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Abstract. It is important to study how strategic agents can affect the
outcome of an election. There has been a long line of research in the com-
putational study of elections on the complexity of manipulative actions
such as manipulation and bribery. These problems model scenarios such
as voters casting strategic votes and agents campaigning for voters to
change their votes to make a desired candidate win. A common assump-
tion is that the preferences of the voters follow the structure of a domain
restriction such as single peakedness, and so manipulators only consider
votes that also satisfy this restriction. We introduce the model where the
preferences of the voters define their own restriction and strategic actions
must “conform” by using only these votes. In this model, the election
after manipulation will retain common domain restrictions. We explore
the computational complexity of conformant manipulative actions and
we discuss how conformant manipulative actions relate to other manip-
ulative actions.

1 Introduction

The computational study of election problems is motivated by the utility of elec-
tions to aggregate preferences in multiagent systems and to better understand
the computational tradeoffs between different rules. A major direction in this
area has been to study the computational complexity of manipulative actions on
elections (see, e.g., Faliszewski and Rothe [15]).

The problems of manipulation [1] and bribery [14] in elections represent two
important ways that agent(s) can strategically affect the outcome of an election.
Manipulation models the actions of a collection of strategic voters who seek
to ensure that their preferred candidate wins by casting strategic votes. Bribery
models the actions of an agent, often referred to as the briber, who sets the votes
of a subcollection of the voters to ensure that the briber’s preferred candidate
wins. These problems each relate nicely to real-world scenarios such as how
voters may attempt to work together to strategically vote, or the actions of a
campaign manager looking to influence the preferences of a group of voters to
ensure their candidate wins.

In the manipulation problem each manipulator can cast any strategic vote,
and similarly for the bribery problem the votes can be set to any collection
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of preferences. However, this is not always a reasonable assumption to make.
Voters may have preferences that satisfy a domain restriction such as single-
peaked preferences [6] or single-crossing preferences [27] where the manipulator
or the briber are restricted to using votes that also satisfy the restriction. We
introduce new models of manipulation and bribery where the votes cast by the
manipulators or set by the briber must have already been stated in the election,
i.e., the votes must conform to the views of the electorate. In these conformant
models of manipulation and bribery the election after the given manipulative
action will retain common domain restrictions such as being single-peaked or
single-crossing.

We consider how the computational complexity of our conformant models of
manipulation and bribery compare to the standard models. Specifically, we show
that there are settings where manipulation and bribery are easy in the standard
model, but computationally difficult in the conformant model, and vice versa.
This shows that there is no reduction in either direction between the standard
and conformant cases (unless P = NP).

Conformant manipulation and bribery are also each related to electoral con-
trol. The study of electoral control was introduced by Bartholdi, Tovey, and
Trick [2], and it models the actions of an agent who can modify the structure of
an election to ensure a preferred candidate wins (e.g., by adding or deleting vot-
ers). We explore the connection between conformant manipulation and the exact
variant of voter control as well as conformant bribery and the model of control by
replacing voters introduced by Loreggia et al. [26]. This includes showing reduc-
tions between these problems as well as showing when such reductions cannot
exist. Exact versions of electoral control problems can model scenarios where
the election chair seeks to ensure their preferred outcome by adding exactly the
number of voters required to meet the quorum for a vote. This is in line with
the standard motivation for control by replacing voters which includes settings
such as voting in a parliament where the chair may replace some of the voters,
but makes sure to leave the total number the same to avoid detection [26].

Our main contributions are as follows.

— We introduce the problems of conformant manipulation and conformant
bribery, which model natural settings for manipulative attacks on elections.

— We show that there is no reduction in either direction between the standard
and conformant versions of manipulation (Theorems 1 and 2) and between
the standard and conformant versions of bribery (Theorem 8 and Corollary 2)
(unless P = NP).

— We show conformant manipulation reduces to exact control by adding vot-
ers (Theorem 3), conformant bribery reduces to control by replacing vot-
ers (Theorem 11), and that reductions do not exist in the other direction
(Theorems 4 and 12) (unless P = NP).

— We obtain a trichotomy theorem for the complexity of exact control by adding
voters problem (Theorem 5) for the important class of pure scoring rules.

Due to space constraints some of our proofs have been deferred to the full ver-
sion [17].
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2 Related Models

Since the conformant model of manipulation uses only the votes stated in the
initial election, it is related to the possible winner problem with uncertain weights
introduced by Baumeister et al. [3], which was recently extended by Neveling
et al. [29]. In this problem weights of voters are initially unset and it asks if
there exists a way to set the weights such that a given candidate is a winner. As
Baumeister et al. [3] mention, this generalizes control by adding/deleting voters
(rather than manipulation or bribery).

There are other models for manipulative actions that have a similar motiva-
tion to our conformant models, i.e., to have the manipulative action not stand
out. Examples are bribery restrictions where the briber cannot put the preferred
candidate first in the bribed votes (negative bribery [14]), restrictions on how
much the votes of voters are changed [34], and restrictions on which voters can
be bribed [10]. However, it is easy to see that in these models all sorts of new
votes can be used by the briber, not just votes appearing in the initial election.

Another model in which the votes of the strategic agents are restricted is
that of manipulative actions on restricted domains such as single-peaked [6]
and single-crossing preferences [27]. For example, for manipulation of a single-
peaked election the manipulators must all cast votes that are single-peaked with
respect to the rest of the electorate [32]. Notice that in the conformant models
we typically keep the domain restriction, but manipulative actions for domain
restrictions are quite different since in those settings the manipulators can cast
a vote not stated by any of the nonmanipulators as long as it satisfies the given
restriction.

3 Preliminaries

An election (C,V) consists of a set of candidates C' and a collection of voters
V. Each voter v € V has a corresponding vote, which is a strict total order
preference over the set of candidates.

A voting rule, £, is a mapping from an election to a subset of the candidate
set referred to as the winner(s).

3.1 Scoring Rules

Our results focus on (polynomial-time uniform) pure scoring rules. A scoring rule
is a voting rule defined by a family of scoring vectors of the form (ay, o, ..., am)
with a; > a;41 such that for a given election with m candidates the m-length
scoring vector is used and each candidate receives «; points for each vote where
they are ranked ith. The candidate(s) with the highest score win. We use the
notation score(a) to denote the score of a candidate a in a given election. Impor-
tant examples of scoring rules are

— k-Approval, (1,...,1,0,...,0)
——

k
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— k-Veto, (0,...,0,—1,...,—1)
—_——
k

— Borda, (m —1,m —2,...,1,0)
— First-Last, (1,0,...,0,—1)*

Note that there are uncountably many scoring rules, that scoring vectors may
not be computable, and that the definition of scoring rule does not require any
relationship between the scoring vectors for different numbers of candidates. To
formalize the notion of a natural scoring rule, we use the notion of (polynomial-
time uniform) pure scoring rules [4]. These are families of scoring rules where
the scoring vector for m + 1 candidates can be obtained from the scoring vector
for m candidates by adding one coefficient and for which there is a polynomial-
time computable function that outputs, on input 0™, the scoring vector for m.
Note that the election rules above are all pure scoring rules. Also note that
manipulative action problems for pure scoring rules are in NP.

3.2 Manipulative Actions

Two of the most commonly-studied manipulative actions on elections are manip-
ulation [1] and bribery [14]. We consider conformant variants of these standard
problems by requiring that the strategic votes cast by the manipulators or set by
the briber must have appeared in the initial election. We define these problems
formally below.

Name: £-Conformant Manipulation

Given: An election (C, V), a collection of manipulative voters W, and a preferred
candidate p.

Question: Does there exist a way to set the votes of the manipulators in W
using only the votes that occur in V' such that p is an £-winner of the election
(C,Vuw)?

Name: £-Conformant Bribery

Given: An election (C, V), a bribe limit k, and a preferred candidate p.

Question: Does there exist a way to set the preferences of a subcollection of at
most k voters in V' to preferences in V' such that p is an £-winner?

3.3 Computational Complexity

We assume the reader is familiar with the complexity classes P and NP,
polynomial-time many-one reductions, and what it means to be complete for a
given class. Our NP-completeness proofs utilize reductions from the well-known
NP-complete problem 3-Dimensional Matching [23].

Name: 3-Dimensional Matching (3DM)

L We will see that this rule exhibits very unusual complexity behavior. This rule has
also been referred to as “best-worst” in social choice (see, e.g., [24]).
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Given: Pairwise disjoint sets X, Y, and Z such that | X|| = ||Y] = ||Z]| =k >0
and set M C X XY x Z.

Question: Does there exist a M’ C M of size k such that eacha € X UY U Z
appears exactly once in M’.

3-Dimensional Matching remains NP-complete when each element a € X UY U
Z appears in exactly three triples (Garey and Johnson [19] show this for at
most three triples, which can be adapted to exactly three by the approach from
Papadimitriou and Yannakakis [30]). Note that in that case || M| = 3k.

For our polynomial-time algorithms, we will reduce to polynomial-time com-
putable (edge) matching problems. We define the most general version we use,
Max-Weight b-Matching for Multigraphs, below. The version of this problem
for simple graphs was shown to be in P by Edmonds and Johnson [12], and as
explained in [20, Section 7|, it is easy to reduce such problems to Max-Weight
Matching, which is well-known to be in P [11], using the construction from [31].
(Note that we can assume that the b-values are bound by the number of edges
in the graph.)

Name: Max-Weight b-Matching for Multigraphs

Given: An edge-weighted multigraph G = (V, E), a function b : V' — N, and
integer k > 0.

Question: Does there exist an E’ C F of weight at least k such that each vertex
v € V is incident to at most b(v) edges in E'?

In addition to NP-hardness and polynomial-time results, we have results that link
the complexity of voting problems to the complexity of Exact Perfect Bipartite
Matching [30].

Name: Exact Perfect Bipartite Matching

Given: A bipartite graph G = (V, E), a set of red edges E’ C E, and integer
k>0.

Question: Does G contain a perfect matching that contains exactly k edges from
E'?

This problem was shown to be in RP by Mulmuley, Vazirani, and Vazirani [2§],
but it is a 40-year-old open problem whether it is in P.

4 Conformant Manipulation

The problem of manipulation asks if it is possible for a given collection of manip-
ulative voters to set their votes so that their preferred candidate wins. This prob-
lem was first studied computationally by Bartholdi, Tovey, and Trick [1] for the
case of one manipulator and generalized by Conitzer, Sandholm, and Lang [8]
for the case of a coalition of manipulators.

In our model of conformant manipulation the manipulators can only cast
votes that at least one nonmanipulator has stated. As mentioned in the intro-
duction, this is so that the manipulators vote realistic preferences for the given
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election by conforming to the preferences already stated. Since this modifies the
standard model of manipulation, we will consider how the complexity of these
problems relate to one another.

Manipulation is typically easy for scoring rules. Hemaspaandra and
Schnoor [22] showed that manipulation is in P for every pure scoring rule with
a constant number of different coefficients. However, our model of conformant
manipulation is NP-complete for even the simple rule 4-approval. To show hard-
ness, we use a construction similar to the construction that shows hardness for
control by adding voters from Lin [25].

Theorem 1. 4-Approval Conformant Manipulation is NP-complete.

Proof. Let the pairwise disjoint sets X, Y, and Z such that || X|| = |Y]| = | Z]| =
k>0and M C X xY x Z be an instance of 3DM where each a € X UY U Z
appears in exactly three triples. Note that || M| = 3k. We construct an instance
of conformant manipulation as follows.

Let the candidate set C' consist of preferred candidate p, and for each a in
X UY U Z, we have candidate a and three padding candidates a1, as, and as.
We now construct the collection of nonmanipulators.

— For each (z,y, z) in M, we have a voter voting p >a >y >z > --.
— For each a in XUY UZ, we have 4k —4 voters voting a > a; > as > ag > - -.

We have k manipulators.

Note that we have the following scores from the nonmanipulators. score(p) =
3k and for a € X UY U Z, score(a) = 4k — 4+ 3 = 4k — 1 and score(a;) =
score(ag) = score(as) = 4k — 4.

If there is a matching, let the k& manipulators vote corresponding to the
matching. Then p’s score increases by k, for a total of 4k, and for each a €
X UY U Z, score(a) increases by 1 for a total of 4k. The scores of the dummy
candidates remain unchanged. Thus, p is a winner.

For the converse, suppose the manipulators vote such that p is a winner.
Since k£ > 0, after manipulation there is a candidate ¢ in X UY U Z with
score at least 4k. The highest possible score for p after manipulation is 4k, and
this happens only if p is approved by every manipulator. It follows that every
manipulator approves p and for every a in X UY U Z, a is approved by at most
one manipulator. This implies that the votes of the manipulators correspond to
a cover. O

We just saw a case where the complexity of conformant manipulation is
harder than the standard problem (unless P = NP). This is not always the case.
One setting where it is clear to see how to determine if conformant manipula-
tion is possible or not is when there are only a fixed number of manipulators.
We have only a polynomial number of votes to choose from (the votes of the
nonmanipulators) and so a fixed number of manipulators can brute force these
choices in polynomial time as long as determining the winner can be done in
polynomial time.
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Theorem 2. Conformant Manipulation is in P for every voting rule with a
polynomial-time winner problem when there are a fized number of manipulators.

This behavior is in contrast to what can occur for the standard model of
manipulation. One well-known example is that manipulation for the Borda rule
is NP-complete even when there are only two manipulators [5,9]. Intuitively the
hardness of manipulation in this case is realized by the choice of different votes
that the manipulator(s) have.

Corollary 1. For Borda, Manipulation with two manipulators is NP-complete,
but Conformant Manipulation with two manipulators is in P.

In some ways conformant manipulation acts more like the problem of electoral
control introduced by Bartholdi, Tovey, and Trick [2], specifically Control by
Adding Voters, which asks when given an election, a collection of unregistered
voters, add limit k, and preferred candidate p, if p is a winner of the election
after adding at most k of the unregistered voters. In conformant manipulation
we can think of the nonmanipulative voters as describing the different votes to
choose from for the manipulators.

At first glance it may appear that there is a straightforward reduction from
conformant manipulation to control by adding voters, but in conformant manip-
ulation all k of the manipulators must cast a vote, while in control by adding
voters at most k votes are added. In this way conformant manipulation is closer
to the “exact” variant of control by adding voters where exactly k unregistered
voters must be added. The following is immediate.

Theorem 3. Conformant Manipulation polynomial-time many-one reduces to
Exact Control by Adding Voters.

Below we show that conformant manipulation is in P for the voting rule 3-
approval, but exact control by adding voters is NP-complete. And so there is
no reduction from exact control by adding voters to conformant manipulation
(unless P = NP).

Theorem 4. For 3-Approval, Exact Control by Adding Voters is NP-complete,
but Conformant Manipulation is in P.

Proof. Given an election (C, V'), k manipulators, and a preferred candidate p,
we can determine if conformant manipulation is possible in the following way.

If there is no nonmanipulator that approves p then p is a winner if and only
if there are no voters.

If there is at least one nonmanipulator that approves p, the manipulators
will all cast votes that approve of p, and so we know the final score of p after
manipulation: fs, = score(p) + k. However, these manipulator votes will each
also approve of two other candidates. To handle this we can adapt the approach
used by Lin [25] to show control by adding voters is in P for 3-approval elections,
which constructs a reduction to Max-Cardinality b-Matching for Multigraphs.
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For each candidate a # p, let b(a) = fs, — score(a), i.e., the maximum
number of approvals that a can receive from the manipulators without beating
p. If b(a) is negative for any candidate a # p then conformant manipulation is
not possible. For each distinct nonmanipulative vote of the form {p,a,b} > ...,
add k edges between a and b. Conformant manipulation is possible if and only
if there is a b-edge matching of size at least k.

We now consider the complexity of exact control by adding voters. Given
an instance of 3-Dimensional Matching: pairwise disjoint sets X, Y, and Z such
that || X|| =Yl =1Z]| =k, and M C X XY x Z with M = {My,..., Mz}
we construct the following instance of exact control by adding voters.

Let the candidate set C' = {p,d;,d2} U X UY U Z, the preferred candidate
be p, and the add limit be k.

Let there be one registered voter voting p > d; > dy > ..., and let the
set of unregistered voters consist of one voter voting x > y > z > ... for each
M; = (z,vy,2).

It is easy to see that p can be made a winner by adding exactly k unregistered
voters if and only if there is a matching of size k. O

The standard case of control by adding voters for 3-approval is in P [25],
but as shown above the exact case is NP-complete. Related work that mentions
exact control has results only where the exact variant is also easy [13,16]. Note
that, as observed in [16], control polynomial-time reduces to exact control, since,
for example, p can be made a winner by adding at most k voters if and only if p
can be made a winner by adding 0 voters or 1 voter or 2 voters or ... ), and so if
exact control is easy, the standard case will be as well, and if the standard case
is hard, then the exact case will be hard. Note that we are using a somewhat
more flexible notion of reducibility than many-one reducibility here, since we
are allowing the disjunction of multiple queries to the exact control problem.
Such a reduction is called a disjunctive truth-table (dtt) reduction. This type of
reduction is still much less flexible than a Turing reduction.

Is 3-approval special? For the infinite and natural class of pure scoring rules,
Table 1 completely classifies the complexity of exact control by adding voters and
compares this behavior to the complexity of control by adding voters [21] and
control by deleting voters [22]. In particular, and in contrast to earlier results,
we obtain a trichotomy theorem for exact control by adding voters.?

Theorem 5. For every pure scoring rule f,

1. If f is ultimately (i.e., for all but a finite number of candidates) equivalent to
0-approval, 1-approval, 2-approval, 1-veto, or 2-veto, exact control by adding
voters is in P.

2. If f is ultimately equivalent to first-last, then exact control by adding voters
is (dtt) equivalent to the problem Exact Perfect Bipartite Matching [30].

? Exact Perfect Bipartite Matching [30] is defined in Sect. 3.3. As mentioned there the
complexity of this problem is still open. And so Theorem 5 is a trichotomy theorem
unless we solve a 40-year-old open problem.
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Table 1. This table classifies the complexity of all pure scoring rules for the specified
control action. A scoring rule entry represents all pure scoring rules that are ultimately
equivalent to that scoring rule. The dichotomy for control by adding voters is due
to [21], the dichotomy for control by deleting voters to [22], and the result for exact
control by adding voters for first-last is due to [16]. EPBM stands for the Exact Perfect
Bipartite Matching, which is defined in Sect. 3.3.

P eq. to EPBM | NP-complete
Exact Control by | 0/1/2-approval, 1/2-veto first-last all other cases
Adding Voters
Control by 0/1/2/3-approval, 1/2-veto, all other cases
Adding Voters first-last, («, 3,0,...,0)
Control by 0/1/2-approval, 1/2/3-veto, all other cases
Deleting Voters first-last, (0,...,0,—03, —a)

3. In all other cases, exact control by adding voters is NP-complete (under dtt
reductions).

Proof.

1. The case for 0-approval is trivial, since all candidates are always winners. The
1-approval and 1-veto cases follow by straightforward greedy algorithms. The
case for 2-approval can be found in [16] and the case for 2-veto is similar.

2. The case for first-last can be found in [16].

3. Note that the remaining cases are hard for control by adding voters or for
control by deleting voters. We have already explained how we can dtt reduce
control by adding voters to exact control by adding voters. Similarly, we can
dtt reduce control by deleting voters to exact control by adding voters, since
p can be made a winner by deleting at most k voters if and only p can be
made a winner by adding to the empty set n — k voters or n — k + 1 voters
or n — k 4+ 2 voters or ...or n voters, where n is the total number of voters.
It follows that all these cases are NP-complete (under dtt reductions). O

In this section, we compared conformant manipulation with manipulation
and conformant manipulation with exact control by adding voters. We can also
look at conformant manipulation versus control by adding voters. Here we also
find voting rules where the manipulative actions differ. In particular, control
by adding voters for first-last is in P [21], but we show in the full version that
conformant manipulation for first-last is equivalent to exact perfect bipartite
matching.

Theorem 6. First-Last Conformant Manipulation is equivalent to Fzact Per-
fect Bipartite Matching (under ditt reductions).

We also show in the full version that there exists a voting rule where control
by adding voters is hard and conformant manipulation is easy.
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Theorem 7. There exists a voting rule where Control by Adding Voters is NP-
complete, but Conformant Manipulation is in P.

This shows that a reduction from control by adding voters to conformant
manipulation does not exist (unless P = NP).

5 Conformant Bribery

We now turn to our model of conformant bribery. The standard bribery problem
introduced by Faliszewski, Hemaspaandra, and Hemaspaandra [14] asks when
given an election, a bribe limit k, and a preferred candidate p, if there exists a
subcollection of at most k voters whose votes can be changed such that p is a
winner. In our model of conformant bribery the votes can only be changed to
votes that appear in the initial election. As with conformant manipulation, this
is so that the votes are changed to preferences that are still realistic with respect
to the preferences already stated. Notice how this also nicely models how a voter
can convince another to vote their same vote. In the same way as we did with
manipulation in the previous section, we can compare the complexity behavior
of our conformant model with respect to the standard model.

Bribery is in P for the voting rule 3-veto [25], but we show below that our
model of conformant bribery is NP-complete for this rule.

Theorem 8. 3-Veto Conformant Bribery is NP-complete.

Proof. Let X, Y, and Z be pairwise disjoint sets such that || X|| = ||Y|| = || Z| =
k,and M C X xY x Z with M = {My, ..., M3} be an instance of 3DM where
each element a € X UY U Z appears in exactly three triples. We construct an
instance of conformant bribery as follows.

Let the candidate set C'= {p} UX UY UZ U {p1,p2}. Let p be the preferred
candidate and let k£ be the bribe limit. Let there be the following voters.

— For each M; = (x,y, 2),
e One voter voting --- > x>y > z
— k + 4 voters voting - -+ > p > p; > po

We view the corresponding scoring vector for 3-veto as (0,...,0,—1,—1,—1) to
make our argument more straightforward. And so, before bribery score(p) =
score(py) = score(p2) = —k — 4 and for each a € X UY U Z, score(a) = —3.

If there exists a matching M’ C M of size k, for each M; € M’ such that
M; = (x,y,z) we can bribe one of the voters voting -+ > p > p; > ps to
vote +-+ > x > y > z. Since M’ is a matching the score of each candidate
a € X UY U Z decreases by 1 to be —4, and since k of the voters vetoing p are
bribed the score of p increases by k to —4 and p is a winner.

For the converse, suppose there is a successful conformant bribery. Only the
voters vetoing p should be bribed, and so the score of p after bribery is —4.
The score of each candidate a € X UY U Z must decrease by at least 1, and so
it is easy to see that a successful conformant bribery of at most k voters must
correspond to a perfect matching. ]
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We now consider the case where bribery is hard for the standard model, but
easy in our conformant model. Since the briber is restricted to use only votes that
appear in the initial election we have the same behavior as stated in Theorem 2
for conformant manipulation.

Theorem 9. Conformant Bribery is in P for every wvoting rule with a
polynomial-time winner problem when there is a fized bribe limit.

There are generally fewer results looking at a fixed bribe limit than there
are looking at a fixed number of manipulators. One example is that for Single
Transferable Vote (STV), bribery is NP-complete even when the bribe limit is
1 [33], but our focus is on scoring rules. Brelsford at al. [7] show bribery is NP-
complete for Borda, but do not consider a fixed bribe limit. However, it is easy
to adapt the NP-hardness proof for Borda manipulation with two manipulators
from Davies et al. [9]. The main idea is to add two voters that are so bad for the
preferred candidate that they have to be bribed.

Theorem 10. Borda Bribery with a bribe limit of 2 is NP-complete.

Proof. We need to following properties of the instance of Borda Manipulation
with two manipulators constructed in Davies et al. [9]. (For this proof we use
the notation from Davies et al. [9].) The constructed election has a collection of
(nonmanipulative) voters V' and ¢ + 3 candidates. Preferred candidate p scores
C and candidate a441 scores 2(g+2)+ C'. This implies that in order for p to be a
winner, the two manipulators must vote p first and a4 last. We add two voters
voting ag41 > --- > p. Note that such votes are very bad for p and that we
have to bribe two voters voting aq41 > --- > p. In order to ensure that we bribe
exactly the two added voters, it suffices to observe that we can ensure in the
construction from Davies et al. [9] that p is never last in any vote in V. So, p can
be made a winner by bribing two voters in V- U{ag+1 > -+ > p,ag41 > -+ > p}
if and only if p can be made a winner by two manipulators in the election
constructed by Davies et al. [9]. O

Corollary 2. For Borda, Bribery is NP-complete with a bribe limit of 2, but
Conformant Bribery is in P with a bribe limit of 2.

Bribery can be thought of as control by deleting voters followed by manip-
ulation. For conformant bribery we can see that the same will hold, just with
conformant manipulation. However, we also have a correspondence to the prob-
lem of control by replacing voters introduced by Loreggia et al. [26]. Control by
replacing voters asks when given an election, a collection of unregistered voters,
parameter k, and preferred candidate p, if p can be made a winner by replacing
at most k voters in the given election with a subcollection of the unregistered
voters of the same size. It is straightforward to reduce conformant bribery to
control by replacing voters (for each original voter v, we have a registered copy
of v and k unregistered copies of v), and so we inherit polynomial-time results
from this setting.
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Theorem 11. Conformant Bribery polynomial-time many-one reduces to Con-
trol by Replacing Voters.

It’s natural to ask if there is a setting where conformant bribery is easy, but
control by replacing voters is hard, and we show in the full version that this is
in fact the case.

Theorem 12. There exists a voting rule where Control by Replacing Voters is
NP-complete, but Conformant Bribery is in P.

In the related work on control by replacing voters, only the complexity for
2-approval remained open (see Erdélyi et al. [13]). This was recently shown to be
in P by Fitzsimmons and Hemaspaandra [18]|. This result immediately implies
that conformant bribery for 2-approval is also in P.

Theorem 13. 2-Approval Conformant Bribery is in P.

2-approval appears right at the edge of what is easy. For 3-approval, control by
deleting voters and bribery are hard [25], control by replacing voters is hard [13],
and we show in the full version that conformant bribery is hard as well (recall
that for 3-approval, conformant manipulation (Theorem 4) and control by adding
voters [25] are easy, essentially because all we are doing is “adding” votes that

approve p).
Theorem 14. 3-Approval Conformant Bribery is NP-complete.

As a final note, we mention that for first-last, conformant bribery, like con-
formant manipulation, is equivalent to exact perfect bipartite matching again
showing the unusual complexity behavior of this rule.

Theorem 15. First-Last Conformant Bribery is equivalent to Exact Perfect
Bipartite Matching (under dit reductions).

The proof of the above theorem can be found in the full version.

6 Conclusion

The conformant models of manipulation and bribery capture a natural setting for
election manipulation. We found that there is no reduction between the standard
and conformant models in either direction (unless P = NP), and further explored
the connection between these models and types of electoral control.

We found the first trichotomy theorem for scoring rules. This theorem con-
cerns the problem of exact control by adding voters and highlights the unusual
complexity behavior of the scoring rule first-last. We show that this unusual
complexity behavior also occurs for our conformant models.

We also observed interesting behavior for exact variants of control, including
a nontrivial case where the complexity of a problem increases when going from
the standard to the exact case.
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We see several interesting directions for future work. For example, we could

look at conformant versions for other bribery problems (e.g., priced bribery) or
for restricted domains such as single-peakedness. We are also interested in further
exploring the complexity landscape of problems for the scoring rule first-last.
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