
Inverse Response Time Ratio Scheduler: Optimizing
Throughput and Response Time for Serverless

Computing
Mina Morcos

Computer Science
Boston University
minawm@bu.edu

Ibrahim Matta
Computer Science
Boston University

matta@bu.edu

Abstract—We explore the problem of scheduling in a dis-
tributed multi-cloud serverless scenario, in the case where re-
quests to function instances contend over the same resources.
For this case, we present an efficient scheduling algorithm that
leverages function profiling to detect resource contention, and
improves the response time of requests, as well as the overall
completion time of all requests. We compare our work to other
schedulers such as a simple random scheduler, a simple round-
robin scheduler, and schedulers that either load balance requests
for each function across clouds, choose the cloud with the best
profile, or select the cloud with the most available resources.
Besides simulations, we have created a simple experiment of our
scheduler running against two OpenWhisk serverless instances
over the FABRIC testbed. We show that our inverse response
time ratio scheduling algorithm can yield an improvement in
average response time of around 32% over the best of the other
schedulers when the execution time of a function on a given
cloud is twice as much as on another. We also show that the
improvement increases as the dispersion of the execution time
across the distributed environment increases.

Index Terms—Scheduling; Serverless; Cloud Computing; Per-
formance Analysis; Testbed Evaluation

I. INTRODUCTION

Cloud computing offers developers many types of services
to deploy their software applications. In Infrastructure-as-a-
Service (IaaS), the developer typically reserves virtual ma-
chines (VMs) in the cloud. The cloud computing platform
would be running an operating system, typically called a
hypervisor, that manages the resources. The developer asks
for an allocation of resources from the hypervisor, and gets
a virtual machine that leverages them to run. However, the
developer would then need to spend time to configure the VMs
and deploy the application.

Serverless computing abstracts part of this process away.
In serverless, the developer is asked to submit code in the
form of a function, or an interconnected set of functions. The
cloud provider manages resource provisioning and configu-
ration, which is typically done through allocating containers
or lightweight VMs. The function code can then be invoked
multiple times, sometimes with different input parameters.

The resources of a serverless cloud provider may be in-
ternally distributed across multiple locations (regions). When

invoking a function, the provider would need to decide which
location to pick in order to run the request. Moreover, requests
to a certain function type may perform better in one location
over another location. This may be caused by multiple fac-
tors, such as sharing a networking path with other function
requests, or needing a graphics processing unit (GPU) for
faster graphical processing, or needing a non-volatile memory
express (NVMe) for faster disk I/O (Input/Output) operations.

We have explored state-of-the-art scheduling policies for
distributing serverless requests over a distributed multi-
location (or multi-cloud or multi-region) system. Some of
these policies include fair sharing, in which the load is dis-
tributed equally across all locations; most available resources
policy, which targets the location with the most free resources;
and best profile policy, which picks the location with the
function’s best performance.

In this work, we present a scheduling policy that outper-
forms the aforementioned scheduling policies, as well as some
other scheduling policies we explored. We have verified the
results theoretically and experimentally. Our policy leverages
performance profiling to determine how instances of functions
perform across the various locations. It favors locations where
the function performs well, and discourages locations where
the function performs poorly by a certain ratio that optimizes
the throughput of the overall system. Our results show that
our inverse response time ratio scheduler outperforms other
schedulers when requests to the same function contend over
the same resources while requests to different function types
are isolated from each other. For example, requests of one
function type may contend over a specific network link to
access a certain server, or over a specific group of files on
disk, or over the GPU, etc.

Code for work presented in this paper is available online on
Github [1].

The paper is organized as follows: Section II reviews related
work. Section III motivates our proposed scheduler, which is
illustrated in Section III-G. Section IV presents an analysis
of how our scheduler optimizes system throughput, and Sec-
tion V describes the operation of our scheduling algorithm.
We present results from simulation in Section VI-A and from



experiments on the FABRIC testbed in Section VI-B. We
conclude with future work in Section VII.

II. RELATED WORK

In this section, we describe work on scheduling algorithms
for serverless functions, especially in distributed scenarios. We
also present other schedulers studied in non-serverless settings
and adapt their techniques to our serverless setting.

Recently, Zhang et al. [2] (2021), Rausch et al. [3] (2021),
Baresi et al. [4] (2022), Baarzi et al. [5] (2021), and Gadepalli
et al. [6] (2019) proposed optimizing system throughput by
directing incoming requests to the location where the function
has experienced the least execution time or response time.1

We show that this greedy best-location approach may seem
intuitive, but it can experience contention and oscillation
issues.

Moreover, fairly recently, Kaffes et al. [7] (2019) and Stein
[8] (2018) take the opposite approach to the previous approach.
They work on fair sharing or load balancing, which means
distributing the load over available locations equally. They aim
to maximize throughput, as well as minimize queuing delay.

Mampage et al. [9] (2021) present a policy that schedules
requests to functions to the location that has the most amount
of free resources. This approach does not predict where
a function performs best, and can perform worse than the
aforementioned best-location scheduling policies. On the other
hand, our proposed scheduler identifies (predicts) the best
location by directly measuring function’s response time.

Sun et al. (HPSO) [10] (2014), Soltani et al. [11] (2018),
and Zhao et al. [12] (2021) all measure average function’s
response time, and aim to optimize performance through
predictive scheduling policies, migration and detecting func-
tion interference. Their prediction policy (HPSO) basically
predictively schedules requests to the location where free
resources will become available, similar to Mampage et al.
[9]. It does not predict where the function will perform best.
Also, their approach is computationally expensive. We have
experimentally adapted their work in our simulations, and our
results show that our approach outperforms HPSO. And as for
migration, the process is not trivial, since the function needs
to be halted, moved over the network, and resumed, all while
making sure its state and functionality remain intact. This is
also time consuming.

Liang et al. [13] (2020) and Delimitrou et al. [14] (2013)
attempt to optimize the response time by tracking parameters
such as average response time, available resources, hardware
configuration, and function profiles. Liang et al. use two
deep convolutional neural networks (Advantage Actor Critic),
and Delimitrou et al. employ performance profiling. Both
studies optimize performance through individual nodes in
the distributed environment, as opposed to working on the
aggregate distributed environment.

1Response (service) time of a function request consists of its time waiting
to start its execution (queuing time) plus the execution time (run time) of the
request.

Edgenet [15] (2021), Delay Scheduling [16] (2010), and
Quincy [17] (2009) aim at optimizing aspects of the system
such as response time, throughput, round-trip time, and fair-
ness through improving data locality. They move function
requests closer to the data needed. This is achieved via
methods such as IP geolocation via labeling, or imposing
delay until good data locality is achieved. IP geolocation
requires parsing the function code, labels, and an accurate IP-
to-location database. Imposing delay would in some cases in-
troduce improved data locality, and therefore performs similar
to aforementioned policies that schedule requests to the best
location.

Soltani et al. [18] (2018) and Quenum et al. [19] (2021) sim-
ply mention the use of one broker serving multiple serverless
cloud providers, without providing a scheduler for the system,
which we provide in this paper.

De Palma et al. [20] (2022) and Samea et al. [21] (2019)
present languages for defining scheduling policies, with simple
schedulers such as random, which we trivially test against.

Table I classifies and compares our response time scheduler
to related work along several dimensions.

Input
Parameters

Distributed
Environment

Scheduling
Policies

Objective
Function(s)

Is Work
Conserving

Our
Approach

Average Response
Time ✓

Leveling Profiled
Average Function
Response Times

System
Throughput ✓

[2], [3],
[4]

Average Response
Time [2]

Locality &
Hardware [3] & [4]

✓ Best Location System
Throughput ✗

[5], [6] SLO Violations ✓ Least
SLO Violations

Latency
(Run Time) &

Predictability [6]
✗

[7], [8]
Resources [7]

Arrival Rate &
Average Response

Time [8]
✓ Load Balancing

Throughput [7]
Queuing
Delay [8]

✗

[9] Amount of
Free Resources ✓

Location With
Most Amount

of Free
Resources

Deadline
(Run Time)
& Resource

Consumption
Cost

✓

[10], [11],
[12]

Average Response
Time ✓

Prediction [10]
Migration [11]

Interference [12]
Run Time

( [10] ✓)
( [11],
[12] ✗)

[13], [14]

Average Response
Time &

Resources [13]
Hardware

Configuration
& Function
Profiles [14]

✗
CNN [13]
Profiling

Based [14]
Run Time ( [13] ?)

( [14] ✗)

[15], [16],
[17] Data Locality ✓

IP Geolocation
& Labels [15]
Waiting [15]

Graph Solving [17]

Throughput
& RTT [15]

Run time [16]
Fairness [17]

✗

TABLE I
CLASSIFICATION OF RELATED WORK.

III. BACKGROUND AND MOTIVATION

We present a scheduling algorithm for distributed server-
less computing scenarios. We leverage dispersion of function
performance across locations, as well as resource contention
among requests of instances of the same function. Figure 1
compares our inverse response time ratio scheduler with two
other scheduling policies, which can be thought of as two ends
of a spectrum.

On one end of the spectrum, one can distribute the load in
a fair manner across the available nodes. On the other end of
the spectrum, one could send the load to the fastest node(s).
We elaborate that the work we present outperforms both ends
of the spectrum.

2



Fig. 1. This example compares our inverse response time ratio scheduler
with two other scheduling policies, which can be thought of as two ends of
a spectrum. We show how our approach optimizes throughput by scheduling
requests with ratios that represent the inverse of the average response (service)
time at each location. When profiling, we can keep the measurements of
only recent function requests. In this example, we highlight the last four
function requests. We assume that the vertical bar in ‘orange’ next to each
location represents the bottleneck resource, and it allows only four function
instances (requests) to run concurrently at the location. Assume the bottleneck
resource is memory. Also, typically, different functions would be isolated from
each other – they might each run in a separate container. We thus assume
that requests of different function types compete on separate bottleneck
resources, without contending with each other. We measure the average service
(response) time by recording the difference between the start and end times
of function requests.

We examine two performance metrics: (1) Average response
(service) time of each function type, which is defined as the
average time elapsed to serve the requests of that function type,
from the time they enter the scheduler until they are served
and depart the system; (2) Completion time of the experiment,
which is calculated as the time when the experiment finishes
(i.e., all requests are served) minus the time the experiment
started.

As an example, consider two locations, loc1 and loc2.
Assume we have one type of function f1. This function f1,
when run on loc1, takes 1 second to finish. But when run on
loc2, it takes 2 seconds to finish. Also, assume each of the
two locations can only run one instance (request) at a time.
Let’s say there are six f1 function invocation requests in the
queue.

A. Random

A naı̈ve random scheduler would just pick any location at
random for each request.

B. Round Robin

A naı̈ve round-robin scheduler would distribute the requests
equally over the two locations. Thus, since there is contention
of resources by f1 requests, loc1 would finish after 3 seconds
as each one of the three requests at loc1 takes 1 second. But
loc2 would finish serving its three requests after 6 seconds,
since each f1 request takes 2 seconds at loc2. Thus, the
completion time would be 6 seconds.

To calculate the average response time, for each function
instance, we need the arrival time, and the finish time. For
the arrival times, all requests arrive at time zero in this simple
example. For the completion times, at location 1, they finish
after 1 second, 2 seconds, and 3 seconds, and at location 2,
they terminate after 2 seconds, 4 seconds, and 6 seconds. So,
the average response time would be ((1− 0)+ (2− 0)+ (3−
0) + (2− 0) + (4− 0) + (6− 0))/6, which is 3 seconds.

C. Load Balance Each Function

Load balancing would do the same and place an equal
number of function invocation requests at each location. This
is the same behavior as that of round robin, so we get the
same completion time (6 seconds) and average response time
(3 seconds).

D. HPSO Adapted Scheduler [10] (2014)

This is a scheduler adapted from the High Performance
Scheduling Optimizer (HPSO) scheduler. We have put em-
phasis on the predictive part of the scheduler. The adapted
scheduler, for the most part, predicts the earliest time where
there will be free resources for the function instance to be
placed at each location, and places the instance at the location
where there would be free resources at the earliest time.
The method should be quite challenging to implement in
comparison to the rest. For this simple case, HPSO, based on a
brief tracing analysis, is not deterministic due to different ways
to breaking ties, and it can place an equal amount of requests
at each location in the worst case, so we get the same result,
i.e. completion time of 6 seconds, and average response time
of 3 seconds. Our method mostly relies on collecting profiles
of function service times, as well as collecting the count
of function requests running at each location, which should
be easier to obtain. Our method should be more efficient.
Moreover, HPSO considers the available resources of the
system, and not the function profiles.

E. Best Profile

A greedy profiling only scheduler would schedule all the
functions on loc1, and leave loc2 not utilized, since the
execution time is lower on loc1. The completion time would
be 6 seconds, given each one of the six requests takes
1 second on loc1. The average response time would be
((1− 0) + (2− 0) + (3− 0) + (4− 0) + (5− 0) + (6− 0))/6
= 3.5 seconds.

3



F. Most Free Resources

This scheduler, also referred to as Least Busy Resources
First (LBRF), would behave the same way as Round Robin. It
would work on balancing the load. All requests of f1 require
the same amount of resources. So, we get a completion time
of 6 seconds, and an average response time of 3 seconds. This
scheduler does not use request-specific metrics to potentially
improve performance.

G. Our Inverse Response Time Ratio Algorithm

Our inverse response time ratio algorithm uses the profile of
the function that it has collected. It optimizes the completion
time, and the average response time of the overall system.
We assume that the scheduler has collected a profile of the
function, which contains metrics such as the average response
time of the function at each location, both recent and non-
recent. Consider the following example. Assume the average
response time of function f1 on loc1 is half that on loc2. For
example, a request for f1 on loc1 takes 1 second, and on loc2
it takes 2 seconds. Our inverse response time ratio scheduler
would then schedule the requests according to the inverse ratio
of the profiles. Thus, since the ratio is 1:2 on loc1:loc2, it
would schedule the function requests with a ratio of 2:1 on
loc1:loc2. Assuming six requests, that would be 4 requests on
loc1 and 2 requests on loc2. Four functions on loc1 take 4
seconds to complete, whilst two functions on loc2 also take 4
seconds to complete. Location 1 finishes after 1 + 1 + 1 + 1
= 4 seconds, and location 2 finishes after 2 + 2 = 4 seconds.
Thus, the completion time would be 4 seconds. For the average
response time, it would be ((1− 0)+ (2− 0)+ (3− 0)+ (4−
0)+(2−0)+(4−0))/6 ≈ 2.67 seconds. Thus, we can see that
our inverse response time ratio scheduler algorithm optimizes
the completion time, the throughput, and the average response
time of the overall system.

IV. ANALYTICAL MODEL

Optimally, completion times of all locations of the dis-
tributed system would be equal. Therefore, we start by equat-
ing completion times, since that would mean that no location
finishes later than the rest.

Denote by Ci the completion time of all requests at location
i, n the total number of requests in the queue, Ri the average
response time at location i, and αi the ratio of requests directed
to location i.

We want:
C1 = C2 = C3 = · · ·

α1 × n×R1 = α2 × n×R2 = α3 × n×R3 = · · ·

α1 ×R1 = α2 ×R2 = α3 ×R3 = · · ·

Solving for the values of αi, the values of 1/Ri satisfy the
above equality, i.e., all terms will equate to 1.

1
R1

×R1 = 1
R2

×R2 = 1
R3

×R3 = · · ·

Thus, our scheduler would direct requests according to the
ratios of the inverse average response times at the different
locations:

1
R1

: 1
R2

: 1
R3

: · · ·

V. OUR INVERSE RESPONSE TIME RATIO SCHEDULER

Algorithm 1: Inverse Response Time Ratio Algorithm

1 new functions = get new functions to schedule()
2 function index = 0
3 while function index < len(new functions) do
4 function = new functions[function index]
5 current counts = {}
6 current total = 0
7 algorithm ratios = {}
8 algorithm total = 0
9 for location in locations do

10 current counts[location] =
get count functions at location(location,
function.type)

11 algorithm ratios[location] = 1 /
get run time at location(location,
function.type)

12 current total += current counts[location]
13 algorithm total += algorithm ratios[location]

14 differences = []
15 for location in locations do
16 difference = current counts[location]−

(algorithm ratios[location]
algorithm total × current total)

17 differences.append({“location”:location,
“difference”:difference})

18 differences.sort ascending(key=“difference”)
19 schedule on location(differences[0][“location”]

/* If location is not available,
schedule on the first available
location in the order of the
differences array */

20 function index += 1

Algorithm 1 gives a pseudocode snippet of our Inverse
Response Time Ratio Scheduler.

The algorithm runs when there is a function invocation
request waiting to be scheduled. The algorithm processes
requests on a first-come-first-serve basis. It works by placing
the request at a location so as to improve the throughput, as
well as the completion time, of the overall system.

The algorithm relies on function profiles, i.e., for each
function type, it builds up some ideal ratio to schedule requests
to run on function instances at different locations. For example,
if there are two locations loc1 and loc2, and the determined
ideal ratio is 1:2, and there are 300 function requests in the
queue, 100 requests are scheduled to loc1, and 200 requests
are scheduled to loc2.

The algorithm keeps two dictionaries. The first dictionary
(algorithm_ratios[] in Algorithm 1) contains the algo-
rithm ratios for each function type. These are desired ratios
that the scheduler always aims to achieve when distributing

4



requests over the different locations. As described earlier, these
algorithm ratios are the inverses of average response times
at the different locations. Denote the desired ratio as αi for
location i. The second dictionary (current_counts[] in
Algorithm 1) keeps track of the number of function requests
that are currently running for each function type, denoted as
ni, for location i.

Then, for each function type, for each location, we append
to an array a tuple consisting of the location identifier and a
value (lines 15-17 in Algorithm 1). That value is given by:

ni − αi × n

where n =
∑

ni over all locations. The array is then sorted in
ascending order, and then the function is scheduled on the first
available corresponding location where there are free resources
to schedule the request (lines 18-19 in Algorithm 1). That way,
our algorithm attempts to increase the actual load ni to reach
the desired load αi × n at location i whose actual load is
further behind its desired load value.

VI. RESULTS

A. Simulation

Fig. 2. Simulation model.

We have utilized our own simulation model, which is shown
in Figure 2.2 The simulation environment takes a scheduling
algorithm, in the form of a Python function, as an input
parameter. Scheduling algorithms would then be run separately
and compared. The simulation environment also takes as input
a numeric parameter that specifies the rate at which the
function invocations / requests in the system queue should
be dequeued and processed, which can also be thought of as
a metric similar to the arrival rate of the function requests
to the environment. The simulation environment also takes
as input some configurations specifying information about the
function types, the number of locations / clouds, and how each
function performs at each location, which includes for example
its execution time. In this work, we refer to the function
response time to be the function execution time plus queuing
time. The function response time is calculated as follows. First,

2Code and associated scripts for our simulations and FABRIC experiments
will be publicly released upon paper acceptance.

Fig. 3. Varying execution time.

the time when the function is sent to the location is recorded
as timestamp A. Then, we compute timestamp B when the
function sends back the response. Finally, we calculate the
response time by subtracting timestamp A from timestamp B.

Now, we discuss the main result. We vary the statistical
dispersion of the values of execution time for the functions,
which is a measure of how scattered the values are. We use the
“mean absolute deviation” to measure the statistical dispersion.
It is defined as the average distance between “each value
in the data set” and “the data set mean”. The simulation
results in Figure 3 show that as the dispersion increases,
the improvement in our scheduler’s function average response
time and overall simulation completion time over the other
schedulers increases – we observe improvement of up to 60%
over a random scheduler, an HPSO-based scheduler, a most-
free-resources (LBRF) scheduler, and a best profiling-based
scheduler.

We have also varied the following parameters in Figures 4,
5, 6, 7 and 8:

• statistical dispersion of resources needed by each func-
tion type;

• synthetic noise added to the execution times of the
function instances being serviced;

• function types count for a given set of parameter values;
• ratio of the count of function instances to run, arranged

by instance type; and
• location count for a given set of parameter values, once

with fixed total resources, and once with additional re-
sources for each location addition.

The results in the figures show that the improvement in
completion time and average response time is not correlated
with the dispersion of resources across clouds (Figure 4), the
number of function types (Figure 6), nor the number of cloud
provider locations (Figure 8).

5



Fig. 4. Varying resources.

Fig. 5. Increasing noise.

For the noise (Figure 5), more noise decreases our im-
provement, but our inverse response time ratio scheduler still
outperforms other schedulers. This is because adding noise
gradually takes away the advantage of any profiling our
algorithm captures and uses in function placement (request
routing). The system would gradually become more random,
and therefore, any scheduling technique would gradually no
longer yield any advantage.

Moreover, only via empirical results, we get the best per-
formance when the types of function instances in the queue
are balanced – Figure 7 shows that our scheduler yields
improvement of around 28% in average response time and

Fig. 6. Varying function types count.

Fig. 7. Varying ratio of the count of running function instances, arranged by
instance type.

40% in completion time when the load across function types
is balanced.

B. FABRIC [22] Experiment

We used the setup shown in Figure 9, with details described
in the caption. To emulate the serverless providers, we used the
OpenWhisk open-source serverless cloud provider software
[23]. The scheduler runs in Python. We have also used flask
[24], the web application framework, to translate http requests
to OpenWhisk invocations. We used SQlite [25] for hosting
the database servers, and, for the database query, we issue a
simple select * query.

We use the throttling of the network connections to set the
connection speeds. We can set the bit rate of the horizontal
links to be approximately double the speed of the cross links.

6

https://openwhisk.apache.org/


Fig. 8. Varying locations count with fixed total resources.

Fig. 9. Topology of the experiment on the FABRIC testbed. We have reserved
5 nodes with network cards connected to each other as shown. The role of
each component is shown. The blue component is the scheduler, connected
to two nodes simulating a distributed multi-location / multi-cloud / multi-
region system. The two locations are connected to two nodes running as
database nodes. The line width represents the bandwidth of the network
connections between the cloud provider locations and the database locations.
Functions F1 and F2 need to make database queries to database 1 and database
2, respectively, over those network links. The execution time is in theory
calculated as (the amount of data to be transferred) divided by (the connection
speed) plus additional processing time and other delays.

We set the bit rate of the links to 1Mbits and 512Kbits, re-
spectively. Then, we emulate triple the speed for the horizontal
links, and so on. We used tc to set the bit rate of the links
– tc is a Linux tool to show and change network traffic
settings [26]. Thus, we can vary the dispersion of function
execution time, which is the main parameter of our study.
Function execution time is calculated as the amount of data
to be transferred, divided by the bit rate. The amount of data
to be transferred is the same in all functions. There are other
factors that might add to the execution time of the functions,
such as function start time, processing time and disk I/O. Apart
from function start time, the other factors should not be very
significant in our case.

We evaluate our inverse response time ratio scheduling
(IRTRS) algorithm on the emulation setup described above.
Figure 10 shows that, for two functions, where the execu-
tion time of one is twice the other, we get around 32%
improvement in average response time over the best of the

Fig. 10. Experimental results on FABRIC.

other schedulers. We also show that the improvement increases
as the dispersion increases. For around x3 dispersion, the
improvement is around 65%, and for around x4 dispersion,
the improvement is around 70%.

VII. CONCLUSION

We have presented an efficient scheduling algorithm for
distributed serverless scenarios, for the case where there
is contention over resources among function requests. Our
scheduling algorithm improves the overall response times of
function invocation requests, as well as the completion time of
the queue of requests being served. We implemented our algo-
rithm over a python simulation and over a testbed emulation.
We compared our algorithm with multiple other algorithms
and we highlighted how our algorithm would outperform
them. One of our key findings is that the improvement of our
algorithm over the rest increases as the dispersion of function
performance across locations increases.

There are several extensions that we plan to investigate in
the future. We will study how instances of different function
types interact at a location. Some different function types
might be competing on the same resource, and that therefore
would affect the completion time and average service time.
We will also investigate larger applications, each with an
interconnected set of serverless functions.

ACKNOWLEDGMENT

This work has been supported by National Science Foun-
dation Award CNS-1908677.

REFERENCES

[1] “Inverse Response Time Ratio Scheduler Github Repository.” [Online].
Available: https://github.com/842Mono/Inverse Response Time Ratio
Scheduler

[2] M. Zhang, C. Krintz, and R. Wolski, “Edge-adaptable serverless accel-
eration for machine learning internet of things applications,” Software:
Practice and Experience, vol. 51, no. 9, pp. 1852–1867, 2021.

[3] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container schedul-
ing for data-intensive serverless edge computing,” Future Generation
Computer Systems, vol. 114, pp. 259–271, 2021.

7

https://github.com/842Mono/Inverse_Response_Time_Ratio_Scheduler
https://github.com/842Mono/Inverse_Response_Time_Ratio_Scheduler


[4] L. Baresi, D. Y. X. Hu, G. Quattrocchi, and L. Terracciano, “Neptune:
Network-and gpu-aware management of serverless functions at the
edge,” arXiv preprint arXiv:2205.04320, 2022.

[5] A. F. Baarzi, G. Kesidis, C. Joe-Wong, and M. Shahrad, On Merits and
Viability of Multi-Cloud Serverless. New York, NY, USA: Association
for Computing Machinery, 2021, p. 600–608. [Online]. Available:
https://doi.org/10.1145/3472883.3487002

[6] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer,
“Challenges and opportunities for efficient serverless computing at the
edge,” in 2019 38th Symposium on Reliable Distributed Systems (SRDS),
2019, pp. 261–2615.

[7] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized core-
granular scheduling for serverless functions,” in Proceedings of the ACM
symposium on cloud computing, 2019, pp. 158–164.

[8] M. Stein, “The serverless scheduling problem and noah,” arXiv preprint
arXiv:1809.06100, 2018.

[9] A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware dynamic
resource management in serverless computing environments,” in 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2021, pp. 483–492.

[10] M. Sun, H. Zhuang, X. Zhou, K. Lu, and C. Li, “Hpso: Prefetching
based scheduling to improve data locality for mapreduce clusters,” in
Algorithms and Architectures for Parallel Processing, X.-h. Sun, W. Qu,
I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min, T. Yang, Y. Wu, and
L. Liu, Eds. Cham: Springer International Publishing, 2014, pp. 82–95.

[11] B. Soltani, A. Ghenai, and N. Zeghib, “A migration-based approach
to execute long-duration multi-cloud serverless functions.” in ICAASE,
2018, pp. 42–50.

[12] L. Zhao, Y. Yang, Y. Li, X. Zhou, and K. Li, “Understanding, predicting
and scheduling serverless workloads under partial interference,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–15.

[13] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” 2020.

[14] C. Delimitrou and C. Kozyrakis, “Qos-aware scheduling in
heterogeneous datacenters with paragon,” ACM Trans. Comput.
Syst., vol. 31, no. 4, dec 2013. [Online]. Available:
https://doi.org/10.1145/2556583

[15] “Edgenet: A multi-tenant and multi-provider edge cloud,” in EdgeSys
2021 - Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, Part of EuroSys 2021. Association for
Computing Machinery, Inc, Apr. 2021, pp. 49–54.

[16] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
265–278. [Online]. Available: https://doi.org/10.1145/1755913.1755940

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, ser. SOSP ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 261–276. [Online].
Available: https://doi.org/10.1145/1629575.1629601

[18] B. Soltani, A. Ghenai, and N. Zeghib, “Towards distributed containerized
serverless architecture in multi cloud environment,” Procedia computer
science, vol. 134, pp. 121–128, 2018.

[19] J. G. Quenum and J. Josua, “Multi-cloud serverless function composi-
tion,” in Proceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing, 2021, pp. 1–10.

[20] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, and G. Zavat-
taro, “Topology-aware serverless function-execution scheduling,” arXiv
preprint arXiv:2205.10176, 2022.

[21] F. Samea, F. Azam, M. W. Anwar, M. Khan, and M. Rashid, “A uml
profile for multi-cloud service configuration (umlpmsc) in event-driven
serverless applications,” in Proceedings of the 2019 8th International
Conference on Software and Computer Applications, 2019, pp. 431–
435.

[22] “Fabric testbed: Adaptive programmable research infrastructure for
computer science and science applications.” [Online]. Available:
https://fabric-testbed.net/

[23] “Open whisk: Serverless cloud provider open source software.”
[Online]. Available: https://openwhisk.apache.org/

[24] “Flask: The web application framework.” [Online]. Available: https:
//flask.palletsprojects.com/

[25] “SQLite: The SQL database engine library.” [Online]. Available:
https://www.sqlite.org/index.html

[26] “TC: The Linux tool to show and change network traffic
settings.” [Online]. Available: https://manpages.ubuntu.com/manpages/
xenial/man8/tc.8.html

8

https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/2556583
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1629575.1629601
https://fabric-testbed.net/
https://openwhisk.apache.org/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://www.sqlite.org/index.html
https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html

	Introduction
	Related Work
	Background and Motivation
	Random
	Round Robin
	Load Balance Each Function
	HPSO Adapted Scheduler 10.1007/978-3-319-11194-07 (2014)
	Best Profile
	Most Free Resources
	Our Inverse Response Time Ratio Algorithm

	Analytical Model
	Our Inverse Response Time Ratio Scheduler
	Results
	Simulation
	FABRIC fabric Experiment

	Conclusion
	References

