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ABSTRACT

Differentiable planning promises end-to-end differentiability and adaptivity.
However, an issue prevents it from scaling up to larger-scale problems: they need
to differentiate through forward iteration layers to compute gradients, which cou-
ples forward computation and backpropagation and needs to balance forward plan-
ner performance and computational cost of the backward pass. To alleviate this
issue, we propose to differentiate through the Bellman fixed-point equation to de-
couple forward and backward passes for Value Iteration Network and its variants,
which enables constant backward cost (in planning horizon) and flexible forward
budget and helps scale up to large tasks. We study the convergence stability, scal-
ability, and efficiency of the proposed implicit version of VIN and its variants and
demonstrate their superiorities on a range of planning tasks: 2D navigation, visual
navigation, and 2-DOF manipulation in configuration space and workspace.

1 INTRODUCTION

Planning is a crucial ability in artificial intelligence, robotics, and reinforcement learning (LaValle,
2006; Sutton & Barto, 2018). However, most planning algorithms require either a model that
matches the true dynamics or a model learned from data. In contrast, differentiable planning (Tamar
et al., 2016; Schrittwieser et al., 2019; Oh et al., 2017; Grimm et al., 2020; 2021) trains models and
policies in an end-to-end manner. This approach allows learning a compact Markov Decision Pro-
cess (MDP) and ensures that the learned value is equivalent to the original problem. For instance,
differentiable planning can learn to play Atari games with minimal supervision (Oh et al., 2017).

However, differentiable planning faces scalability and convergence stability issues because it needs
to differentiate through the planning computation. This process requires unrolling network layers
iteratively to improve value estimates, especially for long-horizon planning problems. As a result, it
leads to slower inference and inefficient and unstable gradient computation through multiple network
layers. Therefore, this work addresses the question: how can we scale up differentiatiable planning
and keep the training efficient and stable?

In this work, we focus on the bottleneck caused by algorithmic differentiation, which backpropa-
gates gradients through layers and couples forward and backward passes and slows down inference
and gradient computation. To address this issue, we propose implicit differentiable planning (IDP).
IDP uses implicit differentiation to solve the fixed-point problem defined by the Bellman equations
without unrolling network layers. Value Iteration Networks (VINs) (Tamar et al., 2016) use convo-
lution networks to solve the fixed-point problem by embedding value iteration into its computation.
We name it algorithmic differentiable planner, or ADP for short. We apply IDP to VIN-based plan-
ners such as GPPN (Lee et al., 2018) and SymVIN (Zhao et al., 2022). This implicit differentiation
idea has also been recently studied in supervised learning (Bai et al., 2019; Winston & Kolter, 2021;
Amos & Yarats, 2019; Amos & Kolter, 2019).

Using implicit differentiation in planning brings several benefits. It decouples forward and backward
passes, so when the forward pass scales up to more iterations for long-horizon planning problems,

∗Corresponding Author: Linfeng Zhao zhao.linf@northeastern.edu.

1

zhao.linf@northeastern.edu


Published as a conference paper at ICLR 2023

Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

Figure 1: An overview of VIN, a planner with algorithmic differentiation, and ID-VIN, our proposed planner
with implicit differentiation. Lighter colors for the backward pass with algorithmic differentiation (solid red
arrows) indicate larger backpropagation depth. For backward passes with implicit differentiation, the dashed
red arrows start from the solved equilibrium V ⋆ and end at each forward layer (black arrows).

the backward pass can stay constant cost. It is also no longer constrained to differentiable forward
solvers/planners, potentially allowing other non-differentiable operations in planning. It can po-
tentially reuse intermediate computation from forward computation in the backward pass, which is
infeasible for algorithmic differentiation. We focus on scaling up implicit differentiable planning
to larger planning problems and stabilizing its convergence, and also experiment with different op-
timization techniques and setups. In our experiments on various tasks, the planners with implicit
differentiation can train on larger tasks, plan with a longer horizon, use less (backward) time in
training, converge more stably, and exhibit better performance compared to explicit counterparts.
We summarize our contributions below:

• We apply implicit differentiation on VIN-based differentiable planning algorithms. This connects
with deep equilibrium models (DEQ) (Bai et al., 2019) and prior work in both sides, including (Bai
et al., 2021; Nikishin et al., 2021; Gehring et al., 2021).

• We propose a practical implicit differentiable planning pipeline and implement implicit differen-
tiation version of VIN, as well as GPPN (Lee et al., 2018) and SymVIN (Zhao et al., 2022).

• We empirically study the convergence stability, scalability, and efficiency of the ADPs and pro-
posed IDPs, on four planning tasks: 2D navigation, visual navigation, and 2 degrees of freedom
(2-DOF) manipulation in configuration space and workspace.

2 RELATED WORK

Differentiable Planning In this paper, we use differentiable planning to refer to planning with
neural networks, which can also be named learning to plan and may be viewed as a subclass of
integrating planning and learning (Sutton & Barto, 2018). It is promising because it can be inte-
grated into a larger differentiable system to form a closed loop. Grimm et al. (2020; 2021) propose
to understand model-based planning algorithms from value equivalence perspective. Value iteration
network (VIN) (Tamar et al., 2016) is a representative work that performs value iteration using con-
volution on lattice grids, and has been further extended (Niu et al., 2017; Lee et al., 2018; Chaplot
et al., 2021; Deac et al., 2021) and Abstract VIN (Schleich et al., 2019). Other than using convolu-
tion network, the work on combining learning and planning includes (Oh et al., 2017; Karkus et al.,
2017; Weber et al., 2018; Srinivas et al., 2018; Schrittwieser et al., 2019; Amos & Yarats, 2019;
Wang & Ba, 2019; Guez et al., 2019; Hafner et al., 2020; Pong et al., 2018; Clavera et al., 2020).

Implicit Differentiation Beyond computing gradients by following the forward pass layer-by-
layer, the gradients can also be computed with implicit differentiation to bypass differentiating
through some advanced root-find solvers. This strategy has been used in a body of recent work
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Figure 2: Demonstration of differentiable planners with algorithmic differentiation, which cannot scale up to
large tasks or more iterations, due to coupled forward and backward pass.

(Chen et al., 2019; Bai et al., 2019; Amos & Kolter, 2019; Ghaoui et al., 2020). Particularly related,
Bai et al. (2019) propose Deep Equilibrium Models (DEQ) that decouples the forward and backward
pass and solve the backward pass iteratively also through a fixed-point system. Winston & Kolter
(2021) study the convergence of fixed point iteration in a specific type of deep network. Amos &
Kolter (2019) formalize optimization as a layer, and Amos & Yarats (2019) further apply the idea
to iterative LQR. Gehring et al. (2021) theoretically study gradient dynamics of implicit parameter-
ization of value function through the Bellman equation. Nikishin et al. (2021) similarly use implicit
differentiation, while they explicitly solve the backward pass and only work on small-scale tasks
because explicit solving is not scalable. Bacon et al. (2019) instead focus on a Lagrangian perspec-
tive. Our work is focused on scalability and convergence stability on differentiable planning, and
experiments with challenging tasks in simulation to empirically justify the approach.

3 DIFFERENTIABLE PLANNING WITH ALGORITHMIC DIFFERENTIATION

Background: Value Iteration Networks. Value iteration is an instance of the dynamic program-
ming (DP) method to solve Markov decision processes (MDPs). It iteratively applies the Bellman
(optimality) operator until convergence, which is based on the following Bellman (optimality) equa-
tion: Q(s, a) = R(s, a) + γ

∑
s′ P (s′|s, a)V (s′) and V (s) = maxa Q(s, a).

Tamar et al. (2016) used a convolution network to parameterize value iteration, named Value Itera-
tion Network (VIN). VINs jointly learn and plan in a latent MDP on the 2D grid, which has the latent
reward function R̄ : Z2 → R|A| and has transition probability P̄ represented as WV : Z2 → R|A|,
which only relies on differences between states. The value function is written as V̄ : Z2 → R and
Q̄ : Z2 → R|A|. Value iteration can be written as:

Q̄
(k)
ā,i′,j′ = R̄ā,i,j +

∑
i,j

WV
ā,i,j V̄

(k−1)
i′−i,j′−j , V̄

(k)
i,j = max

ā
Q̄

(k)
ā,i′,j′ . (1)

If we let f be a single application of the Bellman operator, Eq. 1 can be written as:

V̄ (k) = f(V̄ (k−1), R̄,WV ) ≡ max
a

R̄a+WV
ā ⋆ V̄ (k−1) ≡ max

a
R̄a+Conv2D(V̄ (k−1);WV

ā ) (2)

where convolution WV
ā ⋆ V is implemented as a 2D convolution layer Conv2D with learnable

weight WV . For simplicity, we later use θ to refer to network weights, and write each iteration as
vk+1 = f(vk, r,θ), where r stands for reward map R̄ and vk for value map V̄ (k).

Pitfall: Coupled forward and backward pass. The forward computation of VIN iteratively ap-
plies the Bellman update f . Thus, the optimization needs automatic differentiation: differentiating
through multiple layers of forward iterations f ◦ f ◦ . . . ◦ f . Using automatic differentiation for
VIN has a major drawback: the forward computation of value iteration (“forward pass”) and the
computation of its gradients (“backward pass”) are coupled. That is, if the planning horizon is en-
larged, VINs would need larger number of iterations to propagate the value from goals to remaining
positions. As used in VIN and GPPN (Tamar et al., 2016; Lee et al., 2018), it requires intensive
memory usage to store every intermediate iterate V (k) to enable automatic differentiation.

To illustrate the effects, we show the performance of ADP in Figure 2, including three models with
increasingly higher memory use and time cost: VIN, SymVIN (Zhao et al., 2022) and ConvGPPN (a
modified version of GPPN (Lee et al., 2018)). They are trained on 15×15, 27×27, and 49×49 path
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planning tasks. To solve larger mazes, each model consumes more memory while also needing more
iterations (x-axes). However, since algorithmic differentiation requires backpropagating gradients
layer by layer, with more iterations or larger tasks, some models either diverge or run out of memory
(11GB limit). We present further experimental details and analyses in Section 5.2.

4 APPROACH: FROM Explicit TO Implicit Differentiation FOR PLANNING

This section introduces a strategy with implicit differentiation to resolve the issue by decoupling the
forward and backward computation. We first derive implicit differentiation for VIN-based planners,
then propose a pipeline for implementing those planners with implicit differentiation. We refer
to them as implicit differentiable planners (IDP), in contrast to algorithmic differentiable planners
(ADP) with algorithmic differentiation. We analyze the technical differences and similarities of
IDPs vs. ADPs afterward.

4.1 IMPLICIT DIFFERENTIATION FOR VALUE ITERATION

We derive implicit differentiation for VIN and variants, where each layer f is a step as in value
iteration. Since the derivation does not rely on the concrete instantiation of f , we can freely replace
f from Conv2D with other types of layers. We will introduce these variants in the next subsection.

Implicit differentiation. A fixed-point problem can be solved iteratively by fixed-point iteration
and other algorithms. However, as pointed out in (Bai et al., 2019), naively differentiating through
the solver would require intensive memory usage, since it needs to store every intermediate iterate
V (k) to enable automatic differentiation, as in (Tamar et al., 2016; Lee et al., 2018). As also used
recently in (Bai et al., 2019; Nikishin et al., 2021; Gehring et al., 2021), another solution is to instead
differentiate directly through the fixed point z∗ using the implicit function theorem and implicit
differentiation. Then, we can skip all of this by decoupling forward (fixed-point iteration as the
solver) and backward pass (differentiating through the solver).

We start with the fixed point equation v⋆ = f(v⋆, r,θ) from the Bellman optimality equation.
Below we use x to stand for either input r or θ. The implicit function theorem tells us that, under
some mild conditions of the derivatives (f is continuously differentiable with non-singular Jacobian
∂f(v,x)/∂x), v⋆(x) is a differentiable function of x locally: 0 = f(v⋆(x),x).

For fixed point equation, we can assume the fixed point solution v⋆ is obtained, thus this can be used
to compute the partial derivative w.r.t. to any quantity (input, parameter, etc) ∂v⋆(·)/∂(·). It avoids
backpropagating gradients through the forward fixed-point iteration, which is computationally inef-
ficient and requires considerable memory to store intermediate iteration variables. Additionally, it
also allows to even use of non-differentiable operations in the forward pass.

Differentiating both sides of the equation v⋆ = f(v⋆,x) and applying the chain rule:

∂v⋆(·)
∂(·)

=
∂f(v⋆(·),x)

∂(·)
=

∂f(v⋆,x)

∂v⋆

v⋆(·)
∂(·)

+
∂f(v⋆,x)

∂(·)
, (3)

where we use (·) to denote an arbitrary variable. Rearranging terms:

∂v⋆(·)
∂(·)

=

(
I − ∂f(v⋆,x)

∂v⋆

)−1
∂f(v⋆,x)

∂(·)
. (4)

Solving backward pass. To integrate into a deep learning framework for automatic differentia-
tion, two quantities are needed: VJP (vector-Jacobian product) and JVP (Jacobian-vector product)
(Gilbert, 1992). Nevertheless, the computation of the inverse term (I − ∂f(v⋆,x)/∂v⋆)−1 can be a
major bottleneck due to its dimension (O(d2) or O(m4), where d = m2 is the matrix width and
m is the map size) (Bai et al., 2019; 2021). Additionally, when applied to VINs, we concatenate a
policy layer that maps the final equilibrium v⋆ ∈ Rm×m to action logits Rm×m and compute the
cross-entropy loss ℓ(·) (Tamar et al., 2016). Thus, the derivative of loss is:

∂ℓ

∂(·)
=

∂ℓ

∂v⋆

∂v⋆(·)
∂(·)

=
∂ℓ

∂v⋆

(
I − ∂f(v⋆,x)

∂v⋆

)−1
∂f(v⋆,x)

∂(·)
, (5)
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Figure 3: The proposed pipeline of implicit differentiable planning by using implicit differentiation.

Defining w as follows forms a linear fixed-point system (Bai et al., 2019):

w⊤ ≜
∂ℓ

∂v⋆

(
I − ∂f(v⋆,x)

∂v⋆

)−1

; w⊤ = w⊤ ∂f(v⋆,x)

∂v⋆
+

∂ℓ

∂v⋆
. (6)

This backward pass fixed-point equation can also be solved by a generic fixed-point solver or root
finder. Then, we can substitute the solution w back: ∂ℓ/∂(·) = w⊤∂f(v⋆,x)/∂(·). The computation is
then purely based on VJP and JVP. In summary, an IDP needs to solve both the (nonlinear) forward
fixed-point system and the (linear) backward fixed-point system, as in DEQ.

4.2 A PIPELINE OF IMPLICIT DIFFERENTIABLE PLANNING

We can derive variants of VIN using implicit differentiation by abstracting out the implementation
of value iteration layer. In this section, we propose a generic implicit planning pipeline to extend
our approach to Gated Path Planning Networks (GPPN) (Lee et al., 2018) and Symmetric VIN
(SymVIN) (Zhao et al., 2022). Spatial Planning Transformers (SPT) (Chaplot et al., 2021) also fits
into the pipeline, but it performs less well, as discussed in Section C.

Figure 3 shows the general pipeline, where the network layer fθ can be replaced by any single layer
that is capable of iterating values. The pipeline follows VIN and GPPN, where for 2D path planning
a map Z2 → {0, 1} is provided, and the planners’ output actions (their logits) for each position
Z2 → R|A|. All these tasks can be represented as taking a form of map “signal” over grid Z2, as
previously been done (Zhao et al., 2022; Chaplot et al., 2021).

Planner instantiations. We now introduce the instantiations of implicit planners one by one. We
focus on the value iteration part (omit map input and action output), and all planners follow the form
V̄ (k+1) = fθ(V̄

(k), R̄) (bars omitted later). There are two design principles: (1) input inject (R̄
must be input, as input x) and (2) weight-tied (θ is shared across layers f ), as also used in DEQ
(Bai et al., 2019). Specifically, the purpose of input inject is that fixed-point solution V̄ ⋆ does not
depend on initialization V̄ (0), so we must pass information of the map through input inject (by R̄).

(i) ID-VIN uses regular 2D translation-equivariant convolution layer, where f(V,R) = maxa R
a +

Conv2D(V ; θ). (ii) ID-SymVIN aims to integrate symmetry into planning and uses equivariant
E(2)-steerable CNN (Weiler & Cesa, 2021). It has similar form to VIN and just replaces Conv2D
with SteerableConv, thus the form is f(V,R) = maxa R

a + SteerableConv(V ; θ).

(iii) ID-ConvGPPN is based on our modified version of GPPN (Kong, 2022; Zhao et al., 2022),
where we (1) use GRU since it has a single input with form z′ = GRU(z, x) and is easier to
integrate into our current form, (2) replace all fully connected layers with convolution layers, and
(3) inject R to every step. The result is that every layer is a ConvGRU, instead of LSTM in GPPN:
f(V,R) = ConvGRU(V,R; θ). Note that the GPPN variants do not have max in each iteration
anymore and directly take reward R to the recurrent cell (Lee et al., 2018).

Mapper Layer. We can handle tasks with more challenging input, such as visual navigation and
workspace manipulation (Lee et al., 2018; Chaplot et al., 2021; Zhao et al., 2022), by learning an
additional mapping network (mapper) to first map the input to a 2D map. Further details about
environments and mapper implementation are deferred to Section 5.1 and Section C.

Optimization. We build upon the deep equilibrium model (DEQ) and relevant work (Bai et al.,
2019; 2020; 2021), which includes several effective techniques. By representing the implementation
of value iteration as fixed-point solving, we have the flexibility to use any fixed-point or root solver
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Figure 4: Performance of implicit differentiable planners on 2D navigation tasks. Since the forward and
backward pass are decoupled, the IDPs can keep consistent runtime and memory cost for backward pass while
have forward pass of value iteration converged for large tasks and iterations.

for f(v,θ) = v or v − f(v,θ) = 0. A straightforward solver is forward iteration, as used in
VIN’s feedforward network (Tamar et al., 2016). However, recent work has employed Anderson’s
or Broyden’s method (Bai et al., 2019; 2020). In our experiments, we compare the use of forward
iteration and the Anderson solver in both forward and backward passes. Notably, the SymVIN
architecture requires the entire forward pass to be equivariant, so extra attention is necessary when
designing the forward solver. Further details and results can be found in Sections C and E.

4.3 IMPLICIT VS. EXPLICIT DIFFERENTIABLE PLANNERS

Underlying computational similarity. The gradient computation is done by automatic differen-
tiation (Gilbert, 1992). For algorithmic differentiation, the gradients are computed through direct
backpropagation and the implementation is also based on efficiently computing vector-Jacobian
product (VJP) and Jacobian-vector product (JVP) (Bai et al., 2019). Christianson (1994) studied
automatic differentiation for implicit differentiation of fixed-point system. The only difference is
the number of operations required and that implicit differentiation is based on the Jacobian at the
equilibrium. We derive the connection in Section B.1.

Comparison: Implicit vs. algorithmic differentiation. In Figure 4, we compare the performance
of three IEPs with different numbers of iterations in the forward pass. Unlike the ADPs shown in
Figure 2, our IDPs converge stably with larger forward-pass iterations (horizontal axis), while ADPs
sometimes diverge on large iterations. Note that we should not directly compare IDPs and ADPs
with the same number of forward iterations since they refer to different things: IDPs compute an
equilibrium and use it for backward pass (more forward iterations would be better), while for ADPs
# iterations = # layers (more iterations/layers leads to instability). Further analyses in Section 5.2.

Tradeoff: The quality of equilibrium. Theoretically, IDPs have a constant cost of the backward
pass with respect to the forward planning horizon. However, the backward pass requires the Jacobian
of the final equilibrium v⋆ ≈ vK from the forward pass. If the equilibrium v⋆ is not solved reason-
ably well, the backward pass in Eq. 6 would iterate based on an inaccurate Jacobian ∂f(v⋆,x)/∂v⋆,
which would cause poor performance. In contrast, because ADPs compute exact gradients by back-
propagation through layers, they do not suffer from this issue. Additionally, fewer iterations (layers)
would also alleviate their convergence issues.

Empirically, with fewer forward iterations (e.g., 10), we observe a performance drop from IDPs.
Although ADPs also perform worse with fewer layers, they have a smaller drop compared to IDPs.
However, when scaling up to more forward iterations Kfwd (e.g. ≥ 30 iterations, which are necessary
for maps ≥ 27 × 27) IDPs may solve the equilibrium well enough and are more favorable because
of their efficient backward pass. Moreover, we find that using around Kbwd ≈ 15 iterations for
backward pass works well enough consistently across different map sizes (15×15 through 49×49).
Since both algorithmic and implicit differentiation use a similar amount of vector-matrix products,
using more than Klayer ≥ 15 ≈ Kbwd would consume more resources and favor IDPs.

5 EMPIRICAL ANALYSIS

We present more results on convergence, scalability, generalization, and efficiency, which extends
the study in previous sections on comparing implicit vs. algorithmic differentiable planners.
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Figure 5: (Left) We randomly generate occupancy grid Z2 → {0, 1} for 2D navigation. For visual naviga-
tion, each position provides 32 × 32 × 3 egocentric panoramic RGB images in 4 directions for each location
Z2 → R4×32×32×3. One location is visualized. (Right) The top-down view (left) is the workspace of a 2-DOF
manipulation task. For workspace manipulation, it is converted by a mapper layer to configuration space,
shown in the right subfigure. For C-space manipulation, a ground-truth C-space is provided to planners.

5.1 ENVIRONMENTS AND SETUP

Environments and datasets. We run implicit and algorithmic differentiable planners on four types
of tasks: (1) 2D navigation, (2) visual navigation, (3) 2 degrees of freedom (2-DOF) configuration
space manipulation, and (4) 2-DOF workspace manipulation. These tasks require planning on
either given (2D navigation and 2-DOF configuration-space manipulation) or learned maps (visual
navigation and 2-DOF workspace manipulation), where the maps are 2D regular grid as in prior work
(Tamar et al., 2016; Lee et al., 2018; Chaplot et al., 2021). To learn maps, a planner needs to jointly
learn a mapper that converts egocentric panoramic images (visual navigation) or workspace states
(workspace manipulation) into a 2D grid. We follow the setup in (Lee et al., 2018; Chaplot et al.,
2021) and further discuss in Section D. In both cases, we randomly generate training, validation and
test data of 10K/2K/2K maps for all map sizes. For all maps, the action space is to move in 4 ⟲
directions: A = (north,west,south,east).

Training and evaluation. We report success rate and training curves over 5 seeds. The training
process (on given maps) follows (Tamar et al., 2016; Lee et al., 2018; Zhao et al., 2022), where we
train 60 epochs with batch size 32, and use kernel size F = 3 by default. We use RTX 2080 Ti cards
with 11GB memory for training, thus we use 11GB as the memory limit for all models.

5.2 CONVERGENCE AND SCALABILITY

In the previous sections with Figure 2 and 4, we have presented quantitive analysis of IDPs and
ADPs in terms of convergence with more iterations and scalability on larger tasks. Here, we provide
the detailed setup of the experiment and put the attention more on the qualitative side.

Setup. We train all models on 2D maze navigation tasks with map sizes 15 × 15, 27 × 27, and
49 × 49. We use Klayer = 30, 50, 80 iterations for ADPs, which is effectively the number of layers
in their networks. Correspondingly, for IDPs, we choose to use forward iteration solver for forward
pass and Anderson solver for backward pass. We fix the number of iterations of backward solver as
Kbwd = 15 and of forward solver as Kfwd = 30, 50, 80.

Results. We examine results by algorithm and focus on their trend with iteration number (x-axis)
and map size (column), not just the absolute numbers. The conclusion already mentioned in the
above section: Beyond an intermediate iteration number (around 30-50), IDPs are more favorable
because of scalability and computational cost. We present other analyses here.

We start from ConvGPPN and ID-ConvGPPN, which perform the best in ADPs and IDPs class, re-
spectively. They also have the most number of parameters and use greatest time because of the gates
in ConvGRU units. As shown in Figure 2, this also caused two issues of ConvGPPN: scalability to
larger maps/iterations (out of memory for 27 × 27 80 iterations and 49 × 49 50 and 80 iterations),
and also convergence stability (e.g. 27× 27 50 iterations).

For SymVIN and ID-SymVIN, they replace Conv2D with SteerableConv, with computational
cost slightly higher than VIN and much lower than ConvGPPN. Thus, they can successfully run on
all tasks and iteration numbers. However, we find that explicit SymVIN may diverge due to bad ini-
tialization, and this is more severe if the network is deeper (more iterations), as in Figure 2’s 50 and
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Figure 6: The runtime (in seconds) on 2D navigation tasks with size 15× 15, 27× 27, and 49× 49, averaged
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memory caused by algorithmic differentiation. The upper row is for forward pass runtime, and the lower row
is for backward runtime. The horizontal axes mean differently: (1) ADPs: the number of layers Klayer, also
number of iterations, and (2) IDPs: the forward pass iterations Kfwd.
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Figure 7: (Left) Training curves on 2D maze navigation 15 × 15 maps, with 80 layers for ADPs and 80
iterations for IDPs. (Right) Training curves on 49 × 49 maps, with 30 layers for ADPs (due to scalability
issue) and 80 iterations for IDPs.

80 iterations. Nevertheless, ID-SymVIN alleviates this issue, since implicit differentiable planning
decouples forward and backward pass, so the gradient computation is not affected by forward pass.

Furthermore, VIN and ID-VIN are surprisingly less affected by the number of iterations and problem
scale. We find their forward passes tends to converge faster to reasonable equilibria, thus further
increasing iteration does not help, nor break convergence as long as memory is sufficient.

Forward and backward runtime. We visualize the runtime of IDPs and ADPs in Figure 6. For
IDPs, we use the forward-iteration solver for the forward pass and Anderson solver for the backward
pass. Note that in the bottom left, we intentionally plot backward runtime vs. forward pass iterations.
This emphasizes that IDPs decouple forward and backward passes because the backward runtime
does not rely on forward pass iterations. Instead, for ADPs, value iteration is done by network
layers, thus the backward pass is coupled: the runtime increases with depth and some runs failed
due to limited memory (11GB, see missing dots).

Therefore, this set of figures shows better scalability of IDPs (no missing dots – out of memory –
and constant backward time). In terms of absolute time, the forward runtime of IDPs when using
the forward solver is comparable with successful ADPs.

5.3 TRAINING PERFORMANCE

Setup. Beyond evaluating generalization to novel maps, we compare their training efficiency with
learning curves. Each learning curve is aggregated over 5 seeds, which are from the models in the
above section. The learning curves are for all planners on 15× 15 maps (Figure 7 left) and 49× 49
maps (Figure 7 right, 30 layers for ADPs – due to scalability issue – and 80 iterations for IDPs).

Results. On 15×15 maps, we show Klayer = 80 layers for ADPs and Kfwd = 80 iterations for IDPs.
ID-ConvGPPN performs the best and is much more stable than its ADP counterpart ConvGPPN. ID-
SymVIN learns reliably, while SymVIN fails to converge due to instability from 80 layers. ID-VIN
and VIN are comparable throughout training. On 49 × 49 maps, we visualize Klayer = 30 layers
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for ADPs (due to their limited scalability) and Kfwd = 80 iterations for IDPs. ConvGPPN cannot
run at all even for only 30 layers, while ID-ConvGPPN still reaches a near-perfect success rate. ID-
SymVIN learns slightly better than SymVIN and reaches higher asymptotic performance. ID-VIN
has a similar trend to VIN, but performs worse overall due to the complexity of the task.

5.4 PERFORMANCE ON MORE TASKS

Table 1: Averaged test success rate (%) over 5 seeds for using 10K/2K/2K dataset on the rest of 3 types of
tasks. We highlight entry with italic for runs with at least one diverged trial (any success rate < 20%).

Type Methods 18× 18 Mani. 36× 36 Mani. Workspace Mani. Visual Nav.

Explicit
VIN 89.65±7.97 74.75±8.18 80.98±3.84 66.11±8.91

SymVIN 55.15±49.54 65.72±47.11 82.17±24.72 96.04±4.24

ConvGPPN 79.71±20.71 70.55±36.13 70.23±19.44 81.76±31.04

Implicit
(ours)

ID-VIN 80.53±6.98 56.27±20.92 77.17±7.24 62.53±15.93

ID-SymVIN 99.63±0.08 98.53±1.42 87.60±24.11 86.41±30.34

ID-ConvGPPN 97.28±0.74 93.60±1.68 92.60±1.83 98.91±0.34

Setup. We run all planners on the other three challenging tasks. For visual navigation, we
randomly generate 10K/2K/2K maps using the same strategy as 2D navigation and then render
four egocentric panoramic views for each location from produced 3D environments with Gym-
MiniWorld (Chevalier-Boisvert, 2018). For configuration-space manipulation and workspace
manipulation, we randomly generate 10K/2K/2K tasks with 0 to 5 obstacles in workspace. In
configuration-space manipulation, we manually convert each task into a 18 × 18 or 36 × 36 map
(20◦ or 10◦ per bin). The workspace task additionally needs a mapper network to convert the 96×96
workspace (image of obstacles) to an 18× 18 2-DOF configuration space (2D occupancy grid). We
provide additional details in the Section D.

Results. In Table 1, due to space limitations, we average over Klayer = 30, 50, 80 for ADPs and
Kfwd = 30, 50, 80 for IDPs. For each task, we present the mean and standard deviation over 5 seeds
times three hyperparameters and provide the separated results to Section E. We italicize entries for
runs with at least one diverged trial (any success rate < 20%).

Generally, IDPs perform much more stably. On 18×18 or 36×36 configuration-space manipulation,
ID-SymVIN and ID-ConvGPPN reach almost perfect results, while ID-VIN has diverged runs on
36×36 (marked in italic). SymVIN and ConvGPPN are more unstable, while VIN even outperforms
them and is also better than ID-VIN. On 18×18 workspace manipulation, because of the difficulty of
jointly learning maps and potentially planning on inaccurate maps, most numbers are worse than in
configuration-space. ID-ConvGPPN still performs the best, and other methods are comparable. For
15×15 visual navigation, it needs to learn a mapper from panoramic images and is more challenging.
ID-ConvGPPN is still the best. ID-SymVIN exhibits some failed runs and gets underperformed by
SymVIN in these seeds, and ID-VIN is comparable with VIN.

Across all tasks, the results confirm the superiority of scalability and convergence stability of IDPs
and demonstrate the ability of jointly training mappers (with algorithmic differentiation for this
layer) even when using implicit differentiation for planners.

6 CONCLUSION

This work studies how VIN-based differentiable planners can be improved from an implicit-function
perspective: using implicit differentiation to solve the equilibrium imposed by the Bellman equation.
We develop a practical pipeline for implicit differentiable planning and propose implicit versions of
VIN, SymVIN, and ConvGPPN, which is comparable to or outperforms their explicit counterparts.
We find that implicit differentiable planners (IDPs) can scale up to longer planning-horizon tasks
and larger iterations. In summary, IDPs are favorable for these cases to ADPs for several reasons:
(1) better performance mainly due to stability, (2) can scale up while some ADPs fail due to memory
limit, (3) less computation time. On the contrary, if using too few iterations, the equilibrium may
be poorly solved, and ADPs should be used instead. While we focus on value iteration, the idea of
implicit differentiation is general and applicable beyond path planning, such as in continuous control
where Neural ODEs can be deployed to solving ODEs or PDEs.
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A OUTLINE

We provide additional discussion, extended details of implementation and experiments, and addi-
tional results in the appendix. The table of content is available above.

B EXTENDED DISCUSSION

B.1 COMPUTATIONAL SIMILARITY

In value iteration, we iteratively apply f until convergence: f(vk, r,θ) = vk+1, then the outer
loop optimizes one step on updating the model θ. We can generalize to time-varying optimization
problem with equality constraint (Bacon et al., 2019): ft(vt, r,θt) = vt+1, and we assume a
mapping ϕt gives the inner optimization of VI: ϕt = ft−1 ◦ . . . ◦ f0, ϕt : θ0:t 7→ vt. We

∂ℓ

∂θt
=

∂ℓ

∂vT

∂ϕT

∂θt
=

∂ℓ

∂vT
λ⊤
T (7)

=
∂ℓ

∂vT

∂fT−1 (vT−1,θT−1)

∂vT−1

∂ϕT−1 (θT−1)

∂θt
(8)

=
∂ℓ

∂vT

∂fT−1

∂vT−1

∂fT−2

∂vT−2
· · · ∂ϕt (θt)

∂θt
(9)

The recursion is then given by

λ⊤
T =

∂ϕT (θT )

∂θT
, λ⊤

k+1 =
∂fk

∂vk
· λ⊤

k . (10)
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The vector λ⊤
t is the adjoint vector, or costate, in control theory. The recursive update is the adjoint

equation. The computation is exactly the vector-Jacobian product used in automatic differentiation
(Griewank & Walther, 2008).

This shows close connection between Equation 6 on the fixed-point solving for backward pass of
implicit differentiation and 10 on the recursive computation for algorithmic differentiation.

B.2 MORE DISCUSSIONS

Divergence of fixed-point iteration. The term “divergence” can be confusing, so we’ll clarify
its meaning. In value iteration, the goal of the forward pass is to find a fixed point by iteratively
applying the Bellman optimality operator. For an MDP with a given dynamics model, Bellman
operators induced from the model and arbitrary policy are guaranteed to be a contraction mapping,
so iterative methods will converge to a unique fixed point.

However, when the entire network is learned end-to-end, and the transition weights are also learned,
the property of Bellman operators is not guaranteed. When the planning horizon increases, this issue
becomes more severe since it can cause the iteration to move farther from the fixed point.

When we talk about divergence, we mainly refer to the fixed-point iteration in the forward pass.
This iterative process does not involve gradient computation, but is purely a property of VIN and its
variants.

It’s worth noting that implicit differentiable planners introduce a fixed-point iteration for the back-
ward pass, but empirically, they do not have a divergence issue.

Performance of implicit vs. algorithmic differentiation. For implicit differentiable planners,
implicit differentiation itself does not guarantee to result in better performance. Implicit differenti-
ation and algorithmic differentiation have equivalent asymptotic performance and are not expected
to perform differently if run for a long enough time. However, the advantage of implicit differen-
tiable planners is that they scale up better and can run with fewer resources, while the algorithmic
differentiation ones cannot keep up with the scale.

Relationship with DEQ (Bai et al., 2019). The focus of our paper is to address the specific prob-
lem of scaling up and stabilizing differentiable planning algorithms, particularly for value iteration-
based fixed-point solving methods, such as VIN and its variants. Our approach is problem-driven,
rather than method-driven like DEQ. While our work does draw on some prior techniques and mod-
els, we introduce new insights and methods that are specific to our problem domain.

Technical contributions: Although our paper does build on some prior work, we make several sig-
nificant technical contributions that are specific to VIN and variants. For example, we introduce the
use of implicit differentiation, which has a direct correspondence to the differentiable planning algo-
rithm and allows for more scalable and interpretable solutions. We also explore specific tuning and
techniques that are needed to address the unique challenges of value iteration-based methods, such
as the need for precise value function calculations and the limitations of using fixed-point iteration
in the planning process.

While DEQ has inspired some of our ideas and approaches, we also highlight some key differences
between our work and DEQ. For instance, DEQ is designed for supervised learning and does not
require the same level of precision and stability as value iteration-based methods. Additionally, DEQ
requires weight-tying and input injection, which are already present in vanilla VIN.

In conclusion, while our paper draws on some prior work and techniques, we introduce new insights
and methods that are specific to VIN and variants. We address the challenges of scaling up and
stabilizing value iteration-based methods, and introduce the use of implicit differentiation, which
offers more scalable and interpretable solutions for these types of algorithms.
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C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF ID-SPT

Beyond VIN, SymVIN and ConvGPPN, we also tried implementing an implicit differentiation ver-
sion of Spatial Planning Transformers (SPT) (Chaplot et al., 2021). However, we find the reimple-
mentation of SPT and also the implicit version both do not work well enough. We first introduce
how we implemented it and discuss our hypotheses on its failure.

Implementation. ID-SPT is based on a Transformer architecture, SPT. SPT is proposed to facilitate
global value propagation using the global receptive field of self-attention layers in Transformers.
Different from other variants, SPT uses heavier global self-attention layer and does not scale up
the number of layers with map size, although the number of weights increases quadratically with
size. We also implement an implicit version by using individual self-attention layer, where f(V ) =
SelfAtt(V ; θ). Even SPT fits into our pipeline, we empirically find SPT behaves unlike other
planners since it does not inject reward R as input.

Discussion of performance. In our experiments, we find the modified ID-SPT cannot outperform
SPT.

Since SPT uses multiple Transformer (self-attention) layers, it is computationally expensive. Thus,
we use much smaller number of iterations for ID-SPT: K = 3, 5, 10, 15, because the original paper
uses K = 5 layers across all map sizes.

However, we plot the convergence curve for its forward and backward pass. We find that the forward
pass can only convert to around 100 = 1 to 10−1 level (relative residual) and cannot further decrease,
while other planners have their forward pass converged around at least 10−2. We find this may affect
the backward pass, as the Jacobian at the solved equilibrium is used in solving the backward fixed-
point iteration.

Considering these, we think the reason might come from the fact that SPT uses Transformer layers,
which is too expressive and tends to learn an arbitrary output as it needs.

C.2 OPTIMIZATION OF IMPLICIT DIFFERENTIABLE PLANNERS

To optimize the performance of IDPs, we also implemented other techniques. We tried Jacobian
regularization from (Bai et al., 2021), which estimates the Jacobian

∥∥∥∂fθ(v
⋆;x)

∂v⋆

∥∥∥
F

at the equilibrium.

We experiment it on ID-VIN, since other methods have more memory use and Jacobian loss would
cause out of memory. However, it does not perform as we expected and rather decreases the success
rate. We provide additional results on this in the later result section.

D EXPERIMENT DETAILS

D.1 BUILDING MAPPER NETWORKS

For visual navigation. For navigation, we follow the setting in GPPN (Lee et al., 2018). The input
is m×m panoramic egocentric RGB images in 4 directions of resolution 32×32×3, which forms a
tensor of m×m×4×32×32×3. A mapper network converts every image into a 256-dimensional
embedding and results in a tensor in shape m×m×4×256 and then predicts map layout m×m×1.

For the first image encoding part, we use a CNN with the first layer of 32 filters of size 8 × 8 and
stride of 4 × 4, and the second layer with 64 filters of size 4 × 4 and stride of 2 × 2, with a final
linear layer of size 256.

In the second obstacle prediction part, the first layer has 64 filters and the second layer has 1 filter,
all with filter size 3× 3 and stride 1× 1.

For workspace manipulation. For workspace manipulation, we use U-net (Ronneberger et al.,
2015) with residual-connection (He et al., 2015) as a mapper, see Figure 8. The input is 96 ×
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Figure 8: The U-net architecture we used as manipulation mapper.

96 top-down occupancy grid of the workspace with obstacles, and the target is to output 18 × 18
configuration space as the maps for planning.

During training, we pre-train the mapper and the planner separately for 15 epochs. Where the
mapper takes manipulator workspace and outputs configuration space. The mapper is trained to
minimize the binary cross entropy between output and ground truth configurations space. The plan-
ner is trained in the same way as using given maps. After pre-training, we switch the input to the
planner from ground truth configuration space to the one from the mapper. During testing, we fol-
low the pipeline in Chaplot et al. (2021) that the mapper-planner only have access to the manipulator
workspace.

D.2 TRAINING SETUP

We try to mimic the setup in VIN and GPPN (Lee et al., 2018).

For non-SymPlan related parameters, we use learning rate of 10−3, batch size of 32 if possible
(GPPN variants need smaller), RMSprop optimizer.

For SymPlan parameters, we use 150 hidden channels (or 150 trivial representations for SymPlan
methods) to process the input map. We use 100 hidden channels for Q-value for VIN (or 100 regular
representations for SymVIN), and use 40 hidden channels for Q-value for GPPN and ConvGPPN
(or 40 regular representations for SymGPPN on 15×15, and 20 for larger maps because of memory
constraint).

E ADDITIONAL RESULTS

E.1 2D NAVIGATION TRAINING ON 75× 75 MAPS

We include comparison of differentiable planners with implicit differentiation or algorithmic differ-
entiation on even larger maps: 75× 75. Every error bar contains 3 to 5 seeds.

Note that this has not been done in any of prior work along this line, including VIN, SPT, SymVIN
and more. This shows better scalability of the implicit differentiable planners. Prior work GPPN
uses only 28 × 28 and SPT uses 50 × 50 (which mainly emphasizes long-term planning) for both
training and evaluation. Note that SymVIN also only uses 50 × 50 for training, while use up to
100× 100 for generalization. We also did the same experiment, available in Section E.2.

Figure 9 shows the performance of all implicit and explicit differentiable planners on the 75 × 75
tasks. We train explicit differentiable planners with Klayer = 30, 50, 80, 120 layers, and our implicit
differentiable planners with max Kfwd = 30, 50, 80, 120 forward pass iterations and Kbwd = 15
backward pass iterations

For the explicit side, ConvGPPN totally fails to run as also in 49×49. The performance of SymVIN
shows the need for more iteration: Klayer = 50 is better than Klayer = 30. However, although
SymVIN can successfully run on Klayer = 80, the runs mostly fail to converge to a fixed point,
which shows its limitations on stability when scaling to larger iteration. VIN does not achieve
meaningful results.
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Figure 9: Performance on 75× 75 maps.

Figure 10: Generalization to larger maps.

As for implicit differentiable planners, noticeably, ID-ConvGPPN can successfully run with all for-
ward iterations Kfwd, which is quite impressive considering its expensive recurrent network architec-
ture. It can achieve almost perfect 100% successful rate when using Kfwd = 120. For ID-SymVIN,
it is less stable but can perform better with more forward iteration Kfwd, and the best performance at
Kfwd = 80 or 120 is higher than SymVIN. It also shows the potential to achieve even better number.
ID-VIN seems struggling and does not give meaningful success rate.

E.2 GENERALIZATION TO LARGER MAPS

Setup. In other experiments, we train the planners on the same map size with training case, while
this experiment aims for generalization to larger maps to examine its potential. All methods are
trained on 15× 15 maps and tested on larger maps. We chose ADPs with Klayer = 50 (for stability
concern) and IDPs with Kfwd = 80. All methods are tested on six sampled map sizes in 15 × 15
through 99 × 99, averaging over 5 seeds (5 model checkpoints) for each method and 1000 unseen
maps for each map size. At test time, we keep the same iteration numbers as training and do not
increase them. The results are shown in Figure 10.

Results. VIN and ID-VIN both suffer from generalizing to larger maps and perform pretty sim-
ilar. ID-SymVIN is much better than ID-VIN, and outperform the explicit counterpart SymVIN.
ID-ConvGPPN generalizes fine, but is worse than ConvGPPN. We find that although ConvGPPN
suffers from training on large tasks (backward pass), since here we chose the best hyperparameter
for ConvGPPN on 15× 15, its inference (only forward pass) is pretty reliable as long as it can suc-
cessfully train. As expected, the success rate of all methods drops with increasing test map sizes.
While in general, both IDPs and ADPs generalize similarly well. This is expected because implicit
differentiation majorly improves scalability of the backward pass, while the main bottleneck for
generalization is the forward pass, where they do not have major difference.
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Figure 11: Backward pass iterations vs. backward runtime.
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Figure 12: Success rate vs. different forward and backward solver and different backward pass
iterations.

E.3 RUNTIME OF IMPLICIT DIFFERENTIABLE PLANNERS

Backward runtime. We visualize the runtime of backward pass of IDPs for using forward solver
and Anderson solver in Figure 11. The experiment is done on 15× 15 maps.

As expected, using more backward pass iterations would increase the backward pass runtime. How-
ever, we also find that the backward pass has already converged at around 10 iterations, so increasing
the iteration will not help the training. Instead, the iterations of the forward pass are the main bot-
tleneck for scalability on larger maps. We show the results in the next paragraph.

Choice of fixed-point solver. We show the performance difference when using different solvers
on all implicit differentiable planners in Figure 12. For backward passes, the Anderson solver is
clearly better than the forward iteration solver. In terms of the forward passes, ID-SymVIN is not
compatible with the original Anderson solver, since SymVIN needs to keep the equivariance of
the intermediate variables by ordering them in a specific way. However, the Anderson solver has
reshaping operations that would break it.
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Figure 13: Manipulation complete results.
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Figure 14: Visual navigation complete reuslts.

E.4 PERFORMANCE ON MORE TASKS: COMPLETE RESULTS

In the main paper, we average over 30/50/80 forward iterations / layers. We here show the complete
results for each forward iteration / layer number for manipulation in Figure 13 and for visual nav-
igation in Figure 14. The results still follow the trends in the paper, where IDPs tend to converge
more stably for larger iterations.

E.5 JACOBIAN REGULARIZATION

We tune the Jacobian regularization from (Bai et al., 2021). We focus on tuning the Jacobian regu-
larization weight and frequency on 15 × 15 maps. The x-axis is a hyperparameter of the Anderson
solver for backward pass.

The results are in Figure 15. Each column corresponds to the frequency = 0%, 20%, 40%. Each
row is the weight = 2, 4, 8. However, the top left panel performs the best, which means zero
regularization.
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Figure 15: Tuning Jacobian regularization.
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