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Abstract. Accurate cardiac motion estimation is a crucial step in
assessing the kinematic and contractile properties of the cardiac cham-
bers, thereby directly quantifying the regional cardiac function, which
plays an important role in understanding myocardial diseases and plan-
ning their treatment. Since the cine cardiac magnetic resonance imag-
ing (MRI) provides dynamic, high-resolution 3D images of the heart
that depict cardiac motion throughout the cardiac cycle, cardiac motion
can be estimated by finding the optical flow representation between the
consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby
formulating it as an image registration problem. Therefore, we propose
a hybrid convolutional neural network (CNN) and Vision Transformer
(ViT) architecture for deformable image registration of 3D cine cardiac
MRI images for consistent cardiac motion estimation. We compare the
image registration results of our proposed method with those of the
VoxelMorph CNN model and conventional B-spline free form deforma-
tion (FFD) non-rigid image registration algorithm. We conduct all our
experiments on the open-source Automated Cardiac Diagnosis Challenge
(ACDC) dataset. Our experiments show that the deformable image regis-
tration results obtained using the proposed method outperform the CNN
model and the traditional FFD image registration method.

Keywords: Vision Transformer · Cardiac MRI · Cardiac Motion
Estimation · Medical Image Registration · Deep Learning

1 Introduction

The assessment of regional myocardial function such as myocardial wall defor-
mation, strain, torsion and wall thickness, plays a crucial role in understanding,
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diagnosis, risk stratification and planning treatment of several myocardial dis-
orders. Therefore, accurate cardiac motion estimation is an important step in
assessing the kinematic and contractile properties of the myocardium, thereby,
quantifying dynamic regional heart function.

Cine cardiac MRI provides high-resolution, dynamic 3D images of the car-
diac chambers, which depict cardiac motion throughout the cardiac cycle. Thus,
cardiac motion estimation can be formulated as an image registration problem,
which involves finding an optical flow representation between the consecutive 3D
frames of a 4D cine cardiac MRI dataset [19].

In the past decade, deep learning models have gained increased popularity
in medical image registration [6]. A number of researchers leveraged these deep
learning-based 4D deformable registration methods to estimate cardiac motion
from cine cardiac MRI images [11,12,21]. In our earlier work [16], we presented a
deep learning-based 4D deformable registration method for cardiac motion esti-
mation from cine cardiac MRI dataset by leveraging the VoxelMorph framework
[1]. Additionally, we demonstrated the application of the VoxelMorph-based car-
diac motion estimation method to build dynamic patient-specific left ventricle
(LV) myocardial models across subjects with different pathologies [17]. Although
the convolutional neural network (CNN)-based cardiac motion estimation pre-
sented in our previous work [16,17] showed promising performance, the CNN-
based approaches usually exhibit limitations in modeling explicit long-range spa-
tial relations due to the limited receptive fields of convolution operations [3].
Therefore, the large variations in shape and size of the cardiac chambers can
affect the registration performance of the CNN-based cardiac motion estimation
methods.

In recent years, self-attention-based architectures (Transformer-based), due
to their great success in sequence-to-sequence prediction in natural language
processing have gained increasing interests in computer vision tasks [5], includ-
ing medical image segmentation [3] and registration [4]. These current research
studies show that fusing the self-attention mechanism with the CNN models
overcome the limitation of the convolution operation in learning global semantic
information, which is critical for the image registration task in cardiac motion
estimation from the cine cardiac MRI images.

In this work, we propose a hybrid CNN-ViT architecture (Fig. 1) for con-
sistent cardiac motion estimation from 4D cine cardiac MRI images. Here, we
leverage the VIT-V-Net [4] to register the moving and fixed frame of the cardiac
MRI volumes. We evaluate the proposed method by training the models on the
ACDC dataset [2].

2 Methodology

2.1 Cardiac MRI Dataset

In this study, we use the 2017 ACDC dataset [2], consisting of short-axis cine
cardiac MRI images from 150 subjects, divided into five equally-distributed sub-
groups: normal, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy
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(HCM), prior myocardial infarction (MINF) and abnormal right ventricle (RV).
These images were acquired as part of clinical diagnostic exams conducted on
two different MRI scanners of 1.5 T and 3.0 T magnetic strength. These series
of short axis MRI slices cover the LV from base to apex with a through-plane
resolution of 5 mm to 10 mm and a spatial resolution of 1.37 mm2/pixel to 1.68
mm2/pixel.

2.2 Vision Transformer-Based Deformable Image Registration

Here, the aim of the deep learning model is to find an optical flow represen-
tation between a sequence of image volume pairs {(IED, IED+t)}t=1,2,3,...,NT −1

where IED is the image volume frame at end-diastole (ED) and NT is the total
number of frames for a particular subject. That is, for the given image vol-
ume pair (IED, IED+t), the deep learning model should predict a differentiable
transformation function φ to warp the moving image volume IED, to produce a
warped image volume IED ◦φ. The similarity loss is computed between the fixed
image volume IED+t and warped image volume IED ◦ φ, and this loss is used to
back-propagate the deep learning network.

In this work, we employ the ViT-V-Net [4] architecture to estimate the dif-
ferentiable optical flow representation (to ensure smoothness of the displacement
field from ED to ES) between the image volume pairs (IED, IED+t). The direct
application of ViT to the full-resolution cine cardiac MRI volume increases com-
putational complexity. Similarly, splitting the image volume into 3D patches
is not ideal, as it leads to the model not learning the local context informa-
tion across the spatial and depth dimensions for volumetric registration [20].
Therefore, in ViT-V-Net [4], instead of feeding the whole high-resolution image
volumes to the ViT, the image volumes are first encoded to low-resolution and
high-level feature representations using a CNN encoder. Next, the high-level 3D
context features are split into patches, which are then mapped onto a latent space
using a trainable linear projection, i.e., patch embedding. These patch embed-
dings are added to the learnable position embeddings to retain the positional
information of the patches, which are then fed into the ViT. The ViT consists
of multiple alternating layers of multihead self-attention (MSA) and multi-layer

Fig. 1. Overview of the proposed hybrid CNN-ViT architecture for cardiac motion
estimation.
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perceptron (MLP) blocks. Finally, the output of ViT is fed into a CNN decoder
to output the deformation field φ [4,5,18]. Also, long skip-connections are used
between the V-Net [10] style encoder-decoder architecture. This deformation
field is fed to the spatial transformer network (STN) [7] along with the moving
image volume to produce a warped image volume (Fig. 1).

The loss function used to optimize the network described above is given by:

L = Lsimilarity + λLsmooth, (1)

where Lsimilarity is the mean squared error (MSE) between the fixed image vol-
ume IED+t and the warped image volume IED ◦φ. The smoothing loss Lsmooth is
the diffusion regularizer used in [4], on the spatial gradients of the deformation
field φ, and λ is the regularization parameter.

2.3 Network Training

In order to rectify the inherent slice misalignments that occur during the cine
cardiac MRI image acquisition, we train a variant of the U-Net model [13] to
segment the cardiac chambers such as LV blood-pool, LV myocardium and RV
blood-pool from 2D cine cardiac MRI images. We identify the centroid of these
predicted segmentation maps as the LV blood-pool centers and stack the 2D MRI
slices collinearly for all the frames of the cardiac cycle, resulting in slice misalign-
ment corrected 3D images. These slice misalignment corrected 3D images were
used to train all the registration algorithms reported in this work.

As mentioned earlier, we aim to find the optical flow representation between
image pairs {(IED, IED+t)}t=1,2,3,...,NT −1. In order to do this, we employ 110
of the available 150 cardiac MRI dataset for training, 10 for validation and 30
for testing. The data-split in this work is consistent with our earlier work that
involves VoxelMorph-based cardiac motion estimation [16,17], for comparison.
We train our networks using an Adam optimizer with a learning rate of 10−4,
reduced by half every 10th epoch for 50 epochs. Furthermore, all the deep learn-
ing models in this work were trained on a machine equipped with a NVIDIA
RTX 2080 Ti GPU.

3 Experiments and Results

To evaluate the performance of our proposed framework for cardiac motion esti-
mation, we compare it with the VoxelMorph [1] model, as well as the B-spline
FFD non-rigid registration algorithm [14]. The VoxelMorph CNN model was
trained using the same hyperparameters used for training the proposed hybrid
CNN-ViT. The FFD algorithm was trained using the adaptive stochastic gradi-
ent descent optimizer, while sampling 2048 points per iteration for 500 iterations,
with MSE as the similarity measure and binding energy as the smoothing loss.
This FFD-based non-rigid image registration algorithm was implemented using
SimpleElastix [8,9] on an Intel(R) Core(TM) i9-9900K CPU.
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Table 1. Summary of registration evaluation on the test set (30 subjects): Unreg-
istered (post slice misalignment correction), B-spline free form deformation (FFD),
VoxelMorph and the proposed ViT-V-Net. Mean Dice score (std-dev) and Hausdorff
distance (HD) for LV blood-pool (LV), LV myocardium (MC) and RV blood-pool (RV),
for both “gold” and “silver” standard comparisons. Statistically significant differences
between the registration metrics of VoxelMorph and ViT-V-Net registration were eval-
uated using the Student t-test and are reported using * for p < 0.05 and ** for p <
0.01. The best evaluation metrics achieved are labeled in bold.

Dice (%) HD (mm)

LV MC RV LV MC RV

ED to ES frames:
Gold standard

Unregistered 87.30 69.15 70.18 7.22 8.93 11.85

(3.20) (2.99) (3.85) (1.64) (2.72) (2.47)

FFD 88.94 74.93 73.38 6.35 8.87 11.89

(2.42) (2.12) (3.22) (3.61) (2.42) (1.94)

VoxelMorph 92.17 79.39 77.58 5.59 8.05 11.75

(4.21) (3.22) (1.30) (1.21) (2.94) (2.11)

ViT-V-Net 93.31 82.24** 81.27** 5.11 6.50* 9.02*

(2.10) (2.14) (1.30) (1.11) (1.83) (1.73)

ED to all frames:
Silver standard

Unregistered 81.29 80.15 77.32 3.13 6.08 8.61

(4.93) (3.64) (3.91) (2.44) (2.91) (3.12)

FFD 84.34 82.57 78.23 3.01 6.11 8.75

(2.34) (1.03) (4.10) (1.03) (2.89) (1.41)

VoxelMorph 94.67 84.08 82.73 2.51 6.07 8.96

(5.96) (4.32) (3.76) (1.31) (2.79) (3.47)

ViT-V-Net 93.67 88.53** 83.92* 2.66 5.02* 7.83*

(4.61) (3.78) (3.17) (1.42) (0.93) (1.08)

We evaluate the performance of all our models by warping the segmentation
map of the ED frame to the end-systole (ES) frame using the estimated registration
field, and computing the Dice score and Hausdorff distance (HD) between ground
truth ES segmentation map of the cardiac chambers, namely LV blood-pool, LV
myocardium and RV blood-pool, and warped segmentation map of the ED frame.
Since the segmentation maps of the ED and ES frame are manually annotated by
experts, we refer to this comparison as the “gold” standard comparison.

Additionally, we warp the segmentation map of the ED frame to all the
subsequent frames of the cardiac cycle, and compute the evaluation metrics
between the warped segmentation map of the ED frame and segmentation maps
predicted by the U-Net model (as described in Sect. 2.3). Since the segmentation
maps used here were generated using techniques that were previously validated
against expert annotations, we refer to it as “silver” standard comparison. These
results are shown in Table 1.

In Table 1, we show that our proposed method achieved a mean Dice score of
85.67% and a mean HD of 6.87 mm for our “gold” standard comparison, and a
mean Dice score of 88.71% and a mean HD of 5.17 mm for our “silver” standard
comparison.
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(a) (b)

Fig. 2. “Gold” and “silver” comparison of (a) mean Dice score, and (b) mean HD values
before registration (post slice misalignment correction), B-spline free form deformation
(FFD) registration, VoxelMorph and the proposed ViT-V-Net, on the test set (30
subjects).

Fig. 3. Panel 1-1: End-systole (ES) frame; Panel 1-2: ground truth segmentation map
of the cardiac chambers overlaid on the slice; Panel 1-3: segmentation map of the end-
diastole (ED) frame overlaid on the ES frame without registration (Dice: 77.29%, HD:
9.09 mm); Panel 1-4: post registration contours using FFD algorithm (Dice: 79.02%,
HD: 8.99 mm); Panel 1-5: post registration contours using VoxelMorph model (Dice:
83.11%, HD: 7.01 mm); Panel 1-6: post registration contours using ViT-V-Net frame-
work (Dice: 85.57%, HD: 6.82 mm). Panel 2-1: ED + 5th frame; Panel 2-2: U-Net
predicted segmentation map of the cardiac chambers overlaid on the slice; Panel 2-3:
segmentation map of the end-diastole (ED) frame overlaid on the ED + 5th frame
without registration (Dice: 78.07%, HD: 5.55 mm); Panel 2-4: post registration con-
tours using FFD algorithm (Dice: 81.03%, HD: 4.92 mm); Panel 2-5: post registration
contours using VoxelMorph model (Dice: 85.03%, HD: 3.97.01 mm); Panel 2-6: post
registration contours using ViT-V-Net framework (Dice: 86.84%, HD: 3.28 mm). The
Dice score and HD reported here are the average of the LV blood-pool, LV myocardium
and RV blood-pool registration results.

We can observe that the proposed hybrid CNN-ViT model outperforms the
CNN-only VoxelMorph model, as well as the FFD registration method (Fig. 2).
In Fig. 3, we show an example of the cardiac chamber contours propagated using
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Fig. 4. Model-to-model distance between the isosurface mesh generated from Vox-
elMorph and ViT-V-Net propagation at end-systole (ES) frame (top row) and end-
diastole (ED)+5th frame (bottom row) for (left to right) left ventricle blood-pool (LV),
left ventricle myocardium (MC) and right ventricle blood-pool (RV)

the registration methods from the ED frame to the ES frame, as well as the ED
+ 5th frame. Additionally, in Fig. 4, we show an example of the model-to-model
distance between the isosurface meshes of the cardiac chambers propagated using
VoxelMorph framework and the proposed hybrid CNN-ViT framework from the
ED frame to the ES frame, as well as the ED + 5th frame. Here, we can observe
that the two sets of isosurface meshes are in close agreement with each other.

4 Discussion and Conclusion

In this paper, we present a hybrid CNN-ViT deformable image registration
method for consistent cardiac motion estimation from 3D cine cardiac MRI
images. To the best of our knowledge, this is the first study to investigate the
usage of ViT for cardiac motion estimation. In addition to the local context
information learnt by the CNN encoder-decoder layers, the ViT encodes global
context information by treating the CNN-encoded features as sequences.

We evaluate the performance of the proposed hybrid CNN-ViT framework
by comparing it with the VoxelMorph framework, which is essentially a CNN
encoder-decoder architecture without the ViT. We observe that the proposed
hybrid framework outperforms the VoxelMorph framework for cardiac motion
estimation from cine cardiac MRI images (Fig. 2).

In our earlier work [15,17], we showed that the VoxelMorph framework can
be used to build patient-specific LV myocardial and RV models, respectively.
However, thanks to the improved registration accuracy of the proposed method
compared to the VoxelMorph model, this work will enable us to generate more
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accurate patient-specific cardiac models featuring improved mesh (isosurface and
volumetric) quality. As such, as part of our future work, we will demonstrate how
the cardiac motion estimated using this proposed method may be used to build
high quality, deformable patient-specific geometric models of cardiac chambers
from cine cardiac MRI.
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