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ABSTRACT

Timely and accurate stress detection is crucial for effective healthcare monitoring and interven-
tion. Existing methods for stress detection often rely on invasive or subjective measures, limiting
their use. Here, we propose StressVision; a non-invasive and automated transformer-based deep
learning approach that uses thermal video analysis to capture and analyze facial thermal patterns,
and enables objective and continuous stress detection. We validate our approach by applying
StressVision to two datasets comprised of healthy human adult participants who were exposed to
an acute stressor (ice-cold water) while thermal video of their faces and electrocardiography were
recorded. One of these datasets was collected specifically for the purpose of this work (n=36)
and the other dataset was acquired from a previous study (n=42). With StressVision we were able
to achieve state-of-the-art stress detection performance, such that stress state could be classified
(i.e., stress, no-stress) with accuracy = 0.8748. We make the StressVision source code available
on GitHub along with our new dataset, which will serve as a valuable resource for stress-detection
research and allow for bench-marking against other methods.

INTRODUCTION

Physical stress in humans is a common occurrence and a precursor of many health conditions
— thus, it is imperative we develop methods for monitoring it easily. However, most methods for
stress detection require monitoring physiological signals which requires medical expertise to use
and are intrusive such as collecting electrocardiography (ECG) or impedance cardiography (ICG)
signals. This is the primary motivation for developing an easy, non-intrusive approach to stress
detection especially during/after the COVID pandemic where the need for such health monitoring
system has become imperative. Recent work in remote photoplethysmography (rPPG) [3 1], which
concerns itself with non-intrusive measurement of physiological signals, makes us of computer
vision techniques to monitor one’s health [8, 33, 26, 2]. rPPG shows that it is possible to estimate
physiological signals and state of physiological stress from video, particularly that of the face.
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However, the majority of prior research in remote photoplethysmography (rPPG) has predomi-
nantly focused on analyzing RGB facial videos. RGB videos have many limitations such as most of
the subtle information is present in the green channel, which is heavily influenced by surrounding
noise. Additionally, privacy concerns arise as RGB videos capture the true likeness of individuals.
Hence, exploring alternative video modalities is necessary for improved performance and privacy
preservation. Thermal video presents several compelling benefits over RGB video analysis. No-
tably, it exhibits greater robustness to environmental variations, including changes in illumination
intensities, light directions, and multiple light sources [34]. Additionally, thermal video affords
enhanced privacy protection, as it does not reveal the true likeness of the face [13]. In this paper,
we investigate a deep learning-based computer vision approach tailored specifically for thermal
facial video processing.

StressVision builds upon the foundation of StressNet, developed by the UCSB Vision Re-
search Lab [21]. StressNet leveraged thermal video processing to predict stress levels and ad-
ditionally estimated the initial systolic time interval (ISTI) as a physiological signal to enhance
stress prediction accuracy. In light of the simplification of StressNet, we strive to move away from
explicitly estimating physiological signals and make a direct prediction of stress. We propose a
novel transformer-based neural network architecture that directly estimates the physiological state
of stress. By leveraging the power of transformer models, we aim to capture the intricate spatio-
temporal correlations present in thermal video data, enabling more accurate and reliable stress
detection without relying on the estimation of specific physiological signals. Furthermore, to im-
prove the effectiveness of our model, we have meticulously curated a novel dataset comprising
thermal video recordings of subjects experiencing various levels of stress induced, alongside their
corresponding ECG signals. This comprehensive dataset, which is made publicly available, pro-
vides a valuable resource for researchers and facilitates benchmarking against other stress detection
methods.

A. Technical Contributions

* We propose a novel transformer-based spatio-temporal network that effectively processes
thermal videos of human faces to capture both the spatial and temporal dynamics inherent in
thermal video data, allowing for accurate stress classification.

* Our temporal network design plays a crucial role in balancing computational efficiency and
decision accuracy. Our network does this by making stress classification decisions based on
a single token instead of processing the entire vector.

* We collected a novel dataset of thermal videos of participants under stress and no-stress
conditions, along with their ECG signals.

* We achieve state of the art performance on both the previous dataset [4] that we used to
develop StressNet and the new dataset we collected for this paper.



B. Related Works:

Heart rate variability has been explored as a way for binary classification of stress [33, &, 15,
]. Earlier works on heart rate estimation depended exclusively on traditional signal processing
techniques. The approach documented in Li et al. [23] located a particular region of interest (ROI),
took the mean of the green channel from RGB video, and applied a band-pass filter resulting in an
estimation of the individual’s heart-beat. At the time of its publication in 2014, it accomplished the
impressive feat of attaining a mean-squared error of 7.62 bpm on the MAHNOB-HCI dataset [23].
However, ROI tracking is necessary for this approach to work, thus results are highly susceptible
to head movement.

Later approaches employed the use of RGB sensors to estimate heart-rate variability [26, 2,27,

]. The first end-to-end neural network model trained to perform rPPG was DeepPhys [&]. Using
a deep convolutional neural network (CNN), it can estimate heart and breathing rates. It also uses
a skin reflection model and a deep learning attention mechanism to learn motion representation of
a person’s head. A more recent model that builds upon the works of DeepPhys is PhysNet [33].
This model used a long short term memory (LSTM) network to distinguish temporal relations.
For pulse detection, the new network made mild improvements over its predecessor. However, the
introduction of LSTM allowed for the model to be trained to detect atrial fibrillation.

ISTI is another signal proposed as a reliable way to quantify both physical and psychological
stress [17, 29, 12, 14, 3]. It requires the measurement of the ECG and impedance cardiography
(ICG) signals to compute. StressNet, the foundation for this work, was the first approach to esti-
mate ISTI from thermal video of humans [21]. It uses deep neural network estimate the ISTI and
makes a binary classification based off the estimated signal[21]. It propagated a weighted sum of
the loss from the estimated ISTT and the loss from the prediction to train the model. Like PhysNet,
it utilized a CNN-LSTM configuration for feature extraction.

Transformer networks over the past couple of years have sought to replace LSTM when it
comes to finding sequential dependencies in the field of computer vision. Through self-attention,
they’re better at capturing long-term dependencies and enable parallelization which improves the
efficiency of training [30]. Several works have adapted this network for the purpose of spatial
feature extraction when performing image segmentation tasks for various cross-domain applica-
tions [I1, 19,5, 16, 20]. These networks have also been implemented for feature extraction in
the time domain [32, 25]. The input to these models is electrical brain activity recorded at indi-
vidual’s scalps via electroencephalography (EEG). In Yan et al. [32], they used signal processing
techniques to extract local features of the EEG signal while Liu et al. [25] used a CNN to do so.
The commonality between the two works is the use of transformer networks to capture long-term
dependencies in the signal, resulting in high accuracy for epileptic seizure predictions.

APPROACH

Our approach uses an emission representation model to pre-process raw thermal videos and
generate a more refined version of our data to input into our spatio-temporal network [21]. The
final prediction yielded by our model is a binary classification (stress, no-stress) based on raw input
thermal videos. Figure 1 depicts the proposed model architecture.

The interest in shifting away from explicitly estimating physiological signals like ISTI led to
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Figure 1: Model architecture overview. The Preprocessing module applies the emission represen-
tation model, yielding the sequence fed into the spatial and temporal modules. The Spatial module
vields feature vectors of length 256, with 45 of such vectors in this diagram (one for each frame in
the video). These are subsequently processed by the Temporal module. The Classifier draws upon
the output of the Temporal module, enabling for a final stress classification.

the development of a new architecture for our spatio-temporal network. To this end, we developed
an architecture inspired by both the Detection Transformer (DETR) [5] and the Vision Transformer
[9, 10] for video classification.

C. Data Preprocessing

Our initial preprocessing step is inspired by StressNet which involved modeling the reflection
of light in skin and blood vessels with Shafer’s dichromatic reflection model [21]. The model
defines the total energy of a single pixel as the weighted sum of total heat emission from blood
movement, absorption of radiation from skin tissue and blood vessel, and absorption of radiation
from the atmosphere.

By eliminating atmospheric absorption due to experimental conditions and treating human skin
as a black-body radiator, the model is able to narrow down changes in thermal energy to head
movement and blood flow in the face. Taking the first-order derivative with respect to time, the
model filters out the time-independent components of each of the sources of thermal variability.

W'(t) :p/(t).Eo.<€b+€b.aa—j;+€s.%—f)+m/(t>.Eo.(€b.%+€s.%)
W(t) represents the energy of a single pixel of a frame. The equation takes into consideration
the thermal variation observed by both the thermal camera and skin tissue denoted by f; and f5
respectively. This observed variation is further separated into its time dependent components m(t),
which are changes in energy due to non-physiological causes such as head movement and facial
expressions, and p(t), which are changes in energy due to blood volume in skin tissue and blood
vessels. E, is the energy of a black-body radiator at constant temperature which is modulated by
€5 and ¢, to correctly scale each of the time-dependent terms by the emissivity of skin and blood
vessels respectively.
We then apply log non-linearity to suppress outliers [21]. This non-linearity is as follows

X(t) = sign(W'(t)) . log(1 + mod W'(t)). (2)

6]

It also applies a Gaussian filter with 0 = 3 in the spatial domain and 0 = 4 in the temporal
domain to remove high frequency components.
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Figure 2: Temporal and Classifier Module. A class token is prepended to the sequence of feature
vectors output by the Spatial module; then a learnable positional embedding is added. The Clas-
sifier draws upon the very first token in the transformer encoder’s output, similar to the Vision
Transformer.

X (t) is the input into our network after Gaussian smotthing. With classical signal processing
techniques, the model transforms our input data into a form that is more information-rich.

D. Spatio-Temporal Module

Intuitively, we want an architecture which would perform spatial feature extraction on the
preprocessed video frames, followed by sequence processing which would pick up on temporal
patterns and relations between the video frames, ultimately allowing us to converge upon a classi-
fication result. We found a CNN-Transformer structure (similar to that in DETR [5]) suitable for
performing this task. The CNN would help obtain a compact feature representation for each frame
in the video, and these feature vectors would then be fed into a transformer structure. The output
of this structure would then be used for the final classification (many to one).

Specifically, our model initially uses a CNN spatial backbone for feature extraction from each
preprocessed frame in the video. This spatial backbone is applied to each frame X (t) € R*HoxWo,
yielding an output activation map f € RO#*W for each frame. Values of C' = 2048, H = %,
and W = % are used. The channel dimension for each of these activation maps is reduced using
1x1 convolutions, bringing the channel count to 256. Finally, adaptive average pooling is applied
to each of these activation maps, collapsing each of them to a 256 length feature vector — this helps
us preserve information while enabling for dimensionality reduction. Each of these feature vectors
make up the sequence that is to be fed into the transformer encoder.

Our classifier module is inspired by the Vision Transformer [10, 19, 18, 22, 16]. A learnable
class token of size 256 is prepended to the sequence of aforementioned feature vectors, and a
learnable positional embedding is added to the tokens. This sequence is then fed into the trans-
former encoder. Only the class token is used because there is less information to process and it
contains nominal sequential information about all the other tokens. Using other tokens for decision
making adds an implicit bias, as they are all strongly correlated towards themselves. Because the



class token was initially “empty,” it will accumulate relevant information about all the other tokens
without adding additional biased information. This de-biasing the class token provides, while only
containing relevant time dependent information, is what makes it inherently useful for classifica-
tion [10]. A classifier head at the end of the transformer encoder draws upon the class token’s final
representation at the output, ultimately yielding a binary classification. The process of prepending
the class token and obtaining the final classification is illustrated in Figure 2.

E. Loss Function:

Since our model purely performs binary classification, we used the binary cross entropy (BCE)
loss function, which is as follows:

k
1 R N
BCE = N ;yi ~log () + (1 — ;) - log(1 — v;) (3)

EXPERIMENTS

In this section we discuss the various design choices of StressVision and experiments that were
carried out to validate those design choices. We provide details on our experimental methods and
compare the performance of StressVision with that of current state-of-the-art methods.

F. Existing Dataset

We acquired an existing dataset from the UC Santa Barbara Biomarkers of Stress States (BOSS)
[4]. This dataset includes concurrent thermal video and ECG recordings of 42 healthy human adult
participants repeatedly exposed to acute cold stress five times within a single laboratory based
testing session. The original BOSS study was designed to investigate how different types of stress
impact the human brain, physiology and behavior. Participants were considered ineligible if any
of the following criteria applied: history of heart condition or joint issues, recent surgeries that
would inhibit movement, BMI of more than 30, and currently taking blood pressure medication or
any psychostimulants or antidepressants. The procedures were approved by Western IRB and The
U.S. Army Human Research Protection Office. All processes adhered to the policies of the UC
Santa Barbara Human Subjects Committee. At the start of each session, participants were given
all details regarding the experiment and provided informed consent.

G. Current Dataset

The methodological approach for our new experiment is inspired by the BOSS protocols for
cold-exposure [4]. Since the BOSS data were collected in a controlled environment, to make the
detection more robust and adapt to a natural environment settings, we collected a new dataset. We
collected the data with multiple and varying light source and multiple people present around the
subject. In collecting our new dataset we applied a similar methodological approach to BOSS so
that the two datasets could be either merged or compared easily. The experiment was approved
by the Institutional Review Board (IRB) at UC Santa Barbara and conducted on 36 healthy adult



Figure 3: Experimental Setup. The left image shows the entire setup, the images on the right show
placement of electrodes on subject for recording ECG. The red box illustrates electrode placement
on the subject’s foot (out of view in the left picture).

volunteers who were members of the UC Santa Barbara campus community. All previous exclu-
sion criteria were applied. Additional criteria include: history of toe tip blanching, or diabetes,
diagnosed with peripheral nerve injury, Raynaud’s Disease, or hand-arm vibration syndrome, and
history of neurological conditions or neck pain. Participants were briefed about the study and pro-
vided fully informed consent prior to participation. An image of the experimental setup is shown
in Figure 3.

Each individual completed two tests within a single session. The Cold Pressor Test (CPT)
involved immersing the left hand in cold water (~ 4°C') for two minutes, and a warm water control
(Warm Pressor Test; WPT) involved immersing the left hand in warm water (~ 34°C) for two
minutes. The goal of these tests was to induce stressed and non-stressed states, respectively. Each
test consisted of a three minute session: a one minute pre-exposure baseline recording followed
by a two minute exposure to either cold or warm water. The order that the CPT and WPT were
completed in was counterbalanced between participants.

We trained and evaluated our model on a combination of thermal videos and ECG data acquired
from the BOSS dataset (59 videos in total) and our novel dataset (35 videos).

H. Evaluation Metrics

The metric for evaluating the performance of StressVision are: the probability metrics, preci-
sion, recall, and true negative rate (tnr) represented with equation 4.
t—p7 Recall = t—p, TNR = t—n, 4)
tp+ fp tp+ fn tn+ fp
where, tp is true positive, tn is true negative, fp is false positive, and fn is false negative. It is
worth noting that recall is also referred to as the true positive rate (¢pr). These quantities are then
used to calculate both the accuracy and balanced accuracy of the predictions made by the model.

Precision =



tp +in tpr +inr
tp+itn+ fp+ fn’ 2
Considering the training data’s skewed distribution, with more instances of “no stress” cases
than “stress” cases, it becomes crucial to incorporate balanced accuracy as a significant metric.

Accuracy = Balanced Accuracy =

&)

1. Implementation Details

Transformers are known to take large amounts of data to converge [24]. Training a transformer
from scratch given our limited data is difficult. We initialized our spatial backbone and temporal
transformer with the pretrained weights of DETR [5]. Our spatial module is a ResNet-50 backbone
which extracts spatial features frame by frame of the thermal video. The spatial feature extractor is
followed by average pooling layer to pool relevant features. The adopted average pooling instead
of max pooling because the signatures we are looking for are very subtle and pooling max values
only might overlook those weak features. This is followed by input projection layer to collapse the
output activation map (which was 256 x H x W in volume) into a 256 length feature vector for each
frame. We used only the encoder from transformer model inspired from Vision Transformer [ 10,

]. The encoder is initialized with pre-trained weights [5], it has 6 layers and 8 attention heads
with feature size 256 [6]. The output of average pooling layer is appended with a class token of
size 256 and fed to transformer encoder. The first encoded feature (corresponding to class token)
of length 256 from encoder is passed through a 2 fully connected layer classifier to make a binary
decision of Stress or no-stress. This classifier consists of two linear layers with 256 neurons in the
input layer and 128 in the hidden layer, along with ReLU activation functions.

For the model training process, we made usage of the Adam optimizer with a learning rate
of 107 for all parts of the model: spatial backbone, input projection layer, transformer encoder,
and classifier. Additionally, a learning rate scheduler was used. For the spatial backbone and
input projection layer, we used a learning rate multiplier of 1 for the first 10 epochs. Afterward,
we reduced the learning rate by a factor of 0.1 every epoch to enable the model to make fine
adjustments and converge more precisely. Similarly, for the transformer encoder and classifier, we
applied a learning rate multiplier of 1 for the first 20 epochs and the scaling it down by a factor of
0.1 every epoch for subsequent training.

We trained StressVision on 2 NVIDIA RTX A4000 GPUs with 16GB of VRAM. The system
was equipped with 64GB of system memory, and had a Intel(R) Core(TM) 19-10900X CPU with a
clock speed of 3.70GHz and 20 cores.

J.  Dataset Collection Details:

We recorded our dataset containing thermal videos of human faces and concurrent ECG under
stressed non-stressed (WPT) and (CPT) conditions. We also collected subjective pain ratings at
the end of each test using a visual analogue scale (VAS). The participants were 36 UCSB students
(24 male, 12 female) between the ages of 18-35 (mean age=23). Adjacent frames taken from each
of the two videos for the same subject during both the stress and no-stress conditions are shown in
Figure 4.

The thermal videos are taken with a FLIR thermal camera (Model A655sc, Flir Systems,



Wilsonville, OR, USA). Recorded thermal videos have a resolution of 640 x 420 pixels at 15
frames per second. Our experiments were performed in a natural setting with various light sources
and people walking around in the background which better simulates real world noise. The partic-
ipant’s rested their chin on a chin-rest and the camera was positioned 45 cm from the face.

ECG was recorded with a Biopac ECG device (Model MP36, Biopac, Goleta, CA, USA) at a
sampling rate of 2,000 Hz. The ECG electrodes were placed on the right wrist and each ankle of
the participant. By using an Arduino serial port, we were able to start the ECG recording and the
thermal video recording within 2 ms of each other.

Arm and leg movement during the experiment introduced low frequency noise in the ECG
recording, commonly referred to as baseline wander. To compensate for this, we filtered out the
noise using a high-pass filter. We will provide the both the unfiltered and filtered versions of each
ECG signal in the dataset.

Finally, after completing the CPT and WPT, participants completed a VAS pain rating. Par-
ticipants were handed a piece of paper with a scale numbered 0-10 labeled “No pain at all” and
“Worst pain imaginable” at 0 and 10, respectively and asked to rate their pain. These pain ratings
will also be made available for each participant along with their corresponding thermal video and
ECG data.

Our data were split using an 80-20 training to validation split. Due to GPU memory constraints,
videos are split into segments of 45 frames each (3 seconds duration with a 15 fps sampling rate),
each to be classified separately. This also had the added benefit of generating more samples from
our dataset, rendering our measured performance more reflective of potential real world perfor-
mance (had we had access to more data). Ultimately, this generated 3646 training samples and 607
test samples.

RESULTS

Performance: StressVision is evaluated along the lines of balanced classification accuracy.
After training for 52 epochs, a balanced classification accuracy of 0.8748 was obtained. StressVi-
sion outperforms StressNet [21] by a noticeable margin, which had a classification accuracy of
0.843 as shown in Table 1. These evaluations are performed on both videos from BOSS and our
novel dataset. As shown in Table 1 our implementation of DeepPhys model [£] did not perform
well in detecting stress from thermal videos. This poor performance mainly stems from main rea-
son that DeepPhys model is not suited for thermal videos. For baseline methods, ECG signal used
is extracted by simple statistical filtering methods hence very noisy. We tracked regions from nose
tip and forehead for our baseline. Additional performance metrics like precision and recall can be
seen in Table 1.

Ablations: Due to the infeasibility of training the transformer from scratch, it was difficult
to carry out experiments varying different aspects of the transformer (i.e. the number of encoder
layers). It was desirable to keep the same structure as DETR so we could use the pretrained
weights, and speed up convergence. However, one important experiment we did (and could feasibly
carry out) was the removal of the class token. The model with no class token was able to achieve
a balanced test classification accuracy of 0.8778 within ~ 52 epochs, which is comparable to that
of the class token model. However, its precision (0.8494) and true negative rate (0.8517) were
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Figure 4: Two adjacent frames taken from two thermal videos in the assembled dataset. The video
frames show a participant under no-stress (WPT) and stress (CPT) conditions, respectively. The
individual shown here is a member of the research team, used for illustration purposes only.

Model Accuracy Precision Recall TNR
Baseline 0.170 - - -
DeepPhys [¢] 0.575 - - -

13D [7] + Detection Network 0.84 - - -
StressNet [21] 0.843 - - -
StressVision (No Class Token) 0.8778 0.8494 0.9138 0.8517
StressVision (Class Token) 0.8748 0.8967 0.8379 0.9117

Table 1: StressVision’s performance in classifying stress states, as compared to previous works, as
well as variants of StressVision. “—" represents metrics not available.

lower, while its recall was better (0.9138). This indicates that the class token model is potentially
more conservative in its predictions, but makes a more accurate positive prediction when it does.
Depending on the desired application, one may be willing to tolerate a higher precision in exchange
for lower recall (or vice versa).

CONCLUSION

This paper presents a novel modeling approach to the classification of acute stress states from
thermal videos of the human face. Our modeling approach achieves superior performance when
compared to the current state-of-the-art modeling approaches to stress classification, without re-
quiring the estimation of complicated physiological signals. It builds upon a vision-transformer
model pretrained for object detection, ultimately achieving a stress vs. no-stress classification

10



accuracy of 87.48%.

Our new method does have its limitations. The model is trained and tested on physical stress
related signals, so its generalization to detecting psychological stress needs to be validated. Fur-
thermore, placing a hand in warm water (~ 34°C') does not truly represent a non-stressed state
since the body has to adjust to the external stimulus. It is possible that the network is learning to
identify a state that is somewhere in between stressed and non-stressed.

In summary, in this paper we outline and validate a novel modeling approach that achieves best-
in-class stress detection performance. Furthermore, we contribute a novel open-source dataset con-
sisting of thermal videos, ECG data and pain-ratings collected from 36 healthy adults. This dataset
will be valuable for other researchers applying computer vision approaches to stress detection.
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