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a b s t r a c t

Although perception is an increasingly dominant portion of the overall computational cost for
autonomous systems, only a fraction of the information perceived is likely to be relevant to the current
task. To alleviate these perception costs, we develop a novel simultaneous perception–action design
framework wherein an agent senses only the task-relevant information. This formulation differs from
that of a partially observable Markov decision process, since the agent is free to synthesize not only
its policy for action selection but also its belief-dependent observation function. The method enables
the agent to balance its perception costs with those incurred by operating in its environment. To
obtain a computationally tractable solution, we approximate the value function using a novel method
of invariant finite belief sets, wherein the agent acts exclusively on a finite subset of the continuous
belief space. We solve the approximate problem through value iteration in which a linear program is
solved individually for each belief state in the set, in each iteration. Finally, we prove that the value
functions, under an assumption on their structure, converge to their continuous state-space values as
the sample density increases.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Evolution has driven biological organisms to strike a balance
etween the conflicting desire of utilizing all available informa-
ion in order to make a decision and the desire of minimizing
he cost of perceiving that information from the environment.
uch perception costs are not negligible: studies of the human
rain, for instance, have shown that it constitutes 20% of our
esting energy consumption rate, of which 50% is associated with
ignaling (Attwell & Laughlin, 2001). In order to optimally utilize
nly a portion of the available information, it is believed that
rganisms have evolved to strategically perceive only the task-
elevant information from their environment (Berry et al., 1999;
gner & Hirsch, 2005). The mammalian visual cortex, for example,
s sensitive to only particular features over a small region of the
isual field (Hubel & Wiesel, 1968).
Perception costs have likewise become a bottleneck in many

ngineering applications. For example, experimental results have
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hown that over 94% of the computational time in autonomous
riving is allocated to perception (Lin et al., 2018). Although state-
f-the-art accelerator platforms like GPUs are effective for latency
eduction, their power consumption is significant enough to de-
rade a vehicle’s driving range. To alleviate these issues, Censi
t al. (2015) argues that sensor hardware should extract only
ask-relevant information. Although intuitively appealing, such an
dea is difficult to implement, as what constitutes ‘‘task-relevant"
nformation is difficult to define.

To provide a methodological foundation for task-relevant
ensing, we propose a simultaneous perception–action design
SPADE) framework based on the standard Markov decision pro-
ess (MDP) formulation (Puterman, 2014) with a novel inform-
tion-theoretic perception cost. The perception cost penalizes
nformation flowing from the sensor to the down-stream
ecision-making unit. This framework allows for the synthesis of
sensing mechanism that extracts the minimum amount of task-
elevant information from the underlying state of the controlled
arkov chain.
The use of information theory to model perception costs has

reviously been studied. Viewing an agent as a communication
hannel, Sims (2003) proposes a model penalizing the mutual
nformation between the state of the environment and the agent’s
ction. Likewise, Sims (2016) proposes using rate–distortion the-
ry to characterize perception costs. The analogy between the
erception–action cycle and a communication channel was also
tudied in Tishby and Polani (2011), where algorithms to syn-
hesize the optimal trade-off between the cost-to-go and the
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nformation-to-go are proposed. Alternatively, Ortega and Braun
2013) studied the problem of rational inattention through the
ens of thermodynamics, where information processing costs are
haracterized through differences in free energy. Rational inat-
ention was also studied in Shafieepoorfard et al. (2016), which
provides theoretical results connecting controllers subject to in-
formation constraints to rate–distortion theory. Following Massey
(1990), we use the information-theoretic concept of directed in-
formation to model the agent’s perception costs. The directed
information measures the information flow between a pair of ran-
dom processes, such as from the environment to the observations
made about the environment. To our knowledge, this paper is
the first to apply directed information to the study of optimal
perception.

The proposed SPADE framework is reminiscent of active per-
ception (Aloimonos, 2013; Bajcsy et al., 2018). In active perception
problems, an agent (or group of agents, as in Spaan, 2008) seeks to
take actions that lead to desired observations, such as those that
reduce the uncertainty in its underlying state (e.g., Araya et al.,
2010; Ghasemi & Topcu, 2019). As opposed to existing works
on active perception, the SPADE framework allows an agent to
instead synthesize its own sensing mechanism, rather than acting
in such a way as to exploit a prespecified sensing mechanism. In
Section 5, we use this theoretical, synthesized sensing mechanism
as the basis for a dynamic sensor selection strategy, a common
problem in the field of active perception (e.g., Hashemi et al.,
2018; Hibbard et al., 2020; Spaan & Lima, 2009).

The proposed SPADE framework allows more flexibility for an
gent compared to a partially observable MDP (POMDP) (Kael-
ling et al., 1998), with Fig. 1 highlighting three key distinctions.
irst and foremost, our formulation includes the perception strat-
gy P as a decision variable, rather than using a sensing mecha-
ism fixed a priori. In effect, the agent is capable of choosing what

to observe. Furthermore, we allow for a belief-dependent percep-
tion mechanism, as shown in the lower left block in Fig. 1(b).
This generalization is biologically plausible, e.g., eye movement
can be controlled, and is crucial in developing a computationally-
tractable synthesis of optimal perception and action strategies.
Finally, in order for such a generalization to be meaningful, the
SPADE framework incorporates a perception cost for the agent,
denoted I(s1:T → z1:T ) in Fig. 1(b). As we discuss in Section 2.3,
this quantity is the directed information, a statistical measure
of information flow, between the state sequence {s1, . . . st} and
he observation sequence {z1, . . . , zt}. The inclusion of this term
s critical, since full-state measurement is always optimal in the
bsence of a perception cost.
Mathematically, our problem is closest to stochastic opti-

al control with directed information constraints, as studied
n Tanaka et al. (2017, 2021). In Tanaka et al. (2017), the problem
is studied in the linear-quadratic-Gaussian (LQG) regime, where
it is shown that an optimal policy consists of linear perception
and action units, whose combined structure is similar to Fig. 1(b).
In the LQG case, the simultaneous perception–action synthe-
sis problem can be reformulated as a computationally-efficient
semidefinite programming problem. Likewise, the finite-state
counterpart of the problem was studied in Tanaka et al. (2021),
where an alternative solution method based on the so-called
forward–backward Arimoto–Blahut algorithm is proposed. How-
ever, the synthesized strategy does not admit the perception–
action separation structure, and the algorithm suffers due to the
nonconvexity of the cost function. The SPADE framework is in
part motivated to overcome these difficulties.

We first show the SPADE problem is solvable, in principle,
through a backward-in-time dynamic programming algorithm
over the belief space. In each iteration, each belief state value
function is updated by solving a nonconvex optimization prob-
lem. However, such an approach is impractical, as the value
2

Fig. 1. Visualization of the differences between the standard POMDP framework
and the SPADE framework. Note the inclusion of feedback between the action
and the perception unit.

functions must be evaluated over the entirety of the continuous
belief space. To circumvent this difficulty, we propose a novel
method of invariant finite belief sets for approximating the value
functions, wherein we enforce that the agent operates exclusively
on an invariant finite subset of the belief simplex. We do so
by restricting the space of admissible perception strategies in
such a way that the subsequent belief state always belongs to
the invariant finite subset. We show this restriction is equivalent
to imposing a set of linear constraints on the set of admissible
perception strategies, and that each value function update on the
invariant finite belief set can be obtained through the solution
of a linear program, allowing the synthesis of an optimal simul-
taneous perception–action strategy through a computationally
tractable and parallelizable value iteration. The idea of value
function updates over sampled belief states is reminiscent of
point-based value iteration for POMDPs (Pineau et al., 2003). Our
approach is fundamentally different since, by construction, the
synthesized perception strategy renders a user-specified set of
sampled belief states invariant, allowing for exact value iteration
over this set. For general POMDPs with fixed observation func-
tions, exact value iteration is not possible. Furthermore, we show
that as the cardinality of the invariant finite belief set increases,
the linear constraints on the sensing strategies become less bind-
ing, yielding better approximations of the continuous belief space
solution. Finally, as the sample density of the invariant finite
belief set increases, we prove that the value functions of the
sampled belief states converge to their continuous counterparts,
under an assumption on the structure of these value functions.

Notation. We use uppercase symbols to denote sets and low-
ercase, bold symbols to denote random variables. For a set X ,
(X) denotes the set of all probability distributions over X . The
robability a random variable x takes a value x ∈ X is denoted by
r(x = x). We denote a sequence {x1, . . . , xk} of length k by x1:k.

For a vector v ∈ Rn, let diag(v) ∈ Rn×n be a diagonal matrix of
the elements of v. We compactly express the summation over a
set X̄ by

∑
x̄, where the corresponding set is clear by the notation

used.
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Fig. 2. Interplay between the underlying state process and the prior and posterior belief states of the agent.
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2. Simultaneous perception–action design

We now formulate the simultaneous perception–action design
(SPADE) problem of the agent.

2.1. Perception model

We use a perception MDP M = ⟨S, A, T , C, Z, γ ⟩ to model the
environment of the agent, where s ∈ S is a finite set of states,
a ∈ A is a finite set of actions, T : S × A → ∆(S) is a transition
function mapping state–action pairs to probability distributions
over successor states, C : S × A → R ≥ 0 is a cost function,
z ∈ Z is a set of observations, and 0 ≤ γ < 1 is a discount
factor. Following the formulation of Shafieepoorfard et al. (2016),
we assume the agent has access to an observation alphabet Z with
infinite cardinality. The rationale behind this assumption will be
discussed at the end of this subsection. We refer to the probability
of transitioning to state s′ after taking action a in state s by Ts′|a,s.
Likewise, we refer to the cost of taking action a in state s by Cs,a
and the entire cost matrix by C ∈ R|S|×|A|.

Due to imperfect information, an agent must estimate its cur-
rent state st ∈ S through its history of observations. Specifically,
the agent maintains a belief state bt = [bt,s : s ∈ S]⊤ ∈ ∆(S)
at each time step t , where, for all s ∈ S, bt,s = Pr(st =
s|z1:t−1) denotes the probability the agent believes it resides in
state s at time t given the sequence of observations z1:t−1. In our
formulation, the agent maintains a parallel set of belief states.
We refer to the first of these belief states as the prior belief
state bt , as defined previously. Particularly, the prior belief state
characterizes the agent’s belief prior to making an observation at
time step t . The second belief state the agent maintains is referred
to as the posterior belief state b̂t = [b̂t,s : s ∈ S]⊤ ∈ ∆(S), where
each b̂t,s is defined according to b̂t,s = Pr(st = s|z1:t ), which is
the belief state of the agent after making an observation about
its underlying state st (but, we stress, before taking an action at
time step t). Thus, the prior belief state captures the available
information when choosing its perception strategy (i.e., its belief-
dependent observation function), while the posterior belief state
captures the available information when choosing an action. The
differences between these parallel belief states are formalized in
Section 2.2.

In our formulation, the agent is free to design both its action-
selection strategy and a belief-dependent observation function.
We refer to this joint process as a simultaneous perception–action
strategy, which consists of both its action strategy A and its per-
ception strategy P . The agent’s action strategy is a sequence A =
{A1, . . . ,At , . . .}, where At : ∆(S) → ∆(A). The action strategy
maps a posterior belief b̂ at time t to a probability distribution
over action selection. We denote the probability of taking action
a in the posterior belief state b̂t at time t as Aa|b̂t . Likewise, the
perception strategy is a sequence P = {P , . . . ,P , . . .}, where
1 t

3

Pt : ∆(S)×S → ∆(Z). The perception strategy prescribes a belief-
dependent observation function for the agent at each time step.
We denote the probability of making observation z about state s
while in the prior belief bt at time t as Pz|s,bt .

Remark 1. Since the agent is able to synthesize its own percep-
tion strategy P , our assumption that Z has infinite cardinality
provides the agent the greatest freedom in this synthesis prob-
lem. However, as shown in Shafieepoorfard et al. (2016), there is
o advantage to using a set Z with cardinality greater than that
f ∆(S). In the main problem (4) that we formulate, we assume
= ∆(S) without loss of generality, and assign each observation

o a unique belief state.

.2. Relation between prior and posterior belief states

Fig. 2 details the relation between the prior and posterior
eliefs. Given a posterior belief b̂t , the agent first selects an action
trategy Aa|b̂t . Once selected, the agent then predicts the unique
rior belief that it transitions to by

t+1,s =
∑
s′

∑
a

Ts|a,s′Aa|b̂t b̂t,s′ . (1)

hen the action strategy is deterministic, i.e., there exists an
ction a ∈ A such that Aa|b̂t = 1, we can write a = Ab̂t and
ore succinctly express (1) as

t+1,s =
∑
s′

Ts|Ab̂t
,s′ b̂t,s′ . (2)

nce the agent has transitioned to the prior belief state bt , it then
hooses its perception strategy Pz|s,bt . With probability Pr(zt =
) =

∑
s Pz|s,bt bt,s, the agent then makes an observation zt = z

nd updates to the posterior belief state b̂t according to the set of
ayesian updates

ˆ t,s = (Pz|s,bt bt,s)/(
∑
s′

Pz|s′,bt bt,s′ ) (3)

or each s ∈ S. Note the transition to the posterior belief b̂t occurs
ith probability Pr(zt = z). Furthermore, when Z is a countable
et, the structure of (3) implies that, for any bt ∈ ∆(S), b̂t is a
collection of point masses of weight Pr(zt = z). We adopt b̂zt to
denote the unique posterior belief obtained when observation z
is made while in prior belief state bt . Similarly, we denote bz,at+1
as the unique prior belief obtained when action a is chosen in
posterior belief state b̂zt .

2.3. An information-theoretic perception cost

In the absence of perception costs, it is always optimal to

select a noiseless, full-state measurement (i.e., Z = S and zt = st )
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s the perception strategy, although such measurements are often
nrealistic. To make the perception design problem meaningful,
t is necessary to introduce a metric to model the cost of infor-
ation acquisition. Although the SPADE framework is general
nough to support a variety of perception costs, we focus on
model where these costs are quantified by the information-

heoretic concept of directed information. Directed information
Massey, 1990), sometimes referred to as transfer entropy
Schreiber, 2000), is a nonnegative quantity characterizing the in-
ormation flow between random processes. For a pair of random
rocesses s1:T and z1:T , the directed information from s1:T to z1:T is

(s1:T → z1:T ) ≜
T∑

t=1

I(s1:t; zt |z1:t−1),

here I(s1:t; zt |z1:t−1) is the conditional mutual information
Cover & Thomas, 2012), explicitly written as∑
1:t ,z1:t

Pr(s1:t , z1:t ) log
Pr(s1:t , zt |z1:t−1)

Pr(s1:t |z1:t−1)Pr(zt |z1:t−1)
.

n the SPADE model, the random processes s1:T and z1:T repre-
sent the state and the observation sequences, respectively. The
directed information is closely related to the information traffic
from the perception unit to the action unit (the lower left and
right blocks of Fig. 1(b), respectively), and is a suitable metric
to capture perception costs as, for our model, it is equivalent to
the summation of the stage-additive information gains. A formal
analysis providing the directed information with a Shannon-
theoretic operational meaning is provided in Appendix A. For
mathematical convenience, we introduce the discounted directed
information:

Iγ (s1:T → z1:T ) ≜
∞∑
t=1

γ t−1I(s1:t; zt |z1:t−1)

=

∞∑
t=1

γ t−1I(st; zt |z1:t−1).

2.4. Main problem

In the SPADE problem, the objective of the agent is to min-
imize the discounted sum of its perception and environmen-
tal costs. The agent accomplishes this objective by optimally
choosing its perception and action strategies, which we express
through the objective function

min
Pt ,At

∞∑
t=1

γ t−1(βI(st; zt |z1:t−1)+ E
[
Cst ,at

]
), (4)

where β is a parameter weighting the relative cost of information.
We seek to formulate (4) in terms of a dynamic programming
problem over the belief simplex ∆(S). To this end, consider a prior
belief state with bt,s = Pr(st = s|z1:t−1). The stage-wise mutual
information for bt is

I(st; zt |z1:t−1)

=

∑
s

∫
Z
Pz|s,bt bt,slog

Pz|s,bt∑
s′ Pz|s′,bt bt,s′

≜Rbt ,Pt . (5)

Note that for a fixed bt , the stage-wise mutual information in (5)
is convex with respect to the perception strategy Pt , since it is
the weighted sum of relative entropies.

From the definitions of Rbt ,Pt and Cst ,at , we can decompose the
objective function in (4) into a set of recursive Bellman equations,
where the value function is given by

V(bt )≜ inf {βRbt ,Pt + EAt ,Pt
b [Cst ,at + γV (bz,at+1)]} (6)
At ,Pt t

4

for each prior belief state bt at time t . The notation EAt ,Pt
bt

emphasizes that these expectations are evaluated under the joint
distribution defined by bt ,Pt and At . From a prior belief state
bt , recall that the agent first transitions to a posterior belief
state b̂t through the update Eq. (3) with probability given by
Pr(zt = z). Once in b̂t , the agent then transitions to a prior belief
state bt+1 through the predict Eq. (1). Through this evolution,
we can decompose (6) into the perception and action stages,
respectively:

V (bt ) = inf
Pt
[βRbt ,Pt +

∑
s

∫
Z
Pz|s,bt bt,sV̂ (b̂zt )dz] (7a)

V̂ (b̂zt ) = min
at

[∑
s

b̂zt,sCst ,at + γV (bz,att+1)

]
, (7b)

for each z ∈ Z . In (7a), we have explicitly written the expectation
by noting that, for a given prior belief state bt , the posterior belief
state b̂zt is a random variable realized with a probability Pr(zt = z)
and a state distribution given by the update Eq. (3). To obtain (7b),
recall for a posterior belief state b̂zt , each action a yields a unique
transition to the prior belief state bz,at+1 given by the predict Eq. (2).
In (7b), minAt is replaced with mina since it is straightforward to
show the optimal action strategies are deterministic.

The combined set of recursive Bellman equations given by
(7a) and (7b) suggests the use of dynamic programming to solve
our main problem (4). Namely, denote by B(∆(S)) the space of
functions V : ∆(S) → R such that ∥V∥sup ≜ supb∈∆S |V (b)| <
+∞. Now, define the operator T by

(TV )(b)≜ inf
A,P
{βRb,P + EA,P

b [Cs,a + γV (bz,a)]}. (8)

Using T , the Bellman Eq. (6) can be written as V = TV . The
following theorem states that T is a contractive mapping from
B(∆(S)) to itself and that the corresponding value iteration is
convergent.

Theorem 1. The following results hold for the operator T :

(a) For any V ∈ B(∆(S)) and V ′ ∈ B(∆(S)),

∥TV − TV ′∥sup ≤ γ ∥V − V ′∥sup.

(b) For an arbitrary V0 ∈ B(∆(S)), define a sequence of functions
{Vk}k=1,2,..., Vk ∈ B(∆(S)), by Vk = T kV0, k = 1, 2, . . .. Then,
we have

lim
k→∞
∥Vk − V ∗∥sup = 0,

where V ∗ ∈ B(∆(S)) is the unique solution to V ∗ = TV ∗.

Proof. (a) Let q ≜ ∥V − V ′∥sup. Then,

V (b)− q ≤ V ′(b) ≤ V (b)+ q

for every b ∈ ∆(S). Applying the operator T to each side of the
inequality, we have that, for each b ∈ ∆(S),

TV (b)− γ q ≤ TV ′(b) ≤ TV (b)+ γ q,

where we have made use of the fact that

γEA,P
b [V (bz,a)+ q] = γEA,P

b [V (bz,a)] + γ q

in (8). The result then follows.
(b) The space B(∆(S)) equipped with the sup norm ∥ · ∥sup
is a complete metric space. Since T is a contractive mapping
from B(∆(S)) to itself, we apply the Banach fixed-point theo-
rem (Khamsi & Kirk, 2011) to obtain the result. □

Unfortunately, the value iteration Vk = T kV0 is computation-
ally intractable as V (·) must be evaluated everywhere on the
continuous belief simplex ∆(S).
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Fig. 3. As a visualization, consider the set B̂, which consists of the uniformly
ampled belief states (black dots) drawn from the belief simplex shown at left.
n turn, the set B of belief states is obtained by applying (1) to each belief state
in B̂ for each action a ∈ A. Note that the representative belief states in both B̂
and B shown above remain invariant over repeated predict and update steps.

Remark 2. It is possible to express our main objective (4) in
terms of the standard POMDP paradigm described in Fig. 1(a) by
augmenting the space of actions with the space of perception
strategies; i.e., Aaug = (P,A). Suppose that we then discretize
the space of perception strategies such that Aaug, disc = (Pdisc,A)
contains only a finite number of actions. By doing so, we have
converted the problem into the standard form of a POMDP, for
which we can use off-the-shelf POMDP solvers. However, this
approach introduces two layers of approximation. One must first
approximate the continuous space P of observation functions by
a finite set Pdisc. The second approximation is due to the inherent
hardness of POMDPs; standard PBVI provides a universal scheme
to approximately solve a POMDP by discretizing the belief space.
It is not clear how to cleverly perform both discretizations to
achieve the best computational performance.

3. Method of invariant finite belief sets

Due to the continuity of both ∆(S) and Z , exactly solving for an
optimal simultaneous perception–action strategy is computation-
ally intractable. We now focus on approximating (7a) and (7b)
by developing a novel method in which the agent operates on an
invariant, finite subset of the continuous belief simplex. We refer
to this set as an invariant finite belief set (IFBS). We then show
that, as the number of sampled belief states approaches infin-
ity, the value functions converge to their continuous state-space
counterparts, under an appropriate assumption. For notational
clarity, we omit the time index t of all variables.

3.1. Method of invariant finite belief sets

To construct a model approximating (7a) and (7b), we first
pick a representative sample B̂ ⊂ ∆(S) of posterior belief states.
The set B̂ consists of a finite number of elements that must be
chosen such that the following assumption is met.

Assumption 1. The set B̂ contains all extreme points of the belief
simplex.

Recall from Remark 1 that we set Z = ∆(S) without loss of
generality for the continuous problem. Similarly, for the method
of invariant finite belief sets, we set Z = B̂ without loss of
generality. Thus, we have that |Z | = |B̂| ≜ M . Based on the
selection of B̂, we can apply the predict Eq. (2) for each b̂ ∈ B̂ and
each a ∈ A to obtain the corresponding set of prior belief states,
which we refer to as B ⊂ ∆(S). Since the subsequent prior belief
state b given a posterior belief state b̂ and action a is unique, we
have |B| = M · |A|.

Given the sets B and B̂, we now seek conditions under which
they are invariant; i.e., over repeated predict and update steps
using (2) and (3), the agent remains in B and B̂, as illustrated in
Fig. 3. By the construction of B, the predict Eq. (2) trivially yields
prior beliefs exclusively in B for any b̂ ∈ B̂ and any action a ∈ A.
 L

5

It remains to show we can restrict the update equation such that
the resulting posterior belief state remains in B̂. This condition
requires that, for each prior belief b ∈ B and any observation
z ∈ Z , the resulting posterior belief state is guaranteed to exist in
the set B̂; i.e., b̂z ∈ B̂, where b̂z is the posterior belief state that
results from making observation z while in prior belief state b.
Recalling the update Eq. (3), the individual probabilities b̂zs are

b̂zs = Pz|s,bbs/(
∑
s′

Pz|s′,bbs′ ) ∀s ∈ S. (9)

To ensure that the posterior belief state b̂z obtained by (9) re-
mains in our invariant set B̂, we seek to impose restrictions on
the set of admissible perception strategies P such that b̂z ∈
B̂ is guaranteed for all possible observations z ∈ Z . Recalling
Remark 1, such restrictions can readily be imposed since the sets
B̂ and Z have equal cardinalities, as well as the fact that the
perception strategy is belief-dependent.

We now show these restrictions are linear constraints on P
and are algorithmically straightforward to incorporate. To start
with, recall the prior and posterior belief states are the vectors
b = [bs : s ∈ S]⊤ and b̂ = [b̂s : s ∈ S]⊤, respectively. We now
introduce Pz|:,b ∈ R|S| for each observation z ∈ Z and prior belief
state b ∈ B to denote the vector [Pz|s,b : s ∈ S]⊤ ∈ R|S|. Using this
notation, we introduce

αz
b ≜

∑
s

Pz|s,bbs = b⊤Pz|:,b

to encode the probability of observing z when in the prior belief
state b and the perception strategy P is applied. Eq. (9) implies
αz
b and Pz|:,b have the linear relation

αz
b b̂

z
= diag(b)Pz|:,b. (10)

We use (10) to ensure that the updated posterior belief state
remains in the set B̂ as follows. For a fixed prior belief state b,
since the cardinalities of both the set B̂ and Z are equal, we can
assign each z in (9) to a unique posterior belief state b̂ ∈ B̂.
Explicitly writing B̂ as B̂ = {b̂1, . . . , b̂M}, and Z as Z = {1, . . . ,M},
we can alternatively express (10) as

αm
b b̂m = diag(b)Pm|:,b ∀m = 1 . . .M, (11)

where we have assigned, without loss of generality, the mth
observation to update the prior belief state b to the mth posterior
belief state b̂m through (9). Rearranging terms in (11) and writing
it for each m = 1, . . . ,M , we obtain⎡⎢⎢⎢⎣
diag(b) 0

. . .

0 diag(b)

−b̂1 0
. . .

0 −b̂M

I|S| · · · I|S| 0|S|×M

⎤⎥⎥⎥⎦
[
P:|:,b
αb

]
=

[
0|S|M×1
1|S|×1

]
, (12)

where P:|:,b = [P⊤1|:,b, . . . ,P
⊤

m|:,b]
⊤, αb = [α

1
b , . . . , α

M
b ]
⊤, and

the lower set of constraints encodes that the perception strategy
must be a valid probability distribution; i.e.,

∑
z Pz|s,b = 1 for

each s ∈ S. Since valid probability distributions must have
nonnegative elements, we impose that[
Pm

b , αm
b

]⊤
≥ 0, ∀m = 1, . . . ,M, (13)

entry-wise. Assuming the number of observations is greater than
the number of states; i.e., M > |S|, (12) is an underdetermined
inear system with (M · |S| + M) variables and (M · |S| + |S|)
onstraints, so there exist infinitely many solutions to (12)–(13).
e note that in realistic scenarios, we typically have M ≫ |S|.
e now state the following lemma.

emma 1. Under Assumption 1, (12)–(13) admit a feasible solution.
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roof. See Appendix B. □

In what follows, we denote Pb→B̂ as the subset of P satisfying
he linear constraints (12)–(13).

.2. Dynamic programming revisited

We now propose a method to approximate the dynamic pro-
ramming formulas (7a) and (7b) using our invariant finite belief
et. For the user-defined set of posterior belief states B̂ satisfying
ssumption 1, denote its associated set of prior belief states as B.
or each b ∈ B, we modify (7a) to

(b) = min
P∈Pb→B̂

[βRb,P +
∑
s,z

Pz|s,bbsV̂ (b̂z)]. (14)

We have modified (7a) by including the additional constraint
P ∈ Pb→B̂ which ensures that the perception strategy causes the
agent to remain on the IFBS. Furthermore, recalling that we have
set |Z | = |B̂| = M , we have replaced the integral operator in (7a)
with a summation in (14). Notably, (14) is a convex optimization
roblem and can be further simplified. In the following lemma,
e show that (14) can be reduced to an equivalent linear program
LP).

emma 2. For a given prior belief state b, define

S(b) ≜ {s ∈ S | bs ̸= 0}

M(b) ≜ {m | supp(b̂m) ⊆ supp(b)}.

hen, introducing the notation b[S(b)] ≜ cols∈S(b){b(s)} and b̂[S(b)] ≜
cols∈S(b){b̂(s)}, (14) is equivalent to the LP:

min
b≥0

∑
m̄∈M(b)

Fm̄αm̄
b (15a)

s.t.
∑

m̄∈M(b)

αm̄
b b̂

m̄
[S(b)] = b[S(b)] (15b)

αm
b = 0 ∀m ̸∈ M(b), (15c)

here

Fm̄ = βD(b̂m̄ ∥b)+ V̂ (b̂m̄),

D(b̂m̄ ∥b) =
∑
s̄

b̂m̄s̄ log(b̂m̄s̄ /bs̄).
(16)

Proof. See Appendix B. □

We introduce C:,a ∈ R|S| to denote the column of the cost
matrix C corresponding to a given action a ∈ A. Then, for each
b̂m ∈ B̂, we can express (7b) as

V̂ (b̂m) = min
a∈A
[C⊤
:,ab̂

m
+ γV (bm,a)]. (17)

For a given IFBS, both (15) and (17) are computationally tractable.
urthermore, (15) is parallelizable for each b ∈ B. Based on
his discussion, the following backward dynamic programming
roblem is suggested: for each b ∈ B, solve (15), while for
ach b̂ ∈ B̂, solve (17). Applying (17) to V followed by (15)

is equivalent to applying the operator T̃ : RM
→ RM defined

according to

(T̃ Ṽ )(b) = min
A,P∈Pb→B̂

{βRb,P + EA,P
b [Cs,a]

+ γEA,P
b [Ṽ (bm,a)]}. (18)

For an initial bounded vector Ṽ0 ∈ RM , the value iteration
procedure Ṽk = T̃ kṼ0 can be viewed as an approximation of
the original value iteration Vk = T kV0 in Theorem 1. Similar
to Theorem 1, the convergence of the modified value iteration

procedure is formalized as follows.

6

Fig. 4. Prior belief state value functions plotted on the 3D belief simplex for an
increasing number of sampled belief states.

Theorem 2. The following results hold for the operator T̃ :

(a) For any bounded vectors Ṽ ∈ RM and Ṽ ′ ∈ RM ,

∥T̃ Ṽ − T̃ Ṽ ′∥∞ ≤ γ ∥Ṽ − Ṽ ′∥∞.

(b) For an arbitrary bounded vector Ṽ0 ∈ RM , define a sequence of
bounded vectors {Ṽk}k=1,2,... by Ṽk = T̃ kṼ0, k = 1, 2, . . .. Then,
we have

lim
k→∞

Ṽk = Ṽ ∗,

where Ṽ ∗ ∈ RM is the unique solution to Ṽ ∗ = T̃ Ṽ ∗.

Proof. The proof follows that of Theorem 1 and is omitted. □

To limit computation time, it is advantageous to construct B̂
using as few belief states as possible. However, doing so may yield
value functions in (15) and (17) that poorly approximate the true
value functions in (7a) and (7b). Thus, it is desirable to possess
some method for improving the approximation. To this end, we
present the following lemma.

Lemma 3. Let B̂ be a set of posterior belief states with the corre-
sponding set of prior belief states B found through the solution of (2)
for each b̂ ∈ B̂ and a ∈ A. Denote their respective value functions by
V̂ (·) and V (·). Consider a new set B̂′ = B̂ ∪ b̂ where b̂ ̸∈ B̂; i.e., B̂′

is formed by adding a sample belief state b̂ to B̂. For B̂′, denote its
associated set of prior belief states by B′ and their value functions
by V̂ ′(·) and V ′(·), respectively. Then, V (b) ≥ V ′(b) for all b ∈ B and
V̂ (b̂) ≥ V̂ ′(b̂) for all b̂ ∈ B̂; i.e., the value functions are monotonically
non-increasing as |B̂| increases.

Proof. See Appendix B. □

Following from Lemma 3, if it is believed that (15)–(17) yield
poor approximations, then one can add sample beliefs to B̂, and
recompute. Recall, by Assumption 1, that increasing the cardinal-
ity of B̂ likewise requires increasing the cardinality of the obser-
vation alphabet such that |B̂| = M . In this sense, Lemma 3 implies
an agent with a larger observation alphabet can do no worse
than an agent with a smaller one when synthesizing its percep-
tion strategy. Fig. 4 illustrates that the fixed point V (b) of the
value iteration is monotonically non-increasing in M for a simple
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hree-state example. Additional information on this example is
rovided in Appendix D.

3.3. Approximation of value functions

Theorem 1 implies the value function V ∗ for the main problem
4) can be obtained by the value iteration Vk = T kV0. Although
uch a procedure is computationally intractable, we showed an
pproximation Ṽ ∗ of V ∗ can be obtained through the modified
alue iteration Ṽk = T̃ kṼ0, which is performed exclusively on the
FBS. We now study how the gap between V ∗ and Ṽ ∗ depends
n the IFBS sample density, characterized as follows: for each
ˆ ∈ ∆(S), denote by πb̂ ∈ B̂ the nearest element to b̂ in B̂ whose
upport is contained in the support of b̂. That is,

b̂ ≜argminb̂m∈B̂ ∥b̂− b̂m∥∞ (19)

s.t. supp(b̂m) ⊆ supp(b̂).

he constraint that supp(b̂m) ⊆ supp(b̂) will be necessary for the
roof of Lemma 4 below. Using π , define

ϵ̂ ≜ maxb̂∈∆(S)∥b̂− πb̂∥∞ (20)

s a sampling density parameter. How well the function V ∗ can be
pproximated also depends on the ‘‘regularity’’ of V ∗. We define
he regularity parameter δ̂ ≥ 0 such that

V ∗(b)− V ∗(b′)| ≤ δ̂ (21)

olds for all b, b′ ∈ ∆(S) such that ∥b − b′∥∞ ≤ ϵ̂|S|. The main
esult of this subsection critically relies on the following lemma,
hich provides an upper bound on the difference between the
perators T and T̃ applied to the same function V . For a given
unction V ∈ B(∆(S)), denote by V |B ∈ RM the restriction to the
set B; i.e., V |B is the function V evaluated only at points in the
set B.

Lemma 4. Suppose that a function V ∈ B(∆(S)) satisfies

|V (b)− V (b′)| ≤ δ̂ (22)

for all b, b′ ∈ ∆(S) such that ∥b− b′∥∞ ≤ ϵ̂|S|. Then,

∥(TV )|B − T̃ (V |B)∥∞ ≤ ϵ, (23)

≜ γ δ̂ + ϵ̂β| log ϵ̂ ∥S| + ϵ̂·

(β
∑
s̄

| log bs̄| +
∑
s,a

|Cs,a|). (24)

roof. See Appendix C. □

The main result of this subsection is summarized as follows:

heorem 3. Let B and B̂ be fixed, and define ϵ̂ by (20). Let V ∗ ∈
B(∆(S)) be the unique function satisfying V ∗ = TV ∗, and define δ̂ by
21). Define the sequence Ṽk ∈ RM , k = 1, 2, . . . by Ṽk = T̃ kṼ0,
where Ṽ0 ∈ RM is an arbitrary bounded vector. Then, for the ϵ
defined by (24),

lim supk→∞∥V
∗
|B − Ṽk∥∞ ≤ ϵ/ (1− γ ) . (25)

Proof. Notice that

∥V ∗|B − Ṽk+1∥∞

= ∥(TV ∗)|B − T̃ Ṽk∥∞

= ∥(TV ∗)|B − T̃ (V ∗|B)+ T̃ (V ∗|B)− T̃ Ṽk∥∞

≤ ∥T̃ (V ∗|B)− T̃ Ṽk∥∞ + ∥(TV ∗)|B − T̃ (V ∗|B)∥∞
≤ γ ∥V ∗|B − Ṽk∥∞ + ϵ. (26)
 s

7

Algorithm 1 Method of invariant finite belief sets.

Require: S, A, C , T , γ , β , B̂, tol > 0
B← ∅
for b̂ ∈ B̂, a ∈ A do

b← (1) for fixed b̂, a; B← B ∪ {b}
V̂ (b̂), V (b)← 0 for all b̂ ∈ B̂, b ∈ B
while err > tol do

V ′(b),Pb ← (15)∀b ∈ B; V̂ ′(b̂),A(b̂)← (17)∀b̂ ∈ B̂
err ← max{max

b∈B
|V (b)− V ′(b)|, max

b̂∈B̂
|V̂ (b̂)− V̂ ′(b̂)|}

V (b)← V ′(b) ∀b ∈ B; V̂ (b)← V̂ ′(b) ∀b̂ ∈ B̂

The first equality is obtained by invoking V ∗ = TV ∗ and Ṽk+1 =
˜ Ṽk. In the last step, we used the fact that T̃ is contractive
(Theorem 2) and the result of Lemma 4. Define a sequence ek of
positive numbers by

ek+1 = γ ek + ϵ, (27)

taking e0 = ∥V ∗|B − Ṽ0∥∞. Then,

limk→∞ek = ϵ/ (1− γ ) . (28)

Combining the results of (26), (27), and (28), it is straightforward
to show by induction that

∥V ∗|B − Ṽk∥∞ ≤ ek ∀k = 0, 1, . . . ,

from which (25) follows. □

Notice the constant ϵ in (25) depends on ϵ̂ and δ̂. Since the
ptimal value function V ∗ is not known in advance, it is in
eneral not possible to compute δ̂. However, in circumstances
here V ∗ is known to be uniformly continuous, for each δ̂ >
, the condition (21) can always be guaranteed by choosing a
ufficiently small ϵ̂ > 0, i.e., by making the set B̂ sufficiently
ense in ∆(S). In such cases, Ṽ ∗ can approximate V ∗|B arbitrarily
ell by increasing the sample density of B̂ in ∆(S). It is currently
ot known under what conditions the uniform continuity of V ∗
s guaranteed. Obtaining these conditions remains the subject of
uture work.

.4. Algorithmic implementation

The pseudocode for solving the SPADE problem via the method
f invariant finite belief sets is shown in Algorithm 1. Given an
nitial sample B̂ of posterior belief states, the first step is to com-
ute the corresponding set of prior belief states B by propagating
ach b̂ ∈ B̂ through the transition function T for each a ∈ A, as
iven in the predict equation (2). Once both sets are constructed,
he value functions are initialized to zero. These value functions
re then updated until the maximum error between subsequent
terations is below a threshold value. In each iteration, the value
unctions of all states in B and B̂ are updated. Note that each of
he M posterior belief state value function updates has a time
omplexity of O(|S| · |A|), yielding a total time complexity of
(M · |S| · |A|). Similarly, each of the M · |A| prior belief state value
unction updates involves solving an LP with a time complexity
f O(M3) (Gonzaga, 1989), yielding a total time complexity of
(M4
· |A|). Combining these results, the time complexity of each

teration is O(M · |S| · |A| +M4
· |A|).

. Numerical example: Mars rover

Consider a Mars rover that must maneuver from its initial
osition to a target position as shown in Fig. 5, where the blue
tate is the initial position, the green states are the target position,
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Fig. 5. Mars gridworld environment considered. The blue state is the initial
position, the green states are the target position, and the red, dashed states are
the dangerous, rocky region to be avoided.

and the red, dashed states are the dangerous, rocky region to
be avoided. To reach its target position, the rover must avoid a
dangerous section in the center of its environment. To accomplish
this objective, the rover can take one of two possible paths: a
more direct but dangerous path that travels along the bottom of
the environment, or a longer but safer path around the top of
the rocky area. In this example, we study the relation between
the relative cost of perception and the resulting trajectory of the
rover. In this context, the notion of ‘‘task-relevant’’ information
pertains to observations identifying the rover’s underlying state.

In each state, the rover can choose between one of 4 avail-
ble actions: move one step left, right, up, or down. Due to
tochasticity, however, the rover may either remain in its current
tate or slip into one of the other surrounding states, each with
robability 0.05/8. If the rover were to transition to a state outside

the environment, it instead transitions to the closest state still
within the environment. In Fig. 5, the green and red-dashed states
re absorbing; i.e., if the rover reaches any of its target states
r one of the rocky states, it remains there. Furthermore, for all
on-target states, the rover incurs a cost of 1 for taking any action.
We sample six posterior belief states for each state s ∈ S.

We start by sampling the extreme points of the belief simplex,
satisfying Assumption 1. For each s ∈ S, we then set b̂s = 0.5 and
b̂s′ = 0.5/8 for all s′, s′ ̸= s in the 3× 3 square centered around s.
For the third posterior belief state, we repeat the previous using
b̂s = 0.75. We then follow a similar process considering the 5× 5
square centered around s. First, we set b̂s = 0.5, b̂s′ = 0.5/16 for
the eight states s′ in the 3× 3 square around s, and b̂s′′ = 0.5/32 for
the remaining sixteen states in the 5 × 5 square. We repeat this
process using b̂s = 0.35 and b̂s = 0.20. If this procedure allocates
non-zero probability mass to a state outside the environment, it
is instead allocated to the closest state within the environment.
This procedure yields a set of 864 posterior belief states, which
subsequently yields a set of 3456 prior belief states using (2).
We use a discount factor of γ = 0.95 and consider values of
β = 0 and β = 20, where β = 0 corresponds to the case where
the rover incurs no perception cost. Considering an infinite time
horizon, we perform value iteration until convergence for each
value of β , wherein we solve (15) for each prior belief state and
(17) for each posterior belief state at each iteration. To solve each
LP, we use the Gurobi LP solver (Gurobi Optimization, 2022).

To discuss the qualitative differences between the synthesized
joint perception–action strategies for the values of β considered,
we examine the sample trajectories they generate. Fig. 6 plots
he expected state residence averaged over 1000 trials for each
alue of β . In the case β = 0, we see that the rover takes the
horter path underneath the rocky obstacles to reach its target,
ince, in the absence of perception costs, it is strictly focused
n minimizing environmental costs. The rover is able to follow
8

his path as it has perfect state knowledge. Because it incurs no
erception costs, the synthesized perception strategy will always
niquely indicate the true underlying state of the rover. The rover
s thus able to leverage this perfect state information towards
aking a more direct path to reach the target states.

For β = 20, perception costs drive the rover to exhibit
ifferent behavior. In most simulations, the rover takes the longer
ath around the top of the rocky area. Intuitively, the synthe-
ized perception strategy drives the rover to maintain a diffuse
elief state, as such belief states correspond to lower perception
osts. Thus, to balance perception and environmental costs, the
over remains in belief states that are diffuse yet have a low
robability of residing in a rocky state. In some cases, the rover
nitially slips several states in the opposite direction of the safe
ath. Once in such a state, the environmental costs associated
ith following an even longer trajectory dominate the perception
osts. In these cases, the rover follows trajectories similar to those
f β = 0. Through this example, we see how the relative costs
ssociated with perception and the agent’s environment can yield
ignificantly different behavior.

. Numerical example: Dynamic sensor selection

A common problem in the field of active perception is that
f dynamic sensor selection (Spaan & Lima, 2009). Often, due to
ower or computational constraints, it is infeasible for an agent
o simultaneously use all available sensors to make observations,
nd the agent must instead synthesize a strategy for selecting
subset of the sensors to use at each time step. Here, we use

he output of (15)–(17), namely, the perception strategy P , to
ynthesize a dynamic sensor selection strategy. We consider the
ing environment in Fig. 7, where the agent must estimate the
tate of an uncontrolled target. As shown in Fig. 7 for state s1,
he uncontrolled dynamics are described by a Markov chain in
hich the target transitions to the same state with probability

/2, to a neighboring state with probability 1/6, and to a state
wo steps away with probability 1/12. The goal for the agent is to
inimize its total maximum a posteriori (MAP) estimation error
f the true target state, which we encode using the set of actions
= {a1, . . . , a8} and the cost function C = 18×8− I8, where 18×8

s an 8 × 8 matrix of ones. The action ai corresponds to picking
tate si to be the true state of the target.
The agent can use a set of 8 sensors, with one centered on

ach state, labeled S i for i = 1, . . . ,N , as shown in Fig. 7 for
he sensor centered on state s4. Associated with each sensor S i

s an observation function P i that maps each state to a proba-
ility distribution over 6 possible observations. We provide the
bservation function for the sensor centered on state s4 in Table 1,
here the observations correspond to observing the target in
tate s2, s3, s4, s5, s6, or simply making ‘‘no observation’’, respec-
ively. Note the probability that the sensor makes the correct
bservation increases as the true target state moves closer to s4.
he remaining observation functions are constructed similarly.

The dynamic sensor selection strategy is constructed as fol-
ows. To start, let b̂rit−1 = [b̂

ri
t−1,s1

, . . . , b̂rit−1,s8 ]
⊤ be the belief

tate of the agent at time step t − 1, and let brit be the belief
tate obtained after propagating b̂rit−1 through the transition dy-
amics (1). Using the propagated belief state brit , define b∗ ≜
inb∈B ∥b−brit ∥2, i.e., b

∗ is the closest sampled prior belief state to
he agent’s current belief state. We now select a subset of sensors,
enoted St

⊆ {S1, . . . , S8
}, such that their combined observation

unction, denoted P t , is closest to the synthesized observation
unction Pb∗ ≜ P ∗ . For a given belief state b, we use the
z|s,b
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tate corresponds to the fraction of the trials that occupied that state at the given time step. When β = 0, the rover incurs no perception costs and is able to take
more direct path to the goal state. For β = 20, the rover faces prohibitive perception-related costs and instead favors a longer path around the rocky obstacle.
Fig. 7. Visualization of the ring environment considered.

Table 1
Probabilities P4

z|s for the sensor centered on state s4 .

z1 z2 z3 z4 z5 z6
s1 0.068 0.034 0 0 0 0.898
s2 0.384 0.085 0.043 0 0 0.488
s3 0.107 0.480 0.107 0.053 0 0.253
s4 0.067 0.133 0.600 0.133 0.068 0
s5 0 0.053 0.107 0.480 0.107 0.253
s6 0 0 0.043 0.085 0.384 0.488
s7 0 0 0 0.034 0.068 0.898
s8 0.027 0 0 0 0.027 0.945

following metric, denoted d(P1,P2
|b), to define how ‘‘close’’ a

air of observation functions P1 and P2 are:

(P1,P2
|b) ≜ E[ ∥ E[bayes(b, z)|P1

]−

E[bayes(b, z)|P2
] ∥ 1 | b ], (29)

here, for a given P , bayes(b, z) denotes the standard Bayesian
pdate given by b′s = (Pz|sbs)/(

∑
s′ Pz|s′bs′ ) for each s ∈ S.

Intuitively, d(P1,P2
|b) measures the distance between the ex-

pected belief states obtained by each of the observation functions
given a fixed ground-truth state, weighted by the probability that
the state is the ground-truth state. Note that using this metric
requires checking 28 sensor combinations at each time step. For
systems with a larger number of sensors, one could alternatively
implement a greedy approach to minimize d(P t ,Pb∗

|bri).
t

9

We sample a total of 193 posterior belief states, beginning
with the extreme points of the belief simplex and iteratively add
increasingly diffuse belief states centered on each of the 8 states.
Furthermore, since the dynamics of the target are a Markov chain,
the set B likewise consists of 193 belief states. We use a discount
factor of γ = 0.95 and vary the values of β from 0.3 to 0.8,
solving the value iteration procedure (15)–(17) for each. After
completing this value iteration for a given value of β , we then
simulate the proposed dynamic sensor selection strategy, starting
with a uniform belief state bri1 = [1/8, . . . , 1/8]⊤. The resulting
sensor selections over a horizon of 50 times steps are shown
in Fig. 8 for each value of β . For values of β below 0.3, our
proposed algorithm always picks all available sensors, whereas
if the value of β is greater than 0.8, it almost always picks no
sensor. As expected, as the value of β increases, so too does the
number of sensors picked at each time step. In Fig. 9, we further
plot the cumulative MAP estimation error for each value of β

considered. As β increases, the algorithm trades off an increase in
the estimation error with the use of fewer sensors. Note that, due
to the construction of each P i, even selecting all sensors yields
nonzero estimation error.

As a comparison, we implement the work of Spaan and Lima
(2009), which uses a PBVI-based approach in which the set of
POMDP actions consists of the actions {a1, . . . , a8} and the set of
all possible sensor selections 2{S1,...,S8}. In this method, the sens-
ing constraint is directly imposed as a cardinality constraint on
the number of sensors that can be chosen at each time step. We
refer the reader to Pineau et al. (2003) for additional information
on PBVI. For each cardinality constraint considered, we begin with
a sample of 73 belief states and perform 5 rounds of belief set
expansion, backing up the α-vectors 25 times per iteration. Note
that, although the PBVI approach starts with fewer belief states
than our algorithm, the belief expansion step nearly doubles the
cardinality after each round.

Table 2 displays the comparison between this approach and
our proposed algorithm. The simulations are run on a 1.8 GHz
Intel Core i7-8550 CPU with 16 GB RAM (note we have not fully
optimized either implementation). When the average cardinali-
ties of the chosen sensor subsets are similar, (e.g., in the case
k = 2 and β = 0.7), the PBVI-based approach outperforms our
algorithm in both the average time required per online iteration
and in minimizing the cumulative MAP estimation error. Since
at runtime the PBVI output is simply finding the minimizing
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Fig. 8. Comparison of the sensor selection at each time step for various values of β . Clockwise from top left are the plots for β = 0.3, β = 0.4, β = 0.5, β = 0.6,
β = 0.7, and β = 0.8, respectively.
s

Fig. 9. MAP estimation error as a function of β .

yperplane, it is significantly more efficient than the exhaustive
earch our algorithm performs at each iteration. Furthermore,
ince the offline portion of the PBVI-based approach explicitly
ncorporates the sensors {S1, . . . , S8

}, it is unsurprising that the
resulting cumulative MAP error is less than that of our algorithm.
However, the offline portion of PBVI quickly becomes intractable
as the cardinality constraint increases. Although each iteration of
PBVI can be done in polynomial time, it requires constructing
a prohibitively large set of α-vectors at each backup step, as
one vector is required for each of the exponential number of
observations for a combinatorial number of sensors. On the other
hand, the offline portion of our algorithm is sensor agnostic and
nly sees a slight change in the offline runtime due to varying β .
nother benefit of this agnosticism is that changing the number
r the specific observation functions of the sensors at runtime
oes not require resolving the offline portion, whereas doing so is
equired for PBVI. Thus, our algorithm shows promise for use in
arge sensor networks for which the offline solution of PBVI-based
ethods is prohibitively expensive, and sensors may be added or
pdated at runtime.
10
Table 2
Comparison of the PBVI-based approach and our algorithm’s offline solution
times, online solution times, cumulative MAP estimation error, and average
number of chosen sensors.
Method Offline [s] Online [s] Error |St

|

PBVI, k = 1 24.95 8.1 × 10−4 23.6191 1.00
PBVI, k = 2 8.6 × 102 6.0 × 10−4 15.84 2.00
PBVI, k = 3 1.5 × 104 7.1 × 10−4 11.4284 3.00
PBVI, k = 4 TO – – –
β = 0.3 39.75 0.98 5.51 7.96
β = 0.4 42.73 0.95 5.96 7.19
β = 0.5 46.44 1.05 10.62 4.91
β = 0.6 50.43 1.15 16.33 3.18
β = 0.7 50.37 1.14 21.57 2.12
β = 0.8 54.13 1.13 25.23 1.35

6. Conclusion and future work

We consider a simultaneous perception–action design prob-
lem wherein the perception costs are modeled using the di-
rected information. The agent’s objective function is decomposed
into two coupled sets of recursive Bellman equations, allowing
a tractable, approximate solution through a novel method of in-
variant finite belief sets to be obtained. The proposed method
restricts the agent to operate exclusively on a finite subset of
the continuous belief space. An optimal simultaneous perception–
action strategy is then obtained using a dynamic programming
approach wherein a linear program is solved for each prior belief
state at each iteration.

Several natural extensions of the SPADE framework are as
follows. To start with, once the optimal perception strategy is
obtained, the next step is to select, or develop, a sensor that
‘‘physically realizes’’ the perception strategy. The types of ad-
ditional constraints that must be imposed on the perception
strategy to allow for such a sensor remains the subject of fu-
ture work. Furthermore, for the tabular algorithm we propose
in Eqs. (15) and (17), naïvely constructing the posterior belief
et B̂ yields an impractical cardinality for realistic, large-scale
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Fig. A.1. Feedback system considered.

Fig. A.2. Perception through bitpipe.

roblems. Developing methods to cleverly construct B̂ remains an
mportant direction for future study. An alternative direction for
itigating computational costs is to generalize the state space in

erms of a set of features, as in the case of tile or Kanerva coding
n the reinforcement learning literature (Sutton & Barto, 2018)
nd to solve the SPADE problem on this feature space.

ppendix A. Details on information-theoretic perception cost

We now provide a rationale for using the directed information
o model perception costs. To this end, notice that

(s1:T → z1:T ) =
T∑

t=1

I(s1:t; zt |z1:t−1) (A.1a)

=

T∑
t=1

I(st; zt |z1:t−1)−I(s1:t−1; zt |st , z1:t−1) (A.1b)

=

T∑
t=1

I(st; zt |z1:t−1) (A.1c)

=

T∑
t=1

H(st |z1:t−1)− H(st |z1:t ). (A.1d)

he second term in (A.1b) is zero as our model assumes zt is
independent of s1:t−1 given st , as in Fig. 1(b). Therefore, the
directed information is equivalent to the summation of the stage-
additive information gains; i.e., the difference in entropy of the
state variable before and after incorporating zt . We interpret this
information gain as the minimum number of information bits
that must be delivered from the perception unit to the action
unit in each time step. The set of SPADE parameters that min-
imize I(s1:T → z1:T ) are advantageous, since an optimal source
coding (i.e., data compression) scheme can potentially reduce
the data traffic from the perception unit to the action unit to
I(s1:T → z1:T ) bits. We now present a formal analysis pro-
iding the directed information a Shannon-theoretic operational
eaning wherein we model the communication channel from

he perception unit to the action unit as a noiseless bitpipe,
hrough which the message zt is delivered in the form of a
ariable-length, uniquely-decodable binary code. Specifically, let
s, Pm, Pz and Pa be conditional probability distributions with

the structures shown in Fig. A.1. Given an initial distribution
Ps(s1), let s1:T ,m1:T , z1:T and a1:T be random processes defined by
the feedback diagram in Fig. A.1. Then, we obtain the following
lemma.
11
Lemma 5. Given the Feedback system shown in Fig. A.1, the follow-
ing inequalities hold:

I(s1:T→a1:T ) ≤ I(s1:T→z1:T ) ≤ I(m1:T→z1:T ),
I(s1:T→a1:T ) ≤ I(m1:T→a1:T ) ≤ I(m1:T→z1:T ).

Proof. See, e.g., Derpich and Østergaard (2021). □

To provide the directed information a Shannon-theoretic op-
erational meaning, assume messages from the perception unit to
the action unit are communicated through a noiseless bitpipe, as
shown in Fig. A.2, and that delivering an individual bit incurs
a unit cost. This formulation provides a meaningful model to
estimate the cost of communication in applications where sensor
data is transmitted over a digital communication channel. In
time step t , the perception unit produces a uniquely decodable
variable-length binary code mt ∈ {0, 1}ℓt , where ℓt is the length
of the code. The message mt is decoded in the action unit to
reproduce the observation signal zt ∈ Z . Since communication
is costly, the design goal of the simultaneous perception–action
system, including message encoder and decoder, is to minimize
T∑

t=1

E[Cst ,at ] + E[ℓt ], (A.2)

where E[ℓt ] is the expected codeword length. Although it is
difficult to evaluate E[ℓt ] directly, it can be approximated using
directed information, as shown in the following lemma.

Lemma 6. For the communication system in Fig. A.2

I(s1:T → z1:T ) ≤
T∑

t=1

E[ℓt ]. (A.3)

Proof. The following inequalities establish the claim:

I(s1:t → z1:t ) ≤ I(m1:t → z1:t ) (A.4a)

=

T∑
t=1

I(m1:t; zt |z1:t−1)

=

T∑
t=1

I(mt; zt |z1:t−1)− I(mt−1; zt |mt , z1:t−1)  
=0

=

T∑
t=1

H(mt |z1:t−1)− H(mt |z1:t )  
≥0

≤

T∑
t=1

H(mt ) (A.4b)

≤

T∑
t=1

E[ℓt ]. (A.4c)

Lemma 5 is applied to obtain (A.4a). The inequality in (A.4b) holds
since conditioning can only reduce the entropy. Finally, (A.4c)
follows from the fact any uniquely-decodable code is a uniquely-
decodable code of itself, and thus its expected codeword length
is lower-bounded by its entropy, see, e.g., Theorem 5.3.1 of Cover
and Thomas (2012). □

Evaluating the tightness of the lower bound (A.3) is more chal-
lenging. However, it is reported (Kostina & Hassibi, 2019; Tanaka
et al., 2017) that the construction of source coders operating at
a rate close to this lower bound is possible under some special
circumstances, such as LQG settings.
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ppendix B. Proofs of Lemmas 1–3

roof of Lemma 1. Starting with the constraint given in (11), we
sum over all m = 1 . . .M to obtain∑

m

αm
b b̂

m
=

∑
m

diag(b)Pm|:,b. (B.1)

Since diag(b) is present in each term, we can move it outside the
summation. Then, noting P must be a valid probability distri-
bution for each s ∈ S; i.e.,

∑
m Pm|s,b = 1, we must have that∑

m Pm|:,b = 1|S|×1. Substituting into (B.1) yields∑
m

αm
b b̂

m
= diag(b)1|S|×1, (B.2)

which we can write more intuitively in matrix notation as[
b̂1 · · · b̂M

][
α1
b · · · αM

b

]⊤
= b. (B.3)

Since we chose B̂ such that Assumption 1 is satisfied, we can
xpress any b as a convex combination of extreme points of
(S). Thus, there exist nonnegative coefficients αm

b , m = 1 . . .M ,
atisfying (B.3). Furthermore, in realistic applications, we will
ften have that M ≫ |S|. By this condition, there exist infinitely
any solutions to (12)–(13). □

roof of Lemma 2. Considering only states s ∈ S(b), we use (10)
o parameterize the perception strategy variables as

m|s̄,b = αm
b (b̂

m
s̄ /bs̄) (B.4)

or all s̄ ∈ S(b) and all m = 1, . . . ,M . Since b and b̂m, m =
, . . . ,M , are nonnegative vectors, and αm

b is constrained to be
nonnegative, the parameterized variables are likewise guaranteed
to be nonnegative. Substituting this parameterization into the
first set of linear constraints in (12) and multiplying each side
by diag(b[S(b)]), we obtain∑

m̄

αm̄
b b̂

m̄
[S(b)] = b[S(b)] (B.5)

ow, substituting the parameterization for the perception strat-
gy variables into (14), we see that∑
m̄

∑
s̄

bs̄Pm̄|s̄,b(β log
Pm̄|s̄,b

αm̄
b

+ V̂ (b̂m̄)) (B.6a)

=

∑
m̄

∑
s̄

αm̄
b b̂

m
s̄ (β log(b̂m̄s̄ /bs̄)+ V̂ (b̂m̄)) (B.6b)

=

∑
m̄

αm̄
b

∑
s̄

b̂m̄s̄ (β log(b̂m̄s̄ /bs̄)+ V̂ (b̂m̄)) (B.6c)

=

∑
m̄

αm̄
b (β

∑
s̄

b̂m̄s̄ log(b̂m̄s̄ /bs̄)+ V̂ (b̂m̄)). (B.6d)

By defining Fm and D(b̂m ∥ b) as in (16), we can rewrite the
objective function in (B.6d) together with the constraints in(B.5)
to obtain the desired LP, completing the proof. □

Proof of Lemma 3. Consider a perception strategy P ∈ Pb→B̂
with observation probabilities Pzm|s,b, where the observation al-
phabet has cardinality M . Now, consider a perception strategy P ′

with observation alphabet cardinality |Z ′| = M + 1 constructed
as follows. For each zm, m = 1, . . . ,M , let P ′zm|s,b = Pzm|s,b for all
S×B, and let all remaining P ′zm|s,b be arbitrarily chosen such that
P ′ ∈ P ′

b→B̂′
. Then, there is a one-to-one correspondence between

the expectations over successor states for both the prior and
posterior belief states in the sets B and B̂; thus, their respective

value functions are equal. Since we chose P arbitrarily, the value

12
functions for each belief state when synthesizing a perception
strategy with an observation alphabet containing M+1 elements
cannot be greater than the case of synthesizing a perception
strategy containing M elements; i.e.,

V (b) ≥ V ′(b) ∀b ∈ B, V̂ (b̂) ≥ V̂ ′(b̂), ∀b̂ ∈ B̂. □

Appendix C. Proof of Lemma 4

We will use the following basic lemma:

Lemma 7. Let p, q ∈ ∆(S) be two probability distributions such that
∥p− q∥∞ ≤ ϵ ≤ 1/2. Then, it holds that

|H(p)− H(q)| ≤ ϵ| log ϵ||S|.

Proof. The proof follows that of Theorem 17.3.3 of Cover and
Thomas (2012). Consider the concave function f (t) = −t log t .
ince f (0) = f (1) = 0, it follows that f (t) ≥ 0 for all t ∈ [0, 1].
he maximum absolute slope of the chord of f (t) from t to t + ϵ

is obtained at either end, where either t = 0 or t = 1− ϵ. Thus,
for 0 ≤ t ≤ 1− ϵ, it follows that

f (t)− f (t + ϵ)| ≤ max{f (ϵ),f (1− ϵ)} = −ϵ log ϵ (C.1)

since ϵ ≤ 1/2. Then,

|H(p)− H(q)| = |
∑
s

(−p(s) log p(s)

+ q(s) log q(s))| (C.2a)

≤

∑
s

| − p(s) log p(s)+ q(s) log q(s)| (C.2b)

≤

∑
s

−ϵ log ϵ = −ϵ log ϵ|S|, (C.2c)

here (C.2c) follows from (C.1). □

To show (23), we need to prove the gap between (TV )(b) and
T̃ V |B)(b), given by (8) and (18), respectively, is bounded by ϵ for
ach b ∈ B. Let (A∗,P∗) be a minimizer for (8). If a minimizer
oes not exist, one can instead consider an ϵ0-suboptimal solu-
ion for a sufficiently small ϵ0 > 0. In this case, the following
roof can be adapted with only minor adjustments. Since P∗z|s,b
s unconstrained, the posterior belief b̂z can take general values
n ∆(S). Particularly, P∗z|s,b drives the prior belief b to a posterior
elief b̂z ∈ ∆(S) with probability αz

b =
∑

s P
∗

z|s,bbs. For each s ∈ S
uch that bs ̸= 0, it follows from Bayes’ rule (9) that
∗

z|s,b = αz
b(b̂

z
s/bs). (C.3)

ote (A∗,P∗) may not be admissible for (18). Instead, we con-
truct an admissible (Ã∗, P̃∗) for (18) (i.e., P̃∗ ∈ Pb→B̂) such
that (Ã∗, P̃∗) is ‘‘close’’ to (A∗,P∗). We construct this perception
policy P̃∗ ∈ Pb→B̂ from P∗ as follows: for each b̂m ∈ B̂, define
the neighborhood in Z as N(b̂m) ≜ {z ∈ Z : πb̂z = b̂m}. Clearly, we
have Z =

⋃M
m=1 N(b̂m). Set

αm
b =

∫
N(b̂m)

αz
bdz, (C.4)

for each m = 1, . . . ,M . Now, define P̃∗ as

P̃∗m|s,b =
{
αm
b (b̂

m
s /bs) for s such that b(s) ̸= 0

arbitrary for s such that b(s) = 0
(C.5)

for each m = 1, . . . ,M and s ∈ S. Note P̃∗m|s,b is well-defined
by the constraint supp(b̂m) ⊆ supp(b̂) in the definition of πb̂

in (19). Specifically, if bs = 0, then by (C.3), it must hold that
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b̂zs = 0 as well. Then, under the constraint in (19), it follows that
b̂ms = πb̂z ,s = 0. Likewise, define Ã∗ as

˜∗
a|b̂m
=

{
1

αm
b

∫
N(b̂m) α

z
bA
∗

a|b̂z
dz if αm

b ̸= 0

arbitrary if αm
b = 0

(C.6)

for each a ∈ A and b̂m ∈ B̂. Now, notice that under the percep-
tion strategy P̃∗, an observation m is observed with probability∑

s P̃
∗

m|s,bbs =
∑

s α
m
b b̂

m
s = αm

b . Then, by Bayes’ rule (9), the
posterior belief becomes b̂m when m is observed since, by the
construction of P̃∗,

P̃∗m|s,bbs∑
s′ P̃
∗

m|s′,bbs
′
=

(αm
b b̂

m
s /bs)bs
αm
b

= b̂ms .

Therefore, P̃∗ ∈ Pb→B̂ as desired. We now compare the right
hand sides of (8) and (18) evaluated under (A∗,P∗) and (Ã∗, P̃∗),
espectively, term-by-term.

.1. Comparison of R∗b,P and R∗
b,P̃

Using (C.3), the perception cost R∗b,P is

R∗b,P =
∑
s

∫
Z
P∗z|s,bbs log(P

∗

z|s,b/α
z
b)dz

=

∑
s

∫
Z
αz
b b̂

z
s log(b̂

z
s/bs)dz =

∫
Z
αz
bD(b̂

z
∥b)dz (C.7)

n the other hand, the perception cost R∗
b,P̃

is

R∗b,P̃ =
∑
s,m

P̃∗m|s,bbs log(P̃
∗

m|s,b/α
m
b )

=

∑
s,m

αm
b b̂

m
s log(b̂ms /bs) (C.8a)

=

∑
m

αm
b D(b̂

m
∥b)

=

∑
m

∫
N(b̂m)

αz
bD(b̂

m
∥b)dz (C.8b)

=

∑
m

∫
N(b̂m)

αz
bD(πb̂z ∥b)dz (C.8c)

=

∫
Z
αz
bD(πb̂z ∥b)dz (C.8d)

tep (C.8a) follows by the construction of P̃∗ in (C.5). The defini-
ion of αm

b in (C.4) is used to obtain (C.8b). To obtain (C.8c), recall
hat πb̂z = b̂m for each z ∈ N(b̂m). Finally, applying the fact that

M
m=1 N(b̂m) = Z yields (C.8d). Comparing (C.7) and (C.8d), we

obtain

|R∗b,P − R∗b,P̃ | = |
∫
Z
(D(b̂z∥b)− D(πb̂z∥b))dz|

≤

∫
Z
|D(b̂z∥b)− D(πb̂z∥b)|dz

≤ max
b̂∈∆(S)

|D(b̂∥b)− D(πb̂∥b)|.

The last expression can be upper bounded as follows:

|D(b̂∥b)− D(πb̂∥b)| = |
∑
s̄

−b̂s̄ log(b̂s̄/bs̄)

+

∑
πb̂,s̄ log(πb̂,s̄/bs̄)| (C.9a)
s̄

13
= |

∑
s̄

−b̂s̄ log b̂s̄ +
∑
s̄

πb̂,s̄ logπb̂,s̄

+

∑
s̄

(πb̂,s̄ − b̂s̄) log bs̄| (C.9b)

= |H(b̂)− H(πb̂)+
∑
s̄

(πb̂,s̄−b̂s̄) log bs̄| (C.9c)

≤ |H(b̂)− H(πb̂)| + |
∑
s̄

(πb̂,s̄ − b̂s̄) log bs̄| (C.9d)

≤ |H(b̂)− H(πb̂)| + ϵ̂|
∑
s̄

log bs̄| (C.9e)

≤ ϵ̂| log ϵ̂||S| + ϵ̂|
∑
s̄

log bs̄|, (C.9f)

where (C.9b) follows from standard properties of logarithms,
(C.9c) by the definition of the entropy, (C.9d) by the triangle
inequality, (C.9e) by the fact ∥b̂ − πb̂∥∞ ≤ ϵ̂, and (C.9f) from
Lemma 7. Recalling the relative entropy is summed over only S(b),
log b(s̄) is finite for all b ∈ B and s̄ ∈ S(b).

C.2. Comparison of EA∗,P∗
b [Cs,a] and EÃ∗,P̃∗

b [Cs,a]

We now compare EA,P
b [Cs,a] in (8) and EÃ∗,P̃∗

b [Cs,a] in (18).
otice that

A∗,P∗
b [Cs,a] =

∑
s,a

(∫
Z
αz
bA
∗

a|b̂z
b̂zsdz

)
Cs,a. (C.10)

n the other hand,

Ã∗,P̃∗
b [Cs,a] =

∑
s,a,m

αm
b Ã∗

a|b̂m
b̂ms Cs,a

=

∑
s,a,m

(
∫
N(b̂m)

αz
bA
∗

a|b̂z
dz)b̂ms Cs,a (C.11a)

=

∑
s,a,m

(
∫
N(b̂m)

αz
bA
∗

a|b̂z
πb̂z ,sdz)Cs,a (C.11b)

=

∑
s,a

(
∫
Z
αz
bA
∗

a|b̂z
πb̂z ,sdz)Cs,a (C.11c)

quality (C.11a) follows from the definition of Ã∗
a|b̂m

in (C.6).

quality (C.11b) then holds by recalling πb̂z = b̂m for all z ∈
(b̂m). The fact

⋃M
m=1 N(b̂m) = Z is used to obtain (C.11c). Now,

omparing (C.10) and (C.11c),

EA∗,P∗
b [Cs,a] − EÃ∗,P̃∗

b [Cs,a]|

= |

∑
s,a

(
∫
Z
αz
bA
∗

a|b̂z
b̂zsdz)Cs,a

−

∑
s,a

(
∫
Z
αz
bA
∗

a|b̂z
πb̂z ,sdz)Cs,a|

≤

∑
s,a

⏐⏐Cs,a
⏐⏐ (∫

Z
αz
bA
∗

a|b̂z
· |b̂zs − πb̂z ,s|dz)

≤ ϵ
∑
s,a

|Cs,a|(
∫
Z
αz
bA
∗

a|b̂z
dz)

≤ ϵ
∑
s,a

|Cs,a|(
∫
Z
αz
bdz) = ϵ

∑
s,a

|Cs,a|.
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.3. Comparison of EA∗,P∗
b [V (bz,a)] and EÃ,P̃∗

b [V (bz,a)]

We now compare EA,P
b [V (bz,a)] in (8) and EA,P

b [V (bm,a)] in
18). Under (P∗,A∗), the random variables (z, a) are realized ac-
ording to the probability distribution A∗

a|b̂z
αz
b = A∗

a|b̂z
∑

s P
∗

z|s,bbs,
hile under (P̃∗, Ã∗), the random variables (m, a) are realized

according to Ã∗
a|b̂m

αm
b . Thus,

|EA∗,P∗
b [Vk(bz,a)] − EÃ∗,P̃∗

b [Vk(bm,a)]|

= |

∑
a

∫
Z
A∗

a|b̂z
αz
bVk(bz,a)dz

−

∑
a,m

Ã∗
a|b̂m

αm
b Vk(bm,a)|

= |

∑
a

∫
Z
A∗

a|b̂z
αz
bVk(bz,a)dz

−

∑
a,m

∫
N(b̂m)

A∗
a|b̂z

αz
bVk(bm,a)|. (C.12)

To obtain (C.12), we again use the definition of Ã∗
a|b̂m

in (C.6). De-
ote by bm(z),a the prior belief obtained when action a is selected
n πb̂z , i.e., b

m(z),a
s =

∑
s′ Ts|a,s′πb̂z ,s′ . It is noteworthy that for each

∈ S and z ∈ Z ,

bz,a(s)− bm(z),a(s)
⏐⏐

=

⏐⏐⏐∑
s′

Ts|a,s′ b̂zs′ −
∑
s′

Ts|a,s′πb̂z ,s′

⏐⏐⏐
≤

∑
s′

Ts|a,s′
≤1

⏐⏐b̂z(s)− πb̂z ,s

⏐⏐  
≤ϵ̂

≤ ϵ̂|S|.

ince bm(z),a
= bm,a for each z ∈ N(b̂m), (C.12) can be upper

bounded as follows:

(C.12) =
⏐⏐⏐∑

a

∫
Z
A∗

a|b̂z
αz
bVk(bz,a)dz

−

∑
a

∫
Z
A∗

a|b̂z
αz
bVk(bm(z),a)

⏐⏐⏐
≤

∑
a

∫
Z
A∗

a|b̂z
αz
b

⏐⏐Vk(bz,a)− Vk(bm(z),a)
⏐⏐  

≤δ̂

dz

≤δ̂
∑
a

∫
Z
A∗

a|b̂z
αz
b ≤ δ̂, (C.13)

where the first inequality in (C.13) is obtained using (22).

C.4. Summary

Summarizing (i), (ii) and (iii) above, we obtain
|(TV )(b)− (T̃ (V |B))(b)| ≤ ϵ for each b ∈ B, completing the
proof. □

Appendix D. Additional information on three-state example

Consider the MDP in Fig. D.1, where the three actions a1, a2,
and a3 have the given transition probabilities. The agent’s objec-
tive is to avoid s3, for which we set Cs3,: = 1 and 0 otherwise.
To construct B̂, we uniformly grid the three-dimensional belief
simplex using three different spacings. For the uppermost plot in
Fig. 4, a spacing of 0.2 is used, producing a total of 21 posterior
belief states and 63 prior belief states. Similarly, for the center
plot in Fig. 4, a spacing of 0.1 is used, yielding 62 posterior belief
14
Fig. D.1. 3-state environment considered.

states and 186 prior belief states. Finally, the lowermost plot in
Fig. 4 is produced using a spacing of 0.05, resulting in a total of
217 posterior belief states and a corresponding set of 651 prior
belief states. Considering an infinite time horizon, the plotted
values of prior belief states are obtained via value iteration using
values of γ = 0.95 and β = 1, wherein we solve (15) for each
rior belief and (17) for each posterior belief at each iteration.
o solve each linear program, we use the Gurobi linear program
olver (Gurobi Optimization, 2022).
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