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Abstract. We propose a novel Learned Alternating Minimization Algo-
rithm (LAMA) for dual-domain sparse-view CT image reconstruction.
LAMA is naturally induced by a variational model for CT reconstruction
with learnable nonsmooth nonconvex regularizers, which are parameter-
ized as composite functions of deep networks in both image and sinogram
domains. To minimize the objective of the model, we incorporate the
smoothing technique and residual learning architecture into the design of
LAMA. We show that LAMA substantially reduces network complexity,
improves memory efficiency and reconstruction accuracy, and is provably
convergent for reliable reconstructions. Extensive numerical experiments
demonstrate that LAMA outperforms existing methods by a wide margin
on multiple benchmark CT datasets.

Keywords: Learned alternating minimization algorithm -
Convergence - Deep networks - Sparse-view CT reconstruction

1 Introduction

Sparse-view Computed Tomography (CT) is an important class of low-dose
CT techniques for fast imaging with reduced X-ray radiation dose. Due to
the significant undersampling of sinogram data, the sparse-view CT reconstruc-
tion problem is severely ill-posed. As such, applying the standard filtered-back-
projection (FBP) algorithm, [1] to sparse-view CT data results in significant
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severe artifacts in the reconstructed images, which are unreliable for clinical use.
In recent decades, variational methods have become a major class of mathemati-
cal approaches that model reconstruction as a minimization problem. The objec-
tive function of the minimization problem consists of a penalty term that mea-
sures the discrepancy between the reconstructed image and the given data and
a regularization term that enforces prior knowledge or regularity of the image.
Then an optimization method is applied to solve for the minimizer, which is the
reconstructed image of the problem. The regularization in existing variational
methods is often chosen as relatively simple functions, such as total variation
(TV) [2—4], which is proven useful in many instances but still far from satisfaction
in most real-world image reconstruction applications due to their limitations in
capturing fine structures of images. Hence, it remains a very active research area
in developing more accurate and effective methods for high-quality sparse-view
CT reconstruction in medical imaging.

Deep learning (DL) has emerged in recent years as a powerful tool for image
reconstruction. Deep learning parameterizes the functions of interests, such as
the mapping from incomplete and/or noisy data to reconstructed images, as deep
neural networks. The parameters of the networks are learned by minimizing
some loss functional that measures the mapping quality based on a sufficient
amount of data samples. The use of training samples enables DL to learn more
enriched features, and therefore, DL has shown tremendous success in various
tasks in image reconstruction. In particular, DL has been used for medical image
reconstruction applications [5-12], and experiments show that these methods
often significantly outperform traditional variational methods.

DL-based methods for CT reconstruction have also evolved fast in the past
few years. One of the most successful DL-based approaches is known as unrolling
[10,13-16]. Unrolling methods mimic some traditional optimization schemes
(such as proximal gradient descent) designed for variational methods to build
the network structure but replace the term corresponding to the handcrafted
regularization in the original variational model by deep networks. Most existing
DL-based CT reconstruction methods use deep networks to extract features of
the image or the sinogram [5,7,9-12,17-19]. More recently, dual-domain methods
[6,8,15,18] emerged and can further improve reconstruction quality by leverag-
ing complementary information from both the image and sinogram domains.
Despite the substantial improvements in reconstruction quality over traditional
variational methods, there are concerns with these DL-based methods due to
their lack of theoretical interpretation and practical robustness. In particular,
these methods tend to be memory inefficient and prone to overfitting. One major
reason is that these methods only superficially mimic some known optimization
schemes but lose all convergence and stability guarantees.

Recently, a new class of DL-based methods known as learnable descent algo-
rithm (LDA) [16,19,20] have been developed for image reconstruction. These
methods start from a variational model where the regularization can be parame-
terized as a deep network whose parameters can be learned. The objective func-
tion is potentially nonconvex and nonsmooth due to such parameterization. Then



LAMA 175

LDA aims to design an efficient and convergent scheme to minimize the objective
function. This optimization scheme induces a highly structured deep network
whose parameters are completely inherited from the learnable regularization
and trained adaptively using data while retaining all convergence properties.
The present work follows this approach to develop a dual-domain sparse-view
CT reconstruction method. Specifically, we consider learnable regularizations for
image and sinogram as composite objectives, where they unroll parallel subnet-
works and extract complementary information from both domains. Unlike the
existing LDA, we will design a novel adaptive scheme by modifying the alter-
nating minimization methods [21-25] and incorporating the residual learning
architecture to improve image quality and training efficiency.

2 Learnable Variational Model

We formulate the dual-domain reconstruction model as the following two-block
minimization problem:

1 A
argmin &(x,z;5,0) = 7 [|Ax — al|* + 5 [Poz — s||* + R(x; 01) + Q(z:62), (1)

X,z

where (x,z) are the image and sinogram to be reconstructed and s is the sparse-
view sinogram. The first two terms in (1) are the data fidelity and consistency,
where A and Pz represent the Radon transform and the sparse-view sinogram,
respectively, and ||-|| = ||-||,. The last two terms represent the regularizations,
which are defined as the l2 1 norm of the learnable convolutional feature extrac-
tion mappings in (2). If this mapping is the gradient operator, then the regular-
ization reduces to total variation that has been widely used as a hand-crafted
regularizer in image reconstruction. On the other hand, the proposed regulariz-
ers are generalizations and capable to learn in more adapted domains where the
reconstructed image and sinogram become sparse:

R(x;61) = [|g™(x, 01)]|,, = X025 & (x. 61)]], (2a)
Qz:0) = [8%(z,00)],, = 7 |8 (2.0) (2b)

where 1, 6 are learnable parameters. We use g”(-) € R™ >4 to present
gf(x,0,) and g9 (z,0-), i.e. r can be R or Q. The d, is the depth and VMo X\
is the spacial dimension. Note g7 (-) € R? is the vector at position i across all
channels. The feature extractor g”(-) is a CNN consisting of several convolutional
operators separated by the smoothed ReLLU activation function as follows:

g'(y) = wi xa---a(wy xa(wi *y)), 3)

where {w”}._, denote convolution parameters with d,. kernels. Kernel sizes are
(3,3) and (3, 15) for the image and sinogram networks, respectively. a(-) denotes
smoothed ReLU activation function, which can be found in [16].
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3 A Learned Alternating Minimization Algorithm

This section formally introduces the Learned Alternating Minimization Algo-
rithm (LAMA) to solve the nonconvex and nonsmooth minimization model (1).
LAMA incorporates the residue learning structure [26] to improve the practical
learning performance by avoiding gradient vanishing in the training process with
convergence guarantees. The algorithm consists of three stages, as follows:

The first stage of LAMA aims to reduce the nonconvex and nonsmooth prob-
lem in (1) to a nonconvex smooth optimization problem by using an appropriate
smoothing procedure

)= 5 IO+ Y (I ) - 5), yev=m xd., ()

i€l iely
where (r,y) represents either (R,x) or (@, z) and

Iy ={iem][lgi)l <e}, I =[m]\ 5. (5)

Note that the non-smoothness of the objective function (1) originates from the
non-differentiability of the I3 ; norm at the origin. To handle the non-smoothness,
we utilize Nesterov’s smoothing technique [27] as previously applied in [16].
The smoothed regularizations take the form of the Huber function, effectively
removing the non-smoothness aspects of the problem.
The second stage solves the smoothed nonconvex problem with the fixed
smoothing factor € = ¢y, i.e.
min{®. (x,7) == f(x,2) + Re(x) + Qu(2)}. (6)
where f(x,z) denotes the first two data fitting terms from (1). In light of the
substantial improvement in practical performance by ResNet [26], we propose

an inexact proximal alternating linearized minimization algorithm (PALM) [22]
for solving (6). With € = ¢ > 0, the scheme of PALM [22] is

. 1
bii1 =2z, — Vo f(Xk,2x), uf,; = argmin %ar [u = brr|* + Q- (w), (7)

1 2
Crr1 = Xp— Bk Vxf(Xp, U5 ), ux,; = argmin 25, |lu—crt1]|"+Re, (1), (8)
u

where oy and (i are step sizes. Since the proximal point uy,, and uf, , are
are difficult to compute, we approximate @, (u) and R, (u) by their linear
approximations at byy1 and cgy1, ie. Qe (brt1) + (VQe, (brt1),y — brt1)
and R, (cky1) + (VREk (Ckt1),u ck+1>, together with the proximal terms
2pk [u— by and 5— Hu — ¢t1®. Then by a simple computation, uj,, and
up , are now determmed by the following formulas

ufyy = b — 4 VQe, (bet1), iy =crp1 — BeVRe (chy1),  (9)
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A agp A2 Brq
where dy, = Oékk-i-;k’ P = Bkk-i-l’;k

Qg, Br and B can also be learned. Note that the convergence of the sequence
{(uf ., v}, )} is not guaranteed. We proposed that if (uf, ,,uf, ) satisfy the
following Sufficient Descent Conditions (SDC):

. In deep learning approach, the step sizes ay,

@ (W1 0E ) = @cy (i) < - ity = xe* 4wy —2])”) . (100)

1
V@, (xk,2x) || < p (ks s — =il + [Jufy — 2el]) (10b)

for some n > 0, we accept Xpy1 = uj},,, 2Zgr1 = uj,;. If one of (10a) and
(10b) is violated, we compute (v}, ,, vy, ;) by the standard Block Coordinate
Descent (BCD) with a simple line-search strategy to safeguard convergence: Let
@, 8 be positive numbers in (0,1) compute

Vil = 2k — (Vo f(xp,21) + VQc, (Z1)) (11)
V?;Ll =Xk — B (vxf(xkszJrl) + VREk (Xk)) : (12)

Set X1 = Vi, 1, Zkt1 = Vi, if for some § € (0,1), the following holds:

D (Vi1 Vig1) — Pe(Xp,21) < ﬂS(HV}C‘H - ka2 + ||vz+1 — zk||2). (13)

Otherwise we reduce (@,3) « p(a,3) where 0 < p < 1, and recompute
Vi1, Vi, until the condition (13) holds.

The third stage checks if ||[V®.|| has been reduced enough to perform the
second stage with a reduced smoothing factor . By gradually decreasing e, we
obtain a subsequence of the iterates that converges to a Clarke stationary point
of the original nonconvex and nonsmooth problem. The algorithm is given below.

Algorithm 1. The Linearized Alternating Minimization Algorithm (LAMA)
Input: Initializations: xo, Zo, d, 7, P, Y, €0, T, A

1: for k=0,1, 2, .. do

2: bry1 =2k — Vo f(Xk,2k), U1 = brt1 — i VQe, (brs1)

3: Cprr = xp — BV f (%k, ufg1), Wiy = Chr1 — BrV Rz, (Chia)

4:  if (10) holds then

5: (X415 Zt1) — (WEi1, UfE4y)

6: else

7 Vi =2k — & [Va f(Xk, 2k) + VQe, (k)]

8: Vi1 = Xk — B [V f(Xk, Vig1) + VR, (x1)] ~ ~

9: if (13) then (Xg41,2r+1) < (Vii1, Viy1) €else (8,a) < p(B, &) and go to 7
10:  end if

11: if ||VPe, (Xkt1,2Zk+1)|| < 0ver then exp1 = vei else epy1 = ex

12: end for

13: return xp1
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4 Network Architecture

The architecture of the proposed multi-phase neural networks follows LAMA
exactly. Hence we also use LAMA to denote the networks as each phase corre-
sponds to each iteration in Algorithm 1. The networks inherit all the convergence
properties of LAMA such that the solution is stabilized. Moreover, the algorithm
effectively leverages complementary information through the inter-domain con-
nections shown in Fig.1 to accurately estimate the missing data. The network
is also memory efficient due to parameter sharing across all phases.

#@

Fig. 1. Schemetic illustration of one phase in LAMA, where (10) stands for the SDC.

.

X
Uk+1

5 Convergence Analysis
Since we deal with a nonconvex and nonsmooth optimization problem, we first

need to introduce the following definitions based on the generalized derivatives.

Definition 1. (Clarke subdifferential). Suppose that f : R" x R™ — (—o0, 0]
is locally Lipschitz. The Clarke subdifferential of f at (x,z) is defined as

O°f(x,2z) = {(wy,wz) € R” x R™[{wy,v1) + (wa, va)
< Jimn sup f(z1 + tug, 29 + tvg) — f(21,22)

b
(21,22)—(x,2), t—04 t

V(Ul,UQ) cR™ x Rm}.

where (wy,v1) stands for the inner product in R™ and similarly for (wq,vs).

Definition 2. (Clarke stationary point) For a locally Lipschitz function f
defined as in Definition 1, a point X = (x,2z) € R™ x R™ is called a Clarke
stationary point of f, if 0 € 0f(X).

We can have the following convergence result. All proofs are given in the
supplementary material.

Theorem 1. Let {Y; = (xx,2zk)} be the sequence generated by the algorithm
with arbitrary initial condition Yy = (Xg,20), arbitrary eg > 0 and €15y = 0.
Let {Yi} =: (Xpy41,2r,41)} be the subsequence, where the reduction criterion in
the algorithm is met for k = k; and | = 1,2,.... Then {Y;} has at least one
accumulation point, and each accumulation point is a Clarke stationary point.
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6 Experiments and Results

6.1 Initialization Network

The initialization (xg,zg) is obtained by passing the sparse-view sinogram s
defined in (1) through a CNN consisting of five residual blocks. Each block has
four convolutions with 48 channels and kernel size (3, 3), which are separated by
ReLU. We train the CNN for 200 epochs using MSE, then use it to synthesize
full-view sinograms zy from s. The initial image xo is generated by applying
FBP to zg. The resulting image-sinogram pairs are then provided as inputs to
LAMA for the final reconstruction procedure. Note that the memory size of our
method in Table 1 includes the parameters of the initialization network.

Table 1. Comparison of LAMA and existing methods on CT data with 64 and 128

views.

Data | Metric | Views | FBP [1] DDNet [5] LDA [16] DuDoTrans [6] | Learn++ [15] | LAMA (Ours)
Mayo | PSNR | 64 27.17+£1.11 35,70 £1.50 |37.16 £1.33 |37.90+1.44 43.02£2.08 44.58+1.15
128 33.28 £0.85 | 42.73 £1.08 | 43.00£0.91 |43.48+1.04 49.77£0.96 | 50.01 +0.69
SSIM | 64 0.596 £ 9e—40.923 & 4e—5 0.932 &+ le—4 | 0.952 £ 1.0e—4 | 0.980 + 3e—5 | 0.986 + 7e—6
128 1 0.759 £ 1e—3|0.974 & 4e—5| 0.976 &= 2e—5 | 0.985 £ 1le—5 | 0.995 + le—6 | 0.995 £ 6e—T7
NBIA | PSNR | 64 25.72+£1.93 3559 £2.76 | 34.31 £2.20 |35.53 +2.63 38.53 £3.41 | 41.40+3.54
128 31.86 £1.27 | 40.23 £1.98 | 40.26 +2.57 | 40.67 +2.84 43.35£4.02 | 45.20+4.23
SSIM | 64 0.592 £ 2e—30.920 £ 3e—4 | 0.896 = 4e—4|0.938 & 2e—4 | 0.956 & 2e—4 | 0.976 £+ 8e—5
128 0.743 £ 2e—3|0.961 & le—4 | 0.963 & 1le—4 | 0.976 £ 6e—5 |0.983 & 5e—5 | 0.988 £ 3e—5
N/A | param |N/A | N/A 6e5 6e4 8e6 6e6 3¢5
6.2 Experiment Setup

Our algorithm is evaluated on the “2016 NIH-AAPM-Mayo Clinic Low-Dose
CT Grand Challenge” and the National Biomedical Imaging Archive (NBIA)
datasets. We randomly select 500 and 200 image-sinogram pairs from AAPM-
Mayo and NBIA, respectively, with 80% for training and 20% for testing. We
evaluate algorithms using the peak signal-to-noise ratio (PSNR), structural sim-
ilarity (SSIM), and the number of network parameters. The sinograms have
512 detector elements, each with 1024 evenly distributed projection views.
The sinograms are downsampled into 64 or 128 views while the image size is
256 x 256, and we simulate projections and back-projections in fan-beam geom-
etry using distance-driven algorithms [28,29] implemented in a PyTorch-based
library CTLIB [30]. Given N training data pairs {(s, %))} the loss func-
tion for training the regularization networks is defined as:

2

+ (@

2, — AxO|" 4 4 (1 - SSIM(ka,&(”)) ,

(14)
where 4 is the weight for SSIM loss set as 0.01 for all experiments, () is ground

truth image, and final reconstructions are (x,(j}rl, z,(j}rl) = LAMA(X(()i), zéi)).

N

1 . .

£(0) = =N ||xi}, - %@
=1
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We use the Adam optimizer with learning rates of 1e—4 and 6e—5 for the image
and sinogram networks, respectively, and train them with a warm-up approach.
The training starts with three phases for 300 epochs, then adding two phases for
200 epochs each time until the number of phases reaches 15. The algorithm is
implemented in Python using the PyTorch framework. Our experiments were run
on a Linux server with an NVIDIA A100 Tensor Core GPU.

: 36. PSNR: 39.54
ground truth DuDoTrans

Fig. 2. Visual comparison for AAPM-Mayo dataset using 64-view sinograms.

6.3 Numerical and Visual Results

We perform an ablation study to compare the reconstruction quality of LAMA
and BCD defined in (11), (12) versus the number of views and phases. Figure 3
illustrates that 15 phases strike a favorable balance between accuracy and com-
putation. The residual architecture (9) introduced in LAMA is also proven to
be more effective than solely applying BCD for both datasets. As illustrated in
Sect. 5, the algorithm is also equipped with the added advantage of retaining
convergence guarantees.

We evaluate LAMA by applying the pipeline described in Sect. 6.2 to sparse-
view sinograms from the test set and compare with state-of-the-art methods

—B— LAMA (128-view)
—&— LAMA (64-view)
44| —e— BCD (64-view)
o
T a2
40
a
—8— LAMA (128-view)
—A— LAMA (64-view) 38
—®— BCD (64-view)

3 5 7 1 13 15 3 B 7 1 13 15

PSNR (dB)
£ & & 8

&

9 9
phase number k phase number k

Fig. 3. PSNR of reconstructions obtained by LAMA or BCD over phase number k
using 64-view or 128-view sinograms. Left: AAPM-Mayo. Right: NBIA.
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where the numerical results are presented in Table 1. Our method achieves supe-
rior results regarding PSNR and SSIM scores while having the second-lowest
number of network parameters. The numerical results indicate the robustness
and generalization ability of our approach. Additionally, we demonstrate the
effectiveness of our method in preserving structural details while removing noise
and artifacts through Fig. 2. More visual results are provided in the supplemen-
tary materials. Overall, our approach significantly outperforms state-of-the-art
methods, as demonstrated by both numerical and visual evaluations.

7 Conclusion

We propose a novel, interpretable dual-domain sparse-view CT image recon-
struction algorithm LAMA. It is a variational model with composite objectives
and solves the nonsmooth and nonconvex optimization problem with convergence
guarantees. By introducing learnable regularizations, our method effectively sup-
presses noise and artifacts while preserving structural details in the reconstructed
images. The LAMA algorithm leverages complementary information from both
domains to estimate missing information and improve reconstruction quality in
each iteration. Our experiments demonstrate that LAMA outperforms existing
methods while maintaining favorable memory efficiency.
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