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ABSTRACT

We study the relationship between adversarial robustness and dif-
ferential privacy in high-dimensional algorithmic statistics. We give
the first black-box reduction from privacy to robustness which can
produce private estimators with optimal tradeoffs among sample
complexity, accuracy, and privacy for a wide range of fundamental
high-dimensional parameter estimation problems, including mean
and covariance estimation. We show that this reduction can be
implemented in polynomial time in some important special cases.
In particular, using nearly-optimal polynomial-time robust estima-
tors for the mean and covariance of high-dimensional Gaussians
which are based on the Sum-of-Squares method, we design the first
polynomial-time private estimators for these problems with nearly-
optimal samples-accuracy-privacy tradeoffs. Our algorithms are
also robust to a nearly optimal fraction of adversarially-corrupted
samples.
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1 INTRODUCTION

Parameter estimation is a fundamental statistical task: given samples
Xi, ..., Xn from a distribution pg(X) belonging to a known family
of distributions ? and indexed by a parameter vector § € © € RP,
and for a given a norm || - ||, the goal is find 0 such that |16 - é||
is as small as possible. Two important desiderata for parameter
estimation algorithms are:

Robustness: If an n-fraction of X3, . . ., X, are adversarially corrupted,
we would nonetheless like to estimate 6. This strong contamination
model for robust parameter estimation dates from the 1960’s, but has
recently been under intense study from an algorithmic perspective,
especially in the high-dimensional setting where X1, ..., X, € R?
for large d. Thanks to these efforts, we now know efficient algo-
rithms for a wide range of high-dimensional parameter estimation
problems which enjoy optimal or nearly-optimal accuracy/sample
complexity guarantees.

Privacy: A differentially private (DP) [20] algorithm protects the
privacy of individuals represented in a dataset X, ..., X, by guar-
anteeing that the distribution of outputs of the algorithm given
X1, ..., Xn is statistically close to the distribution it would generate
given X/, ..., X}, where X{..., X}, differs from Xj, ..., X, on any
one sample Xj.

Privacy and robustness are intuitively related: both place re-
quirements on the behavior of an algorithm when one or several
inputs are adversarially perturbed. Already by 2009, Dwork and
Lei recognized that “robust statistical estimators present an excel-
lent starting point for differentially private estimators” [19]. More
recent works continue to leverage ideas from robust estimation to
design private estimation procedures [9, 11, 23, 26, 32, 37, 40, 44, 45]
— these works address both sample complexity and computationally
efficient algorithms.

Despite robustness being useful as a tool in privacy, the relation-
ship between robustness and privacy remains murky. Consequently,
for many high-dimensional estimation tasks, we know polynomial-
time algorithms which obtain (nearly) optimal tradeoffs among
accuracy, sample complexity, and robustness, but known private
algorithms either require exponential time or give suboptimal trade-
offs among accuracy, sample complexity, and privacy. Indeed, this
is the case even for learning the mean of a high-dimensional (sub-)
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Gaussian distribution, and for learning a high-dimensional Gaussian
in total variation distance.

We contribute a new technique to design private estimators
using robust ones, leading to:

The first black-box reduction from private to robust estimation: Prior
works using robust estimators to design private ones are white box,
relying on properties of those estimators beyond robustness. Black-
box privacy techniques such as the Gaussian and Laplace mecha-
nisms are widely used, but so far do not yield private algorithms for
high-dimensional estimation tasks with optimal accuracy-samples-
privacy tradeoffs, even when applied to optimal robust estima-
tors. For tasks including mean and covariance estimation and regres-
sion, using any robust estimator with an optimal accuracy-samples-
robustness tradeoff, our reduction gives a private estimator with opti-
mal accuracy-samples-privacy tradeoff.

Our basic black-box reduction yields estimators satisfying pure
DP, which work assuming © is bounded, and which don’t neces-
sarily admit efficient algorithms. Two additional properties of an
underlying robust estimator can lead to potential improvements in
the resulting private estimator:

(1) If © is convex and the robust estimator is based on the Sum
of Squares (SoS) method, the resulting private estimator can
often be implemented in polynomial time.

(2) If the robust estimator satisfies a stronger worst-case robust-
ness property, satisfied by many high-dimensional robust
estimators, we can remove the assumption that ® is bounded,
at the additional (necessary) expense of weakening from pure
to approximate DP guarantees.

The first polynomial-time algorithms to learn high-dimensional Gauss-
ian distributions with nearly-optimal sample complexity subject to
differential privacy: Using SoS-based robust algorithms and our
privacy-to-robustness reduction, we obtain polynomial-time esti-
mators with nearly-optimal accuracy-samples-privacy tradeoffs,
for both pure and approximate DP, for learning the mean and/or
covariance of a high-dimensional Gaussian, and for learning a high-
dimensional Gaussian in total variation. In addition, our private
algorithms enjoy near-optimal levels of robustness. Prior private
polynomial-time estimators have sub-optimal samples-accuracy-
privacy tradeoffs, losing polynomial factors in the dimension d
and/or privacy parameter log 1/6.

Our methods also yield a polynomial-time algorithm for pri-
vate mean estimation under a bounded-covariance assumption,
recovering the main result of [26] with slightly improved sample
complexity. We expect them to generalize to other estimation prob-
lems where © is convex and nearly-optimal robust SoS algorithms
are known - e.g., linear regression [34] and mean estimation under
other bounded-moment assumptions [27, 35].

Conclusions on Robust versus Private Estimation: Recent work [23]
shows that private algorithms with very high success probabilities
are robust simply by virtue of their privacy guarantees. This comple-
ments our results, which show a converse — from robust estimators
with optimal samples-accuracy-robustness tradeoffs we get anal-
ogous private estimators (with very high success probabilities).
Together, these hint at a potential equivalence between robust and
private parameter estimation, which can be made algorithmic in
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the context of SoS-based algorithms. Our results show such an
equivalence for “nice enough” parameter estimation problems, but
the broader relationship between privacy and robustness is more
subtle; in Section 2 we discuss situations where optimal robust
estimators don’t necessarily yield optimal private ones, at least in
a black-box way.

1.1 Results

We first recall the definitions of differential privacy and the strong
contamination model.

Definition 1.1 (Differential Privacy (DP) [18, 20]). Let X be a set
of inputs and X* be all finite-length strings of inputs. Let O be a
set of outputs. A randomized map (“mechanism”) M : X* — O sat-
isfies (¢, 8)-DP if for every neighboring X, X’ € X* with Hamming
distance 1 and every subset S C O, P(M(X) € S) < e P(M(X’) €
S)+38.1f § = 0, we say that M satisfies pure DP, otherwise M satisfies
approximate DP.

Definition 1.2 (Strong Contamination Model). For a probability
distribution D and > 0, Y3, ..., Y, are p-corrupted samples from

Dif Xy,...,Xn iid. D and Y; = X; for at least (1 — n)n indices i.
1.1.1  Learning High-Dimensional Gaussian Distributions in TV Dis-

tance. We begin with our results on learning Gaussians in total
variation distance.

THEOREM 1.3 (LEARNING ARBITRARY GAUSSIANS, PURE DP). As-
sume that 0 < o,f,e < 1,0 < n < n* for some absolute con-
stant n*, and K,R > 1. There is a polynomial-time (¢, 0)-DP al-
gorithm with the following guarantees for every d € N and every
pneRLS e R gych that ||y|| < R and% -1 <X <K-I Givenn
n-corrupted samples from N (i, %), the algorithm returns 1,3 such
that dry (N (1, =), N(1,2)) < a + O(n) with probability at least
1-B,if

.5 d* +1log?(1/p) L @ +log(1/p) d*logK dlogR)
ae £ €

o2

We are unaware of prior computationally efficient pure-DP al-
gorithms for learning high-dimensional Gaussians in TV distance;
we believe that state of the art is based on the techniques of [29],?
which would give an algorithm requiring n > d° samples (and lack
robustness).

Pure-DP necessitates the a priori upper bounds R and K on p and
Y. in Theorem 1.3. Under (¢, §)-DP these bounds are avoidable. But,
obtaining a polynomial-time (¢, §)-DP algorithm to learn Gaussians
with optimal samples-accuracy-privacy tradeoffs and without as-
sumptions on g, 3 has been a significant challenge, with progress in
several recent works [3, 31, 37, 48] (see Table 1). These algorithms
require a number of samples exceeding the information-theoretic
optimum by polynomial factors in either d, log(1/6), or both.

We give the first polynomial-time (¢, §)-DP algorithm for learn-
ing an arbitrary high-dimensional Gaussian distribution with nearly-
optimal sample complexity with respect to all of: dimension, accu-
racy, privacy, and corruption rate. Ours is the first O(d?)-sample
'With more careful analysis, we expect that the error bound can be tightened to
a + O(nlog1/n), which is expected to be tight for statistical query algorithms [15];

the same goes for our other results on learning Gaussians.
2replacing the Gaussian mechanism with the Laplace mechanism
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polynomial-time robust and private estimator; prior works require
Q(d>>) samples [3, 48].

THEOREM 1.4 (LEARNING ARBITRARY GAUSSIANS, (¢, §)-DP). As-
sume that 0 < a,f,8,¢ < 1, and 0 < n < n* for some absolute
constant n*. There is a polynomial-time (&, §)-DP algorithm with the
following guarantees for everyd € N, i € RY andx e R*4 5 > 03
Given n n-corrupted samples from N (u, %), the algorithm returns ji, %
such thatdry (N (1, %), N (1, 3)) < a+0(n) with probability at least
1-B.if

2 2 2
(0B W/B) | & +log(1/p)  log(1/8) |

n>
a? ae £

The sample-complexity guarantees of Theorems 1.3 and 1.4 are
information-theoretically tight up to logarithmic factors in d, a, €,
and log 1/8. The log(1/f)/ae term in each is potentially improv-
able to min(log(1/p),1log(1/5))/ae, and the logz(l/ﬁ) term is po-
tentially improvable to log(1/f). However, this still means our al-
gorithms succeed with exponentially small (e9) failure probability,
with no blowup in the sample complexity.

1.1.2  Estimating the Mean of a Subgaussian Distribution. Mean
estimation in high dimensions subject to differential privacy has
also received substantial recent attention [9, 11, 12, 26, 29, 32, 33, 39,
40]. We focus on the following simple problem: given (corrupted)
samples from N (y, I), find /i such that ||p — fi|| < a. In the pure-DP
setting, exponential-time estimators are known which achieve this
guarantee using n ~ % + % samples [11, 32]. Existing polynomial-
time estimators require n > min(%, Lgs) samples or satisfy a
weaker privacy guarantee [26, 29] (see Table 2). We give the first
nearly-sample-optimal pure-DP algorithm:

THEOREM 1.5 (ESTIMATING THE MEAN OF A SPHERICAL SUBGAUS-
SIAN DISTRIBUTION). Assume that0 < a,f,e < 1,0 <n < n* for
some absolute constant n*, and R > 1. There is a polynomial-time
(&,0)-DP algorithm with the following guarantees for everyd € N,
every i € R? with ||u|| < R, and every subgaussian distribution D
on R with mean y and covariance I. Given n n-corrupted samples
from D, the algorithm returns fi such that ||y — || < a + 5(17) with
probability at least 1 — 3, as long as

5(d+log(1/p)  d+log(1/p) dlogR|

n>
a? ae €

It is natural to ask whether the identity-covariance assumption
can be removed from Theorem 1.5, since information-theoretically
the assumption of covariance X < I is enough to obtain the same
guarantees. Removing this assumption while retaining polynomial
running time and high-probability privacy guarantees would im-
prove over state-of-the-art algorithms for robust mean estimation
which have withstood significant efforts at improvement [28].

There is also an analogue for polynomial-time mean estimation
subject to (&, §)-DP without the ||u|| < R assumption, using O( % +

4, M) samples. We obtain this result from our approx-DP
o4 £

framework similar to proving Theorem 1.4: one could alternatively

3We suppress running-time dependence on log K, where K is the condition number of
3; logarithmic dependence on the condition number orthogonal to ker(X) is necessary
for learning Gaussians in TV, regardless of privacy or robustness. Note that the sample
complexity has no such dependence on log K.
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combine Theorem 1.5 with an (¢, §)-DP procedure that obtains
an O(d)-accurate estimate, such as [22]. The analogue is formally
stated and proven as Theorem 5.2 in the full version of this paper.

Finally, we note that Theorems 1.3 and 1.5 are known to be near-
optimal from standard packing lower bounds [11], and Theorem 1.4
and its approx-DP analogue are also known to be near-optimal,
via the technique of fingerprinting [29, 30], except, as in Theo-
rems 1.3 and 1.4, that log(1/f)/a¢ is potentially improvable to
min(log(1/p),1og(1/8))/ae. All our algorithmic results are appli-
cations of Theorems 4.1 and 4.2 in the full version of the paper,
which give general tools for turning SoS-based robust estimators
into private ones.

1.2 Related Work

Our work joins three bodies of literature too large to survey here:
on private and high-dimensional parameter estimation, on high-
dimensional statistics via SoS (see [42]), and on high-dimensional
algorithmic robust statistics (see [14]). We discuss other works at
the intersections of these areas.

Private and Robust Estimators: [19] first used robust statistics primi-
tives to design private algorithms, a tradition continued by [9, 11, 26,
32, 37, 40, 44]. Some of these works attempt to give generic recipes
for converting robust algorithms to private ones [37, 40], though
do not give a black-box reduction as we do in Lemmas 2.1 and 2.2.
Other works from the Statistics community also investigate connec-
tions between robustness and privacy [7, 8, 45, 46], including local
differential privacy [38]. Our black-box reduction from privacy to
robustness can be seen as a generalization of methods of [11, 32],
which also instantiate the exponential mechanism with a score
function counting the minimum point changes to achieve some
accuracy guarantee, but for specific robust estimators. A recent
line of work focuses on simultaneously private and robust estima-
tors for high-dimensional statistics [3, 11, 22, 24, 37, 39, 40, 48]; see
Tables 1, 2.

Recall that [23] observes that pure-DP algorithms which suc-
ceed with sufficiently high probability over the internal coins of the
algorithm are automatically robust to a constant fraction of cor-
rupted inputs. While optimal inefficient private estimators often
satisfy this high-probability requirement, most existing polynomial-
time private estimators do not. Our private estimators have not
only (nearly) optimal sample complexity but also (nearly) optimal
success probability.

Private Estimators via SoS: [26] and [37] pioneer the use of SoS for
private algorithm design. [26] gives a polynomial-time algorithm for
pure-DP mean estimation under a bounded covariance assumption,
using % samples, and [37] gives a ~ d®-sample (&, §)-DP algorithm
for learning d-dimensional Gaussians. [23] uses SoS for private
sparse mean estimation.

On a technical level, our work most resembles [26]; we also
employ SoS SDPs as score functions and leverage tools from log-
concave sampling. However, there are fundamental roadblocks
to using [26]’s strategy for converting SoS proofs into private al-
gorithms in settings beyond mean estimation under bounded co-
variance, as we discuss in Section 2. We provide a blueprint for
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Table 1: Private covariance estimation of Gaussians in Mahalanobis distance, omitting logarithmic factors. Optimal robustness
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means the algorithm succeeds even with Q(a)-fraction of corruptions.

’ Paper ‘ Sample Complexity Robust? | Poly-time? Privacy
- T
[33] ﬁ + % + M, d=1 No Yes Pure/Approximate
2 = 3/2 -1
[29] Z—z d ‘/I;’gg5 + d \/lOggK logd No Yes Concentrated
; 7
[11] Z—Z d fegK Optimal No Pure
=1
[1] g—z g—i % Optimal No Approximate
; =T
[40] i—; g—i % Optimal No Approximate
[31] i—z + (g—i + %) - (log s~How No Yes Approximate
-1\6
[37] Z—i . (Ing ) Suboptimal Yes Approximate
2 -1 -1
(3, 48] Z_z d \/I:Egd dloié No Yes Approximate
P Togs ! ) )
[3, 48] — Optimal Yes Approximate
2
Thm 1.3 Z—Z + Z—Z + d]+gK Optimal Yes Pure
=T
Thm 1.4 Z—i g—i + % Optimal Yes Approximate

Table 2: Private mean estimation of identity-covariance Gaussians in £;-norm, omitting logarithmic factors. Optimal robustness

means the algorithm succeeds even with Q(«) fraction of corruptions.

’ Paper ‘ Sample Complexity Robust? | Poly-time? Privacy
: =T
[33] é + % + M, d=1 No Yes Pure/Approximate
1 -1
[29] % + d\/l;)ff + vd IOgIEIOg‘S No Yes Concentrated
[11] % dl;’—fR Optimal No Pure
[32] % + % dlngR Optimal No Pure
=T
[1] % + % % Optimal No Approximate
3/2 -1
[39] % % Optimal Yes Approximate
d d , logd! . .
[11, 40] et T Optimal No Approximate
[26] % + % Suboptimal Yes Pure
Theorem 1.5 % + % %R Optimal Yes Pure
=T
Theorem 1.5+[22] % + % @ Optimal Yes Approximate

converting a much wider range of SoS-based robust algorithms to
private ones.

Inverse Sensitivity Mechanism:In [4, 5], Asi and Duchi design private
polynomial-time algorithms for statistical problems with an inverse
sensitivity mechanism which is closely related to our black-box re-
duction, as described in (1). However, the focus of their work is
rather different, as they investigate applications to instance-optimal
private estimation, whereas our goal is to understand private es-
timation through the lens of robustness. Furthermore, their study
is centered on one-dimensional statistics, and their analysis is not
black-box.

Contemporaneous work: In independent and simultaneous work, Al-
abi, Kothari, Tankala, Venkat, and Zhang also design efficient robust
and private algorithms for learning high-dimensional Gaussians
with nearly-optimal sample complexity with respect to dimension;
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however, their algorithms require poly(1/¢,log1/8,1/a)-factors
more samples than those we present [2]. In another independent
and simultaneous work, Asi, Ullman, and Zakynthinou introduce
the same black-box transformation from robustness to privacy [6].
To contrast the two works: we go beyond this inefficient reduc-
tion, and also design efficient algorithms for Gaussian estimation.
On the other hand, they show the transformation gives the op-
timal error for low-dimensional problems, showing tightness of
the robustness-privacy connection in certain settings. Finally, two
works subsequent to ours give computationally-efficient algorithms
for mean estimation in Mahalanobis distance while requiring only
a near-linear number of samples [10, 17], improving on the expo-
nential time algorithm of [9]. Both new works are based on “stable”
estimators for mean and covariance, where stability is a notion of
robustness different from the one we consider in this work.
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2 TECHNIQUES

2.1 Black-Box Reduction from Privacy to
Robustness

Consider a deterministic* robust estimator § : datasets — © for
a parameter space ® C RP, a distribution family #, and a norm
| - ||, with the following guarantee: for a non-decreasing function
a : [0,1] — R and some n € N, with probability 1 — f over
samples X1,...,Xn ~ pg € P, for every n € [0,1], given any 5-
corruption of Xj,..., Xy, the estimator obtains ||é - 0| < a(n).
That is, « is a function that quantifies the error achieved by the
estimator for every corruption level 7. Let X denote an n-vector
dataset X, . .., Xy, and d(X, X”) be the Hamming distance between
the datasets X, X’.

Our key conceptual contribution is the following instantiation of the
exponential mechanism [41]: Given e > 0, X3, ..., Xp and a threshold
no € [0,1], the mechanism picks a random 6 € © + a(no) - By,
with:

P(6) o exp(—¢ - scorex (0)) where
scorex (6) = min{d(X,X’) : [|0(X") - 0]l < a(no)}, (1)

where B)|.|| is the unit ball of || - ||. In words: the mechanism assigns
each 0 within distance (1) of © a score given by the number of
input samples which would have to be changed to obtain a dataset
X’ for which the robust estimator é(X ") is close to 0, and samples
0 with probability oc exp(—¢ - scorex (6)). If © is unbounded these
probabilities are not well defined; in that case pure-DP guarantees
are not obtainable anyway, due to packing lower bounds [25]. Later,
we use a truncated version of (1) to allow unbounded © with (¢, §)-
DP.

The general idea to instantiate the exponential mechanism where
the score of some 0 is the number of inputs which must be changed
to make some function 6 take the value (approximately) 0 appears to
be folklore; see for instance the inverse sensitivity mechanism of [5].
Our contribution is (a) to show that for (1) to have nontrivial utility
guarantees, it suffices for 0 to be robust to adversarial corruptions,
and (b) to show how to implement variants of (1) in polynomial
time.

To elucidate the role of and how to set the threshold parameter
no: if the target bound on the error of our private estimator is some
value @, we can think of 1y as the maximum amount of contami-
nation a robust estimator could tolerate if the goal was to achieve
the same error a. This will depend on the distribution class #; for
example, if we consider the class of distributions with bounded co-
variance ¥ < I, then the appropriate setting is g = ©(a?) [13, 47].

The exponential mechanism enjoys (2¢, 0)-DP, but the question
of utility remains. Suppose that Xi,..., X, ~ pg-. How small is
|6 — 6%||? The following lemma bounds this quantity in terms of
the robustness of 0. Despite its simplicity, we are not aware of a
similar result in the literature.

4If we are not concerned with running time, the deterministic assumption is without
loss of generality, as any randomized estimator can be converted to a deterministic
one with at most a constant-factor loss in accuracy, by enumerating over all choices
of the estimator’s internal random coins and selecting an output which is contained in
a ball which contains at least 50% of the mass of the estimator’s output distribution.
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LEMMA 2.1. Suppose a dataset Xi,...,X, ~ pg+, where the pa-
rameter vector * € © C RP. For any threshold g € [0, 1], a random
0 drawn according to (1) has ||0 — 0%|| < 2a(no) with probability at
least 1 —2p, if

2a(n)

D-loga )

+1log(1/p) + O(log nn)

ne '
Observe that the O(log nn) term in (2) is negligible compared to
Dlog 2240 > Dlog2 if n < 2P.

The sample complexity in (2) is a maximum over the parameter
n; we pay a cost in samples depending on the underlying robust
estimator’s robustness profile, taking the worst case over all corrup-
tion levels 7. The price at each 7 scales roughly as the log-volume
of the set of solutions which satisfy the robust estimator’s accuracy
level under n-corruptions. The more robust the estimator is, the
smaller this volume will be, matching the intuition that settings
which permit more robust estimation also are easier to privatize.

A robust analogue of Lemma 2.1, in which the dataset X, ..., Xy
is a contamination of i.i.d. samples from py-, follows by a similar
proof.

n > max

)
no<n<l

Proor. Condition on the (1 — f)-probable event that the ro-
bustness guarantees of 6 hold with respect to X. Consider 6 with
score nn. By definition, |0 — 0| < a(no) for some X’ with
d(X,X’) < n - n. By robustness, 10(X") - 6*|| < a(n). Using trian-
gle inequality, [|6 — 6%|| < a(no) + a(n) < 2a(n), assuming n > no.
In summary, any 6 with score nn is within distance 2a(n) of 6*.

Let V; be the volume of a radius r || - ||-ball. Any 6 such that
16-600| < a(no) has score 0. The normalizing factor implicit in
(1) can be lower bounded by the contribution due to these points,
or Vi () - €Xp(—€ - 0) = Vg (5)- Combining this with the argument
above, the probability of seeing 6 with score nn withn > g ina

Vaa(n)
Ve(n)

> non, the overall probability of seeing some 6 with score greater
than ) is at most

draw from (1) is at most exp(—enn). Summing over all scores

Veatt/m) et
t=non Va(ﬂo)
V
= M . exp(—et) . t2 . 1/1}2
t=non 0‘(’70)

Vaa(n)
. 2, 2t
<0(1) e {(nn) v

a(mo)

where the inequality is Holder’s. This quantity is at most § for n
as in (2). So, with probability at least 1 — f§ the random 60 will have
score at most non, meaning ||0 — 0*|| < 2a(no). At the beginning,
we conditioned on a (1 — f§)-probable event, so the overall failure
probability is at most 2. O

Consequences of Lemma 2.1: Applied to robust mean estimators with
optimal error rates under bounded k-th moment assumptions, for
any k > 2, Lemma 2.1 gives optimal pure-DP estimators under
those same assumptions, recovering the main results of [32]; ap-
plied to robust linear regression (with known covariance) [16], it
yields a pure-DP analogue of the nearly-optimal regression result
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of [39]; and so on. The same argument can be adapted to perform
covariance-aware mean estimation® and covariance-aware linear
regression, recovering pure-DP versions of the results of [9, 39],
using a robust estimator of mean and covariance.

To illustrate, we apply Lemma 2.1 to Gaussian mean estimation.
With n > d/a?® samples from a d-dimensional Gaussian N (y, I), it
is possible to estimate the mean under n-contamination with error
lg — pll < O(a + 1), ifnp < 1/2. For e-DP guarantees, we need
to restrict to the case of ||| < R for some (large) R > 0; we will
assume that even for n > 1/2, ||| < R.

Plugging such a robust /i into Lemma 2.1, and choosing 9 = «,
there are two interesting cases: 1 = O(ng) and n = 1. In the
former, a(2n9)/a(no) = O(1), so we get the requirement n >
o( W), and in the latter @(1) = R, so we get the additional
requirement n > dlzgR, meaning that we obtained an e-DP estima-
tor with accuracy O(a) using n samples,

0> d +log(1/p) . dlogR N i
ae € a?

This is tight up to constants [11, 25]. Similarly tight results can be
derived for mean estimation under bounded covariance, covariance
estimation, linear regression, and more. We remind that the result-
ing private algorithms are not computationally efficient, though
we will see how this approach can be made efficient for several
interesting cases.

When Is Lemma 2.1 Loose? More refined analyses of the construction
(1) are possible. In particular, if the robust estimator 6 enjoys the
property that the volume of the sets of possible values it assumes
under n-corrupted inputs are substantially smaller than Vy, (), the
bound in Lemma 2.1 can be improved accordingly (at the cost of
breaking black-box-ness in the analysis.)

As an example, consider estimating the mean of a Gaussian
N (1, 1) to oo error a. Using a similar argument as in the £, exam-
ple above, Lemma 2.1 gives a sample-complexity upper bound of

Pedy 4 IBR But, because dry (N (1 ), N (', D) ~ =4Il
it’s possible to construct a robust estimator j such that under z-
corruptions, ||i—p||e can only be aslarge as n if || i—p||2 = ||i—| oo
otherwise ||fI — pt]|c is much smaller. This affords better control
over the volumes of candidate outputs with a given score nn than
the n-radius £ ball would offer. Using this, we show in Appendix E

~ 2/3
in the full version of the paper that O( l(fzd + 0‘(182/ 5+ g dligR)

samples are enough, in the pure-DP setting.

From Robustness to (¢, §)-DP: If 0 has a nontrivial breakdown point
- i.e., a fraction of corruptions 7 beyond which it admits no error
guarantees, then Lemma 2.1 doesn’t give a nontrivial private esti-
mator. For example, in the Gaussian mean estimation setting, if we
remove the assumption ||u|| < R, then when n > 1/2 no estimator
has a finite accuracy guarantee (i.e., (1) is unbounded for such #).

By relaxing from pure to (¢, §)-DP, however, we can design pri-
vate estimators even from robust estimators 6 which have a break-
down point. Our reduction in this case, however, requires 0 to
satisfy a worst-case robustness property, because we will need to
appeal to robustness to ensure not only accuracy, as in Lemma 2.1,
but also privacy, which is inherently a worst-case guarantee.

Sak.a., mean estimation in Mahalanobis distance
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Simple adaptations of standard robust estimators of mean and
covariance, and robust regression algorithms, have such worst-case
robustness guarantees. This approach gives an alternative to the
high-dimensional propose-test-release framework of [40], and the
approach of [9], for building approx-DP estimators from robust esti-
mation primitives; we can recover their results on covariance-aware
mean estimation and linear regression with (¢, §)-DP guarantees.
This approach carries the advantages of black-box-ness and po-
tential polynomial-time implementability, since SoS-based robust
estimators for mean and covariance have the required worst-case
behavior.

Consider again a deterministic robust estimator 6 : datasets —
© U {rejecT} for a parameter 6 € R?, which takes n inputs and
returns either some element of © or REJECT. Let P be a distribution
family, || - || be anorm, & : [0,1] — R be a non-decreasing function,
n € N, and 5o, 5" € [0,1]. We continue to employ sCOREx (0) as
defined in (1). Suppose as before that with probability 1 — § over
samples Xi,...,Xp ~ pg € P, for every n < n*, given any n-
corruption of Xi, ..., Xp, 6 -0 < a(n). And, suppose that 6
has the following worst-case robustness property: for any input
X=X1,...,Xn, ifé(X) # REJECT, then for every < n*, given any
n-corruption X’ of X, either 6(X’) = reJECT, or ||0(X’) — 0(X)| <
a(n®).

LEMMA 2.2. Letno < n* € [0,1] be such that n*n is a sufficiently
large constant. For every ,8 > 0, there is an (O(¢), 0(e%*8))-DP
mechanism which, for any 0%, takes Xi,...,X, ~ pg+ and with
probability 1 — f outputs 0 such that |0 — 0%|| < 2a(no), if

2a(n)

D -log 55y

+log(1/h) +lognn  166(1/s)
+

n>0 *
ne ne

max
No<n<n*

Before proving the lemma, we need a preliminary claim.

PRrOPOSITION 2.3. Suppose for a dataset X there exists 0 such that
SCOREx (0) < 0.2n*n. Then there exists a ball of radius 2a(n*) which
contains every 8’ with scorex (6”) < 0.4n*n.

Proor. Since there exists some 6 such that scorex (6) < 0.2n*n,
there’s some Y ~g 2, X such that é(Y) # REJECT: this is because we
can consider any such Y which has scorey (0) = 0, and thus 0 (Y)
outputs an element of © and not REJECT. Similarly, for any other
6’ with scorEx (8’) < 0.4n"n, there’s some Z ~g 45+ X such that
167=6(2)| < a(no). By triangle inequality, Z ~¢ ¢y Y, so by worst-
case robustness of 6, [|6” — (Y)|| < |0’ - 6(2)||+116(Z) - 6(Y)| <
a(no) + a(n®) < 2a(n™). o

PROOF OF LEMMA 2.2. First, let g : Z — R be a function with
the following properties: for t < 0.17*n, g(¢) = 1, for t > 0.2n"n,
g(t) =0,and forall t, e ?g(¢t + 1) — § < g(t) < eg(t+1) + 8. Such
a function exists since n > log %/ry*s.

This is not hard to show: one could, for example, consider the
function which, for ¢ over the interval [0.17%n, 0.2p™n], first de-
creases by a multiplicative factor of e™¢ (i.e, g(t + 1) = e ¢g(t))
until some point t* when g(¢*) < 8. Then, we set g(¢) = 0 for
all + > t*. This satisfies the requirements on the function for all
t* with § = 0, and for t > t* with ¢ = 0. We need that

t <
§ > exp(—(t — 0.1y n)¢) is satisfied by some ¢t in the interval
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[0.17*n,0.2p*n] (roughly speaking, to allow enough multiplicative
e~ ¢ decreases to accumulate in order to cancel out the remainder
with a subtractive § shift), which we can take to be ¢*. Rearranging
the inequality, we get t > log(1/8)/e + 0.1p*n. But for t* to lie
in the stated interval, we need log(1/5)/e + 0.1n*n < t < 0.2n*n,
which is satisfied as long as n > log(1/8)/ne, as claimed.

The mechanism is as follows. Given X = Xi,..., Xy, let T =
mingeg SCOREx (0). First, output REJECT with probability 1 — g(T).
If REJECT is not output, output a sample from the distribution on
O + a(no)B).| where

if scorex (0) < 0.3n%n

P(6) « {(S)COREX(G)

otherwise

and By, is the unit ball for the norm || - |.

Proof of privacy: The REJECT phase of the mechanism clearly
satisfies (¢, §)-DP, because SCOREx (6) can change by at most 1
when X is replaced with neighboring X”, and based on the definition
of g.

Now we turn to the sampling phase. Let X, X’ differ on one
sample. Let T, T” be the numbers computed in the REJECT phase of
the mechanism; we may assume T,T’ < 0.25"n, since otherwise
on both X, X’ the mechanism outputs REJECT with probability at
least 1 — §. We show that the mechanism above, conditioned on
not rejecting, satisfies (O(¢), O(e%5))-DP; then the overall result
follows by composition.

For brevity, we abbreviate SCOREx to sx. Forany S C @ +a(no) -
Bj|.||» we can bound its associated weight via

/ e=#x () 1(sx(0) < 0.3n*n)
OeS

<e€

/ et (0 [1(sx () < 0.37"n)
OeS
+1(sx/(0) € [0.257%n,0.357"n] |.

To see why, first note that for any 6 we have [sx (0) — sx/(6)| < 1.

This implies that emesx(0) < gepmesx (0) Similarly, if sx(0) <

0.317%n, it also implies that at least one of the following must be true

(potentially both): sx (8) < 0.3p*n or sx- (0) € [0.255%n,0.355™n]

(we use the fact that n*n is at least a sufficiently large constant).
Normalizing to get a probability, we have

P(OeS) <e = <e -
X

BN

h’
where

/ emesx (0) [1(5;@(9) <0.3n%n)
0eS
+1(sx/ (0) € [0.257%n,0.357 n])],

h= / e=e5x(0) . 1(5x(6) < 0.397 ),
9€®+(x(r]0)B”.”

K= e_f/ e~esx (0) [1(sx/(6) < 0.3p"n)
96@+0{(I]0)B“.H
—1(sx(0) € [0.257*n,0.350*n])] .

The denominator h’ is split into two terms with a similar argument
as used for the numerator g.

503

STOC ’23, June 20-23, 2023, Orlando, FL, USA

We next simplify the denominator h’. Because, by assumption,
there is 6’ such that scorex- (6”) < 0.2p*n, there is a ball of ra-
dius a(no), contained in © + «(no) - B||.|, of points with score at
most 0.2n*n; we can hence lower-bound the first term / emesxr (0) .
1(sx’(0) < 0.3n"n) 2 exp(—¢-0.2n"n) - Vg (y,)> Where Vg () is the
volume of a || - ||-ball of radius (o).

We can use Proposition 2.3 to upper-bound the magnitude of the
second term in the denominator,

/ e=8x () 1 (s (0) € [0.250"n, 0.357%n])

< exp(—¢-0.250"n) - Vag(p+)s
which is at most § times the lower bound on the first term, under
our hypotheses on the lower bound for n. Overall, we obtain
e A+B - e%
-5 C T 1-6

P €S) < -D
B0 es) <+ :

where

A=/ e72x' (0) L 1(sx/ () < 0.39"n)
0eS

/ e72x (0) 1 (sy/ (0) € [0.257"n, 0.357%n])
0eS

B =

C= / e=8x(0) . 1(sx(0) < 0.37"n)
66®+a(r70)B”.”

D= ()1;(9 €S) +)I?,(sxz(9) € [0.259n,0.357"n])).

Using Proposition 2.3 in the same fashion to bound the last term,

this is at most e Px/ (8 € S) + 0(e%6), which completes the

privacy proof.

Proof of accuracy: Observe that with probability at least 1 — j
over samples Xj, . . ., Xj,, the REJECT phase of the mechanism accepts
with probability 1. Conditioned on it doing so, the remainder of the
accuracy proof parallels the proof of Lemma 2.1, except instead of
allowing 1 € [no, 1] we can now limit it to n € [no, n*]. O

2.2 Algorithms

Even if the robust estimator 6 can be computed in polynomial
time, the sampling problem in (1) lacks an obvious polynomial-
time algorithm, for two reasons. First, computing the score of a
single 6 € © given an input dataset X appears to require solving a
minimization problem over all other datasets X’. Second, even if
computing the scores were somehow made efficient, the resulting
sampling problem might still be computationally hard. Our main
technical contribution is to overcome both of these hurdles in the
context of learning high-dimensional Gaussian distributions.

2.2.1 Background: Sum of Squares and Robust Estimation. The Sum
of Squares method (SoS) uses convex programming to solve multi-
variate systems of polynomial inequalities. It is extremely useful
for designing polynomial-time robust estimators.

Definition 2.4 (SoS Proof). Let p1(x) > 0,...,pm(x) > 0be a
system of polynomial inequalities in variables x1,...,x,. An in-
equality g(x) > 0 has a degree d SoS proof from p; > 0,...,pm >0,
written {p1 > 0,...,pm = 0} I—Z. q > 0, if for each multiset
S C [m] there exists a sum of squares polynomial gs(x), such
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that deg(qs(x) - [1;es pi(x)) < d and such that

gx)= > g5t [ pix)-

Sc[m] i€S

SoS proofs form a convex set described by a semidefinite program
(SDP), so they have duals:

Definition 2.5 (Pseudoexpectation). Let R[x] <4 be the set of de-
gree at most d polynomials in variables x1, . . ., x,. A linear operator
E : R[x]<y — Ris a degree d pseudoexpectation if E1 = 1 and
Ep? > 0 for any p of degree at most d/2. A pseudoexpectation E
satisfies a system of polynomial inequalities p; > 0,...,pm = 0,
written E | p; > 0,..., pm > 0, if for every S C [m] and every p,
we have E [T;cg pi - p* = 0 when the degree of this polynomial is
at most d, where ||p|| is the £,-norm of the vector of coefficients of
p in the monomial basis.

The by-now standard approach to use SoS to robustly estimate a
D-dimensional parameter 6 in a norm || - || works as follows. For
n-corrupted X = X1, ..., Xy from py-, define a degree-O(1) system
of polynomial inequalities A(X, 0, z) where 0 = 64,...,0p,z
Z1,.. ., Z(yp)o() are some indeterminates. With high probability,
A(X, 0, z) should (a) be satisfied by some choice of z when 6 = 0%,
and (b) should have A(X, 0, 2) +o(1) (0 — 0",0) < « for every v in
the dual ball of || - ||.

To give a robust estimation algorithm, on input 5-corrupted
X, we can obtain E which satisfies A(X, 0, z) using semidefinite
programming,® and then output = E6. Applying E to the SoS
proofs A '_(9)’?1) (6 — 6*,0) < a, we get ||[EO — 0%|| < a.

LEMMA 2.6 (INFORMAL, IMPLICIT IN [36]). There exists A with the
above properties with respect ton > d/n? n-corrupted samples from
N(0%,1), for any 0" € RY, where|| - || = £, and a = O(n).

2.2.2 Robustness to Privacy, Algorithmically. For this technical
overview, we focus on mean estimation in the pure-DP setting; sim-
ilar ideas extend to covariance estimation and (¢, §)-DP. Even for
the SoS-based robust mean estimation algorithm described above,
which we call kmz, given X we do not know how to efficiently
compute

scorex (0) = min{d(X,X’) : ||lxkmz(Y) - 0| < a}, (3)
much less sample from the distribution (1). At a very high level, will
tackle these challenges by using the polynomial system A (X, 0, z)
underlying KMz to design an SoS-based relaxation of the above score
function, SoS-scorex (#), which has favorable enough convexity
properties that we will be able to both efficiently compute it and
sample from the distribution it induces (both up to small error).
The SoS robustness proofs which A enjoys will be enough for us
to apply an argument like Lemma 2.1 to prove accuracy of the
resulting estimator, and it will be private by construction.

First, we describe an attempt at an SoS relaxation of SoS-score,
which will have several flaws we’ll fix later. We can introduce more

®This ignores some issues of numerical accuracy which turn out to be important; see
below.
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indeterminates X{, e s X)W, ..., wp, 0, and consider

n

2 ’

B; = {Wi =wj, E wi =n—t, wiX; = wiXj,
i=1

}Uﬂ(X',G',Z),

4

which is satisfied when X’ is a dataset with d(X,X’) < t and
A(X, 0, z) is satisfied. Let

SoS-scorex (0) = min t s.t. 3 degree O(1) E in variables

X w0,z EEB;, |[EO -0 <a. (5

Privacy and Accuracy for SoS-score: Suppose for a moment that SoS-
score solves our computational problems. Does it lead to a good
private estimator, when we sample from the distribution P(6) o
exp(—¢ - SoS-scorex (0))? Standard arguments show privacy; the
main question is accuracy.

It turns out the relaxation is tight enough that the proof of
Lemma 2.1 still applies! The key step in that proof is to argue
via robustness that if 6 has low score, then ||6* — 0| is small. To
establish the corresponding statement for SoS-score, we need to
show that if X1,...,X, ~ N(0%,]) and E | B; for t = gn, then
|E0” — 6%|] < O(n). This is slightly stronger than what we already
know from the SoS proofs associated to A, because now we have
indeterminates X" which represent n-corrupted samples, rather than
g(’lg )
(0" -0%,0) < (5(17) Luckily, the SoS proofs of [36] readily generalize
to show this.

In fact, [36]’s SoS proofs already show this in part because within
the “auxiliary” indeterminates z they already use variables like our
X’ and w. This means that (4), (5), while closely following our black-
box reduction strategy, contain an unnecessary layer of indirection.
When we implement this strategy in detail (see Sections 5, 6, and 7
in the full version of this paper), we remove this indirection for
simplicity.

a fixed collection of 5-corrupted samples, and we need B; +

On “Satisfies”: An important technical difference between our score
function and that of [26] is that the Es it involves must have E =
2%, wi = n—t, rather than something weaker, like E Shywi=
n — t. While in some applications of SoS this “satisfies” versus
“in expectation” distinction is minor, it is actually crucial for our
accuracy guarantees — if we only required E Showi=n—t, we
could have E which satisfies the rest of 8; but has ||E§’ — 6*|| >
Q(R), just by taking E to be the moments of a distribution which
has all w; = 0 with probability 1/t.

However, this creates two significant technical challenges. First,
for bit-complexity reasons, no polynomial-time algorithm to check
if there exists E satisfying a given system of polynomials is known —
existing techniques to find Es work best in the context of satisfiable
polynomial systems [43]. We sidestep this challenge by generalizing
a technique from the robust statistics literature, which searches for
E which approximately satisfies a system of polynomials, to the
setting where those polynomials may be unsatisfiable. Ultimately,
we find a further-relaxed score function SoS—score;(, which we
evaluate to error 7 in (nd log 1/7)°M time.
Quasi-Convexity, Sampling, and Weak Membership: The second chal-
lenge is that SoS-scorex (6) need not be convex in 0 - if it were,



Robustness Implies Privacy in Statistical Estimation

we could sample from P(6) « exp(—¢ - SoS-scorex (6)) with log-
concave sampling techniques, as in [26]. Indeed, consider 6y and 6;
with corresponding scores tg, t; witnessed by f:‘,o, El. The problem
is that %(INEO + I:Zl) need not satisfy Z?:l w; >n-— %(to +1t1), even
though it does have 3 (Eo + E1)[Z7, wi] > n— 1(tg + t).

SoS-scorex (0) is quasi-convex in 6, meaning that its sub-level
sets Sy = {0 : SoS-scorex(0) < t} are convex for all ¢. This is
good news: if we discretize the range of possible scores [0, n] into
t1,...,t,o0) (replacing SoS-score with a version rounded to the
nearest t;), we can hope to compute the volumes V; = Vol(Sy,), as
well as sample uniformly from the Sy;s, using standard techniques
for sampling from a convex body. Then, we could sample § by
first sampling a score t; with probability proportional to e €% (1 —
e_‘s(ti”_[i))Vi, then drawing uniformly from S;,.

Approximate sampling and volume algorithms for convex bodies
typically access the body via a weak membership oracle, meaning
that the oracle is allowed to give incorrect answers to query points
very near the body’s boundary.” We have access to an oracle which
computes SoS-scorex (6) up to exponentially-small errors. Ideally,
we’d create a weak membership oracle by answering a query about
St; by checking if SoS-scorex (0) < t;, but if SoS-scorex is not
Lipschitz, a small error in computing this value may translate to
answering a query incorrectly about some 6 far from the boundary
of ;. That is, we may not notice if S;,42-n is much larger than Sy,.

However, because SoS-scorex is bounded in [0, n] and the sub-
level sets are convex, we are able to show that S;,42-» could only
be much larger than S;; at a small-measure set of ¢;s. Thus, if we
choose our discretization 1, ..., t,0() randomly, with very high
probability our approximate score oracle for SoS-scorey translates
to a weak membership oracle for the Sy;s (see Lemma 4.7 in the full
version of the paper).

Putting it Together: Thus, by modifying SoS-scorex by (a) rounding
to the nearest threshold t;, thresholds chosen randomly, and (b)
accounting for some numerical errors, we obtain a polynomial-time-
samplable proxy for (1). Theorems 4.1 and 4.2 in the full version of
the paper capture this strategy formally.
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