
e)n samples from N (p,I) is close in total variation to
N(0,I)®", The key trick in designing this distribution
is to correlate, but not perfectly align, Sum(B) with —p.
Concretely, we:

1) Draw X; ~ N(0,I) for i € B.
2) Draw p = —f Sum(B) — z, where § = 2B(n,d,a,a) >0
is a suitable constant and z ~ N(0, &-T).

requires Q(min samples. The remaining

We show via direct calculation that the y? divergence,
and hence total variation distance, between these two
distributions on sets of n samples is o(1) so long as

n < Q(rnin(dz/sgw3 de

573 52 ) ). The trick above of sampling

the corrupted samples {X;};cp before drawing p keeps
these calculations tractable.

Information-Theoretic Lower Bound for Huber-
Robust Testing. Our final information-theoretic lower
bound shows that Q(ds?/a*) samples are needed in the
presence of a Huber adversary. Here we borrow the lower-
bound instance from [20] — the adversary just adds samples
from N (—f - u, I) for some well-chosen 3 > 0. We tighten
the analysis of this instance from [20] by using a conditional
second moment (a.k.a. conditional x? divergence) approach.
( [20] use a vanilla y2-divergence analysis of their lower
bound instance; this method can prove at best a de?/a*
lower bound, which they obtain.)
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Low-Degree Lower Bound for Huber-Robust Test-
ing. Finally, we show a low-degree lower bound in the
Huber model (essentially equivalent to an SQ lower bound
[7]) using the same instance from [20]; this is a direct
computation using now-standard techniques from [30].

3) A Quadratic-Time Tester: Now we turn to our
quadratic-time algorithm for robust mean testing against
adaptive adversaries using g + i—i? (up to logarithmic
factors) samples, matching Narayanan’s tester. Up to
logarithmic factors, our bound matches our low-degree
lower bound mentioned above. Together, these bounds give
strong evidence that computationally bounded algorithms
must pay a factor of %f in the sample complexity, and
therefore cannot witness the improved rates described
elsewhere in this paper, for any model of contamination.
Recall that Narayanan’s tester requires finding a good-
enough subset (Definition 4). Since good-enough-ness
involves all subsets of en samples, even checking whether
some S C [n] is good enough seems to require n°" time.

Borrowing a technique from the robust estimation, we
show that, at least for the good samples G C [n], there’s
an efficiently-computable witness to their good-enough-
ness. This witness is the top eigenvalue of the covariance
matrix ]EiNG(Xi —]E]'NGXJ')(XZ' —]EjNGXj)T, together with
a uniform upper bound on the magnitude of the row-sums
of the Gram matrix of {X; : i € G}.

For illustration here, consider the null case and imagine
that n < d. Then it turns out to be nicer to consider
the Gram matrix M € RU-2)nx(1=)n with entries M;; =
(X5, X;); up to zeros it has the same eigenvalues as the
covariance. Since X; ~ N(0,1) for i € G, we have M =
d-I4+O(V/nd). If 17 is the 0/1 indicator vector for T C G
with |T'| < en, then 1. M1 certifies the first part of good-
enough-ness:

ISum(T)|[5 = 17 M1
=d- |17ll; £ O(Vnd||17|3)
= |T|d + O(en'*Vd).

For the second part, note that (Sum(G\ T'),> (7))
> ier 2ujzi Mij is roughly the row-sums of the (off-
diagonals of the) matrix M for ¢ € T. Each row sum
is at most O(v/nd), so the sum is O(en'5v/d).

These arguments (at least in the case n < d; n > d is not
very different) show that it is enough to find S C [n] with
|S| = (1 — ¢)n and whose Gram matrix has eigenvalues
d+0(v/nd) and off-diagonal row-sums at most O(en'>v/d).
In the full paper we design a filtering algorithm which
does this by starting with [n] and iteratively removing
samples X; with large projection onto too-large or small
eigenvectors of the Gram matrix, or whose row-sum is too
large, until all the row-sums and eigenvalues are as we
desire.

~
~

ACKNOWLEDGMENTS

The authors would like to thank Guy Blanc and Gautam
Kamath for some helpful suggestions.

2167

REFERENCES

[1] Jayadev Acharya, Clément L. Canonne, and Himanshu Tyagi.
Distributed signal detection under communication constraints.
volume 125 of Proceedings of Machine Learning Research, pages
41-63. PMLR, 09-12 Jul 2020.

Hilal Asi, Jonathan R. Ullman, and Lydia Zakynthinou. From
robustness to privacy and back. CoRR, abs/2302.01855, 2023.
Maria-Florina Balcan and Nika Haghtalab. Noise in classifica-
tion., 2020.

Yannick Baraud. Non-asymptotic minimax rates of testing in
signal detection. Bernoulli, pages 577-606, 2002.

Guy Blanc, Jane Lange, Ali Malik, and Li-Yang Tan. On the
power of adaptivity in statistical adversaries. In Conference on
Learning Theory, pages 5030-5061. PMLR, 2022.

Matthew Brennan and Guy Bresler. Reducibility and statistical-
computational gaps from secret leakage. In Conference on
Learning Theory, pages 648-847. PMLR, 2020.

Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li,
and Tselil Schramm. Statistical query algorithms and low-degree
tests are almost equivalent. arXiv preprint arXiv:2009.06107,
2020.

Nader H Bshouty, Nadav Eiron, and Eyal Kushilevitz. Pac
learning with nasty noise.  Theoretical Computer Science,
288(2):255-275, 2002.

Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi,
and Erik Waingarten. Random restrictions of high dimensional
distributions and uniformity testing with subcube conditioning.
In SODA, pages 321-336. SIAM, 2021.

Clément L. Canonne, Gautam Kamath, Audra McMillan,
Jonathan R. Ullman, and Lydia Zakynthinou. Private identity
testing for high-dimensional distributions. In NeurIPS, 2020.
Samuel Deng, Sanjam Garg, Somesh Jha, Saeced Mahloujifar,
Mohammad Mahmoody, and Abhradeep Guha Thakurta. A sep-
aration result between data-oblivious and data-aware poisoning
attacks. Advances in Neural Information Processing Systems,
34:10862-10875, 2021.

Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos.
Distribution-independent pac learning of halfspaces with massart
noise. Advances in Neural Information Processing Systems, 32,
2019.

Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li,
Ankur Moitra, and Alistair Stewart. Robust estimators in high-
dimensions without the computational intractability. SIAM
Journal on Computing, 48(2):742-864, 2019.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li,
Ankur Moitra, and Alistair Stewart. Robustly learning a gaussian:
Getting optimal error, efficiently. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2683-2702. STAM, 2018.

Tlias Diakonikolas, Daniel Kane, Pasin Manurangsi, and Lisheng
Ren. Cryptographic hardness of learning halfspaces with massart
noise. Advances in Neural Information Processing Systems,
35:3624-3636, 2022.

Ilias Diakonikolas and Daniel M. Kane. Recent advances
in algorithmic high-dimensional robust statistics. CoRR,
abs/1911.05911, 2019.

Ilias Diakonikolas and Daniel M. Kane. The sample complexity
of robust covariance testing. In COLT, volume 134 of Proceedings
of Machine Learning Research, pages 1511-1521. PMLR, 2021.
Ilias Diakonikolas and Daniel M. Kane. Algorithmic High-
Dimensional Robust Statistics. Cambridge University Press,
2023. To appear. Draft available at https://sites.google.com/
view/ars-book/.

Tlias Diakonikolas, Daniel M. Kane, and Ankit Pensia. Gaussian
mean testing made simple. In SOSA, pages 348-352. SIAM,
2023.

Tlias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Statisti-
cal query lower bounds for robust estimation of high-dimensional
gaussians and gaussian mixtures. In FOCS, pages 73-84. IEEE
Computer Society, 2017.

Tlias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learn-
ing geometric concepts with nasty noise. In Proceedings of the

(10]

(1]

[12

(13]

[14]

(15]

[16]

(17]

(18]

19]

20]

(21]

Authorized licensed use limited to: MIT Libraries. Downloaded on January 24,2024 at 18:34:42 UTC from IEEE Xplore. Restrictions apply.



50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1061-1073, 2018.

[22] Michael Sergeevich Ermakov. Minimax detection of a signal in
a gaussian white noise. Theory of Probability & Its Applications,
35(4):667-679, 1991

[23] Anand Jerry George and Clément L. Canonne. Robust testing

in high-dimensional sparse models. In NeurIPS, 2022.

Kristian Georgiev and Samuel B. Hopkins. Privacy induces

robustness: Information-computation gaps and sparse mean

estimation. In NeurIPS, 2022.

[25] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen,
Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and
Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(2):1563-1580,
2022.

[26] Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, and
Shyam Narayanan. Robustness implies privacy in statistical
estimation. CoRR, abs/2212.05015, 2022.

[27] Yuri Ingster, Jurij I Ingster, and IA Suslina. Nonparametric
goodness-of-fit testing under Gaussian models, volume 169.
Springer Science & Business Media, 2003.

[28] Michael Kearns. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM (JACM), 45(6):983-1006, 1998.

[29] Ram Shankar Siva Kumar, Magnus Nystrom, John Lambert,
Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt
Swann, and Sharon Xia. Adversarial machine learning-industry
perspectives. In 2020 IEEE security and privacy workshops
(SPW), pages 69-75. IEEE, 2020.

[30] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira.
Notes on computational hardness of hypothesis testing: Pre-
dictions using the low-degree likelihood ratio. In Mathematical
Analysis, its Applications and Computation: ISAAC 2019, Aveiro,
Portugal, July 29-August 2, pages 1-50. Springer, 2022.

[31] Shyam Narayanan. Private high-dimensional hypothesis testing.
In COLT, volume 178 of Proceedings of Machine Learning
Research, pages 3979-4027. PMLR, 2022.

[32] Rajai Nasser and Stefan Tiegel. Optimal sq lower bounds
for learning halfspaces with massart noise. In Conference on
Learning Theory, pages 1047-1074. PMLR, 2022.

[33] Muni S Srivastava and Meng Du. A test for the mean vector with
fewer observations than the dimension. Journal of Multivariate
Analysis, 99(3):386-402, 2008.

[34] Botond Szabd, Lasse Vuursteen, and Harry van Zanten. Optimal
high-dimensional and nonparametric distributed testing under
communication constraints. 2022.

(24

2168

Authorized licensed use limited to: MIT Libraries. Downloaded on January 24,2024 at 18:34:42 UTC from IEEE Xplore. Restrictions apply.



