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Abstract

We study a matrix recovery problem with un-
known correspondence: given the observation ma-
trix Mo = [A, P̃B], where P̃ is an unknown per-
mutation matrix, we aim to recover the underly-
ing matrix M = [A,B]. Such problem commonly
arises in many applications where heterogeneous
data are utilized and the correspondence among
them are unknown, e.g., due to data mishandling
or privacy concern. We show that, in some appli-
cations, it is possible to recover M via solving
a nuclear norm minimization problem. Moreover,
under a proper low-rank condition on M , we de-
rive a non-asymptotic error bound for the recovery
ofM . We propose an algorithm, M3O (Matrix re-
covery via Min-Max Optimization) which recasts
this combinatorial problem as a continuous mini-
max optimization problem and solves it by prox-
imal gradient with a Max-Oracle. M3O can also
be applied to a more general scenario where we
have missing entries in Mo and multiple groups
of data with distinct unknown correspondence.
Experiments on simulated data, the MovieLens
100K dataset and Yale B database show that M3O
achieves state-of-the-art performance over several
baselines and can recover the ground-truth corre-
spondence with high accuracy. The code is pro-
vided in https://github.com/TZW1998/
MRUC.

1 INTRODUCTION

In the era of big data, one usually needs to utilize data gath-
ered from multiple disparate platforms when accomplishing
a specific task. However, the correspondence among the data
samples from these different sources are often unknown or
noisy, due to either missing identity information or privacy

reasons [Unnikrishnan et al., 2018, Gruteser et al., 2003,
Das and Lee, 2018]. Examples include the record linkage
problem [Chan and Loh, 2001], the federated recommender
system [Yang et al., 2020] and the vertical federated learning
[Nock et al., 2021]. Consider the simplest scenario, we have
two data matrices A = [a1, ..., an]>, B = [b1, ..., bn]>

with ai 2 RmA and bi 2 RmB , which are from two dif-
ferent platforms (data sources). As discussed above, the
correspondence (ai, bi) may not be available, and thereby
the goal is to recover the underlying correspondence be-
tween a1, ..., an and b⇡̃(1), ..., b⇡̃(n), where ⇡̃(·) denotes an
unknown permutation. We can translate such problem de-
scribed above as a matrix recovery problem, i.e., to recover
the matrix M = [A,B] from the permuted observation
Mo = [A, P̃B], where P̃ 2 Pn is an unknown permuta-
tion matrix and Pn denotes the set of all n ⇥ n permuta-
tion matrices. We term this problem as Matrix Recovery
with Unknown Correspondence (MRUC). Inspired by the
classical low-rank model for matrix recovery [Wright and
Ma, 2021, Mazumder et al., 2010, Hastie et al., 2015], we
especially focus on the scenario where the matrix M fea-
tures a certain low-rank structure. Such low-rank model has
achieved great success in many applications like the rec-
ommender system [Schafer et al., 2007, Mazumder et al.,
2010] and the image recovery and alignment problem [Zeng
et al., 2012, Zhou et al., 2015]. By denoting Bo = P̃B, we
want to solve the following rank minimization problem for
MRUC,

min
P2Pn

rank([A,PBo]). (1)

Applications. The major application of MRUC problem
is related to Vertical Federated Learning (VFL) [Kairouz
et al., 2021], which aims at learning from feature partitioned
data. This work specifically considers Recommender Sys-
tem (RS) in the context of VFL. One classical work on this
problem is the multi-domain recommender system consid-
ered in [Zhang et al., 2012]. Unfortunately, they neglect
a crucial issue that data from these diverse platforms (or
domains) are not always well aligned for two primary rea-
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sons. The first is that the correspondence information could
be noisy due to mishandle in data processing. The other is
that those platforms may not be allowed to share the true
linkage information for preserving privacy. As the first step
to address these issues, in this work, we study RS in an
extreme setting of VFL, i.e., no correspondence informa-
tion is provided. Another application is the Visual Permu-
tation Learning problem [Santa Cruz et al., 2017], where
one needs to recover the original image from the shuffled
pixels. Though less practical, this problem is still interesting
to know under what structure in data one can guarantee a
successful recovery. Both of the two applications give rise
to a challenging extension of the MRUC problem, where
we not only need to recover multiple correspondence across
different data sources, but also face the difficulty of dealing
with the missing values in data matrix.

Unlabeled Sensing. One similarly motivated problem is
the Unlabeled Sensing (US) problem considered by [Un-
nikrishnan et al., 2018, Pananjady et al., 2017a, Tsakiris
et al., 2020, Peng and Tsakiris, 2020, Tsakiris and Peng,
2019, Slawski et al., 2021, Xie et al., 2021]. Especially, as
discussed in Appendix ??, the MRUC problem is closely re-
lated to theMultivariateUnlabeled Sensing (MUS) problem,
which has been studied in [Zhang et al., 2019a,b, Zhang and
Li, 2020, Slawski et al., 2020b,a]. Specifically, the MUS is
the multivariate linear regression problem with unknown
correspondence, i.e., it solves

min
P2Pn,W2Rm2⇥m1

kY � PXWk
2
F
, (2)

where W 2 Rm2⇥m1 is the regression coefficient matrix,
Y 2 Rn⇥m1 and X 2 Rn⇥m2 denotes the output and the
permuted input respectively, and k·k

F
is the matrix Frobe-

nius norm. When m1 = 1, the MUS problem reduces to
an US problem. Despite of the similarity to the MUS prob-
lem, we remark that MRUC problem has its own distinct
features and, as shown in Section 4, the algorithm for the
MUS problem can not be directly and effectively applied,
especially when there are multiple unknown correspondence
and missing entries to be considered.

Related works. To the best of our knowledge, the concur-
rent and independent work [Yao et al., 2021] is the only
work that also considers the MRUC problem. Theoretically,
[Yao et al., 2021] showed that there exists an non-empty
open subset U ✓ Rn⇥(m1+m2), such that 8M 2 U , solving
(1) is bound to recover the original correspondence. How-
ever, such results only prove its existence for the subset U
and do not provide a concrete characterization. Regarding
the algorithm design, [Yao et al., 2021] first learn a robust
subspace following the idea of [Slawski et al., 2020b,a], and
then solves problem (1) heuristically as multiple indepen-
dent US problems using algorithms from [Tsakiris et al.,
2020, Peng and Tsakiris, 2020]. However, there are two
main drawbacks in their algorithm that largely limit its prac-

tical value. First, as discussed in Appendix ?? and Remark
8, it ignores the interaction among the shuffled columns and
hence can not recover the permutation correctly. Second,
their method can not deal with data with missing values. An-
other recent paper [Nock et al., 2021] also shares a similar
concern with ours on how correspondence information can
affect VFL, though in a different context.

Contributions of this work. Our contributions in this work
lie in both theoretical and practical aspects. Theoretically,
we are the first to rigorously study how the rank of the data
matrix is perturbed by the permutation, and show that prob-
lem (1) can be used to recover a generic low-rank random
matrix almost surely. Besides, we propose a nuclear norm
minimization problem as a surrogate for problem (1), and
is also the first to study the property of nuclear norm under
permutation. Practically, we propose an efficient algorithm
M3O that solves the nuclear norm minimization problem,
which overcomes the aforementioned two shortcomings in
[Yao et al., 2021]. Notably, M3O works very well even
for an extremely difficult task, where we need to recover
multiple unknown correspondence from the data that are
densely permuted and contain missing values. We remark
that this is so far a challenging problem unexplored in the
existing literature. Based on these findings, we also reach
a novel and important observation for VFL: Even without
any data linkage information, it is still possible for each
participant/platform to benefit from VFL.

Outline. We start with building the theoretical understand-
ing for the problem (1) and its convex relaxation in Section
2. Then, based on the theoretical intuition obtained from
Section 2, we develop an efficient algorithm in Section 3
for most complicated scenario. The simulation results are
presented in Section 4 and the conclusions are drawn in
Section 5.

Notations. Given two matrices X,Y 2 Rn⇥m, we denote
hX,Y i =

P
n

i=1

P
m

j=1 XijYij as the matrix inner product.
We denote X(i) as the ith row of the matrix X and X(i, j)
as the element at the ith row and the jth column. We denote
1m 2 Rm and 1n⇥m 2 Rn⇥m as the all-one vector and
matrix, respectively, and In be the n ⇥ n identity matrix.
For ↵ 2 Rm, � 2 Rn, we define the operator � as ↵� � =
↵1>

n
+ 1m�>

2 Rm⇥n. We denote k · k⇤ as the nuclear
norm for matrices. For vectors, we denote k · k0, k · k1 as
the zero norm and 1-norm respectively.

2 MATRIX RECOVERY VIA A
LOW-RANKMODEL

In this section, we study the role of low-rank model for
recovering row permutation.

How is matrix rank perturbed by row permutation? To
rigorously answer this question, we first introduce the notion
cycle decomposition of a permutation.
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Definition 2.1 (Cycle decomposition of a permutation
[Dummit and Foote, 1991]). Let S be a finite set, ⇡(·) be
a permutation on S. A cycle (a1, ..., an) is a permutation
sending aj to aj+1 for 1  j  n � 1 and an to a1. Then
a cycle decomposition of ⇡(·) is an expression of ⇡(·) as a
union of several disjoint cycles1.

It can be verified that any permutation on a finite set has
a unique cycle decomposition [Dummit and Foote, 1991].
Therefore, we can define the cycle number of a permutation
⇡(·) as the number of disjoint cycles with length greater than
1, which is denoted as C(⇡). We also define the non-sparsity
of a permutation as the Hamming distance between it and
the original sequence, i.e., H(⇡) =

P
s2S

I[⇡(s) 6= s]. It is
obvious that H(⇡) > C(⇡) if ⇡ is not an identity permuta-
tion. As a simple example, we consider the permutation ⇡(·)
that maps the sequence (1,2,3,4,5,6) to (3,1,2,5,4,6). Now
the cycle decomposition for it is ⇡(·) = (132)(45)(6), and
C(⇡) = 2, H(⇡) = 5.

We denote the original matrix as M = [A,B] 2 Rn⇥m

with A 2 Rn⇥mA , B 2 Rn⇥mB , and r = rank(M), rA =
rank(A), rB = rank(B). We denote the corresponding
permutation as ⇡P (·) for any permutation matrix P 2 Pn.
The following proposition says that the perturbation effect
of a permutation ⇡ on the rank ofM could become stronger,
if ⇡ permutes more rows and contains less cycles.

Proposition 2.2. For all P 2 Pn, we have

rank([A,PB])  min{n,m, rA + rB , r +H(⇡P )

�C(⇡P )}. (3)

Similar result for the case with multiple permutations is
summarized in Corollary ?? in Appendix ??. It turns out
that, without any further assumption on M , (3) is sharp
and cannot be improved. Notably, the upper bound in (3) is
attained with probability 1 for a generic low-rank random
matrix.

Definition 2.3. A probability distribution on R is called a
proper distribution if its density function p(·) is absolutely
continuous with respect the Lebesgue measure on R.

Proposition 2.4. If the original matrix M is a random
matrix with M = RE where R 2 Rn⇥r and E 2 Rr⇥m

are two random matrices whose entries are i.i.d and follow
a proper distribution on R , and r  min{

p
n

2 ,mA,mB},
then 8P 2 Pn, the equality below holds with probability 1.

rank([A,PB]) = min{2r, r +H(⇡P )� C(⇡P )} (4)

Discussion on Proposition 2.4. It is worthwhile to men-
tion that our Proposition 2.4 strengthens the Theorem 1 in
[Yao et al., 2021] to some extent. Specifically, [Yao et al.,

1Two cycles are disjoint if they do not have common elements

2021] shows that, with probability 1, the rank of the per-
turbed matrix will never be lower than that of the original
matrix. Compared to them, our result precisely predicts how
much the rank will increase after row perturbation. Besides,
Proposition 2.4 is especially favorable from the optimization
perspective, as now the rank is a monotone function w.r.t
the degree of perturbation.

Convex relaxation for the rank function.Despite the previ-
ous theoretical justification for problem (1), it is non-convex
and non-smooth. Another crucial issue is that we often have
a noisy observation matrix and it is well known that the rank
function is extremely sensitive to the additive noise. In this
paper, we assume that the observation matrix is corrupted
by i.i.d Gaussian additive noise, i.e.,

Mo = [Ao, Bo] = [A, P̃B] +W, W (i, j) ⇠ N (0,�2),

where �2 denotes the variance of the noise. We denote the
singular values of a matrixX 2 Rn⇥m as �1

X
, ...,�k

X
where

k = min{n,m}. Since rank(X) = k[�1
X
, ...,�k

X
]k0, from

Proposition 2.4 we can view the perturbation effect of a
permutation to a low-rank matrix as breaking the sparsity of
its singular values, which leads naturally to the nuclear norm
minimization problem that has been shown to be robust to
additive noise and favor low-rank solution [Wright and Ma,
2021], i.e.,

min
P2Pn

k[Ao, PBo]k⇤ = k[�1
Mo

, ...,�k

Mo
]k1. (5)

Theoretical justification for the nuclear norm. Nuclear
norm has a long history being used as a convex surrogate
for the rank, and it has been theoretically justified for appli-
cations like low-rank matrix completion [Candès and Tao,
2010, Wright and Ma, 2021]. It is also important to see
whether the nuclear norm is still a good surrogate for the
rank minimization problem (1). In this work, we establish a
sufficient condition on A and B under which problem (5) is
provably justified for correspondence recovery. We denote
A =

P
rA

i=1 �
i

A
ui

A
vi>
A
, B =

P
rB

i=1 �
i

B
ui

B
vi>
B

as the singu-
lar values decomposition of A and B, where the �i

A
and �i

B

are the non-zero singular values. To derive the worst-case
error bound of nuclear norm minimization, we propose the
following assumption on M .

Assumption 2.5. There exists a constant ✏1 � 0, ✏2 �

0, ✏3 � 0 such that

|�i

A
� �i

B
|  ✏1, 8i = 1, .., r, (6)

kui

A
� ui

B
k  ✏2, 8i = 1, ..., T, (7)

min
u2U

min
i6=j

|u(i)� u(j)| � ✏3 > 0, (8)

where we denote �i

A
= 0 if i > rA, and similarly for �i

B
,

T = min{rA, rB} and U = {u1
A
, ..., uT

A
, u1

B
, ..., uT

B
}.

Here we provide some intuition behind these assumptions.
Firstly, from the definition of nuclear norm, it can be simply
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verified for any P 2 Pn that

�Z/N  (k[A,PB]k⇤ � kMk⇤)/kMk⇤  Z/N, (9)

where N = max{kAk⇤, kBk⇤} and Z =
min{kAk⇤, kBk⇤}. The inequality (9) indicates that
A and B should have comparable magnitude, i.e.,
kAk⇤ ⇡ kBk⇤, otherwise the influence of the permutation
will be less significant. With this observation, as depicted
by (6), we assume that the singular values of A and B
are comparable. As for (7), we propose it with an aim to
capture the intuition that if A and B are data from the same
group of users, the distance (in SVD sense) between A
and B should be close, i.e., the matrix [A,B] should be
"low-rank". We would like to interpret the constants ✏2 as
a continuous measure for the low-rankness of a matrix,
because it indicates that the column space of M can be
approximated by the column space of one of its submatrices.
Lastly, it is easy to verify that if there is a P 2 Pn such that
ui

B
= Pui

B
for all i, then [A,PB] = [A,B]. Therefore, we

propose (8) to avoid this case.

Remark 1. Though these assumptions could be refined,
we remark that they are almost sharp. In Appendix ??, we
construct a few concrete counterexamples which do not
satisfy these assumptions and are impossible to be recovered
within meaningful accuracy by nuclear norm minimization
problem.

With these assumptions, we derive the following result,
which provides high probability bound for the approxima-
tion error of (5). We denote the solution to (5) as P ⇤, and
let ⇡⇤ and ⇡̃ be the corresponding permutation to the per-
mutation matrices P ⇤> and P̃ , respectively. We define the
difference between the two permutations ⇡⇤ and ⇡̃ as the
Hamming distance

dH(⇡⇤, ⇡̃)
def.
=

nX

i=1

I(⇡⇤(i) 6= ⇡̃(i)).

Proposition 2.6. Under Assumptions 2.5, if additionally
✏1 

D

4r , ✏2  min{ 1
2
p
2T

,
p
2D
2N }, and � 

D

16L2 , then the
following bound

dH(⇡⇤, ⇡̃) 
2

✏23

✓
2�

⇣p
2D/

�
D + (

p

2 + 2)✏1r+

p

2✏2N + 2
p

2DL�
�
�

p

T ✏22

⌘2
◆

(10)

holds with probability at least 1 � 2 exp{� D

8L�
}, where

L = max{n,m}, D = kAk⇤ + kBk⇤.

The proof to all the aforementioned theoretical results are
provided in Appendix ??.

Remark 2. From Proposition 2.6 we can see that when ✏3 >
0, and ✏1 ! 0, ✏2 ! 0, � ! 0, the error dH(⇡⇤, ⇡̃) will

Figure 1: The relationship under different percentages of
observable entries.

converge to zero with probability 1. We can also discover
that the correspondence can be difficult to recover when:
The rank of original matrix M is high; The magnitude of A
and B w.r.t rank or nuclear norm are not comparable; The
strength of noise is high. Notably, the numerical experiments
in Section 4.1 corroborate these findings as well. Due to
page limit, we refer detailed discussion and analysis on
Proposition 2.6 to Appendix ??.

Remark 3. In many applications, we can only observe part
of the full data. Therefore, it is worthwhile to investigate
whether nuclear norm minimization could work when we
can only access a small subset of the entries in Mo. No-
tably, Figure 1 empirically gives the positive answer and
shows that the "monotone relationship of nuclear norm w.r.t
numbers of permuted rows" is gracefully degraded when
the percentage of observable entries is decreasing. This
phenomenon is remarkable since it indicates the original
correspondence can be recovered from only part of the full
data. The matrices used to generate Figure 1 are the same
as those in Section 4.1, and the nuclear norm is computed
approximately by first filling the missing entries using Soft-
Impute algorithm [Mazumder et al., 2010].

3 ALGORITHM

In this section, we develop an algorithm for MRUC based on
the intuition obtained from Section 2. Moreover, we require
that the algorithm can deal with the scenario with missing
values, i.e., our observed data is P⌦(Mo) = P⌦([Ao, Bo]),
where P⌦ is an operator that selects entries that are in the
set of observable indices ⌦. In this scenario, problem (5)
can not be directly used since the evaluation of the nuclear
norm and optimization of the permutation are coupled to-
gether. Inspired by the matrix completion method [Hastie
et al., 2015, Mazumder et al., 2010], we propose to solve an
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alternative form of (5) as follows,

min
cM2Rn⇥m

min
P2Pn

���P⌦([Ao, PBo])� P⌦(cM)
���
2

F

+ �
���cM

���
⇤
,

(11)

where � > 0 is the penalty coefficient. We denote that
cM = [cMA, cMB ] and cMA, cMB are the two submatrices
with the same dimension as Ao and Bo respectively. We can
write (11) equivalently as

min
cM2Rn⇥m

min
P2Pn

���P⌦(Ao)� P⌦(cMA)
���
2

F

+hC(cMB), P i+ �
���cM

���
⇤
, (12)

where C(cMB) 2 Rn⇥n is the pairing cost matrix with

C(cMB)(i, j) =
X

(j,j00)2⌦

✓
cMB(i, j

00)�Bo(j, j
00)

◆2

,

8i, j = 1, ..., n.

Baseline algorithm. A conventional strategy to handle an
optimization problem like (12) is the alternating minimiza-
tion or the block coordinate descent algorithm [Abid et al.,
2017]. Specifically, it executes the following two updates
iteratively until it converges.

cM new
 argmin

cM2Rn⇥m

���P⌦([Ao, bP oldBo])� P⌦(cM)
���
2

F

+ �
���cM

���
⇤
, (13)

bP new
 argmin

P2Pn

hC(cM new
B

), P i. (14)

The first update step (13) is a convex optimization prob-
lem and can be solved by the proximal gradient algorithm
[Mazumder et al., 2010]. The second update step (14) is
actually a discrete optimal transport problem which can be
solved by the classical Hungarian algorithm with time com-
plexity O(n3) [Jonker and Volgenant, 1986]. However, as
we will see in the Section 4, this algorithm performs poorly,
and it is likely to fall into an undesirable local solution
quickly in practice. Specifically, the main reason is that the
solution of (14) is often not unique and a small change in
cMB would lead to large change of bP . To address this issue,
we propose a novel and efficient algorithm M3O algorithm
based on the entropic optimal transport [Peyré et al., 2019]
and min-max optimization [Jin et al., 2020a].

Smoothing the permutation with entropy regularization.
For any a 2 Rn, b 2 Rm, we define

⇧(a, b) = {S 2 Rn⇥m : S1m = a, S>1n = b,

S(i, j) � 0, 8i, j},

which is also known as the Birkhoff polytope. The famous
Birkhoff-von Neumann theorem [Birkhoff, 1946] states that
the set of extremal points of ⇧(1n,1n) is equal to Pn. In-
spired by [Xie et al., 2021] and the interior point method for
linear programming [Bertsekas, 1997], in order to smooth
the optimization process of the baseline algorithm, we relax
P from being an exact permutation matrix, i.e., to keep P
staying inside the Birkhoff polytope ⇧(1n,1n). That is, we
propose to replace the combinatorial problem (14) with the
following continuous optimization problem

min
P2⇧(1n,1n)

hC(cMB), P i+ ✏H(P ), (15)

whereH(P )
def.
=

P
i,j

P (i, j)(log(P (i, j))�1) is the matrix
negative entropy and ✏ > 0 is the regularization coefficient.
Notably, (15) is also known as the Entropic Optimal Trans-
port (EOT) problem [Peyré et al., 2019], which is a strongly
convex optimization problem and can be solved roughly in
the O(n2) complexity per iteration by the Sinkhorn algo-
rithm. Specifically, the Sinkhorn algorithm solves the dual
problem of (15),

max
↵,�2Rn

W✏(cMB ,↵,�)
def.
= h1n,↵i+ h1n,�i�

✏

⌧
1n⇥n, exp

⇢
↵� � � C(cMB)

✏

��
, (16)

which reduces the variables dimension from n2 to 2n and
is thus greatly favorable in the high dimension scenario. By
substituting the inner minimization problem of (12) with
(15), we end up with solving the following unconstrained
min-max optimization problem

min
cM

max
↵,�

���A� cMA

���
2

F

+W✏(cMB ,↵,�) + �
���cM

���
⇤
.

(17)

Follows the idea of [Jin et al., 2020a], we consider to adopt
a proximal gradient algorithm with a Max-Oracle for (17).
Specifically, we employ the Sinkhorn algorithm [Peyré et al.,
2019] as the Max-Oracle to retrieve an "-good solution of
the inner max problem (16). We summarize our proposed al-
gorithm M3O (Matrix recovery viaMin-MaxOptimization)
in Algorithm 1, where prox

�k·k⇤
(·) is the proximal operator

of nuclear norm, ⇢k is the gradient stepsize and

F✏(cM,↵,�)
def.
=

���A� cMA

���
2

F

+W✏(cMB ,↵,�).

The convergence property of M3O can be obtained by fol-
lowing [Jin et al., 2020a], which shows that, with a decaying
stepsize, M3O is bound to converge to an "-good Nash equi-
librium within O("�2) iterations.

Remark 4. A recent work [Xie et al., 2020] proposes a
decaying strategy for the entropy regularization coefficient
✏ in (15) so that the optimal solutions of (14) and (15) do
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Algorithm 1 M3O (Simplified)

Input: tolerance ", observationMo, initialization cM .
repeat
Run the Sinkhorn algorithm to find ↵⇤, �⇤ such that

W✏(cMk

B
,↵⇤,�⇤) > max

↵,�

W✏(cMk

B
,↵,�)� ";

cM k+1
 prox

�k·k⇤
(cMk

� ⇢krcMF✏(cMk,↵⇤,�⇤)).
until converged

not deviate too much. Inspired by it, in our practice, we
take large ✏ in the beginning and gradually shrink it by half
whenever the objective value stops improving for K steps.

Remark 5. A useful trick is that we should not take large
stepsize ⇢k in the early iterations because the permuta-
tion matrix could still be far away from the optimal one.
However, a small stepsize would lead to slow convergence.
Heuristically, we propose an adaptive stepsize strategy that
performs well in practice. For the solution of (15) bPk at the
kth iteration, we compute the two statistics

�k =
��� bPk�1 �

bPk

���
2

F

/2n, ck =
���maxj bPk(·, j)� 1n

���
1
/n.

Here �k represents how fast the permutation matrix bPk

changes over the iterations, while ck measures how far
the current bPk is close to an exact permutation matrix.
Both �k and ck reflect the confidence on the current found
correspondence. Based on them, we set the stepsize as
⇢k+1 = (1��k)(1�ck)!, where ! > 0 is a tunable param-
eter which is often set to a value between 0.5 to 3. ! actually
trades off the convergence speed and final performance. The
smaller the !, the faster the convergence. Therefore, a prac-
tical way is to start with a small !, and gradually increase it
until the final performance stops improving.

Remark 6. As discussed in Section 1, in many cases
we have to deal with the problem that involves multi-
ple correspondence, i.e., we need to recover the matrix
M = [A,B1, ..., Bd] from the observation data P⌦(Mo),
where

Mo = [Ao, B
1
o
, ..., Bd

o
] = [A, P̃1B1, ..., P̃dBd] +W,

where P̃l 2 Pn and W is a noise matrix. We refer such
problem as the d-correspondence problem. An important
observation is that, although the number of possible corre-
spondence increase exponentially as d grows, the complex-
ity of M3O per iteration only linearly increases with d and
can be implemented in a fully parallel fashion. Specifically,

in this scenario, we solve the problem

min
cM

min
P1,...,Pd

���P⌦(Ao)� P⌦(cMA)
���
2

F

+
dX

l=1

⇢
hC(cMBl), Pli

+ ✏H(Pl)

�
+ �

���cM
���
⇤
, (18)

s.t. Pl 2 ⇧(1n,1n), l = 1, ..., d,

where we denote cM = [cMA, cMB1 , ..., cMBd ]. Here cMA and
cMBl have the same dimension withAo andBl

o
, respectively.

One can find that the inner problems for solving Pl are
actually decoupled for each l, which guarantees an efficient
parallel implementation.

Remark 7. Since problem (11) has a similar form to that
considered in [Mazumder et al., 2010]. We adopt the same
tuning strategy of � as in [Mazumder et al., 2010], which
suggests that we should start with large � and gradually
decrease it.

We relegate more details about M3O to Appendix ??.

(a) Objective value

(b) Permutation error

Figure 2: Performance of various algorithms on a simulated
1-correspondence problem.

4 EXPERIMENTS

In this section, we evaluate our proposed M3O on both
synthetic and real-world datasets, including the MovieLens
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100K and the Extended Yale B dataset. We also provide an
ablation study for the decaying entropy regularization strat-
egy and the adaptive stepsize strategy proposed in Remarks
4 and 5. In all the experiments, we employ the Soft-Impute
algorithm [Mazumder et al., 2010] as a standard algorithm
for matrix completion. Extra experiment details and auxil-
iary results can be found in Appendix ??.

Algorithms.We denote the following algorithms for com-
parison in all the experiments:

1. Oracle: Running the Soft-Impute algorithm with ground-
truth correspondence.

2. Baseline: The Baseline algorithm in (13) and (14).

3. MUS: Since there is currently no existing algorithm di-
rectly applicable to the scenario considered by (18), we
modify and extend the algorithm in [Zhang and Li, 2020],
which is originally proposed for the MUS problem, to deal
with the MRUC problem. The details of the adapted algo-
rithm are provided in Appendix ??.

Remark 8. As discussed in [Pananjady et al., 2017a], lever-
aging the prior knowledge that multiple columns are shuffled
by the same permutation is generally helpful for permutation
recovery. This is why we only adopt the MUS algorithm
in [Zhang and Li, 2020] instead of those US algorithms
considered by [Yao et al., 2021] for comparison. For a more
serious and experimental discussion, we refer readers to
Appendix ??.

4.1 SYNTHETIC DATA

We first investigate the property of our proposed M3O algo-
rithm on the synthetic data.

Data generation. We generate the original data matrix in
this form M = RE + ⌘W, where R 2 Rn⇥r, E 2 Rr⇥m,
W 2 Rn⇥m and ⌘ > 0 indicates the strength of the ad-
ditive noise. The entries of R, E, W are all i.i.d sam-
pled from the N (0, 1). Then we split the data matrix M
by M = [A,B1, ..., Bd] where we denote A 2 Rn⇥mA ,
B1 2 Rn⇥m1 , ..., Bd 2 Rn⇥md to represent data from
d + 1 data sources. The permuted observation matrix
Mo is obtained by first generating d permutation matri-
ces P1, ..., Pd randomly and independently, and then com-
puting Mo = [A,P1B1, ..., PdBd]. Finally, we remove
(1� |⌦| · 100%/(n ·m)) percent of the entries ofMo ran-
domly and uniformly, where |⌦| indicates the number of
observable entries.

Ablation study.We denote the following variants of M3O
for the ablation study.

1. M3O-AS-DE: M3O with both Adpative Stepsize and De-
caying Entropy regularization.

2. M3O-DE: M3O with Decaying Entropy regularization

only. M3O-DE-1 and M3O-DE-2 adopt constant stepsize
⇢k = 0.5 and ⇢k = 0.01, respectively.

3. M3O-AS: M3O with Adpative Stepsize only. The entropy
coefficient ✏ is fixed to 0.0005.

In the following results, we denote ⇡l as the corresponding
permutation to Pl. We initialize cM from Gaussian distri-
bution for the M3O algorithm and its variants. We choose
initial ✏ as 0.1 and K = 100 as the default for the decaying
entropy regularization, and set ! = 3 as the default for
the adaptive stepsize. We also report the achieved objective
values of (18) for the tested algorithms, except for the MUS
algorithm since it has a different objective. We denote ⇡̂ as
the recovered permutation.

Results. Figure 2 displays the result under the setting
⌘ = 0.1, |⌦| · 100%/(n · m) = 80%, n = m = 100,
r = 5, d = 1, mA = 60 and m1 = 40. The algorithm
M3O-AS-DE achieves the best result, and can recover the
ground-truth correspondence. M3O-AS behaves similarly
to Baseline and MUS. They all converge to a poor local
solution quickly. M3O-DE-1 converges quickly and also
falls into a poor local solution due to large stepsize, while
M3O-DE-2 adopts a small stepsize and hence suffers from
slow convergence. Due to the superiority of M3O-AS-DE
over the other variants, in the following results, we refer
M3O as M3O-AS-DE for short.

Table 1: Performance of M3O for various d-
correspondence problems. The normalized permutation
error

P
d

l=1 dH(⇡̂l,⇡l)/d is reported as mean±std (min)
over 10 different random initializations.

(n,mA,m1, ...,md) d |⌦|·100%
nm

1
d

P
d

l=1 dH(⇡̂l,⇡l)

(100,40,30,30) 2 40% 33.35± 32.85 (0.00)
(100,20,40,40) 2 40% 58.90± 27.21 (2.00)

(100,45,25,25,25) 3 50% 61.97± 15.41 (37.33)
(100,40,25,25,25,25) 4 60% 59.90± 13.64 (38.50)

Figure 3 examine M3O on a 1-correspondence problem
under different regimes w.r.t |⌦|, ⌘, r andmA/n. Here we
use mA/n to control the difference of the magnitude of the
submatrices. As we can see, the results are well aligned with
our prediction in Remarks 2 and 3. We also find that the
performance of M3O tends to have high variance. This is
mainly because M3O is sensitive to random initialization,
and more details on this phenomenon are in Appendix ??.
In practice, we recommend to run M3O a few times with
different random initializations.

Finally, we examine M3O on a few d-correspondence prob-
lems. See Table 1 for various results, where we set r = 5
and " = 0.1. Notice that for the 4-correspondence problem
in the table, there are (100!)4 possible correspondence. Even
for such a difficult problem, M3O is able to recover 61.5% of
the ground-truth correspondence with a good initialization.
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(a) dH v.s. |⌦|

(b) dH v.s. ⌘

(c) dH v.s. r

(d) dH v.s.mA/n

Figure 3: Performance of M3O on a 1-correspondence prob-
lem under different levels of |⌦|, ⌘, r and mA/n. The
default setting is |⌦| · 100%/(n · m) = 80%, ⌘ = 0.1,
n = m = 100, r = 5, mA = 60, and m1 = 40. The mean
with minimum and maximum are calculated from 10 differ-
ent random initializations.

4.2 MULTI-DOMAIN RECOMMENDER SYSTEM
WITHOUT CORRESPONDENCE

In this section, we study the performance of M3O on a real
world dataset MovieLens 100K2, which is a widely used
movie recommendation dataset [Harper and Konstan, 2015].
In this application, we mainly focus on the metric Root
Mean Squared Error (RMSE), i.e.,

RMSE def.
=

s
1

N

X

i,j

(cMij �Mij)2.

Data. MovieLens 100K contains 100,000 ratings within
the scale 1-5. The ratings are given by 943 users on 1,682
movies. Genre information about movies is also provided.
We adopt a similar setting with [Zhang et al., 2012]. We
extract five most popular genres, which are Comedy (C), Ro-
mance (R), Drama (D), Action (A), Thriller (T) respectively,
to define the data from 5 different domains (or platforms). In
addition to [Zhang et al., 2012], we randomly permute the
indexes of the users from these five domains respectively, so
that the correspondence among these data become unknown.
In this way, the problem belongs to the 4-correspondence
problem as discussed before. The ratings are split randomly,
with 80% of them as the training data and the other 20% of
them as the test data.

Algorithms. We consider the following additional algo-
rithms for comparison.

1. SIC: Running the Soft-Impute algorithm independently
for the 5 different platforms.

2. SIR: Running the Soft-Impute algorithm with Ran-
domly generated correspondence.

Results. As discussed in experiments on the simulated data,
the exact recovery of correspondence becomes impossible
due to the small amount of observable entries. Therefore,
in the following experiment, since exact correspondence
is not needed, we fix ✏ = 0.05 for M3O. Table 2 shows
the results by averaging the RMSE on the test data over
10 different random seeds. We can first see that the matrix
completion with a wrong correspondence, i.e., SIR, can be
harmful to the overall performance since it is even worse
than the results of SIC. Notably, although the ground-truth
correspondence can not be recovered, each platform can still
benefit from M3O since it improves the performance over
SIC. This is mainly because M3O is still able to correspond
similar users for inferring missing ratings. On the contrary,
since both Baseline and MUS can only establish an exact
one-to-one correspondence for each user, they fail to im-
prove SIC significantly. Remarkably, M3O is only inferior
to the Oracle method a little, and even achieves lower test
RMSE than the Oracle method on the Comedy genre.

2https://grouplens.org/datasets/movielens/100k/
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(a) Original

(b) Corrupted

(c) Baseline

(d) M3O

Figure 4: Performance of M3O on a face recovery problem.

Table 2: Test RMSE of various algorithms on MovieLens
100K

Method C R D A T Total

SIR 1.020 1.016 0.981 0.980 0.981 0.994
SIC 0.969 0.970 0.932 0.918 0.925 0.942
MUS 0.966 0.984 0.942 0.931 0.931 0.949

Baseline 0.973 0.956 0.938 0.911 0.915 0.940
M3O 0.9399 0.879 0.914 0.856 0.857 0.895
Oracle 0.944 0.783 0.906 0.818 0.810 0.867

4.3 VISUAL PERMUTATION RECOVERY

We also show that M3O is flexible and can also be applied
to a visual jigsaw puzzle. This kind of problem is recently
considered in [Santa Cruz et al., 2017], which proposes
to recover the corrupted image in a data-driven way using
convolutional neural networks. However, we show that it is
possible to recover the image without extra data by merely
exploiting the underlying low-rank structure of the image
itself. A typical result is shown in Figure 4. The experiment
details and more results are provided in Appendix ??.

5 CONCLUSION

In this paper, we study the important MRUC problem where
part of the observed submatrix is shuffled. Such problem
underlies the record linkage problem in VFL [Nock et al.,
2021]. This problem has not been well explored in the ex-
isting literature. Theoretically, we are the first to rigorously
analyze the role of low-rank model in the MRUC problem,
and also provide an almost sharp sufficient condition under
which minimizing nuclear norm is provably efficient for
recovering permutation. For practical implementations, we
propose an efficient algorithm, the M3O algorithm, which
consistently achieves the best performance over several base-
lines in all the tested scenarios. For future works, it is im-
portant to extend the theoretical results to the scenario with
missing values, and hopefully derive a theorem that can
rigorously quantify the remarkable phenomenon exhibited
in Figure 1.
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A PROOF FOR THE THEORETICAL RESULTS

Proof of Proposition 2.2. We denote that a1, .., arA as the linear bases of the column space of A. We can extend them to the
bases of the column space of M as a1, .., arA , b1, ..., br�rA . In this way, there must exists a matrix Q 2 Rr⇥mB such that

B = [a1, .., arA , b1, ..., br�rA ]Q.

Hence, we have
PB = [Pa1, .., ParA , P b1, ..., P br�rA ]Q.

Similarly, there must exists a matrix T 2 RrA⇥mA such that

A = [a1, .., arA ]T.

Hence, we obtain that

[A,PB] = [a1, .., arA , Pa1, .., ParA , P b1, ..., P br�rA ]


T 0
0 Q

�
.

Now, we have

rank([A,PB])  rank([a1, .., arA , Pa1, .., ParA , P b1, ..., P br�rA ])

 rank([a1, .., arA , Pa1, .., ParA ]) + r � rA

= rank([a1, .., arA , Pa1, .., ParA ]


IrA �IrA
0 IrA

�
) + r � rA

 rA + r � rA + rank([Pa1 � a1, .., ParA � arA ]). (1)

Now we denote the cycles in ⇡P with length greater than 1 as C1, ..., CC(⇡P ), and ⇣1, ..., ⇣n�H(⇡p) as the indexes that are
not in any one of C1, ..., CC(⇡P ). We construct a matrix Y 2 R(n+C(⇡P )�H(⇡p))⇥n as:

Y (i, j) = 1 if j = ⇣i else Y (i, j) = 0, for i = 1, ..., (n�H(⇡p));

Y (i, j) = 1 8j 2 Ci, and Y (i, j) = 0 8j /2 Ci,

for i = (n�H(⇡p) + 1), ..., (n+ C(⇡P )�H(⇡p)).

It can be verified that

Y (Pai � ai) = 0, i = 1, ..., rA.

We denote the null space of Y as Null(Y ) = {x 2 Rn
|Y x = 0}. From the construction of Y we can see that dim(Null(Y )) =

H(⇡P )� C(⇡P ). Hence we have

rank([Pa1 � a1, .., ParA � arA ])  H(⇡P )� C(⇡P ). (2)
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On the other hand, we have

rank([A,PB])  rank(A) + rank(PB) = rank(A) + rank(B) = rA + rB . (3)

Combining (1), (2) and (3) , we can obtain (3).

Following the proof of Proposition 2.2, it is easy to show the similar result for the case with multiple permutation, which is
summarized as the Corollary A.1

Corollary A.1. For the matrix M = [A,B1, .., Bd] 2 Rn⇥m with rank(M) = r, rank(A) = rA, and rank(Bi) = rBi ,
i = 1, ...d, we have 8P1, ..., Pd 2 Pn,

rank([A,P1B1, ..., PdBd])  min{n,m, rA +
dX

i=1

rBi , r +
dX

i=1

H(⇡Pi)� C(⇡Pi)}. (4)

Proof of Proposition 2.4. To prove Proposition 2.4, we need an important lemma on measure theory from [Halmos, 2013].

Lemma A.2. Let p(x) be a polynomial on Rn. If there exists a x0 2 Rn such that p(x0) 6= 0, then the Lebesgue measure of
the set {x|p(x) = 0} is 0.

8P 2 Pn, we define the polynomial on Rn⇥r
⌦ Rr⇥m as

pr
P
(R,E) =

X

S2Sr([A,PB])

det(S)2,

where det(·) is the determinant of matrix, and Sr(X) is the set of all r ⇥ r sub-matrices in X . We denote that rP =
min{2r, r + H(⇡P ) � C(⇡P ). We can see that rank([A,PB]) � rP if and if only prP

P
(R,E) > 0. Therefore, from

Lemma A.2 and Proposition 2.2 we can conclude that if there exists two matrices R0 2 Rn⇥r and E0 2 Rr⇥m such that
prP
P
([R0, E0]) > 0, then rank([A,PB]) = rP holds with probability 1. In this way, we only need to construct such R0 and

E0 for every P 2 Pn. For simplicity, we denote that k = H(⇡p)� C(⇡P ). We will discuss how to construct such R0 and
E0 for the two cases 0 < k  n� r and k � n� r, respectively.

(1) If 0 < k  n� r:

We construct the matrix Y 2 R(n+C(⇡P )�H(⇡p))⇥n the same way with that in the proof of Proposition 2.2. Firstly, we show
that Null(Y ) =col(P � I).

col(P � I) ✓Null(Y ): We can verify that Y (P � I) = 0.

Null(Y ) ✓col(P � I): This is equivalent to prove that Null(P � I) ✓col(Y ). Now we have Px = x, 8x 2Null(P � I). It
can be verified that if Px = x, then we must have x(s) = x(q) if s and q belong to the same cycle Ci, where Ci is one of
the cycles in C1, ..., CC(⇡P ). By the definition of Y , we can see that x 2 col(Y ).

Now we know that rank(P � I) =dim(Null(Y )) = k. We denote the eigen vectors of P � I with non-zero eigen values as
�1, ...,�k, and the eigen vectors with zero eigen values as �k+1, ...,�n. Now we have (P � I)�i = �i�i for i = 1, ..., k
and (P � I)�i = �i�i for i = k + 1, ..., n.

We construct the matrices R0 and E0 as

R0 = [�1 + �k+1,�min{2,k} + �k+2, ...,�min{r,k} + �k+r],

E0 = [Ir,0r⇥(mA�r), Ir,0r⇥(mB�r)].

Now we have

A = [�1 + �k+1,�min{2,k} + �k+2, ...,�min{r,k} + �k+r,0n⇥(mA�r)],

B = [�1 + �k+1,�min{2,k} + �k+2, ...,�min{r,k} + �k+r,0n⇥(mB�r)],

since [A,B] = R0E0. Therefore, we have

rank([A,PB]) = rank([�1 + �k+1, ...,�min{r,k} + �k+r,�1�1, ...,�min{r,k}�min{r,k}])

= rank([�k+1, ...,�k+r,�1, ..,�min{r,k}])

= r +min{k, r} = min{2r, r + k}.



Now rank([A,PB]) = rP by this construction of R0 and E0. Hence prPP ([R0, E0]) > 0.

(2) If k > n� r:

We denote that the length of a cycle C as len(C), and denote the cycle with maximum length among the C1, ..., CC(⇡P ) as
C⇤. Now we have

len(C⇤) �
H(⇡P )

C(⇡P )
�

n

n� k
>

n

r
� 2r.

To simplify the notations, we assume that the cycle C⇤ permute the first j numbers, i.e.,

C⇤ = (123...(j � 2)(j � 1)j),

where j > 2r. We define the vector u as u = [1, 2, 3, ..., j � 2, j � 1, j, 0, ..., 0]> 2 Rn, and denote the corresponding
permutation matrix to C⇤ as P⇤ 2 Pn. We construct the matrices R0 and E0 as

R0 =
⇥
u P 2

⇤ u . . . P 2r�2
⇤ u

⇤
,

E0 = [Ir,0r⇥(mA�r), Ir,0r⇥(mB�r)].

Now we have

A = [u, P 2
⇤ u, . . . , P

2r�2
⇤ u,0n⇥(mA�r)],

B = [u, P 2
⇤ u, . . . , P

2r�2
⇤ u,0n⇥(mB�r)].

Therefore, we have

rank([A,PB]) = rank([u, P⇤u, . . . , P
2r�1
⇤ u]) = 2r,

because now [u, P⇤u, . . . , P 2r�1
⇤ u] is a circulant matrix. Now rank([A,PB]) = rP = 2r by this construction of R0 and

E0. Hence prPP ([R0, E0]) > 0.

Proof of Proposition 2.6.. To prove Proposition 2.6, we need to derive a series results. We first start with a very important
inequality w.r.t nuclear norm.

Proposition A.3. Let P be a permutation matrix, then,

kAk⇤ + kBk⇤ � k[A,PB]k⇤ �
kAk⇤ + kBk⇤

k[UAV >
A
, PUBV >

B
]k

�
kAk⇤ + kBk⇤

p
2

. (5)

Based on (5), the general idea is that under the Assumptions 2.5, we will have kMk⇤ ⇡
kAk⇤+kBk⇤p

2
and

k[UAV >
A
, PUBV >

B
]k ! 1 as H(⇡P ) increases.

Firstly, we show that under the Assumptions 2.5, the nuclear norm of the original matrixM will reach the lower bound in
(5) approximately, which is summarized as Lemma A.4.

Lemma A.4. Under the Assumptions 2.5, we have

kMk⇤  (kAk⇤ + kBk⇤)/
p

2 + (
p

2 + 1)✏1r + ✏2 max{kAk⇤, kBk⇤}. (6)

Then, we show that under the Assumptions 2.5, k[UAV >
A
, PUBV >

B
]k ! 1 as H(⇡P ) increases, which is summarized as

Lemma A.5.

Lemma A.5. Under the Assumptions 2.5, we have

k[UAV
>
A
, PUBV

>
B
]k 

q
2�H(⇡P )✏23/2 +

p

T ✏2. (7)

Finally, we need a classical result on the tail bound for the operator norm of Gaussian matrix, whose proof can be found in
[Wainwright, 2019].



Lemma A.6. Consider the random matrix W 2 Rn⇥m whose elements follow N (0,�2) i.i.d. For any � > 0, we have

kWk 

p

L(2 + �)� (8)

holds with probability greater than 1� 2 exp{�L�
2

2 }, where L = max{n,m}.

Based on Lemma A.6, we have

kWk⇤  LkWk 

p

DL�

holds with probability greater than 1� 2 exp{� D

8L�
}.

From Proposition A.3, Lemma A.4 and Lemma A.5 we can know that, for any P 2 Pn with H(⇡P ) satisfies that

Dq
2� H(⇡p)✏3

2 +
p
T ✏2

� kWk⇤ >
D
p
2
+ (

p

2 + 1)✏1r + ✏2N + kWk⇤,

we must have

kAo, PBok⇤ � kA,PBk⇤ � kWk⇤

�
Dq

2� H(⇡p)✏23
2 +

p
T ✏2

� kWk⇤

>
D
p
2
+ (

p

2 + 1)✏1r + ✏2N + kWk⇤

� kA,Bk⇤ + kWk⇤ � kAo, Bok⇤.

Therefore, with probability greater than 1� 2 exp{� D

8L�
}, if H(⇡P ) satisfies that

Dq
2� H(⇡p)✏23

2 +
p
T ✏2

>
D
p
2
+ (

p

2 + 1)✏1r + ✏2N + 2
p

DL�, (@)

we have kAo, PBok > kAo, Bok⇤. Now we simplify (@) as

Dq
2� H(⇡p)✏23

2 +
p
T ✏2

>
D
p
2
+ (

p

2 + 1)✏1r + ✏2N + 2
p

DL�

,

r
2�

H(⇡p)✏23
2

<

p
2D

D + (
p
2 + 2)✏1r +

p
2✏2N + 2

p
2DL�

�

p

T ✏2.

It can be verified that p
2D

D + (
p
2 + 2)✏1r +

p
2✏2N + 2

p
2DL�

�

p

T ✏2 > 0

from the condition on ✏1, ✏2 and �.

Therefore, we have
r
2�

H(⇡p)✏23
2

<

p
2D

D + (
p
2 + 2)✏1r +

p
2✏2N + 2

p
2DL�

�

p

T ✏2

, H(⇡P ) >
2

✏23

✓
2� (

p
2D

D + (
p
2 + 2)✏1r +

p
2✏2N + 2

p
2DL�

�

p

T ✏2)
2

◆
.

Since P ⇤ is the optimal solution to (5), we must have

k[Ao, P
⇤P̃Bo]k⇤  k[Ao, Bo]k⇤.



Besides, P ⇤P̃ is also a permutation matrix, we denote its corresponding permutation as ⇡̂. Now we have

dH(⇡⇤, ⇡̃) = H(⇡̂) 
2

✏23

✓
2� (

p
2D

D + (
p
2 + 2)✏1r +

p
2✏2N + 2

p
2DL�

�

p

T ✏2)
2

◆
.

The proof to the auxiliary results used in the proof of Proposition 2.6 are provided below.

Proof of Proposition A.3. Since k · k⇤ is a norm, we have

k[A,PB]k⇤ = k[A,0] + [0, PB]k⇤  kAk⇤ + kPBk⇤ = kAk⇤ + kBk⇤.

Then since k · k⇤ is the dual norm of k · k, we have

k[A,PB]k⇤ = sup
kQk1

h[A,PB], Qi

� h[A,PB],
[UAV >

A
, PUBV >

B
]

k[UAV >
A
, PUBV >

B
]k
i

=
kAk⇤ + kBk⇤

k[UAV >
A
, PUBV >

B
]k
.

Finally, we have

k[UAV
>
A
, PUBV

>
B
]k = sup

x2Rm

kxk1

k[UAV
>
A
, PUBV

>
B
]xk

= sup
x12RmA ,x22RmB

k[x>
1 ,x

>
2 ]k1

k[UAV
>
A
x1, PUBV

>
B
x2]k

 sup
x12RmA ,x22RmB

k[x>
1 ,x

>
2 ]k1

kUAV
>
A
x1k+ kPUBV

>
B
x2k

 sup
x12RmA ,x22RmB

k[x>
1 ,x

>
2 ]k1

kx1k+ kx2k =
p

2.

Proof of Lemma A.4. If rA � rB , we have

kMk⇤ = k[UA⌃AV
>
A
, UB⌃BV

>
B
]k⇤

= k[UA⌃AV
>
A
, [u1

A
, ..., uT

A
,0, ...,0]⌃BV

>
B
]+

[0, [u1
A
� u1

B
, ..., uT

A
� uT

B
, uT+1

B
, ..., ur

B
]⌃BV

>
B
]k⇤

 k[UA⌃AV
>
A
, [u1

A
, ..., uT

A
,0, ...,0]⌃BV

>
B
]k⇤+

k[u1
A
� u1

B
, ..., uT

A
� uT

B
, uT+1

B
, ..., ur

B
]⌃BV

>
B
k⇤

 k[UA⌃AV
>
A
, [u1

A
, ..., uT

A
,0, ...,0]⌃BV

>
B
]k⇤ + ✏2kBk⇤

= k[UA⌃AV
>
A
, UA⌃BV

>
B
]k⇤ + ✏2kBk⇤. (*)

We denote that trace(·) as the trace of matrix. One property of nuclear norm is

kAk⇤ = trace(
p

AA>).



Then we have

k[UA⌃AV
>
A
, UA⌃BV

>
B
]k⇤ = trace(

q
UA(⌃2

A
+ ⌃2

B
)U>

A
)

=
rX

i=1

q
(�i

A
)2 + (�i

B
)2



rX

i=1

�i

A
+ �i

B
p
2

+ (
q
(�i

A
)2 + (�i

B
)2 �

�i

A
+ �i

B
p
2

)



rX

i=1

�i

A
+ �i

B
p
2

+ (
q
(�i

A
)2 + (�i

A
+ ✏1)2 �

2�i

A
� ✏1

p
2

)



p
2✏1r

2
+

kAk⇤ + kBk⇤
p
2

+

rX

i=1

2�i

A
✏1 + ✏21p

2(�i

A
)2 + 2�i

A
✏1 + ✏21 +

p
2(�i

A
)2



p
2✏1r

2
+

kAk⇤ + kBk⇤
p
2

+
rX

i=1

p
2✏1
2

+ ✏1

=
kAk⇤ + kBk⇤

p
2

+ (
p

2 + 1)✏1r. (**)

Combining (*) and (**), we have

k[A,B]k⇤ 
kAk⇤ + kBk⇤

p
2

+ (
p

2 + 1)✏1r + ✏2kBk⇤.

Similarly, if rB � rA, we have

k[A,B]k⇤ 
kAk⇤ + kBk⇤

p
2

+ (
p

2 + 1)✏1r + ✏2kAk⇤.

Combining them together, we have

k[A,B]k⇤ 
kAk⇤ + kBk⇤

p
2

+ (
p

2 + 1)✏1r + ✏2 max{kAk⇤, kBk⇤}.

Proof pf Lemma A.5. Firstly, if rA � rB we have

k[UAV
>
A
, PUBV

>
B
]k = k[UAV

>
A
, P [u1

A
, ..., uT

A
,0, ...,0]V >

B
]k+

k[0, P [u1
B
� u1

A
, ..., uT

B
� uT

A
,0, ...,0]V >

B
]k

 k[UAV
>
A
, P [u1

A
, ..., uT

A
,0, ...,0]V >

B
]k+

p

T ✏2. (***)

To simplify the notations, we denote that k = H(⇡P ) and assume that ⇡P permutes the indexes (1, ..., k) into (⇣1, ..., ⇣k).
Now we have

hui

A
, Pui

A
i =

kX

i=1

ui

A
(i)ui

A
(⇣i) +

nX

i=k+1

(ui

A
(i))2,



and

|

kX

i=1

ui

A
(i)ui

A
(⇣i)| 

kX

i=1

|ui

A
(i)ui

A
(⇣i)|

=
kX

i=1

(ui

A
(i))2 + (ui

A
(⇣i))2

2
� (

(ui

A
(i))2 + (ui

A
(⇣i))2

2
� |ui

A
(i)ui

A
(⇣i)|)



kX

i=1

(ui

A
(i))2 � (

(ui

A
(i))2 + (|ui

A
(i)|� ✏3)2

2
� |ui

A
(i)|(|ui

A
(i)|+ ✏3))

=
kX

i=1

(ui

A
(i))2 � (

✏23
2

+ 2|ui

A
(i)|✏3) 

kX

i=1

(ui

A
(i))2 �

✏23
2
.

Hence we must have

|hui

A
, Pui

A
i|  1�

k✏23
2

.

Therefore, we have

�(UA, P )
def.
= max

x,y2RT
,

kxk=1,kyk=1

h[u1
A
, ..., uT

A
]x, [Pu1

A
, ..., PuT

A
]yi

= max
x,y2RT

,

kxk=1,kyk=1

TX

i=1

x(i)y(i)hui

A
, Pui

A
i

 max
x,y2RT

,

kxk=1,kyk=1

(1�
k✏23
2

)
TX

i=1

x(i)y(i)

= 1�
k✏23
2

.

Now we have,

k[UAV
>
A
, P [u1

A
, ..., uT

A
,0, ...,0]V >

B
]k = sup

x2Rn
,

kxk=1

k[UAV
>
A
, P [u1

A
, ..., uT

A
,0, ...,0]V >

B
]xk

 sup
x12RmA ,x22RmB

k[x>
1 ,x

>
2 ]k1

q
1 + hUAV >

A
x1, P [u1

A
, ..., uT

A
,0, ...,0]V >

B
x2i

 sup
x12RmA ,x22RmB

k[x>
1 ,x

>
2 ]k1

p
1 + �(UA, P )kx1kkx2k 

r
2�

k✏23
2

.. (****)

Combining (***) and (****), we have

k[UAV
>
A
, PUBV

>
B
]k 

r
2�

k✏23
2

+
p

T ✏2.

The proof is similar for the case rB � rA.

B DISCUSSION ON ASSUMPTION 2.5

When ✏1 in Assumption 2.5 is sufficiently large: Consider A = �1
A
u,B = �1

B
u, u 2 Rn. If ✏1 > kD (k < 1), according

to inequality (6), for any permutation matrix P , we have | k[A,PB]k⇤�k[A,B]k⇤ | 
1�k

1+k
k[A,B]k⇤ . Therefore, the larger



the ✏1 is, the harder to distinguish [A,PB] and [A,B] through nuclear norm, especially with the perturbation of additive
noise.

When ✏2 in Assumption 2.6 is sufficiently large: Consider A = uA 2 Rn, B = uB 2 Rn and � = 0, where

kuAk = kuBk = 1. Let ✏2 = kuA � uBk, we can obtain k[A,B]k⇤ =

r
2 + 2

q
1� (1� ✏

2
2
2 )

2. In this case, we can
see that k[A,B]k⇤ is in fact an increasing function of ✏2. Therefore, for any permutation matrix P 2 P

✏2
n

= {S 2 Pn |

kuA � SuBk  ✏2}, we have k[A,PB]k⇤  k[A,B]k⇤, i.e., it is impossible to recover the original matrix through nuclear
norm minimization. Especially, in this case, when ✏2 =

p
2, the set P✏2

n
= Pn.

When ✏3 = 0 in Assumption 2.7: Consider A = B = u 2 Rn and � = 0. We first define n set S(i) = {j | u(i) = u(j)}
for i = 1, ..., n. We let S⇤ = argmaxS(i) #|S(i)|. For any permutation P that only permutes the indexes in S⇤ and
H(⇡P ) = #|S⇤

| > 0, we have k[A,B]k⇤ = k[A,PB]k⇤, i.e., it is impossible to distinguish the permuted matrix and the
original matrix through nuclear norm.

C ASYMPTOTIC BEHAVIOR OF PROPOSITION 2.8.

In this section, we will discuss about the asymptotic behavior (n ! 1) of the error bound in Proposition 2.8.

We start with a simple observation: Without ✏1 ! 0, ✏2 ! 0,� ! 0, the original matrix will be impossible to recover by
minimizing nuclear norm for sufficient large n. This is also reflected in the error bound of Proposition 2.8, where the right
hand side of (10) could become trivial, i.e., larger than n, when n is sufficiently large.

We provide a simple example to validate this observation. Suppose that the original matrix isM = [u, u] +W , where the
elements of W follow N (0,�2) and u 2 Rn is a random vector whose elements are i.i.d. following the uniform distribution
on [0, 1]. From the result in [David and Nagaraja, 2004], p. 135, we know that

E[max
i6=j

|u(i)� u(j)|] ⇡ O(n�1 log(n)).

Therefore, we can construct a permutation matrix P 2 Pn withH(⇡P ) = n, such that the following inequality holds with
high probability,

|k[u, Pu]k⇤ � k[u, u]k⇤|  kPu� uk2 = O(n� 1
2 log(n)).

On the other hand, from Lemma A.6 we can know that kWk⇤ ⇡ O(�n) with high probability. Now if we need that
k[u, Pu] + Wk⇤ > k[u, u] + Wk⇤, we at least require that � = o(n� 3

2 log(n)). Otherwise, it will be impossible to
distinguish the matrices [u, Pu] +W and [u, u] +W through the value of nuclear norm.

Finally, for this simple example, we have ✏1 = ✏2 = 0. Besides, from [David and Nagaraja, 2004], we can also know that ✏3
is at most O(n� 3

2 ) with high probability. With a simple calculattion, we can find that the error bound in Proposition 2.8 is at
least O(n

5
2�

1
2 ). Therefore, in this example, we at least require that � = o(n�5) to guarantee a constant error bound for

arbitrary n.

D DUAL PROBLEM OF (15)

To simplify the notation, we denote the primal problem as

minimize
P2⇧(1n,1n)

hC,P i+ ✏H(P ).

We define two dual variables ↵,� 2 Rn. The Lagrangian function is

L(P,↵,�) = hC,P i+ ✏hlogP � 1n⇥n, P i+ h1n � P1n,↵i+
⌦
1n � PT1n,�

↵
. (9)

Now we minimize the Lagrangian function w.r.t P (We note that H(P ) implicitly imposes that P 2 Rn⇥n

+ ). From the
first-order necessary condition of unconstrainted optimization, we have

C�↵� � + ✏ log(P ) = 0,

+

P =exp
⇢
↵� � � C

✏

�
. (10)



Substituting it into the Lagrangian function (9) we have the dual objective

q(↵,�) = min
P

L(P,↵,�) = h1n,↵i+ h1n,�i � ✏

⌧
1n⇥n, exp

⇢
↵� � � C

✏

��
.

Therefore the dual problem is

max
↵,�2Rn

h1n,↵i+ h1n,�i � ✏

⌧
1n⇥n, exp

⇢
↵� � � C

✏

��
. (11)

We can recover the primal solution P from the dual solution ↵, � via (10).

E A STABLE IMPLEMENTATION FOR SINKHORN ALGORITHM

The Sinkhorn algorithm [Peyré et al., 2019] are often used to solve the dual problem (11), and the standard form of it reads

p(t+1)
 

1n

Kq(t)
and q(t+1)

 
1n

K>p(t+1)
,

whereK = exp
⇢

↵���C

✏

�
, and p = exp(↵

✏
), q = exp(�

✏
). If we adopt a small ✏, the elements ofK can overflow to infinity

or zero, which causes a numerical issue. We can remedy this by using a different implementation from [Peyré et al., 2019].

↵(t+1)
 Minrow

✏
(C � ↵(t)

� �(t)) + ↵(t),

�(t+1)
 Mincol

✏
(C � ↵(t+1)

� �(t)) + �(t),

where for any A 2 Rn⇥m, we define the operator Minrow
✏

and Mincol
✏

as

Minrow
"

(A)
def.
= (min"A(i, ·))

i
2 Rn,

Mincol
"

(A)
def.
= (min"A(·, j))

j
2 Rm,

and for any vector z = [z1, ..., zn]> 2 Rn, we denote

min✏z
def.
= min

i

zi � ✏ log
X

j

e�(zj�mini zi)/✏

as the ✏-soft minimum for the elements of z.

F RELATIONSHIP BETWEEN M3O AND THE SOFT-IMPUTE ALGORITHM

Soft-Impute algorithm [Mazumder et al., 2010] is a classical algorithm for matrix completion. Specifically, it tries to solve
the nuclear norm regularized problem

minimize
cM

1

2

���P⌦(X)� P⌦(cM)
���
2

F

+ �
���cM

���
⇤
. (12)

Soft-Impute is a simple iterative algorithm with the following two steps:

bX  P⌦(X) + P
?
⌦ (cM), (13)

cM  prox
�k·k⇤

( bX) = US�(D)V >, (14)

where bX = UDV > denotes the singular value decomposition of bX , and P
?
⌦ is the operator that selects entries whose

indexes are not belonging to ⌦. Here S� is the soft-thresholding operator that operates element-wise on the diagonal matrix
D, i.e., replacing Dii with (Dii � �)+.



Algorithm 1 M3O-AS-DE
Input: stepsize parameter !, number of correspondence d, number of iterations N , number of tolerance steps K, initial
entropy coefficient ✏, tolerance ", observation matrixMo = [Ao, B1

o
, ..., Bd

o
], initial matrix cM = [cMA, cMB1 , ..., cMBd ],

nuclear norm coefficient �, the set of observable indexes ⌦.
Initialize bP l

new = 0n⇥n for l = 1, ..., d.
for k = 1 : N do

for l = 1 : d in parallel do
bP l

old = bP l

new.
↵̂l = �̂l = 1n.
Compute the partial pairwise cost matrix C(cMBl).
repeat
↵̂l

 Minrow
✏

(C(cMBl)� ↵̂l
� �̂l) + ↵̂l.

�̂l
 Mincol

✏
(C(cMBl)� ↵̂l

� �̂l) + �̂l.
bP l

new  exp
⇢

↵̂
l��̂

l�C(cMBl
)

✏

�
.

until 1p
n

���1>
n
bP � 1>

n

���
2
 "

Compute the stepsize ⇢l as discussed in Section 3.
cMBl  

cMBl � ⇢lrcMF l

✏
(cMBl ,↵

l,�l), where

F l

✏
(cMBl ,↵,�)

def.
= h1n,↵i+ h1n,�i � ✏

⌧
1n⇥n, exp

⇢
↵� � � C⌦(cMBl)

✏

��
.

end for
cMA  P⌦(A) + P

?
⌦ (cMA).

cM  prox
�k·k⇤

([cMA, M̂B1 , ..., cMBd ])).
if the objective value is not improved over K steps then
✏  ✏/2.

end if
end for

Consider the partial observation extension. For the M3O algorithm, if an exact permutation matrix is obtained, i.e.,
bP = exp

⇢
↵

⇤��
⇤�C(cMB)
✏

�
2 Pn, it is easy to verify that the the gradient in Algorithm 1 has the following form,

rcMF✏(cM,↵⇤,�⇤) = 2(P⌦(cM)� P⌦([A, bPB̃])).

In this way, if we adopts ⇢k = 0.5, the proximal gradient update becomes

cM k+1
 prox

�k·k⇤
(P⌦([A, bPB̃]) + P

?
⌦ (cMk)).

In practice, bP often becomes very close to an exact permutation matrix and the stepsize often reaches the upper bound 0.5,
when the algorithm is close to convergence. In this scenario, our algorithm becomes equivalent to the Soft-Impute algorithm.
Therefore, we adopt the Soft-Impute algorithm as a baseline method for matrix completion without correspondence issue.

G M3O-AS-DE FOR THE D-CORRESPONDENCE PROBLEM

In this section, we summarize our proposed algorithm M3O-AS-DE for the general d-correspondence problem (18) in
Algorithm 1. To determinate the stop of the Max-Oracle, we find that the criterion

1
p
n

���1>
n
bP � 1>

n

���
2
 "

works well in practice, which serves as a good indicator for the "-good optimality.



Algorithm 2 Baseline
Input: number of iterations N , number of Proximal Gradient iterations Np, tolerance ", observation matrix Mo =

[Ao, B1
o
, ..., Bd

o
], initial matrix cM = [cMA, cMB1 , ..., cMBd ], nuclear norm coefficient �, partial observation operator P⌦.

for k = 1 : N do
for l = 1 : d in parallel do
Solving the inner problem of (15) for P̂ l up to tolerance " via Hungarian algorithm.

end for
X  [Ao, P̂ 1B1

o
, ..., P̂ dBd

o
].

for i = 1 : Np do
X̂  P⌦(X) + P

?
⌦ (M̂).

M̂  prox
�k·k⇤

(X̂).
end for

end for

H THE BASELINE ALGORITHM

We also extend the Baseline algorithm to a similar d-correspondence problem as (18). Specifically, the extended Baseline
algorithm tries to solve the unsmoothed problem

min
cM

min
P1,...,Pd

���P⌦(Ao)� P⌦(cMA)
���
2

F

+
dX

l=1

hC(cMBl), Pli+ �
���cM

���
⇤
, (15)

s.t. Pl 2 Pn, for l = 1, ..., d.

We summarize the algorithm in Algorithm 2.

I THE MUS ALGORITHM

In this section, we provide details for the MUS algorithm discussed in the Section 4. Firstly, inspired by [Yao et al., 2021],
we first transform the MRUC problem, i.e, to recover [A,B] from [A, P̃B], into a MUS problem as follows,

min
P2Pn,W2RmB⇥mA

kA� PP̃BWk
2
F
. (16)

Then, for the scenario without multiple correspondence and missing values, we adopt the algorithm in [Zhang and Li, 2020]
to solve (16).

To extend it into the d-correspondence problem considered by (18), we adopt tow simple procedures. Specifically, to deal
with the missing value, we first fill in the missing entries of each submatrices using the Soft-Impute algorithm. As for the
multiple correspondence issue, we simply run the MUS algorithm in multiple times. For example, if we want solve the
d-correspondence problem, we typically apply the MUS algorithm to the following series of problems in turn,

min
P2Pn,W2RmB⇥mA

kAo � PBl

o
Wk

2
F
, l = 1, ..., d.

J DISCUSSION ON US, MUS AND MRUC

In this section, we wil discuss about the difference and similarity among the US problem, MUS problem and our MRUC
problem. Specifically, we wish to answer the following question:

• Why MUS algorithms, like the one in [Zhang and Li, 2020], are more suitable to be adapted for our MRUC problem
than those US algorithms like AIEM [Tsakiris et al., 2020] and CCV-Min [Peng and Tsakiris, 2020] that adopted by
[Yao et al., 2021]?

For this question, we note that the MUS problem (2) can be solved by US algorithms, because we can treat it as m1

independent US problems just as what [Yao et al., 2021] did. In this way, we can view the key difference between our



adapted MUS algorithm and the method proposed by [Yao et al., 2021] as whether to leverage the prior knowledge that
multiple response vectors are shuffled by the same permutation, i.e., to recover the permutation for m1 responses jointly or
independently. Theoretically, it has been well studied in the works [Zhang and Li, 2020, Pananjady et al., 2017a, Slawski
et al., 2020b,a] that one can resist stronger noise and estimate the ground-truth permutation better if we know that more
columns are shuffled by the same permutation. We remark that this phenomenon is not a contradiction to the experiment
results in [Yao et al., 2021], as they only reported the residual error for vector recovery instead of permutation recovery.

We also conduct our own experiment to corroborate our previous discussion. We generate the synthetic matrixMo = [A, P̃B]
in the same way with the experiment in Figure 2. Here we use the full matrix Mo, i.e., no missing values, and hence the
MRUC problem is now barely distinguishable to the MUS problem. We use the following three kinds of algorithm for
comparison:

1. MRUC: Our proposed algorithm M3O.

2. US: CCV-min algorithm1 used in [Yao et al., 2021], which is shown to be the state-of-the-art US algorithm.

3. MUS: The algorithm in [Han, 2020].

In this experiment, we also propose improved versions of US algorithm and MUS algorithm, by replacing their inputs A and
P̃B with their top five left singular vectors UA and U

P̃B
. This process can be viewed as a simple version of the first step

subspace learning in [Yao et al., 2021]. For the US algorithm, we run it for each column of P̃B independently. We provide
the result by varying the sparsity of P̃ , i.e., H(⇡

P̃
), and report the permutation recovery statistics dH(⇡̂,⇡⇤), where ⇡̂ is the

recovered permutation and ⇡⇤ is the ground-truth permutation, in Figure 1(a). Besides, we also report the residual error for
the US algorithm, i.e.,

residual error =
kP̂B �Bk

2
F

kBk
2
F

where P̂ denotes the recovered permutation matrix, in Figure 1(b). Notably, these results verify our discussions that, although
US algorithm can perform well in vector recovery (Achieving roughly 0.001 residual error on average.), it is extremely
inferior when it comes to the permutation recovery.

(a) Permutation error (b) Residual error

Figure 1: Performance of MRUC, MUS and US algorithms on a simulated 1-correspondence problem without missing
values.

K DETAILS FOR THE EXPERIMENTS

We use Matlab 2020b for the numerical experiments. The computer environment consists of Intel i9-10920x for CPU and
32GB RAM.

1https://github.com/liangzu/CCVMIN.



K.1 HYPERPARAMETERS SETTING

Simulated data. We adopt fixed nuclear norm coefficient � in the experiments on simulated data. Specifically, for each
setting, we choose the best � out of three candidate values that are 0.4, 0.5 and 0.6. Since adopting large ! will preserve
the final performance and only degrade the convergence speed, we take ! = 3 for all the experiments. For the tolerance of
Sinkhorn algorithm, we take " = 0.01 for all the experiments.

MovieLens 100K. For all the algorithms, we adopt a sequence of values for �. Specifically, we start the algorithm with
� = 300, and once the algorithm stops improving the objective function for 10 steps, we shrink the value as �  �� 10
until � becomes lower than 10. We take ! = 0.5 for all the experiments and also set the tolerance of Sinkhorn algorithm as
" = 0.01.

K.2 PHASE TRANSITIONWITH DIFFERENT INITIALIZATIONS.

In this section, we conduct a simple experiment to explore the sensitivity of M3O w.r.t initialization by varying the distance
between initialization and the ground-truth matrix. We could expect that the variance of the performance of M3O should
decrease as the distance decreases.

We generate different initializations in the following way: We first generate two matricesM andW independently following
the way described in Section 4.1, and we employ M as the ground-truth matrix. Then, we generate the initialization for
M3O as

M̂ = ⇤M + (1� ⇤)W,

where ⇤ 2 (0, 1) is a coefficient designed for controlling the distance between initialization and the ground-truth matrix.

Figure 2 shows a phase transition phenomenon for M3O algorithm w.r.t to the coefficient ⇤, which is well aligned with our
expectation.

Figure 2: A phase transition phenomenon for M3O algorithm w.r.t to the distance between initialization and the ground-
truth matrix. The experiment is conducted on a 1-correspondence problem, with |⌦| · 100%/(n · m) = 80%, ⌘ = 0.1,
n = m = 100, r = 5,mA = 60, andm1 = 40. The mean with minimum and maximum are calculated from 10 different
random initializations.

K.3 NUMBERS OF SINKHORN ITERATION

Typically, the numbers of Sinkhorn iteration required to retrieve an "-good solution mainly depends on the entropy coefficient
✏. This also implies that the decaying entropy regularization strategy can also accelerate the convergence process. Figure 3
shows the relationship between the numbers of Sinkhorn iteration and entropy coefficient ✏ under the same simulated data
setting with Figure 2. The dash lines and intervals reflect mean, min, maximum aggregated from 20 independent trials. For a
practical implementation, we restrict the maximum numbers of Sinkhorn iteration to 10000 on the numerical experiments.

K.4 PROBLEM FORMULATION FOR THE FACE RECOVERY PROBLEM

We show that M3O is flexible and can also be used to recover matrix that is not in the form [A,PB]. We can see this from
the problem formulation in (12), where the cost matrix C(·) can be constructed in other ways as long as it is a function of



Figure 3: The required numbers of Sinkhorn iteration v.s. entropy coefficient ✏

a permutation. Typically, M3O can be used to solve a challenging face image recovery problem. The original face image
with size 180⇥ 180 in Figure 4(a) comes from the Extend Yale B database [Georghiades et al., 2001]. The corrupted image
is visualized in Figure 4(b), where the pixel blocks with size 30⇥ 30 in the upper left are shuffled randomly, and 30% of
the total pixels are removed. This experiment setting is similar to that in [Yao et al., 2021] but the algorithm in [Yao et al.,
2021] can not be applied since it can not work with the missing values. The MUS algorithm is also not applicable since
this problem can not be written in the form of linear regression problem. From Figure 4(c) and 4(d) we can find that M3O
performs better than the Baseline, and can even recover the original orders of pixel blocks.

In the face recovery experiment, the cost matrix C is constructed as

C(i, j) = kP⌦(B(i)� cM(j))k2
F
,

where B(1), ..., B(13) 2 R30⇥30 are the shuffled pixel blocks from the upper left of the corrupted image shown in Figure
4(b), and cM(1), ..., cM(13) 2 R30⇥30 are the corresponding recovered pixel blocks from the upper left of the current
recovered image.

We choose fixed stepsize ⇢k = 0.1, and choose the initial entropy coefficient as ✏ = 100. To obtain the initial matrix cM , we
first complete each pixel blocks independently using the Soft-Impute algorithm. We denote the filled matrix as M1, and
carry out the singular decomposition of it as M1 =

P
i
�iuiv>i . Then we set the initial matrix as cM = �1u1v>1 .

More results similar to Figure 4 are shown in Figure 4.
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