
Formal Methods for NFA Equivalence: QBFs,
Witness Extraction, and Encoding Verification⋆

Edith Hemaspaandra1[0000−0002−7115−626X] and David E.
Narváez2[0000−0003−3704−1060]

1 Department of Computer Science, Rochester Institute of Technology, Rochester
NY, USA 14623
eh@cs.rit.edu

2 Department of Computer Science, University of Rochester, Rochester NY, USA
14627

david.narvaez@rochester.edu

Abstract. Nondeterministic finite automata (NFAs) are an important
model of computation. The equivalence problem for NFAs is known to
be PSPACE-complete, and several specialized algorithms have been de-
veloped to solve this problem. In this paper, we approach the equiva-
lence problem for NFAs by means of another PSPACE-complete prob-
lem: quantified satisfiability (QSAT). QSAT asks whether a quantified
Boolean formula (QBF) is true. We encode the NFA equivalence problem
as a QBF which is true if and only if the input NFAs are not equivalent.
In addition to determining the equivalence of NFAs, we are also able to
decode strings that witness the inequivalence of two NFAs by looking
into the solving certificate. This is a novel application of certified QSAT
solving. Lastly, we formally verify key aspects of the encoding in the
Isabelle/HOL theorem prover.

Keywords: QSAT · QBF · Finite Automata · Interactive Theorem
Proving · Isabelle/HOL · Formal Methods.

1 Introduction

Finite automata are fundamental concepts in computer science. In theoretical
computer science education, for example, the contrast between deterministic and
nondeterministic finite automata is commonly used to introduce students to the
idea of nondeterminism. In practical settings, examples are lexical analysis in
compilers [1] and bounded model checking [19].

Equivalence of two finite automata is a classic computational problem. For de-
terministic finite automata (DFAs), Hopcroft’s algorithm [12] runs in near-linear
time. For nondeterministic finite automata (NFAs), the equivalence problem is
PSPACE-complete. Recent work by Bonchi and Pous [3,4] uses bisimulation
and coinduction to determine the equivalence of two NFAs. From the theoretical

⋆ Research supported in part by NSF grant DUE-1819546 and NSF grant CCF-
2030859 to the Computing Research Association for the CIFellows Project.

2 Hemaspaandra et al.

point of view, NFA equivalence being in PSPACE means it can be encoded as an
instance of any other problem that is PSPACE-complete. One such problem is
QSAT: the problem of determining whether a quantified Boolean formula (QBF)
is true. The ideas behind the proof of PSPACE-completeness of QSAT were used
by Jussila and Biere [19] to generate short QBFs encoding the bounded model
checking problem where given one automaton one wants to check that no bad
state is reachable. Ultimately, their findings suggested that QSAT solvers were
not a feasible tool at the time. Nevertheless, in the last decade there has been
increasing interest in developing new ideas for QSAT solving and much has been
advanced in terms of algorithms and tools for this problem. In particular, new
circuit-based formula formats have been introduced which aim at overcoming
the limitations of clause-based QSAT solving [18]. Part of our research studies
whether the state of the art in non-clausal QSAT solving supports an alterna-
tive method to solve NFA equivalence via a workflow that includes encoding
the problem as a QBF, solving it through QSAT solvers, and obtaining domain-
specific information from the solving process. Our results indicate that, despite
the great advances in the area, most solvers struggle with even small instances
of NFA equivalence problems. On the other hand, we show that in the case when
two NFAs are found to be not equivalent using this method, it is possible to use
current technology for QSAT certification to extract a witness string.

Another part of our research seeks to provide a verified encoder of the NFA
equivalence problem which can output formulas that can then be passed to
solvers. Such a development belongs to the very active area of research that
seeks to prove not only that the conceptual ideas of encoding a problem using
(in our case, quantified Boolean) constraints is correct but also providing an
implementation that matches the conceptual ideas [14,6].

The rest of this paper is structured as follows. Section 2 goes through the
definitions of DFAs and NFAs, plus the basic definitions of quantified Boolean
formulas. Section 3 explains the details of the QBF encoding of the problem
of inequivalence of NFAs. Section 4 explains the process of extracting a wit-
ness string out of the solving certificate generated by a QSAT solver. Section 5
presents some experimental results regarding solving these formulas in practice.
Section 6 discusses the details of the proof of correctness of a key part of the
encoding. Finally, we conclude in Section 7 and give some directions for future
work.

2 Background

A finite automaton is a computational model defined by a 5-tuple M = (Q,Σ, δ,
q0, F) where Q is a set of states, Σ is the alphabet, δ is a transition function to
move between the states as the automaton reads an input string, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states. M accepts string w if M ends
in a final state after reading w. The language L(M) of a finite automaton M is
the set of all strings that M accepts, and two automata M and M ′ are equivalent
if L(M) = L(M ′). If two automata are not equivalent, there is a witness string

Formal Methods for NFA Equivalence 3

that one automaton accepts, but the other automaton rejects. The key difference
between a deterministic finite automaton (DFA) and a nondeterministic finite
automaton (NFA) is the nature of the transition function δ to move between
the states. For DFAs, δ : Q × Σ → Q indicates the next state after reading
a symbol σ at a state q. For NFAs, δ : Q × (Σ ∪ {ϵ}) → P(Q) indicates the
set of possible next states after either reading a symbol σ ∈ Σ at a state q for
δ(q, σ), or not reading a symbol from the input string for δ(q, ϵ) (these are called
ϵ-transitions). Despite their difference, DFAs and NFAs accept the same class of
languages since an NFA can be transformed into a DFA that accepts the same
language, though this transformation may incur in an exponential blow-up in
the size of the state set.

Boolean satisfiability (SAT) is the problem of determining whether a propo-
sitional Boolean formula is satisfiable, i.e., whether there exists an assignment of
the variables of a formula φ that makes φ evaluate to true. This is arguably the
most famous NP-complete problem. Propositional Boolean formulas are typically
described, as we do in Section 3, using conventional operations like ∧ (logical
and), ∨ (logical or), and → (implication). An alternative way to think about
propositional Boolean formulas is as combinational circuits. The inputs of a cir-
cuit representing a propositional Boolean formula φ are the variables of φ, and
the satisfiability problem translates to determining whether there is an assign-
ment of values to the inputs of the circuit such that the output of the circuit is
true.

By including the universal quantifier ∀ (meaning for all) and the existential
quantifier ∃ (meaning there exists), we get a quantified boolean formula (QBF).
The problem of determining whether a QBF is satisfiable (QSAT) is complete
for PSPACE, a problem class that is assumed to strictly contain NP [30].

As we mentioned before, determining if two NFAs are equivalent is a PSPACE
problem, so QBFs can be used to encode this problem. We are interested in
comparing the bisimulation approach to the QSAT approach for different classes
of NFAs, starting with randomly generated NFAs.

q1start q2

a, b

b
q′1start q′2 q′3

a, b

b b

Fig. 1: NFAs N (left) and N ′ (right). The alphabet Σ is {a, b}, and final states
are drawn with a double circle. These NFAs are inequivalent since N accepts the
witness string ab, but N ′ does not.

4 Hemaspaandra et al.

3 QBF Encoding

As mentioned in the introduction, NFA equivalence is PSPACE-complete, and
so this problem can be encoded in polynomial time as a QBF. In this section,
we will show that it is remarkably straightforward to encode NFA inequivalence
into a QBF formula. This is particularly remarkable since NFA inequivalence is
a nondeterministic problem at heart. Our formula is closely related to the one
Stockmeyer and Meyer used to prove PSPACE-hardness of QSAT in their semi-
nal 1973 paper [30]. That paper points out the similarity between their construc-
tion and the one from Savitch’s proof showing that NPSPACE = PSPACE [29],
and the approach we use reveals that the construction from [30] also shows that
QBF is NPSPACE-hard, and so provides an alternative proof of PSPACE =
NPSPACE. We point out that the formula we use is closely related to the QBF
encoding of Savitch’s Theorem from [27] (the näıve encoding of Savitch’s The-
orem produces an existential formula of exponential length). Finally, for read-
ers with background in bounded model checking, this encoding will resemble a
double application of the non-copying iterative squaring method [19] as we are
interested in simultaneously solving reachability problems in two automata.

Consider two NFAs N = (Q,Σ, δ, q0, F) and N ′ = (Q′, Σ, δ′, q′0, F
′). For sim-

plicity, in this explanation we assume that these NFAs do not have ϵ-transitions
(those can easily be handled by a quick preprocessing step that does not in-
crease the number of states). For S ⊆ Q and σ ∈ Σ we let δ(S, σ) =

⋃
s∈S δ(s, σ)

(and similarly for N ′), and we extend the definition of δ and δ′ to strings in the
obvious and standard way.

For S, T ⊆ Q and S′, T ′ ⊆ Q′, we can construct a QBF φk(S, S
′, T, T ′)

that is true if and only if there exists a string w of length at most k such that
δ(S,w) = T and δ(S′, w) = T ′.

N and N ′ are inequivalent if and only if there is a witness string w of length
at most ℓ, the choice of which is discussed below, that is accepted by one NFA
and not by the other. This is to say that N and N ′ are inequivalent if and only
if

∃T. ∃T ′. [φℓ({q0}, {q′0}, T, T ′) ∧ (T ∩ F = ∅ iff T ′ ∩ F ′ ̸= ∅)].

For simplicity, we take k to be a power of 2. We define φk recursively as
follows. For the case k > 1, φk(S, S

′, T, T ′) is true if and only if there exist
intermediate sets of states R,R′ such that for all sets of states X,X ′, Y, Y ′, we
have3

φk(S, S
′, T, T ′) := ∃R,R′. ∀X,X ′, Y, Y ′. [((S, S′, R,R′) = (X,X ′, Y, Y ′)

∨ (X,X ′, Y, Y ′) = (R,R′, T, T ′))

→ φk/2(X,X ′, Y, Y ′)]. (1)

3 When we write A = B for sets A and B, we mean that the standard representation
of A and B as arrays of Boolean values is equal, i.e., A = B ≡

∧
(ai ↔ bi). Similarly,

when we quantify over a set we mean that we quantify over the Boolean variables
representing the set.

Formal Methods for NFA Equivalence 5

For the base case of k = 1, we have

φ1(S, S
′, T, T ′) :=

[
S = T ∧ S′ = T ′

]
∨

∨
σ∈Σ

[
δ(S, σ) = T ∧ δ′(S′, σ) = T ′

]
. (2)

Equation 2 encodes that either the sets S, T (resp. S′, T ′) are equal (and thus
δ(S, ϵ) = S = T and δ(S′, ϵ) = S′ = T ′) or that for some σ ∈ Σ, δ(S, σ) = T
and δ′(S′, σ) = T ′.

It is easy to see that 2n+n′ − 1 is an upper bound for ℓ, where n and n′ are
the number of states in N and N ′, respectively. Note that this implies that φℓ

can be computed in polynomial time, since the depth of recursion is at most
n+ n′ and the size of φk is at most c(n+ n′) plus the size of φk/2, where c is a
fixed constant.

We obtain this 2n+n′ −1 upper bound by converting N and N ′ to equivalent
DFAs (of size at most 2n and 2n

′
, respectively) using the subset construction [26]

and then using the Cartesian product construction (see [13]) to obtain a DFA
for the symmetric difference of size at most 2n2n

′
= 2n+n′

. If this DFA accepts
anything, it will accept a string of length at most 2n+n′ − 1. It is important to
note that the upper bounds on the number of states are tight (for the subset
construction [21,23] and for the Cartesian product construction [34]).

We can do a bit better by not converting the NFAs to DFAs. Though the
Cartesian product construction does not give an NFA for the symmetric dif-
ference of two NFAs, it does work just fine for the intersection of two NFAs.
Note that x is in the symmetric difference of L(N) and L(N ′) if and only if
x ∈ L(N)∩L(N ′) or x ∈ L(N)∩L(N ′). An NFA that accepts L(N) has size at
most 2n. This gives an NFA of size at most n2n

′
for L(N) ∩L(N ′) and an NFA

of size at most 2nn′ for L(N)∩L(N ′), and so a witness string of length at most
max(n2n

′
, 2nn′) − 1. Here also the upper bounds on the number of states are

tight (for computing the complement of an NFA [17] and for the intersection of
two NFAs [11]).

Our arguments above use the number of states - 1 as an upper bound on
the length of a shortest witness. State complexity, whether deterministic or non-
deterministic, is well-studied. But it is not inconceivable that the length of a
shortest witness is less than the number of states - 1. Compared to state com-
plexity, little is known about this very natural problem. The only paper that
looks at this problem for basic operations on finite automata is [2], where it is
shown that for all m,m′ ≥ 1, there exist two deterministic finite automata M
and M ′ with m and m′ states respectively such that the length of a shortest
string in L(M) ∩ L(M ′) = mm′ − 1. It is an interesting open question to look
at the length of a shortest witness string for the other operations we are looking
at, such as disjoint union or complementation.

6 Hemaspaandra et al.

4 Reading a Witness String from the Certificate

The QBF described in Section 3 is satisfiable if and only if there is a witness
string that is accepted by one of the two input NFAs and rejected by the other.
In the event that the solver finds the formula to be satisfiable, it would be
desirable to obtain such a witness string from the solving process. Nevertheless,
unlike SAT solvers, which will output a satisfying assignment if an input formula
is found to be satisfiable, the yes/no output of a QSAT solver does not really
convey the reason why a formula is satisfiable. (Some QSAT solvers do output
the settings for the top-level variables in the case that the top-level quantifier
is existential.) This, in the context of our application, means that decoding a
witness string solely from the solver output is impossible.

Fortunately, the QSAT community, in an effort to improve the reliability of
solvers and tools, has invested in developing ways to certify the execution of
QSAT solvers [20,9]. This is akin to, and draws from, the similar effort that hap-
pened in the SAT solver community in order to certify unsatisfiability [7,10,33].4

The additional information obtained from the certificate of satisfiability output
by a QSAT solver execution on our QBFs contains the information necessary
to construct a witness string. In this section we detail the process of extracting
such a string.

4.1 What is a QSAT certificate?

In order to certify the satisfiability of a QBF it is enough to provide so-called
Skolem functions to replace variables quantified by an existential quantifier. The
certification process consists of carrying out the replacement and verifying that
the resulting formula (which would only contain variables quantified by universal
quantifiers, but essentially a propositional Boolean formula) is a tautology.

In practice, the Skolem functions of the certificate are output as a (combined)
circuit. The inputs of the circuit are the universal variables, and the outputs of
the circuit are the existential variables. The output corresponding to an exis-
tential variable x depends only on the values of the inputs corresponding to
universal variables that precede x in the quantifier. In particular, if the top-level
quantifier of a QBF is existential (as is the case for the formulas we deal with in
this paper), then the outputs corresponding to top-level variables depend on no
input and are thus constant.

4.2 Processing the Certificate

Recall that φk was defined as follows

φk := ∃R,R′. ∀X,X ′, Y, Y ′. [((S, S′, R,R′) = (X,X ′, Y, Y ′)

∨ (X,X ′, Y, Y ′) = (R,R′, T, T ′))

→ φk/2(X,X ′, Y, Y ′)].

4 It is relevant to point out that satisfiable (propositional) Boolean formulas do not
require certificates as the satisfying assignment is in itself the certificate.

Formal Methods for NFA Equivalence 7

∃ s32,1, s32,2, s
′
32,1, s

′
32,2, s

′
32,3 t32,1, t32,2 t

′
32,1, t

′
32,2, t

′
32,3

∃ r16,1, r16,2, r
′
16,1, r

′
16,2, r

′
16,3

∀ x16,1, x16,2, x
′
16,1, x

′
16,2, x

′
16,3 y16,1, y16,2 y

′
16,1, y

′
16,2, y

′
16,3

∃ r8,1, r8,2, r
′
8,1, r

′
8,2, r

′
8,3

∀ x8,1, x8,2, x
′
8,1, x

′
8,2, x

′
8,3 y8,1, y8,2 y

′
8,1, y

′
8,2, y

′
8,3

∃ r4,1, r4,2, r
′
4,1, r

′
4,2, r

′
4,3

∀ x4,1, x4,2, x
′
4,1, x

′
4,2, x

′
4,3 y4,1, y4,2 y

′
4,1, y

′
4,2, y

′
4,3

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r4,1, r4,2, r
′
4,1, r

′
4,2, r

′
4,3

∀ x4,1, x4,2, x
′
4,1, x

′
4,2, x

′
4,3 y4,1, y4,2 y

′
4,1, y

′
4,2, y

′
4,3

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r8,1, r8,2, r
′
8,1, r

′
8,2, r

′
8,3

∀ x8,1, x8,2, x
′
8,1, x

′
8,2, x

′
8,3 y8,1, y8,2 y

′
8,1, y

′
8,2, y

′
8,3

∃ r4,1, r4,2, r
′
4,1, r

′
4,2, r

′
4,3

∀ x4,1, x4,2, x
′
4,1, x

′
4,2, x

′
4,3 y4,1, y4,2 y

′
4,1, y

′
4,2, y

′
4,3

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r4,1, r4,2, r
′
4,1, r

′
4,2, r

′
4,3

∀ x4,1, x4,2, x
′
4,1, x

′
4,2, x

′
4,3 y4,1, y4,2 y

′
4,1, y

′
4,2, y

′
4,3

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

∃ r2,1, r2,2, r
′
2,1, r

′
2,2, r

′
2,3

∀ x2,1, x2,2, x
′
2,1, x

′
2,2, x

′
2,3 y2,1, y2,2 y

′
2,1, y

′
2,2, y

′
2,3

ϕ1(x2,1, x2,2, x
′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3) ϕ1(x2,1, x2,2, x

′
2,1, x

′
2,2, y2,1, y2,2, y2,3, y

′
2,1, y

′
2,2, y

′
2,3)

(X16,
X
′
16

, Y16,
Y
′
16

) ← (S32,
S
′
32

, R16,
R
′
16

)

(X8,
X
′
8
, Y8,

Y
′
8
) ← (X16

, X
′
16

, R8,
R
′
8
)

(X4
, X
′
4
, Y4

, Y
′
4
) ←

(X8
, X
′
8
, R

4
, R
′
4
)

(X
2
,
X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 ,
X ′

2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
4 , X ′

4 , Y
4 , Y ′

4) ←
(R

4 , R ′
4 , Y

8 , Y ′
8)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
8 , X ′

8 , Y8 , Y ′
8) ← (R

8 , R′
8 , Y16 , Y ′

16)

(X4
, X
′
4
, Y4

, Y
′
4
) ←

(X8
, X
′
8
, R

4
, R
′
4
)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
4 , X ′

4 , Y
4 , Y ′

4) ←
(R

4 , R ′
4 , Y

8 , Y ′
8)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X16 ,X′
16 , Y16 , Y ′

16) ← (R16 , R′
16 , T32 , T ′

32)

(X8,
X
′
8
, Y8,

Y
′
8
) ← (X16

, X
′
16

, R8,
R
′
8
)

(X4
, X
′
4
, Y4

, Y
′
4
) ←

(X8
, X
′
8
, R

4
, R
′
4
)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
4 , X ′

4 , Y
4 , Y ′

4) ←
(R

4 , R ′
4 , Y

8 , Y ′
8)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
8 , X ′

8 , Y8 , Y ′
8) ← (R

8 , R′
8 , Y16 , Y ′

16)

(X4
, X
′
4
, Y4

, Y
′
4
) ←

(X8
, X
′
8
, R

4
, R
′
4
)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

(X
4 , X ′

4 , Y
4 , Y ′

4) ←
(R

4 , R ′
4 , Y

8 , Y ′
8)

(X
2
, X
′

2
,
Y 2

,
Y
′

2
)
←

(X
4
,
X
′

4
,
R
2
,
R
′

2
) (X

2 , X ′
2 ,
Y
2 ,
Y ′2) ←

(R
2 ,
R ′

2 ,
Y
4 ,
Y ′4)

Fig. 2: Detail of the recursion tree for the example in Figure 1

where at every level of the recursive call we are essentially trying to find inter-
mediate state sets R and R′ and, once we find them, we will only recurse into
φk/2 for the specific values of X, X ′, Y and Y ′ that coincide with either S, S′,
R, and R′, or with R, R′, T , and T ′. The values of X, X ′, Y , and Y ′ will take
the roles of S, S′, T , and T ′ in the next level, and so on until reach φ1.

Since at every universal level we are only interested in two settings of its
variables, we can think of the processing of the certificate of satisfiability as a
tree where every node is associated with a quantification level, every existential
node has one child and every universal node has two children. This tree has the
following invariant: every universal node has 2(n+n′) variables, its parent node
has n + n′, and its grandparent node has 2(n + n′) variables (recall n and n′

are the number of states in N and N ′). One exception is the top-level: the total
number of variables under the top level existential quantifier is 3(n + n′) but
for practical purpose we break this into two levels, one with 2(n+ n′) variables
representing the bit vectors {q0}, T , {q′0}, and T ′, and another level of n + n′

variables representing the sets R and R′ from φk where k is the upper bound
on the length of the witness string. The variables in levels with n+ n′ variables
encode two bit vectors, one for the state set R of the first machine and one for
the state set R′ of the second machine. Levels with 2(n + n′) variables encode
four bit vectors for either S, S′, T , and T ′, or X, X ′, Y , and Y ′, depending on
how they are being interpreted (recall the roles of universal variables change at
every recursion level).

We process the tree depth-first. At every universal level, we distinguish the
left and right children. As we leave the node to arrive at the left child, we set
the variables in the current universal level to the following settings:

X ← S X ′ ← S′ Y ← R Y ′ ← R′, (3)

8 Hemaspaandra et al.

and as we leave the current node to arrive at the right child, we set the variables
in the current universal level to the following settings:

X ← R X ′ ← R′ Y ← T Y ′ ← T ′

Note that the values of S, S′, T , T ′, R, and R′ have been set recursively
by this process. To illustrate this point, we label the variables at every level
according to the following scheme: Note that the upper bound k on the length of
a witness string is a power of 2, and at every level of the recursive construction
we halve the value of the length of the witness. Then every vector S, S′, T ,
T ′, R, R′, X, X ′, Y , and Y ′ is in the context of a length k′ ≤ k where k′ is a
power of 2, and we label the variables at every node according to the vector and
the length in context, e.g., x′

4,2 is the second bit of the bit vector representing
X ′ in the context of length 4. Figure 2 shows an example of a recursion tree
corresponding to the processing of the certificate of the example in Figure 1.
Then the assignments in Equation 3 at level 4 traversing into the left child turn
into the following assignments:

X4 ← S8 X ′
4 ← S′

8 Y4 ← R4 Y ′
4 ← R′

4

x4,1 ← x8,1 x′
4,1 ← x′

8,1 y4,1 ← r4,1 y′4,1 ← r′4,1
x4,2 ← x8,2 x′

4,2 ← x′
8,2 y4,2 ← r4,2 y′4,2 ← r′4,2

x′
4,3 ← x′

8,3 y′4,3 ← r′4,3

The process continues until a leaf node is reached. At the leaf node, the for-
mula is roughly of the following form. (Note that this formula includes additional
constraints we did not include in Formula 2 for simplicity, but that are needed
to precisely extract the witness string from the certificate.)

φ1(S, S
′, T, T ′) =[(S, S′) = (T, T ′)]

∨ ∃σ1, σ2, . . . , σ|Σ|.(
ExactlyOne({σ1, . . . , σ|Σ|}) ∧ δ(S, σi) = T ∧ δ(S′, σi) = T ′) ,

where ExactlyOne is the Boolean constraint that sets exactly one of the vari-
ables in the parameter set to true. (Here we overload the transition function δ to
take Boolean variables σi as parameters in the place of a symbol in the alphabet
Σ, i.e., we assume a one-to-one mapping µ : Σ → {σ1, . . . , σ|Σ|} and δ(S, σi)
stands for δ(S, µ−1(σi)).)

At the time the process reaches a leaf node, the values of all the variables
except the σi variables are set by the process at previous recursion levels. Thus
the only thing we need to do at a leaf node is test whether (S, S′) = (T, T ′), in
which case we do not output anything since it means the witness string at this
position is ϵ. If it is not the case that (S, S′) = (T, T ′), then there is exactly one
of the σi symbols that is true, and that will be the the symbol at this position
of the string.

Formal Methods for NFA Equivalence 9

5 Experiments

All the experiments mentioned in this section ran on RIT’s Research Computing
cluster [28]. Each node is an Intel® Xeon® Gold 6150 CPU @ 2.70GHz. All
jobs were limited to 2 GB of RAM memory. The code implementing the ideas
in Sections 3 and 4, as well as the dataset and output from the runs described
in Section 5.2 are all available in the supplemental materials of this paper5.

We start this section with a description of the random model used to generate
test instances for our QBF encoder and our witness string extraction algorithm.

5.1 Random Model

We used the model proposed by Tabakov and Vardi [31] to generate random
NFAs. This model is parameterized by the number of states n, a transition den-
sity r = k/n where k is the expected total number of transitions in the NFA that
are labeled by a fixed symbol σ ∈ Σ (hence the total expected number of transi-
tions is k|Σ|), and a final state density f = m/n where m is the expected number
of final states. In order to compare our results to previous work by Bonchi and
Pous [3], we fix r = 1.25 in our NFA generation process. This number was picked
in [3] because “Tabakov and Vardi empirically showed that one statistically gets
more challenging NFAs with this particular value,” though this claim in [31] is
with respect to the size of the minimum equivalent DFA problem. The relation-
ship between minimum equivalent DFAs and the equivalence problem of NFAs
(which is the problem we address in this paper) is unclear.

We also fix the alphabet Σ = {a, b}. We generated 35 NFAs using different
numbers of states and values for f : 5 NFAs with n = 2 and f = 0.056, and 5
NFAs with n =∈ {3, 4} and f ∈ {0.25, 0.50, 0.75}. Per the Tabakov and Vardi
model, the start state is also always a final state. We encoded the inequivalence
problem of every (ordered) pair of (not necessarily distinct) NFAs in the dataset
as a QBF for a total of 1225 QBFs.

As one reads the results in Section 5.2, it is important to keep in mind that
the HKC algorithm by Bonchi and Pous, which is the current state of the art,
processed all 1225 equivalence problem instances in our data set in less than 5
seconds.

5.2 Determining NFA Equivalence via QBFs

We ran the QSAT solvers from the QBF Eval 2020 competition7 with default
flags with some exceptions due to either availability or limitations in our ex-
perimental setup. The complete list of solvers used is: CQESTO [15] (in expert
mode), QFUN [16] (in expert mode), QuAbS [32,8], and Qute [25],

5 https://doi.org/10.5281/zenodo.6896217
6 We generated only 5 NFAs with two states because r and f do not change a two-state
NFA in a meaningful way.

7 http://www.qbflib.org/solver_view_domain.php?year=2020

https://doi.org/10.5281/zenodo.6896217
http://www.qbflib.org/solver_view_domain.php?year=2020

10 Hemaspaandra et al.

Table 1: Results with a timeout of 15 minutes per instance. OOM is out-of-
memory.

solver flags solved timeout OOM total fraction solved

CQESTO -es 550 675 0 1225 0.45
GhostQ 550 675 0 1225 0.45
QFUN -caps -i64 -n4 -b4 -S4 61 135 1029 1225 0.05
QFUN -caps -i64 -n4 -b4 -S4 -d 110 1113 2 1225 0.09
QuAbS 1000 225 0 1225 0.82
Qute 586 639 0 1225 0.48

Table 1 shows results for solving the NFA equivalence instances using solvers
that take QCIR-14 as input. In general, most solvers determined the equiva-
lence of about the same fraction of the problems (45%) within the timeout of
15 minutes. This fraction corresponds to the 550 instances where the number of
combined states is at most 6. (In the case of QFun, we had to disable the learn-
ing feature to achieve comparable performance, since learning in these formulas
seems to require too much memory.) One notable exception is QuAbS which
solved 82% of the cases. Taking a close look at the number of instances in which
QuAbS timed out, from Table 1 one can deduce that QuAbS timed out exactly
on the 15 × 15 instances in which both NFAs had 4 states (i.e., QuAbS solved
every instance in which the combined number of states is at most 7).

The analysis above focuses on the combined number of states and suggests
that the hardness of these instances is solely tied to that parameter. However,
some of the data we collected suggests otherwise: Qute, although not having a
particularly impressive performance over the dataset used for the experiments in
this paper, is able to outperform QuAbS consistently on the instance generated
from the NFAs depicted in Figure 3. It is natural to think that we mean the two
instances generated from the encoding the inequivalence of (N,N ′) and (N ′, N)
are easy for Qute, but we do not. In fact, we mean the inequivalence problem
of the NFAs in Figure 3 taken in the left-to-right order as they appear in the
figure is easy for Qute, which can determine the satisfiability of the instance in
under 5 minutes while QuAbS times out. If we reverse the order of the NFAs in
the encoding, both QuAbS and Qute time out on the resulting instance. (Recall
that our timeout is 15 minutes.) This supports a deliberate experiment design of
ours: even though NFA equivalence is obviously a symmetric relation, we were
interested in finding out if, in the practical setting, there is an order of the input
NFAs for which solvers perform better. As it turns out, the 36 cases of ntotal = 7
combined number of states that Qute was able to solve within our timeout are
mostly cases (N,N ′) where (N ′, N) timed out—in fact, only 2 pairs were such
that Qute was able to solve both orderings of the input within the timeout,
though it did so in wildly different solving times. This suggest a future research
path to identify what properties determine the hardness of an instance and an
optimal ordering of the input parameters.

Formal Methods for NFA Equivalence 11

q0start

q1

q2

q3

b

b

a, b

a, b

b

a

a
a

q0start

q1

q2

q3 a

b
b

a

a

a

a, b

a

a, b

b

a

Fig. 3: Two NFAs for which the QBF encoding of their inequivalence problem is
easy for Qute and hard for QuAbS.

5.3 Extracting Witness Strings

We implemented the process described in Section 4 and evaluated this imple-
mentation on the satisfiable instances of our dataset. Since QuAbS [32,8] is able
to generate certificates and uses QCIR-14 as input format, we used it as the
solver for these experiments. Table 2 shows the results.

Table 2: Count of witness length in a range k for top-down solving.

k [0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) total

count 319 210 187 92 59 29 896

These results suggest that the majority of the inequivalent instances gener-
ated by our random method have witness strings that are much shorter than the
upper bound described in Section 2. This in turn means that in order to deter-
mine satisfiability for these instances we only needed to generate QBFs that are
much smaller than the default.

To exploit the idea of solving smaller formulas in the hope that these smaller
formulas are found to be satisfiable, we implemented an iterative solving strategy
that solves formulas generated from pairs of NFAs but incrementally choosing a
level k from which to start the recursion. This experiment revealed that of the
896 instances found to be satisfiable, 736 of them had witness strings of length
at most 1, 116 had witness strings of length at most 2 (but not of length at most
1), and 44 had witness strings of length at most 4 (but not of length at most

12 Hemaspaandra et al.

2) (Table 3). This suggests that in order to make the QSAT approach to NFA
equivalence more feasible, it would be good to have a better understanding of
witness strings and the relation between their length and the input NFAs.

Table 3: Count of witness strings of length of at most k obtained through an
iterative solving strategy. This strategy generates formulas φ2k(N,N ′) for k =
0, 1, 2, . . . until a formula is determined to be SAT.

witness string length count

≤ 1 736
≤ 2 116
≤ 4 44
total 896

6 Verifying the Encoding in Isabelle/HOL

Despite the fact that the encoding we study in this paper is conceptually easy
to describe, it involves several small details that become potential pitfalls when
implementing such an encoding. In the supplemental materials8 we provide a
formalization of the base case of our recursive formula φk (i.e., φ1) and we prove
its correctness. Our formalization is heavily based on the Boolean Expression
Checkers library [24] which provides a language to define Boolean constraints.
Unfortunately at the time of this writing that language does not extend to
quantified Boolean formulas, and this is the reason why we only prove the cor-
rectness of the base case (since it is a QBF with just the existential quantifier,
so essentially a propositional Boolean formula). As future work, we intend to
tackle extending the language of the Boolean Expression Checkers library to
support quantifiers. Ultimately, our goal is to replace our current Java code that
implements the encoding of the equivalence problem of two NFAs with verified
code obtained directly from the code extraction mechanism in Isabelle/HOL.
This will most likely require adjustments to the design decisions of our current
formalizations, as some parts of our formalization rely on “abstract” datatypes
that cannot be extracted as code.

Most notably, our formalization relies heavily on finite sets (the datatype
fset in Isabelle/HOL) in an attempt to keep the definitions and theorems very
close to those available in textbooks that cover NFAs. Unfortunately, the type
system in Isabelle/HOL does not make the interaction between finite sets and
sets very easy, and key concepts like transitive closures are only defined for
(potentially infinite) sets and not for fsets. We expect that the completion of
our formalization will in turn contribute a number of theorems that are missing
in the Isabelle/HOL library regarding fsets.

8 https://doi.org/10.5281/zenodo.6896217

https://doi.org/10.5281/zenodo.6896217

Formal Methods for NFA Equivalence 13

7 Conclusions and Future Work

To summarize, we consider the PSPACE-complete problem of NFA equiva-
lence and evaluate whether tackling this problem through QSAT is feasible,
and whether QSAT technology can be used to learn information about the input
instance, in particular whether we can use a trace of the solver to learn a wit-
ness string that is accepted by one of the input NFAs and rejected by the other.
The answer to the first research question is that these formulas still pose serious
challenges to non-clausal QSAT solvers, in comparison to the performance of
dedicated algorithms. Nevertheless, we show that satisfiability certificates pro-
vide a way to extract a witness string from the solving process.

To normalize the results among the different approaches, we will develop
and use the same merit function9 for each approach so that the programming
language used (e.g., Bonchi and Pous used OCaml) does not change the results.
Related to the HKC algorithm by Bonchi and Pous, we are interested in learning
whether there are concepts in specialized algorithms (e.g., “congruence up to”)
that can be used to develop QSAT algorithms that are specific for the class of
QBFs we introduce in this paper.

Regarding the formalization, as immediate future work we will extend the
Boolean Expression Checkers library [24] to handle quantifiers and provide our
formalization as a case study. It would also be interesting to improve the inte-
gration of our formalization with other libraries in Isabelle’s Archive of Formal
Proofs10, for example the Transition Systems and Automata library [5].

Acknowledgements

We thank the referees for helpful comments and suggestions. We also thank the
AAAI-21 Student Abstract referees for their helpful comments on our prelimi-
nary work on this topic [22].

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2 edn. (Aug 2006)

2. Alpoge, L., Ang, T., Schaeffer, L., Shallit, J.O.: Decidability and shortest strings
in formal languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) Descrip-
tional Complexity of Formal Systems - 13th International Workshop, DCFS 2011,
Gießen/Limburg, Germany, July 25-27, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6808, pp. 55–67. Springer (2011). https://doi.org/10.1007/978-
3-642-22600-7 5, https://doi.org/10.1007/978-3-642-22600-7_5

3. Bonchi, F., Pous, D.: Checking nfa equivalence with bisimulations up to congru-
ence. In: Giacobazzi, R., Cousot, R. (eds.) POPL. pp. 457–468. ACM (2013).
https://doi.org/10.1145/2429069.2429124

9 For example, Bonchi and Pous track the number of processed pairs in their experi-
mental work.

10 https://www.isa-afp.org/

https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1145/2429069.2429124
https://www.isa-afp.org/

14 Hemaspaandra et al.

4. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015). https://doi.org/10.1145/2713167

5. Brunner, J.: Transition systems and automata. Archive of Formal Proofs (Oct
2017), https://isa-afp.org/entries/Transition_Systems_and_Automata.

html, Formal proof development
6. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally verifying the solu-

tion to the Boolean Pythagorean triples problem. Journal of Automated Reasoning
63(3), 695–722 (2019). https://doi.org/10.1007/s10817-018-9490-4

7. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Design, Automation and Test in Europe Conference and Exhibition. pp.
886–891. IEEE (Mar 2003). https://doi.org/10.1109/DATE.2003.1253718

8. Hecking-Harbusch, J., Tentrup, L.: Solving QBF by abstraction. In: Proceedings
Ninth International Symposium on Games, Automata, Logics, and Formal Verifica-
tion. Electron. Proc. Theor. Comput. Sci. (EPTCS), vol. 277, pp. 88–102. EPTCS,
[place of publication not identified] (2018). https://doi.org/10.4204/EPTCS.277.7

9. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocess-
ing. In: International Joint Conference on Automated Reasoning. Lecture Notes in
Comput. Sci., vol. 8562, pp. 91–106. Springer (2014). https://doi.org/10.1007/978-
3-319-08587-6 7

10. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs.
In: Formal Methods in Computer-Aided Design. pp. 181–188. IEEE (Oct 2013).
https://doi.org/10.1109/FMCAD.2013.6679408

11. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of reg-
ular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003).
https://doi.org/10.1142/S0129054103002199, https://doi.org/10.1142/

S0129054103002199

12. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton.
Tech. Rep. STAN-CS-71-190, Stanford University (1971)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

14. Hoque, K.A., Mohamed, O.A., Abed, S., Boukadoum, M.: An auto-
mated sat encoding-verification approach for efficient model checking.
In: 2010 International Conference on Microelectronics. pp. 419–422.
IEEE (Dec 2010). https://doi.org/10.1109/ICM.2010.5696177, https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5696177;https:

//ieeexplore.ieee.org/document/5696177/

15. Janota, M.: Circuit-based search space pruning in QBF. In: Beyersdorff, O., Win-
tersteiger, C.M. (eds.) Theory and Applications of Satisfiability Testing – SAT
2018. pp. 187–198. Springer International Publishing, Cham (2018)

16. Janota, M.: Towards generalization in qbf solving via machine learning. In: McIl-
raith, S.A., Weinberger, K.Q. (eds.) AAAI. pp. 6607–6614. AAAI Press (2018),
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#Janota18

17. Jirásková, G.: State complexity of some operations on binary
regular languages. Theor. Comput. Sci. 330(2), 287–298 (2005).
https://doi.org/10.1016/j.tcs.2004.04.011, https://doi.org/10.1016/j.tcs.

2004.04.011

18. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: Dar-
wiche, A. (ed.) AAAI Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05.
AAAI Press (2016), http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/

view/12601

https://doi.org/10.1145/2713167
https://isa-afp.org/entries/Transition_Systems_and_Automata.html
https://isa-afp.org/entries/Transition_Systems_and_Automata.html
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1007/978-3-319-08587-6_7
https://doi.org/10.1007/978-3-319-08587-6_7
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1109/ICM.2010.5696177
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5696177; https://ieeexplore.ieee.org/document/5696177/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5696177; https://ieeexplore.ieee.org/document/5696177/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5696177; https://ieeexplore.ieee.org/document/5696177/
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#Janota18
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12601
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12601

Formal Methods for NFA Equivalence 15

19. Jussila, T., Biere, A.: Compressing BMC encodings with QBF.
Electron. Notes Theor. Comput. Sci. 174(3), 45–56 (2007).
https://doi.org/10.1016/j.entcs.2006.12.022, https://doi.org/10.1016/j.

entcs.2006.12.022
20. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step

towards a unified proof checker for QBF. In: Theory and applications of satisfia-
bility testing—SAT 2007. Lecture Notes in Comput. Sci., vol. 4501, pp. 201–214.
Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72788-0 21

21. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata The-
ory, East Lansing, Michigan, USA, October 13-15, 1971. pp. 188–191. IEEE Com-
puter Society (1971). https://doi.org/10.1109/SWAT.1971.11, https://doi.org/
10.1109/SWAT.1971.11

22. Miller, H., Narváez, D.E.: Toward determining NFA equivalence via QBFs. In:
AAAI-21 Student Abstract (2021), to appear

23. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Computers 20(10), 1211–1214 (1971). https://doi.org/10.1109/T-C.1971.223108,
https://doi.org/10.1109/T-C.1971.223108

24. Nipkow, T.: Boolean expression checkers. Archive of Formal Proofs (Jun 2014),
https://isa-afp.org/entries/Boolean_Expression_Checkers.html, Formal
proof development

25. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S.,
Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 -
20th International Conference, Melbourne, VIC, Australia, August 28 - September
1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10491, pp. 298–
313. Springer Verlag (2017). https://doi.org/10.1007/978-3-319-66263-3 19, http:
//www.ac.tuwien.ac.at/files/tr/ac-tr-17-011.pdf

26. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114, https://doi.org/
10.1147/rd.32.0114

27. Rintanen, J.: Partial implicit unfolding in the davis-putnam procedure for quanti-
fied boolean formulae. In: Nieuwenhuis, R., Voronkov, A. (eds.) Logic for Program-
ming, Artificial Intelligence, and Reasoning, 8th International Conference, LPAR
2001, Havana, Cuba, December 3-7, 2001, Proceedings. Lecture Notes in Computer
Science, vol. 2250, pp. 362–376. Springer (2001). https://doi.org/10.1007/3-540-
45653-8 25, https://doi.org/10.1007/3-540-45653-8_25

28. Rochester Institute of Technology: Research computing services
(2019). https://doi.org/10.34788/0S3G-QD15, https://www.rit.edu/

researchcomputing/
29. Savitch, W.J.: Relationships between nondeterministic and determin-

istic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970).
https://doi.org/10.1016/S0022-0000(70)80006-X, https://doi.org/10.1016/

S0022-0000(70)80006-X
30. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-

liminary report). In: Proceedings of the Fifth Annual ACM Symposium on The-
ory of Computing. pp. 1–9. STOC ’73, ACM, New York, NY, USA (1973).
https://doi.org/10.1145/800125.804029

31. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 396–
411. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

https://doi.org/10.1016/j.entcs.2006.12.022
https://doi.org/10.1016/j.entcs.2006.12.022
https://doi.org/10.1016/j.entcs.2006.12.022
https://doi.org/10.1007/978-3-540-72788-0_21
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/T-C.1971.223108
https://doi.org/10.1109/T-C.1971.223108
https://isa-afp.org/entries/Boolean_Expression_Checkers.html
https://doi.org/10.1007/978-3-319-66263-3_19
http://www.ac.tuwien.ac.at/files/tr/ac-tr-17-011.pdf
http://www.ac.tuwien.ac.at/files/tr/ac-tr-17-011.pdf
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/3-540-45653-8_25
https://doi.org/10.1007/3-540-45653-8_25
https://doi.org/10.1007/3-540-45653-8_25
https://doi.org/10.34788/0S3G-QD15
https://www.rit.edu/researchcomputing/
https://www.rit.edu/researchcomputing/
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/800125.804029

16 Hemaspaandra et al.

32. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Theory and applica-
tions of satisfiability testing—SAT 2016, Lecture Notes in Comput. Sci., vol. 9710,
pp. 393–401. Springer, [Cham] (2016). https://doi.org/10.1007/978-3-319-40970-
2 24

33. Wetzler, N., Heule, M., Jr., W.A.H.: Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT. Lec-
ture Notes in Computer Science, vol. 8561, pp. 422–429. Springer (2014).
https://doi.org/10.1007/978-3-319-09284-3 31

34. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some ba-
sic operations on regular languages. Theor. Comput. Sci. 125(2), 315–
328 (1994). https://doi.org/10.1016/0304-3975(92)00011-F, https://doi.org/10.
1016/0304-3975(92)00011-F

https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

	Formal Methods for NFA Equivalence: QBFs, Witness Extraction, and Encoding Verification

