Received: 16 May 2021

Revised: 1 December 2021

W) Check for updates

Accepted: 6 February 2022

DOI: 10.1002/rnc.6076

SPECIAL ISSUE ARTICLE

WILEY

Optimized data rate allocation for dynamic sensor fusion
over resource constrained communication networks

Hyunho Jung!

Walker Department of Mechanical
Engineering, University of Texas at
Austin, Austin, Texas, USA

2Department of Electrical and Computer

| Ali Reza Pedram!

| Travis C. Cuvelier? | Takashi Tanaka3

Abstract
This article presents a new method to solve a dynamic sensor fusion problem.

We consider a large number of remote sensors which measure a common
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communication cost incurred by a given sensor is quantified as the expected
bitrate from the sensor to the fusion center. We propose an approach that
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a constraint on the state estimation error at the fusion center. We formulate
the problem as a difference-of-convex program and apply the convex-concave
procedure (CCP) to obtain a heuristic solution. We consider a 1D heat trans-

fer model and a model for 2D target tracking by a drone swarm for numerical
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studies. Through these simulations, we observe that our proposed approach
has a tendency to assign zero data rate to unnecessary sensors indicating
that our approach is sparsity-promoting, and an effective sensor selection
heuristic.
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1 | INTRODUCTION

In this article, we develop techniques to efficiently allocate communication resources in dynamic sensor fusion over a
resource-constrained network. Our principal motivation is networked autonomous systems where the communication
between sensors and controllers is wireless. Networked autonomous systems play a major role in the heavy industry,
transportation, and defense sectors. In such settings, wired communication may be impossible due to physical con-
straints (such as mobility). Wired communication may also be impractical due to the difficulty of routing and maintaining
cables. This latter concern is not without consequence; a report from the US Navy indicates that over 1000 missions
are aborted per year due to wiring faults.! Meanwhile, as control systems become more automated and perform more
complex tasks, the number of sensor platforms tends to increase. For example, an Airbus A380-1000 model has about
10,000 sensors on its wings alone.? In wireless systems, communication resources are inherently constrained. Under-
standing the impact of control systems on wireless networks, and developing strategies to manage wireless resources
efficiently subject to the particular requirements of control, will help enable the development of future autonomous
systems.

We first give a high-level overview of our contributions before reviewing the literature.
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1.1 | Owur contribution

We consider a setup where several remote sensor platforms observe a common Gauss-Markov process and forward these
observations to a fusion center over reliable point-to-point binary communication channels. The use of these uplink chan-
nels incurs a communication cost, quantified as the expected bitrate of a uniquely decodable source code. Given the
observations it receives, the fusion center forms an estimate of the state. Using a downlink channel, which we assume
incurs no cost, the fusion center feeds this estimate back to the sensor platforms. This formulation is applicable to a vari-
ety of physical layer resource allocation problems as detailed in (Sections 2.1 and 2.6). Our key contributions are presently
summarized:

« We formulate a sensor rate allocation problem. Using entropy-coded dithered predictive quantization (cf. Refer-
ences 3 and 4) we show that the expected bitrate required to encode a quantized linear measurement with a specified
reconstruction error can be approximated by a particular information measure.

« We propose to minimize a weighted average of these bitrates, over both sensors and a time horizon, subject to a con-
straint on the error covariance of an linear minimum mean square error estimator at the fusion center. This results in
a nonconvex optimization.

« We convert the nonconvex optimization to difference-of-convex program® and optimize via the heuristic
convex-concave procedure (CCP). While there is no guarantee that the CCP procedure will produce the global
minimum, it is guaranteed to produce a feasible local minimum.’

« We perform numerical experiments where we apply our approach to a time-invariant heat transfer system and a
time-varying drone tracking system. We observed that as the estimator performance constraint is loosened, our
algorithm tends to allocate zero data rate to more unneeded sensors. Our proposed approach thus tends to be
sparsity-promoting, and may be used as a sensor selection heuristic.

« We provide analytical insight into the sparsity-promoting aspect of our approach via considering limiting examples in
the scalar case.

1.2 | Literature review

A portion of this work appears in Reference 6. In this article, we motivate our problem formulation more concretely
with an application to physical layer resource allocation in wireless communications (cf. Section 2.6). We also include
new, more elucidating simulation results (cf. Section 5). Finally, we conclude with an additional discussion of the
sparsity-promoting property of our approach (cf. Section 6).

The relevant prior work straddles several research areas, including optimal sensor selection and control with com-
munication constraints, network information theory (in particular, multiterminal rate-distortion theory), and resource
allocation in wireless communications. We highlight some relevant contributions from this areas and contrast them with
our present work in the remainder of this section.

1.2.1 | Optimal sensor selection and control with communication constraints

Optimal sensor selection has been a well-studied problem for several decades. Generally speaking, such approaches aim
to choose an optimal subset of sensors from some set. Information measures are often incorporated, via either the objec-
tive functions or the constraints, in the optimization over subsets. Early examples include heuristic subset optimizations
that attempted to maximize the trace or determinant of the Fisher information matrix (FIM). For example, Reference 7
proposed a sensor selection method based on ranking sensors at different locations in terms of a surrogate for their con-
tribution to the determinant of the FIM. By an iterative technique, the method removes insignificant sensors, resulting in
a selected subset of sensors that tend to maximize the trace and determinant of the FIM. In Reference 8 sensor selection
was performed via a genetic algorithm, with the determinant of the FIM as the figure of merit.

More relevant recent results include those that consider Bayesian estimation/tracking. In Reference 9, an
entropy-based heuristic for sensor selection was introduced and applied to target localization. A semi-definite pro-
gramming (SDP) relaxation of a sensor selection problem aiming to minimize the determinant of the estimation error
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covariance matrix was proposed in Reference 10. In a target tracking problem,!! used an estimate of the mutual informa-
tion between a sensor’s observation and the target state (computed via particle filter) to evaluate a notion of information
gain. In Reference 12, an optimization method was proposed which maximizes Bayesian Fisher Information and mutual
information while minimizing the number of selected sensors. The system model introduced in Reference 13 resembles
the one in our present work. In Reference 13, a fusion center tracks a Gauss—-Markov process with incoming observations
from multiple remote sensors. A finite horizon optimization problem is proposed to identify a subset of sensors to be
transmit their measurements at each time step. The problem is solved heuristically by a reweighted ¢; relaxation. Sensor
selection in aircraft engine health monitoring was studied in Reference 14. In particular, the selection was performed via
evaluating entropy.

In this work we do not consider sensor selection, but rather sensor rate allocation. Rather than selecting a subset of
sensors, we formulate an optimization problem to minimize a weighted average of data rates from the sensor platforms
to the controller. Our present formulation offers additional flexibility; by choosing different weights, one can apply our
present formulation to a variety of physical layer resource allocation problems (cf. Section 2.6). Notably, we also consider
a system model where the sensors have strictly causal feedback access to the fusion center’s best estimate. In Section 2.1,
we argue that this is a reasonable assumption in several interesting and practical regimes.

Some of the prior art on control with communication constraints is also relevant to this work. The use of prefix-free
coding and entropy-coded dithered quantization (ECDQ) for a control subject to data rate constraints was motivated
by Silva et al.'> The work in Reference 15 was extended to the case of MIMO plants by Tanaka et al.* In Reference 16,
information-regularized control of a distributed system was studied with the objective of reducing intersubsystem com-
munication while maintaining adequate control cost. The notion of communication cost in Reference 16 resembles the
one of this present work. It was demonstrated that the optimal controller that jointly minimizes the control cost and
the required data rate for intersubsystem communications has a sparse structure. While the communication cost in our
present work is similar to the one in Reference 16, we consider a significantly different scenario—namely a distributed
sensing paradigm where multiple independent sensor platforms independently convey their measurements to a fusion
center. Our objective is to minimize bitrate while maintaining a constraint on the estimator mean squared error (MSE).

1.2.2 | Multiterminal rate-distortion

In this work, we address a problem that closely resembles the quadratic Gaussian CEO (chief executive/estimation offi-
cer) problem.!” In the CEO problem, the decoder, corresponding to the “executive” (analogous to the fusion center in this
work), receives messages from a set of encoders or “agents”. Each agent observes a measurement of some random state
variable that the executive would like to reconstruct. The tradeoff of interest is the sum rate of communication (usually
measured in terms of fixed-length coding) versus the distortion in the CEO’s estimate. Generally, it is assumed that the
agents’ measurements are conditionally independent, given the state, and that agents are not allowed to pool their data
beforehand. In the “quadratic Gaussian” version of this problem (cf. Reference 18), agents observe a Gaussian process
subject to independent additive Gaussian noise. The distortion metric is (block average) mean squared error. With an eye
to distributed tracking,'® analyzed a causal version of the general CEO problem. A rate-distortion formulation is proposed
where Massey’s directed information (cf. Reference 20) is minimized subject to a constraint on the CEO’s estimator dis-
tortion. This tradeoff is shown to be computable via a convex optimization in the Gaussian case. The rate loss due to the
lack of communication between the sensors is also analyzed.

In this work, we deviate from the formulation of the CEO problem in that we minimize a weighted average of the
data rates from sensor platforms to the fusion center, rather than just the sum rate. This is advantageous, for example,
in an application to physical layer resource allocation (cf. Section 2.6). Most coding schemes for the CEO problem use
fixed-length coding. We consider zero-delay uniquely decodable variable-length source coding, which may be advan-
tageous in practice. Finally, we consider a setting where the sensors have feedback access to the decoder’s estimate.
Unfortunately, our lower bounds on codeword length are not completely general (they are with respect to a particular
quantization scheme), and we have as-yet been unable to convexify the relevant optimization problem we derive.

It is worth mentioning that the CEO problem and the problem considered in this article are distinct from the stan-
dard vector Gaussian rate-disortion problem (which admits the well-known reverse water filling solution). Both the CEO
problem and the problem considered in this article are inherently sequential; they consider tracking a dynamical system
rather than and memoryless source. Even with a time-horizon of 1, the CEO problem and the scenario under investiga-
tion are fundamentally distributed source coding problems; in standard vector Gaussian rate-distortion, the compressor
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has access to the entire source vector. In contrast, in the present work we assume that a set of independent compressors
each has access to a scalar, linear, and potentially noisy measurement of the source vector.

1.2.3 | Resource allocation for control, estimation, and detection over wireless networks

Ultra-low latency reliable wireless communication (ULLRC) has been proposed as an enabler of next-generation net-
worked autonomous systems—in particular for control systems using wireless communication.?!?> In the 5G cellular
context, ULLRC is characterized by very short end-to-end latencies (on the order of a millisecond) and extremely small
error probabilities (on the order of 1073).22 In Reference 23 a prediction-communication co-design approach was proposed
with a network topology similar to the one considered in our present article. A nonconvex optimization was introduced to
minimize the bandwidth required to decode a fixed-length message subject to constraints on block error probability and
the probabilities of exceeding the latency or prediction error constraints. This approach was shown to effectively improve
the tradeoff between reliability and performance (measured in terms of the aforementioned error rate metrics). In this
work we consider a different notion of performance, namely estimator MSE. Our scheme is also able to dynamically allo-
cate wireless resources by means of effective source coding; we optimize the actual number of bits conveyed from the
sensors to the fusion center. In contrast to Reference 23, we do not include finite-blocklength channel coding in our anal-
ysis. In Reference 24, a general feedback control system using ULLRC is abstracted analogously to the CEO problem. The
executive is assumed to operate on a fixed schedule and is required to produce its actions by a hard real-time deadline.
Different agents make asynchronous linear/Gaussian measurements of a Gauss—-Markov dynamical system, and trans-
mit their measurements to the executive over a shared communication channel. The executive’s estimator performance
is measured in terms of MSE. Polling an observer incurs a communication cost (assumed known a priori), or airtime,
and a branch and bound approach is applied to schedule the optimal sequence of observers that can be polled before the
deadline. Our present work could be seen as optimizing the total (expected) airtime required to achieve some estimator
performance (cf. Section 2.6).

The recent survey®® on control systems incorporating wireless communication contains many relevant references,
several practical case studies, and a detailed overview of a framework for control/communication co-design. It is argued
that wireless systems for control applications should be dependable (measured in terms of control performance and sta-
bility), adaptive (reconfigurable), and efficient (with respect to the use of resources like time, bandwidth, and power). A
control-guided communication approach was proposed where messages are transmitted according to a self-triggered pro-
tocol. The approach was shown to be effective through experiments in a cyber-physical testbed. In this work, we consider
synchronous communication, which may be a necessity for control over congested networks. Our sensor rate allocation
scheme is also inherently dynamic; in simulation, we demonstrate that different subsets of sensors are assigned nonzero
bitrates over time. Furthermore, our choice to minimize bitrate allows us to draw a direct link between the utilization of
physical layer resources and estimator performance, improving efficiency (at least on average).

Some prior work on sensor fusion for decentralized detection is particularly relevant to our present investigation. In
Reference 26, a detection problem is considered where samples of a continuous-time signal are quantized at different rates
over time. Given a sampling strategy and a constraint on total bitrate, different fixed-length quantizers are designed for
each temporal sample using a criterion based on minimizing a notion of information loss. The approach in Reference 26
quantifies information loss in terms of general f-divergences. In Reference 27 several sensor platforms observe noisy
scalar measurements of some deterministic unknown parameter. These measurements are conveyed to a fusion center
whose goal is to test a hypothesis based on the deviation of the parameter from some known normal condition. A class
of “smart” sensors transmits unquantized measurements over error free channels, meanwhile a class of “dumb” sensors
transmits (fixed-length) quantized measurements over binary symmetric channels. Both a generalized likelihood ratio test
(GLRT) and a (computationally simpler) Rao test for the aformentioned model are derived and analyzed, and an optimal
quantizer design is pursued through nonconvex optimization. In Reference 28 a similar setup is considered with the
measurement model extended to include (possibly) nonlinear, noisy, vector measurements of the deterministic unknown
parameter. In Reference 28, each sensor can apply a linear precoder to its measurement before performing a fixed-length
quantization. The quantized measurements are conveyed to the fusion center over a noisy binary symmetric channel.
Again, both a GLRT and a (computationally simpler) Rao test are derived and analyzed. In particular, an asymptotic
performance characterization lead to an optimal design for a one-bit quantizer (given some choice of precoder). The
one-bit results are extended to multibit quantizers, and numerical study was performed to demonstrate that the Rao test
achieves comparable performance to the GLRT.
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In contrast to References 26-28 the focus of our present article is on estimation and tracking of a dynamical system as
opposed to detection. Furthermore, we consider variable-length source coding, in contrast to fixed-length quantization.

1.3 | Organization and notation

This article is organized as follows. Section 2 reviews ECDQ, defines the notion of communication cost, and connects
this cost to the mutual information (MI) between two Gaussian random variables that arise in Kalman filtering. The
sensor rate allocation (SRA) problem is proposed. We conclude the section with an application example motivated by
physical layer resource allocation in a remote sensing scenario. In Section 3, we show that the communication cost can be
written in terms of error covariance matrices from Kalman filtering. In these terms, we convert the SRA optimization to a
difference-of-convex program. Section 4 defines an iterative heuristic algorithm based on the convex-concave procedure
(CCP) to attack the resulting nonconvex optimization. Our numerical studies are introduced in Section 5. We provide
insight into the sparsity-promoting nature of our approach in Section 6. We conclude in Section 7.

Lower case boldface symbols such as x denote random variables and use the notation x;.; = (X1, ... ,X;) for subsets
of random variables from some discrete-time random process. We use standard information-theoretic notation from Ref-
erence 29: the entropy of a discrete random variable x is denoted by H(x), while the differential entropy of a continuous
random variable x is denoted by h(x). The mutual information between x and y is denoted by I(x;y), and the relative
entropy is denoted by D(-||-). S" represents the set of symmetric matrices of size n X n. X € S} or X > 0 indicates that X
is a positive semidefinite matrix, and X € S or X > 0 represents that X is a positive definite matrix. We denote the set
of natural numbers {1,2, ... ,M} as 1 : M, and the set of positive natural numbers as N*.

2 | PROBLEM FORMULATION

We consider discrete-time estimation of a Gauss—Markov source and assume the source is an n-dimensional random
process defined via

-
X1 = AX, + Fw,, w, ~N'(©,D), t=1,2, ..., T (1)

with initial condition x; ~ N(0, Pyj1), where Py € S and A € R™". We consider remote estimation over a star-like sen-
sor network, as shown in Figure 1. Each of the M sensors makes a noisy, scalar, linear measurement of the state vector. At
time ¢, sensor i observes a linear measurement of the plant with additive Gaussian noise. Denote the sensor’s measure-
ment matrix by C; € C*" and let U; € S” and denote the measurement noise covariance. Let the measurement noise at
the platform be given by u;; ~ N(0, U;) i.i.d over time. The ith sensor platform observes yi: = Cix + u;,. Concatenating
the measurements from each sensor into y, € CM, we have

Yy = Cx; +uy, (2a)
where
Yi: G up
ye=| + |, C=| |, w=| : [ (2b)
Y Cm U

We assume that the noises at different sensors are independent, for example, we assume that for all ¢

U = E(uu))
Uy 0 ... 0
o U, .. 0

- : : . | )
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FIGURE 1 Data fusion center and distributed sensors. “Q/E” represents the quantizer/encoder module whereas “D” represents the
decoder module

We assume that sensors must convey these measurements to the fusion center over a resource-constrained communica-
tion network, as detailed in the sequel. Throughout the article, we assume that the pair (A,C) is observable.

2.1 | Data fusion over resource-constrained network

We assume the platforms operate synchronously in discrete-time, analogous to a CAN-bus-like system. At time ¢, we
assume that sensor i encodes y;, into a binary codeword, say z;,, from a uniquely decodable variable-length code. The
length of the codeword z;,, in bits, is denoted ¢; ;. The expected length of #; , measures the bitrate of uplink communication
from the i™ sensor platform to the fusion center, and provides a notion of communication cost. In the CAN protocol,
a packet frame consists of a header and a tailer in addition to the data field. For the sake of simplicity, we neglect the
contributions from these components to the network’s bitrates. We assume that the uplink communication is reliable in
the sense that the packet z;, is received without error before time ¢ + 1.

Having received packets from each of the M platforms, the fusion center decodes packets and computes the
linear minimum mean-square error (LMMSE) estimate X,;. The fusion center also calculates a step-ahead predic-
tion X, based on least mean-square-error estimate X,; and the source process (1). Once the prediction X1
is calculated, the fusion center transmits the prediction back to all the sensors as shown in Figure 1. Access to
X:41: at the sensor platforms allows them to apply predictive quantization at time step ¢+ 1. Quantization and
encoding the innovation y;,,, — CiXyy;, rather than y;,,, directly, helps to reduce the expected codeword length
(cf. References 4 and 30).

We neglect the communication cost associated with the downlink communication and assume that the sensors receive
X:+1)¢ exactly. These assumptions are appropriate in a variety of circumstances. In one such scenario, the remote sensor
platforms could be battery-powered meanwhile the fusion center could have direct access to power lines. If the communi-
cation between the sensors and the fusion center is wireless, the sensor platforms could have strictly constrained transmit
powers meanwhile the fusion center could have no such constraint. In such a setting, the fusion center could encode an
extremely finely quantized version of X;,;|; and use an extremely high power to transmit this message reliably to all of the
M sensor platforms. In a scenario with time-division duplexing, the uplink and downlink time-share the same frequency
channel. As we discuss in Section 2.6, a reasonable notion of communication “cost” in terms of physical layer resources
used is the amount of time the frequency channel is occupied by uplink and downlink transmissions. We discuss this in
more detail in Section 2.6, however, at this stage it suffices to recognize that if the downlink transmit power is uncon-
strained, an arbitrary number of bits can be conveyed from the fusion center to the sensor platforms in a minimal amount
of time.
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It is also reasonable to neglect the downlink communication cost in a wireless communication scenario where each
remote sensor platform can easily “overhear” (e.g., decode reliably) the transmissions from other platforms ostensibly
directed to the fusion center. Formally, this is possible when, for each remote platform, the multicast capacity of the
channel from the given platform to the others exceeds the channel capacity from the given platform to the fusion center.
Essentially, this means that the channel capacity between any two platforms exceeds the capacity between any one plat-
form and the fusion center. This occurs, for example, in a line-of-sight communication setting where the distance between
the individual sensor platforms is small compared with the distance between the platforms and the fusion center. In this
case, each user can form the estimate X, simply based on the transmissions it overhears on the uplink—no downlink
communication is actually required.

2.2 | Entropy-coded dithered quantization

We assume that sensor platforms discretize, and encode their measurements into binary codewords, using entropy-coded
dithered quantization (ECDQ).3! Define a uniform scalar quantizer with sensitivity A via

Q@=ka if (k=3)a<z<(k+3)A @

Essentially, the function Q rounds its input to the nearest multiple of A. Dithering introduces intentional randomness
into the quantization process to make the quantization error tractable. Let z be a random variable that we would like to

encode, and let & ~ unif [—%, %] independent of z. Define the quantization
q=Qa(z +&). (3)

In general, q is a discrete random variable with countable support. Define the reconstruction

n=q-¢. (6)

It can be shown (cf. References 3 and 4) that
n=z+v, ™)

where v ~ unif [—%, %] and independent of z. Note that the same realization of the dither signal & is used in the

quantization and reconstruction steps.

Figure 2 illustrates the use of dithering in our communication network model. We assume that each sensor platform
shares a common dither signal with fusion center. At time ¢, denote the i platform’s dither signal &; ;- The stochastic
process (defined over time and platforms) {&;,}ie1:m.en+ consists of mutually independent uniform random variables

Ay Ai,t] ’ ®)

i ~ it [‘7’ 2

where the sensitivities A;; will be designed in the sequel. Define the dither processes to be independent of
{X:, Wi, U101 }ren, - At time ¢, platform i computes the Kalman innovation corresponding to its measurement via

0 = Yi: — CiXyjr-1. )

It then computes the dithered quantization
q;; = QAm(ei,l + éi,t)'

The sensor platform uses lossless variable-length entropy coding to encode q;, into a finite-length binary string. Denote
this codeword z;,. The length of z;; is a random variable, denote #;;. It can be shown that there exists a lossless source
code, adapted to the conditional probability mass function of q;, given &; ,, with expected codeword length satisfying [cf.
Reference 29(theorem 5.5.1 and exercise 5.28)]

H(q; ;) < E(Zin) < H(q; 1) + 1. (10)
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FIGURE 2 This figure gives an overview of the communication architecture between an individual sensor platform and the fusion
center. Note that the dither signal, £;, is assumed to be known at both the sensor platform and the fusion center. In practice, this “shared
randomness” can be accomplished by using synchronized pseudorandom number generators between each sensor platform and the fusion
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FIGURE 3 The net effect of the ECDQ scheme is that, from each sensor platform, the fusion center receives a linear measurement
corresponding to the platform’s Kalman innovation corrupted by additive uniform noise

Alternative, more tractable bounds on codeword length are developed in the next section. Since the binary communication
channel from the sensor platform to the fusion center is assumed to be reliable the sensor platform receives z;, exactly.
Since the entropy code is lossless, the decoder at the fusion center recovers q;, exactly. The decoder then computes the
dithered reconstruction

¢ =y — &ir (11)
Using (5,6,7) we have

(12)

A Ay
> |-

N, = 0 + vy, where v, ~ unif [—7, —

It can be shown that the random variables {V;; }ic1:pmren+ are mutually independent and independent of {0 }ic1: prsen+ >
An end-to-end model of entropy-coded dithered quantization is shown in Figure 3. The joint distributions of the random
variables in Figure 3 are identical to those in Figure 2.

2.3 | Communication cost approximation

We define the communication cost associated with the ith sensor over some time horizon T as the time-averaged expected
codeword length, for example,

T
Ri= 2 Y B, (13)
t=1

The communication cost (13) can be interpreted as the time-average rate of reliable (e.g., error-free) communication
required to convey the quantized measurements {q; l} _, (defined in Section 2.2) from the ith sensor to the fusion center.
Under several reasonable architectures from wireless communications, this cost is an effective surrogate for the (expected)
amount of physical layer resources consumed by the ith platform on the uplink (cf. Section 2.6). Equation (10) gave a
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FIGURE 4 A “jointly Gaussian” version of the architecture shown in Figure 3. The uniform noise in Figure 3 is replaced with
Gaussian noise with the same first and second-order statistics. The process defined by the random variables in this figure is jointly Gaussian
and has identical first and second moments to the process defined by the random variables in Figure 3

bound on E(#;;) in terms of a conditional entropy. In the following lemma, we express these bounds in terms of a mutual
information.

Lemma 1. For every sensor i and time step t, the expected codeword length satisfies

10i;m;) SE(Ci) < 1(Oi3mip) + 1,
where the mutual information is taken with respect to the joint distribution of 6;, and n;, induced by the model in Figure 3.
Proof. See Appendix A. n

Note that 6;; and n;, are non-Gaussian. Directly evaluating the mutual information I(0;; n;,) is rather difficult. In
Reference 32, an approach to evaluating this mutual information was proposed via defining a “jointly Gaussian” version
of the architecture in Figure 3, shown here in Figure 4. Define

Vi = —2. 14
=7 (14)
Essentially, the uniform quantization noise v;; in Figure 3 is replaced with additive Gaussian noise, independent over

sensors and time, with the same means and covariances, that is,
le[ ~ N(0,V,), independent over t,i, and independent of {X;}en+. (15)

Under this model, the measurements and reconstructions are jointly Gaussian, and denoted Gft and nft respectively.
Assume that the dynamical systems in Figures 3 and 4 have initial conditions with identical first and second moments. It
follows from the linearity of the models in Figures 3 and 4, and in particular the fact that the Kalman filter recursions are
identical, that the stochastic processes {xﬁt,xﬁt_l, 07, n%} =12, 1 and {Xqr, Xge—1, 01, M }i=12, .. 7 have identical first and
second moments.

The next lemma shows that I(6;,; n;,) can be bounded to within two bits of (91 1 [)

Lemma 2.
108 %) < 1@, mp) < 10%:n8) + = log @.
Proof. See Appendix B. [
Using Lemma 2, we can generate a new bound from Lemma 1 via
10%:1%) <E@i0) < 100 18) +1+ = log @ (16)
\_ﬁ,_._/

~1.254[bits]
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We will use the expression for I (Ol.Gt; r]l.Gt) to approximate the communication cost in (13). In particular we define R{ as the

approximate time-averaged expected bitrate for the ith sensor via
1 T
— G. .G
R = = Y IO a7)
t=1

Since Vft ~ N0, Aﬁt /12), the mutual information I (95; ng) is a function of the quantizer sensitivity A;,. Tuning the set
of sensitives allows us to adjust the data rates allocated to different sensors over time. We demonstrate this explicitly
in Section 3. In the remainder of this section, we will use some properties from Kalman filters to extend our notion of
“second-order equivalence” between the random variables in Figure 3 and Figure 4 to the case of multiple sensors, and
we define the sensor rate allocation problem.

2.4 | Linear minimum mean square error estimation

We consider sensor fusion in the setting that where the fusion center’s observations follow the models of either Figure 2
or Figure 4. In both cases, the fusion center uses a Kalman filter to recursively estimate x;. When all sensors conform to
the non-Gaussian model of Figure 2, at time ¢, the Kalman filter computes

X1 = the LMMSE estimate of x; given {1, }ic1:mke1:i-1 (18a)

and

X,: = the LMMSE estimate of x; given {#;; }ic1:mke1::- (18b)

Conversely, in the case where all sensors conform to the Gaussian model (cf. Figure 4), the LMMSE estimate computed
by the Kalman filter corresponds to the minimum mean square error (MMSE) estimate, for example,

)A(tcl}t—l = Ex| 77?: -1) (19a)

and

R, = E&nf). (19b)

Analogously to the previous section, if the initial conditions in both the Gaussian and non-Gaussian systems have iden-
tical means and covariance matrices, the Kalman filter recursions, in particular the achieved mean squared errors, are
identical. Thus, for any fixed choice of quantizer sensitives A;; the estimator in Figure 2 (equivalently, Figure 3) achieves
the same MSE performance as the estimator in Figure 4.

Let U be the diagonal matrix defined in (3) and let V; be a diagonal matrix such with the V;,s as diagonal entries that is,

ST 0
12
0 0
V= 2o . (20)
0o o .. M

12
The Kalman gain at time ¢ is given by the forward Riccati recursion via
Li = Py1CT(CPy1 CT + U + V)7l (21)

. . . . oG . &G
Define P, € S", and Py, € S'}, as the estimation error covariances Py, := Cov(x; — Xz|z) and Py = Cov(Xq — X, +1|t).
These matrices satisfy the recursion

Pl=pP! +CcT(WU+V)'C, (22a)

tt t|t-1

P = AP[|¢AT + FFT. (22b)
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We reiterate that due to the “second-order equivalence” between the Gaussian and non-Gaussian systems, we have for
<G el
all ¢ that Cov(x; — tht) = Py; and Cov(Xs41 — Xt+1|t) = Pryye

2.5 | The sensor rate allocation (SRA) problem

We now propose the optimization problem to be studied in the remainder of this article. We propose to minimize a
weighted average of the approximate data rates R} assigned to each sensor i = 1,2, ... , M subject to the constraint that
the MSE performance of the fusion center’s estimator does not exceed . Define a set of positive weights a;,i €1 : M to
represent the cost of transmitting a single bit from platform i to the fusion center. The total communication cost is Zfi 1%R;,
where R; is defined in (13). The approximate cost, defined in terms of the approximate bitrates (cf. (17)), is defined as
Z?ilain. Our decision variables are the sensor platforms’ quantizer sensitivities, for example, {A;;}ic1:mre1:7- Via (20),
it can be seen that for any time ¢ the set of feasible quantizer sensitivities are in one-to-one correspondence with the set
of diagonal, positive semidefinite matrices. Let the set of positive semidefinite diagonal M x M matrices be denoted D*.
For f the constraint on the fusion center’s MSE, we define the sensor rate allocation problem as

min = aIO 5 23a
iy Z}Z} (050, (23a)
tel:T
1 N
s.t. ?Z]Enxt — % l* < B (23b)
t=1

Say {V;}L is a feasible solution of (23) and f* is the attained value. Choosing the quantization sensitivities such that

A?
1” = V* guarantees a communication cost satisfying

M M
YR <f* + (1 +10g @) x Y a (24)
i=1 i=1

We also consider the infinite horizon problem where the quantizer sensitivities are time invariant, namely

T M
mm lim sup— Zz(xll (9 o [) (25a)
VeID) = 1i=1
tel: T
s.t. lim sup= ZE”X[ Ryell? < B (25b)

T—oo [_

Essentially, the optimal solution to the problem (25) can be interpreted as the best time-invariant solution to the
infinite-horizon SRA problem. The analysis of time-varying solutions to the SRA problem presents an opportunity
for future work (cf. Section 7). In the following subsection, we describe an application of the sensor rate allocation
optimization to resource management in remote sensing scenario.

2.6 | Application example: Physical layer resource allocation

The minimizations in (23) and (25) can be applied to a variety of resource allocation problems in wireless (and, in princi-
ple, wireline) communication systems. By choosing the weights «; in (25) appropriately, we can design a data compression
scheme that seeks to minimize the number of physical layer resources required to achieve the required estimator per-
formance at the fusion center. As an example, we consider a setup similar to the one proposed in Reference 24, where
several remote sensing platforms communicate their observations to a data fusion center over a shared wireless medium.
We present a simple example to conclude this section.

Consider the case where several remote sensors, using a fixed uplink transmit power Py (in Watts), communi-
cate their measurements to the fusion center via time-division multiple access (TDMA) over a channel of passband
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bandwidth B (in Hz). In such a system, the platforms take turns transmitting their measurements over the same
bandlimited channel—see Figure 5. We assume that the ith sensor platform is at a range of r; from the fusion center,
that all sensor platforms have identical transmission systems, and that the channel from each sensor to the fusion center
is line-of-sight. The amount of power received from transmitter i depends on range, as well as a variety of factors, like
the gains from the antenna systems and the losses from other components. We let L encapsulate the factors that do not
depend on the range—in the present case L is assumed the same for all transmitters. The additive noise at the receiver is
assumed to be white and Gaussian with power spectral density Ny. Since only one sensor platform transmits at any given
time, the effective channel between the ith transmitter and the fusion center is a point-to-point additive white Gaussian
noise (AWGN) channel with a signal-to-noise ratio (SNR) of

P
SNR; = L———. (26)
}’l. BNO

The capacity of the wireless channel from receiver i to the fusion center is
C; = Blog,(1 + SNR;) bits/second, 27)

which is the maximum reliable (e.g., error-free) data-rate that can be sustained from the ith transmitter to the receiver.
The airtime, t;, in seconds, required to send b; bits from the ith sensor platform to the fusion center is lower bounded via

(=

Tj > d . (28)

Qf

This bound is in general loose, as the zero-error channel capacity is achievable only asymptotically (cf. Reference 33).
However, with modern error-correcting codes (including low-density parity-check and turbo codes) it is possible to com-
municate with very small error probability near the capacity for the point-to-point AWGN channel.>* We thus make the
assumption that

b;

a. (29)

T~

In particular, the airtime is directly proportional to the energy expended on communication. Under the assumption that
all the sensor platforms use the same transmit power, the energy expended to transmit b; bits is E; = Pyr1;.

If the system uses time-division duplexing in addition to TDMA, the downlink communication also time-shares the
same frequency channel shared between the uplink users. Let N; denote the noise power spectral density of the channel
from the fusion center to the ith user, and let 67, = max; N;r?. Assuming line-of-sight communication, and that the
fusion center feeds back a message containing bpy, bits to all of the remote platforms, the airtime used by the downlink
can be approximated by

bpL
. . 30
™ log,(1 + LPpy./(B62,,)) G0

Note that for a fixed downlink message size bpr, 7pr decreases to 0 as Ppy, increases. Thus, we claim that in a setting
where the uplink is subject to a strict power constraint (as appropriate, for example, if the users are battery-powered) and
the downlink power constraint, Ppy, is sufficiently high it is reasonable to assume that the fusion center can feed back a
finely quantized version X;—; to the users using a negligible airtime.

Minimizing the uplink airtime of a sensing task has a great deal of utility. It minimizes the amount of energy the
network spends on uplink communication. Furthermore, completing a sensing task with the minimum airtime is use-
ful in and of itself, as it may allow other users and systems the opportunity to access the channel without causing (or
experiencing) additional interference. If we make the choice

1
o ==, 31
= (1)
the optimizations in (23) can be seen as minimizing the expected airtime (and, consequently, the energy expended on
communication) required to complete the sensing task in the finite horizon. Note that the expected airtime expended

sdig) SUOIPUOD) PuE w1 A4 908 “[$Z0Z/10/9T] U0 ATeIqIT SUIUO ASTIAN “SOHEIQIT SEXOL JO ANSIAIUL AQ 9L09"9U1/Z00 1"01/10p/WOY Ad[1m Areaqijour[uoy/:sdny wioly papeojumod 1 ‘€20z ‘6€Z16601

10)/W00" A3 1M"

ASURDIT SUOWWIO)) dANEaI) d[qearjdde ay) Aq pauIaa0d axe saoIIE () asn JO SO[NI 10} A1eIqI AUIUQ A3[IA UO (SUOTIPUOD-P



JUNG ET AL. W] LEY 249

ﬁ— Sensor 2 Sensor 3
="

«_—————

Fusion
Center

Time division multiple access
(TDMA)

All sensor platforms access the
same bandlimited channel. One
platform transmits at any given
time. We assume all platforms
use the same transmit power.

Power

FIGURE 5 In thisexample, the different sensor platforms relay their measurements to the fusion center over a common wireless link
using TDMA (see inset)

by each sensor can vary over sampling periods, since at sampling period ¢ sensor i will send an average of about
[T(x;; nf,lnfi ,_1) +1.254] bits, where the mutual information is computed under the probability measure imposed by the
minimizing policy.

It should be noted that, due to our use of variable-length coding, the required airtime depends on the length of the
codeword and is thus a random variable. In delay-tolerant applications, this may not be much of a problem. However,
assume the sample rate of the sensors is fixed at Ts. The network will become congested if, during any sampling period, the
required airtime exceeds Ty. In this setting, new measurements are being produced at a rate faster than the communication
delay—more complicated scheduling algorithms may be required to ensure that the fusion center estimator achieves the
desired performance by any real-time deadline (see, e.g., Reference 24). If the expected airtime, per sampling period,
obtained from the optimization (23) is small compared to T;, the Markov inequality can be used to derive a simple bound
on the congestion probability. These ideas can be extended to more general types of communication channels (e.g., fading
channels) and corresponding more general notions of capacity.

3 | CONVERSIONTO DIFFERENCE-OF-CONVEX PROBLEM

In this section, we reformulate (23) and (25) as difference of convex (DC) optimization problems.

3.1 | Reformulation of mutual information
The mutual information (23a) can be expressed as:
167 m5) = h(n,) — h(n, |67,
= h(Ci(x; — &(j,_y) + Wi + V§) — h(0F, + V7|05
1 1
=3 10g(CiPyi—1C] + Ui+ Viy) — 5 log(Vi). (32)

Introducing the new variables Q-1 := Pt_ltl—l’ Qe = Pt_ltl and &;; := (U; + Vi)™, we can rewrite the expression derived
for I(G‘.i; n°) in (32) as

L
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i tt-1""i

1 _ 1 _ _ _
167:n7) = -3 log(5;;" — Ui) — 3 log (5, + C:Q,_,CH™!

min % logwi; — % logyi,
Wit Vit
=19s.t. Vi > (51-71 -U), (33)
vie < (5 + QL N
‘. 1 1
min 3 logyi; — 5 log yis
ViesYie
o 0utUi Oy
— ) S.t. Uiéi,t Ui 0 = O, (34)
51"[ 0 Yit
St — i 5:.C:
it — Vit it L > 0.
Clo  Qua+Cl6,Ci

L

The slack variables y;; and y;; were introduced in (33). To obtain the first inequality constraint in (34), the Schur com-
plement lemma is applied to the first constraint in (33). Likewise, the second inequality constraint in (34) follows from
expanding the second inequality in (33) before applying the Shur complement lemma.

3.2 | Reformulation of mean square error

Using the variable Qy;, the fusion center’s estimator MSE (23b) can be written as

. min Tr(Sy)
min Tr(S;) S
Ellx; — ?A(t|t||2 = Tr(Py) = Tr(Qﬁtl) =4 S = S, I . (35)
s.t. Qatl <S; s.t. =0
I Qu
The final step of (35) follows from Schur complement formula.
3.3 | Reformulation of the original problem (23)
Using (22), (34), and (35), problem (23) can be reformulated as:
R
min =3 3 = (ogyi, — logy,). (362)
=1 i=1
ot 0uUp Oy
S.t. Ui5i,t Ui 0 = 0, (36b)
Oit 0w
l,tT Vit it :— >0, (36¢)
Ci oy Qui-1+C; 61,C;
T
Sy I
‘ >0, =3 1e(s) < 4. (36d)
I Qt|t T t=1
M
Que = Qg1 + 25i,tC1~TCi, (36e)
i=1

- - T T
Qt|t1—1 = AQ:—11|z—1A +FF, (36f)
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where the decision variables are [y;;, 6, yi¢), fori=1, ... ,Mand t =1, ,T,S; fort=1, , T, and [Qy, Qyjr—1] for
t=2,...,T. The constraints (36e) and (36f) are imposed for ¢ = 2 T startmg from Q1|1 = P1|1 All constraints in
problem (36) are convex except (36f). In the following proposition, we show the nonconvex constraint (36f) can be replaced
by a convex constraint without changing the nature of the problem. More precisely, we show that the equality in (36f) can

be replaced by an inequality and we can solve (37), instead of (36), to obtain the optimal rate allocation.

min —ZZ—(log vis —logyis), (37a)
t=1 i=1
o 0 Ui Ot
S.t. Uitsi!t Ui 0 = 0, (37b)
Ot 0 Vit
l,[T Vit it fr >0, (370)
Ci Oit Qqe—1 + Cl- 01:C;
T
S, I
f >0, L3Sy < . (37d)
I Qq (s
M
Que = Qi1 + ),81,C) G, (37¢)
i=1
Qi = AQ AT +FF'. (37f)
Proposition 1. Let [y/”, i ”, Sy, ;klt’ i 1] be the optimal solution for (37). Then, [1// ”, ”, Sy, :T; ;‘l";_l] is the
optimal solution for (36), where Q[| ,and Q[| 1, are calculated recursively by
sk — ok T T
Qt|t—11 =AQ” 1|} A +FF, (38a)
* T
t|t tlt 1 + Zéltcl is (38b)

starting from Q*l‘ll. Moreover, if we denote the optimal values of (36) and (37) by J} and J, respectively, we have J; = J;.

1|1

Proof. See Appendix C. n

Constraint (37f) can be written as an equivalent linear matrix inequality (LMI)*> condition. Therefore, problem (23)
can be written as:

min —ZZ—(IOgvm log i), (39a)
t=1 i=1
ot 0itUi  Oiy
S.t. Ui5i,t Ul‘ 0 = 0, (39b)
Oit 0 Vit
S — v 5:.C:
l,tT Vit it :— >0, (39C)
Ci Oit Qqe—1 + Ci 01:Ci
T
S, I
SN RS ¥ R (390)
I Qq Tt:l
M
Qui = Quer + . 81C] Ci. (39%)

i=1
Q-1 Q1A Qe F
ATQui-1 Q1)1 0 = 0. (39f)
FTQqi1 0 I
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Itis simple to verify that (39) is the minimization of the difference of two convex functions subject to convex constraints
and thus it is an instance of a difference-of-convex program. The infinite horizon (time-invariant) counterpart of (39) can
be formulated as:

M

min ;%(log wi —logyy), (40a)
o; o;U; 6

S.t. U;6; U; 0|=0,Vi=1, ... ,M, (40b)
0; 0 w

l‘si —no G ] >0,Vi=1,..,M, (40c)
cTs,  Q+CTaC

M
Q=Q+).6C/Ci, TH(S) < B, (40d)
i=1

s Q QA QF
L ]>o, ATQ Q o0 |>0. (40e)
Q FTO o I

4 | CONVEX-CONCAVE PROCEDURE (CCP)

In this section, we develop an iterative algorithm based on the convex-concave procedure (CCP)° to find local minima of
the time-varying and time-invariant sensor data-rate allocation problems (39) and (40). CCP starts by over-approximating
the nonconvex terms of the DC program via linearization around a nominal point. The resulting convex problem can then
be solved efficiently, and the algorithm iterates by convexifying the problem around the obtained solution. The process
terminates when a local minimum is found. Starting from a feasible nominal point, as it is shown in Reference 5, all

subsequent iterations will be feasible and the algorithm converges to a local minima.
We now show how the CCP algorithm operates for the time-invariant problem (40). For this problem, we linearize
the concave term log y; around the nominal point §; which gives an upper bound as logy; < %(Wi — ;) + log ;. Thus,

at each iteration of CCP algorithm we solve:

M
min Y i/ = 1+ log i — log ), (412)
i=1

s.t.  (40b) — (40e). (41b)

. . ~k . . .
If we denote the solution of (41) at iteration k by (w, 6, vF, S, Q¥, Q"), atiteration k + 1 (41) is solved for §; = y/. Note
that the optimal value of (41) is an upper bound for the optimal value of (40) with same decision variables S, Q, Q, y;, 5;, and

Algorithm 1. Convex-concave procedure (CCP)

Set tolerance sufficiently small;
Set initial value §; « 1fori=1,2,...,M;
fork=1,2,... do
solve (41).
(wk, 8%, vk, Sk, Q¥, Q%) « Obtain optimal solution;
f* « Optimal value of (41);
Update @i <y fori=1: M;
if f&-1 — f* < tolerance then
break;
end if
end for
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yifori=1, ... ,M. The CCP algorithm we use to perform the time-invariant optimization (40) is outlined in Algorithm 1.
A similar algorithm can be used to solve (39). Problem (41) is a log-det minimization and can be solved via SDP solvers
in polynominal time.*® As it will be demonstrated in Section 5, in our simulations Algorithm 1 tends to converge in a few
tens of CCP iterations.

5 | NUMERICAL ANALYSIS

In this section, we present two numerical simulations showing the effectiveness of Algorithm 1. In both studies, we
optimize the sum bitrate by setting a; = 1 for all sensors.

5.1 | Heat diffusion system

We first consider the problem of estimating the temperature distribution over a time-invariant 1D heat diffusion sys-

tem.>” We consider a slender concrete rod that is 15 m long. The length of the rod is equally divided by 60 nodes. The
continuous-time heat diffusion system matrix A is given by

where a = 7.5x 107"m?/s is the thermal diffusivity and h = 0.2459 m is the length of each segment. We assume the
system is driven by a random heat input at each node. Let E; =1 — %Ac and Ay =1+ %Ac. We consider tracking the
temperature of the rod at each node. A discrete-time model for this system of the form (1) is found by setting

A=E'Aq, and (422)
F=1I (42b)

In these simulations, we set A; = 1. Our set of sensor platforms is a thermometer placed at each node; we assume that the
thermometers can measure the node’s temperature noiselessly. Let e; for i € 1 : 60 denote unit vectors from the standard
basis. Formally, the measurement matrix for the i sensor is
C = eieiT. (43)

The measurement data is transmitted to a data fusion center over a communication network as described in Section 2.

Figure 6 shows the performance of Algorithm 1 as a function of the number of CCP iterations assuming that the
constraint on the fusion center’s MSE is # = 0.1. The algorithm is initialized with an equal data rate (quantizer sensitivity)
assigned to each sensor. Figure 6A plots the sum data rate obtained by the solution obtained after a given number of CCP
iterations, while Figure 6B shows the data rates assigned to each sensor after each such iteration. In Figure 6B the assigned
data rate is presented as color-coded block at each iteration. Figure 6A,B demonstrate that both the total data rate for the
network, and the data rates assigned to each sensor platform, converge after a sufficient number of CCP iterations.

Figure 7 shows the data rate allocation obtained at convergence (i.e., after a sufficient number of CCP iterations) for
three different values of . We observe that a similar subset of sensors are given nonzero data rates for all three g values.
As one might expect, the allocated data rates to individual sensors decrease as f increases. Increasing f corresponds to a
less stringent demand on the performance of the fusion center’s estimator MSE; a less demanding MSE constraint means
that satisfactory performance can be achieved with less bitrate. Moreover, it is seen that more sensors are allocated zero
data rate as § increases.
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FIGURE 6 These plots show optimized data rates found after a given number of CCP iterations with a MSE constraint of § = 0.1. In
plot (A), the total data rate is illustrated. Plot (B) illustrates the data rates allocated to individual sensors. The data rates are represented as
color-coded blocks
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FIGURE 7 Data rate allocation obtained by CCP with (A) f=0.1(B)f=1(C) =10
To confirm this last observation, Figure 8 illustrates the number of sensors allocated nonzero data rate after a sufficient
number of CCP iterations as f is varied from 1 to 180. The number of sensors tends to decrease, but is somewhat stagnant

in the middle of the beta range. The relationship is not necessarily monotone. This plot demonstrates a sparsity-promoting
property of the proposed data rate allocation method.

5.2 | Target tracking by a drone swarm

Next, we consider the problem tracking multiple moving targets using a radar signal and multiple drones. As in
Reference 38, we consider a scenario in which a base station, which also serves and the data fusion center, illuminates
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FIGURE 8 Number of sensors allocated nonzero data rate by CCP tested over the range 1 < f < 180

the set of targets with a radar signal. A set of drones, nominally the sensor platforms, make time-delay and Doppler
measurements of the radar signal reflected by the targets. The drones transmit these measurements back to the data fusion
center, where the targets’ positions are estimated by an extended Kalman filter (EKF). Unlike the previous example, the
system “C” matrix in (2) is time-varying as the relative positions of the drones with respect to the targets change over
time. Therefore, we consider an approach to recalculate the rate allocation at every time step by an repetitive executions
of Algorithm 1. To improve computational efficiency, we adopt a “warm start” implementation of Algorithm 1 at every
time step, that is, the optimal allocation from the previous time step is used as the initial condition for the CCP iteration
in the next time step.

We assume there are five targets in the entire 2D environment. Each target is assumed to be a point mass driven by
a random force which is modeled as an i.i.d. Gaussian process noise. The state vector to be estimated in this simulation
study is therefore (1) with

.
2
xt=[xt1 X2 x x xts] e R¥,

where x; = [pjm Pye Vi v;,’t] are the position and the velocity of the ith target. Let

1 0 A O

01 0 A
ATarget =

00 1 O

0o 0 0 1

where A;=1 1is the step sizee The A matrix for the five target system is given by A=
diag(ATarget, AfTarget, ATarget> ATarget> ATarget)- Likewise, let

V10 0 0 0
0 10 0 O
FTarget =
0 0 1 0
0 0 01

The F matrix for the five target system is defined as F = diag(Frarget, Frarget> Frargets Frarget> Frarget)-
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FIGURE 9 Target tracking simulation result in 5 separate regions. 1 target (red line) and 5 drones (other color lines) are in each region

As shown in Figure 9, we assume that five drones are available in the neighborhood of each target (so there are

25 drones in total). Each drone is modeled as a point mass in a 2D plane. Let (p;‘{t, p;‘jt) be the coordinate of the jth

drone in the neighborhood of the i-th target, and (v;‘i[,v;‘it) be its velocity. Drones are controlled by the data fusion
center to track the target. In this simulation, we assume that a PD control with acceleration input is used for each

drone:

- y . " . ik . ik .
a;‘{t = KP(p;c,t - p;c‘{l) + KD(lec,t - v;c{t) - ZLP(p;c,t - ;c‘{l) - ZLD(v;,t - v;c‘{t)’

k#j k#j
ij _ i ij N ij ik ij ik ij
), = Kp(py, — p)l) + Ko, =) = D Lol — pl) = Y Lok — v, (44)
k#j k#j

Here, (i);t ﬁ;’t, f)i?t, f);,t) is the estimated state of the target i computed by the data fusion center using the EKF described
below. The gains Kp and K are tuned to keep the drones close to the target, whereas gains Lp and Lp are selected so that
drones in the same neighborhood stay away from each other.

At every time step, the base station illuminates the targets with a radar signal. We assume that
the reflected signal from the ith target is observed by the drones in the ith region. Each drone in the
ith region obtains a two-dimensional measurement of the i-th target. The jth drone in the ith region
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FIGURE 10 Optimized data rates over 15 time steps, with 15 iterations of the CCP algorithm performed per timestep. The MSE
constraint is # = 1. (A) demonstrates the convergence of the CCP algorithm from the warm start solutions—when the time index on the
horizontal axis updates from time ¢ — 1 to time ¢, the optimization is restarted for the system matrices at time ¢. In between times ¢t and ¢ + 1,
we plot the communication cost obtained for fifteen iterations of the CCP algorithm. (B) illustrates the data rates assigned to each sensor at
the convergence of the CCP algorithm (nominally 15 iterations) at each time step. The assigned data rates are represented by color-coded
blocks

receives Doppler ff‘i and time delay Y measurements of the reflected radar signal, which are given by

t
Zhan et al.:?8

L pl +viphy 0L, =Vl - pY D)+ O, = v)(p! -p)
f‘tl’] — e : N pAE 'y,[ + i t t »t y[ , (45)
\/ ;,t)Z + (P;,,[)z \/(p;[ - px t)2 + (p;;t py[
ol =\ + 0,0+ 0L, = B+ L, (46)

Since (45) and (46) are nonlinear observations of the state vector x;, we linearize them around the current best estimate
([);t ﬁ;,t, f);,t, f);‘t), where these estimates are recursively computed using the EKF.

Figure 9 shows the scenario described above simulated for 1000 time steps. Blue circles represent neighbor-
hood regions of each target, and there are five drones in each region. The target trajectory is presented as red
line and drone trajectories in other colors. Based on the calculated position and velocity of target and drones, we
apply the CCP iterations in each time step. Figure 10 shows the rate allocation obtained as the CCP iterations
converge in each time step. In Figure 10A we plot the total data rate allocation, while in Figure 10B we illus-
trate the assigned data rates to individual sensors, at each time step, at the convergence of the CCP algorithm
(nominally 15 iterations). Note that there are 50 possible sensors, since each of the 25 drones receives both range
and Doppler measurements. The result changes over time, reflecting the time-varying nature of the considered
problem.

To gain further insight, Figure 11 shows the data rate allocated to drones in region 1 and their spatial positions at time
step ¢t = 70. Figure 11A indicates that nonzero data rates (yellow color block) are given only to sensors 2, 3, 7, and 8, which
correspond to the delay and Doppler measurements obtained from drones 2 and 3. Figure 11C indicates that drones 2 and
3 are the left-most and right-most vehicles in the formation.
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FIGURE 11 Datarate allocation in Region 1 at t=70 (8 = 1). In (A), we show the data rate allocation to each sensor after a given
number of CCP iterations. Indices 1-5 in (A) correspond to the time delay measurements Ttl J, j=1, ...,5, while indices 6-10 correspond to
the Doppler estimates ftl’j, j=1,...,5.In(B), we plot the total data rate allocation against the number of CCP iterations. In (C) we plot the
physical position of the target (TGT) and drones. Dotted lines are drawn from drones allocated a nonzero data rate to the target. It is seen that
the two drones allocated nonzero data rates have the largest possible angular spread, and, in a sense, the most “different” measurements,
among pairs of drones

6 | DISCUSSION

As observed in Section 5, the SRA formulation (25) (similarly, (23)) admits sparse solutions, that is, for several sensors we
have §; = 0. In this section, we take a closer look at the mathematical structure of the SRA problem. We first remark that
the sparsity-promoting nature of the solution can be attributed to the mathematical structure of the communication cost.
The communication cost in (37a) is reminiscent of the sum-of-logs regularizer, a widely used heuristic to induce sparse
solutions.*

To develop further insight, we consider a special case of sensor rate allocation problem for which the closed-form
solution is available. Consider a scalar system described by

iid.
X1 = axX; +fW[, th’l" .A/(O, 1),

and a single measurement

iid.
n, =X; + vy, Vi ~ N(O, Vt)

Since the system is observable, P £ lim,_ Py, exists and is computed by the algebraic Riccati equation (ARE)
Pl=@P+fH 1 +v (47)

where V £ lim sup,_, V. The time-invariant rate allocation problem (25) for this system is
2
. , P
g‘l/lzr%] log <a + P >
st. P<p
Pl=(@P+fHy 4Vl (48)
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Denote by P = g(V) the unique positive solution to the ARE (47). It can be shown that g(V) is a strictly increasing, and

2 .
{ " ] . Therefore, problem (48) can be equivalently

thus invertible, function of V with a bounded range [g(O) =0,g(c0) = :

written as
2
- 2 I
mp e (¢ +5)
st. PLp

2
P<f

<1 (49)

It is straightforward to verify that the minimizer of (49) is P* = min { B, 1’: 2a } and the optimal value of (49) is

2

T 1-a?’
responds to the condition when it is optimal to allot zero data rate to the sensor. This partly explains the sparse nature
of the solutions we observed in Section 5. It is worth noting that problem (49) is equivalent to the scalar infinite-horizon

sequential rate-distortion problem studied in References 40 and 41.

min {0, log <a2 + f;;) } The P* is obtained by adopting V* = g~1(P*). The condition P* = - - leading to V* = oo, cor-

7 | CONCLUSION

In this article, we considered a sensor data rate allocation problem for dynamic sensor fusion over resource restricted
communication networks. Using a system model motivated by practical remote sensing scenarios and well-understood
methods of zero delay source coding, we proposed a data rate allocation problem between a group of remote sensors
and a fusion center. We reformulated this problem using information-theoretic tools and ideas from Kalman filtering.
Our proposed optimization took the form of a difference-of-convex program. We applied the CCP algorithm to find a
heuristic solution. We conducted a numerical study on a 1D heat transfer model and on a 2D target tracking by drone
swarm scenario. Our numerical results suggest that the proposed approach is sparsity-promoting. By considering a
limiting case of the SRA problem that admitted an analytical solution, we gained insight into the sparsity-promoting
property.

Possible directions for future research include analyzing the nonconvexity of the SRA problem and develop-
ing computationally efficient algorithms to a perform the minimization. In particular, when considering the infinite
horizon sensor resource allocation problem, we restricted our optimization to time-invariant rate allocations (i.e.,
time-invariant quantizer sensitivities). The existence (or lack thereof) of time-varying (e.g., periodic) solutions that out-
perform optimal time-invariant solutions is an interesting question that presents an opportunity for future work. In
Reference 42, the optimality of time-invariant solutions is established for a related (but not equivalent) problem called
the sequential rate-distortion (SRD) problem. The convexity of the multistage SRD problem allows one to effectively
“single-letterize” the optimization. Unfortunately, in our current setting, the multistage SRA problem (e.g., Equation (36))
is not a convex program. This makes it difficult to apply the proof techniques from Reference 42 to the present
setup.

Extensions to unreliable networks are attractive avenues for future research. Notably, our notion of airtime in
Section 2.6 relied infinite blocklength expressions for channel capacity. It would be interesting to incorporate modern
tools from finite blocklength information theory (cf. Reference 33) to better quantify “real world” communication costs
and notions of reliability. Likewise, our numerical simulations in Section 5 assumed reliable communication channels.
Incorporating realistic physical layer channel impairments into simulations like those in Section 5 presents another excit-
ing opportunity for future investigations. Finally, it may also be possible to discover a more illuminating connection to
the CEO problem.
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APPENDIX A. PROOF OF LEMMA 1

Recall thatn;, = q;, — &;,. Thus
H(q; &) = H(m, | ). (A1)

Thus, by (10), we have
H(n; &) < E@ip) < Hyl&;) + 1. (A2)

Under the joint distribution of €;, and 7;, induced by the model in Figure 2 it can be shown that [(cf. References 3
and Reference 4(lemma 1)]

H(m &) = 1O m;0)- (A3)

The results of the previous section show that the joint distribution of 8;, and »;, induced by the model in Figure 3 is
equivalent to the joint distribution induced by Figure 2. Substituting (A3) into (A2) completes the proof.

APPENDIX B. PROOF OF LEMMA 2
To see the upper bound, first expand the mutual information in terms of differential entropy

1(0:; M) = h(n;) — h(m;410:0) (B1)

= h(n;,) — h(n;; — 0:410:) (B2)
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= h(n;,) — h(vi,), (B3)

where (B2) follows from the definition of 7;, and (B3) follows since v;; and 6;, are independent (cf. below (12)).
Likewise

167 m5) = h(n?) — h(vy)). (B4)

Gaussian random variables have the maximum entropy among all random variables with the same variance [cf.
Reference 29(theorem 8.6.5)]. Thus, we have
h(,) < h(nl). (B5)

Furthermore, by applying the definition of differential entropy, expanding the PDF of vl.Gt, and recalling that vﬁ and
v, have the same variance, we have

h(vi;) = h(V ) — D(szIIVl ) (B6)
27re
= h(v ) — —1 12 (B7)

Thus, recalling both (B4) and (B1), and subtracting both sides of (B6) from the respective sides of (B5) gives

On the other hand, the lower bound follows from Reference 32(Lemma C.1).

APPENDIX C. PROOF OF PROPOSITION 1

As the first step of the proof, we show by induction that for t = 1, ... , T, we have
Q= Qs (Cla)
Qt+1|t - Qz+1|z (Clb)
For the initial step, (C1a) trivially holds as 1“ 1|1 by construction. Note that §|*1_1 = AQ;‘T1 1AT + FFT by con-
struction, and Q > AlellAT + FF7 since Q) and Q2|1 are feasible solution to (36f). Thus ;l*l‘l Q ! or equivalently
2“ Q2|1 Therefore relation (C1) holds for ¢t = 1. For the induction step, we assume (C1) holds for t = k(> 1):
Qerik = Qe (C2b)

and we show that (C1) holds for t = k + 1. From (36¢) and (37e) we have

N
Qk+1|k+1 k+1|k + 251 k+1C; Ci and

Qk+1|k+1 - Qk+1|k + 251 k+1 z

Thus, (C2b) directly implies

Qk+1|k+1 - Qk+1|k+1 (C3)
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Substituting Qk+1| 1y DO (36€), we have
Qiiatier = AQ A’ + FFT (C4a)
<AQ AT +FFT (C4b)
< Qk+2|k+1’ (C40)

) is a feasible solution satisfying (37e).

where (C4b) is due to (C3). The last inequality holds since (QZ+1| ka1’ Qlt+2| a1

(C4) implies

Qk+2|k+1 - Qk+2|k+1 (CS)
Inequalities (C3) and (C5) establish the relation (C1) for t = k + 1 and thus for any t = 1 : T. This completes the first
step of the proof.
The proof can be completed as follows. Let 5 * be the optimal value of (37) attained by [u/l 0 t, y w Sy, txl . Q* i .. From
(C1), we have

0< 5; - 7/iﬂjt 5* Gi 571 - y:t 5'* Ci
Cl.Tél.*t + CT5* Ci Cl.TélT"[ + CTS* C;

t|t 1 Ilt 1

ls;‘ I ] ls; I ]
0< < .
* Kk
1 t)t I 1|t
ok S* Q** o ]IS

Moreover, (Q** e Qe » satisfies the equality constraints (38) by construction. This means that 1798 l S [, Qe Qs
a feasible solution of equation (36) and it obtains the value J3. Therefore, J;' < J;. However, (36) has more strict constraint
than (37) which immediately implies J; > J;. Therefore, J; = J;.

and
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