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Abstract. For fixed nonnegative integers k and �, the (Pk, P�)-Arrowing
problem asks whether a given graph, G, has a red/blue coloring of E(G)
such that there are no red copies of Pk and no blue copies of P�. The
problem is trivial when max(k, �) ≤ 3, but has been shown to be coNP-
complete when k = � = 4. In this work, we show that the problem
remains coNP-complete for all pairs of k and �, except (3, 4), and when
max(k, �) ≤ 3.

Our result is only the second hardness result for (F, H)-Arrowing for
an infinite family of graphs and the first for 1-connected graphs. Previous
hardness results for (F, H)-Arrowing depended on constructing graphs
that avoided the creation of too many copies of F and H, allowing easier
analysis of the reduction. This is clearly unavoidable with paths and thus
requires a more careful approach. We define and prove the existence of
special graphs that we refer to as “transmitters.” Using transmitters,
we construct gadgets for three distinct cases: 1) k = 3 and � ≥ 5,
2) � > k ≥ 4, and 3) � = k ≥ 4. For (P3, P4)-Arrowing we show a
polynomial-time algorithm by reducing the problem to 2SAT, thus suc-
cessfully categorizing the complexity of all (Pk, P�)-Arrowing problems.
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1 Introduction and Related Work

Often regarded as the study of how order emerges from randomness, Ramsey
theory has played an important role in mathematics and computer science; it
has applications in several diverse fields, including, but not limited to, game
theory, information theory, and approximation algorithms [17]. A key operator
within the field is the arrowing operator: given graphs F, G, and H, we say
that G → (F, H) (read, G arrows F, H) if every red/blue coloring of G’s edges
contains a red F or a blue H. In this work, we categorize the computational
complexity of evaluating this operator when F and H are fixed path graphs.
The problem is defined formally as follows.

Problem 1 ((F, H)-Arrowing). Let F and H be fixed graphs. Given a graph G,
does G → (F, H)?
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The problem is clearly in coNP; a red/blue coloring of G’s edges with no red
F ’s and no blue H’s forms a certificate that can be verified in polynomial time
since F and H are fixed graphs. We refer to such a coloring as an (F, H)-good
coloring. The computational complexity of (F, H)-Arrowing has been categorized
for a number of pairs (F, H), with a significant amount of work done in the 80 s
and 90 s. Most relevant to our work is a result by Rutenburg, who showed that
(P4, P4)-Arrowing is coNP-complete [18], where Pn is the path graph on n ver-
tices. Burr showed that (F, H)-Arrowing is in P when F and H are star graphs
or when F is a matching [5]. Using “senders”—graphs with restricted (F, H)-
good colorings introduced a few years earlier by Burr et al. [6,7], Burr showed
that (F, H)-Arrowing is coNP-complete when F and H are members of Γ3, the
family of all 3-connected graphs and K3. The generalized (F, H)-Arrowing prob-
lem, where F and H are also part of the input, was shown to be Πp

2 -complete by
Schaefer [19].1 Aside from categorizing complexity, the primary research avenue
concerned with the arrowing operator is focused on finding minimal—with dif-
ferent possible definitions of minimal—graphs for which arrowing holds. The
smallest orders of such graphs are referred to as Ramsey numbers. Folkman
numbers are defined similarly for graphs with some extra structural constraints.
We refer the interested reader to surveys by Radziszowski [16] and Bikov [4] for
more information on Ramsey numbers and Folkman numbers, respectively.

Our work provides the first complexity result for (F, H)-Arrowing for an
infinite family of graphs since Burr’s Γ3 result from 1990. It is important to
note that Burr’s construction relies on that fact that contracting less than three
vertices between pairs of 3-connected graphs does not create new copies of said
graph. Let F be 3-connected and u, v ∈ V (F ). Construct G by taking two
copies of F and contracting u across both copies, then contracting v across
both copies. Observe that no new copies of F are constructed in this process;
if a new F is created then it must be disconnected by the removal of the two
contracted vertices, contradicting F ’s 3-connectivity. This process does not work
for paths since contracting two path graphs will always make several new paths
across the vertices of both paths. Thus, we require a more careful approach when
constructing the gadgets necessary for our reductions. We focus on the problem
defined below and prove a dichotomy theorem categorizing the problem to be in
P or be coNP-complete. We note that such theorems for other graph problems
exist in the literature, e.g., [1,8,11,14].

Problem 2 ((Pk, P�)-Arrowing). Let k and � be fixed integers such that 2 ≤ k ≤ �.
Given a graph G, does G → (Pk, P�)?

Theorem 1. (Pk, P�)-Arrowing is coNP-complete for all k and � unless k = 2,
(k, �) = (3, 3), or (k, �) = (3, 4). For these exceptions, the problem is in P.

Before this, the only known coNP-complete case for paths was when k = � =
4 [18]. Despite being intuitively likely, generalizing the hardness result to larger

1 Πp
2 = coNPNP, the class of all problems whose complements are solvable by a non-

deterministic polynomial-time Turing machine having access to an NP oracle [15].
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paths proved to be an arduous task. Our proof relies on proving the existence
of graphs with special colorings—we rely heavily on work by Hook [12], who
categorized the (Pk, P�)-good colorings of the largest complete graphs which do
not arrow (Pk, P�). After showing the existence of these graphs, the reduction
is straightforward. The polynomial-time cases are straightforward (Theorem 2)
apart from the case where (k, �) = (3, 4), wherein we reduce the problem to
2SAT (Theorem 3).

The rest of this paper is organized as follows. We present the necessary
preliminaries in Sect. 2. The proof for Theorem 1 is split into Sects. 3 (the
polynomial-time cases) and 4 (the coNP-complete cases). We conclude in Sect. 5.

2 Preliminaries

All graphs discussed in this work are simple and undirected. V (G) and E(G)
denote the vertex and edge set of a graph G, respectively. We denote an edge
in E(G) between u, v ∈ V (G) as (u, v). For two disjoint subsets A, B ⊂ V (G),
E(A,B) refers to the edges with one vertex in A and one vertex in B. The
neighborhood of a vertex v ∈ V (G) is denoted as N(v) and its degree as d(v) :=
|N(v)|. The path, cycle, and complete graphs on n vertices are denoted as Pn,
Cn, and Kn, respectively. The complete graph on n vertices missing an edge is
denoted as Kn − e. Vertex contraction is the process of replacing two vertices u
and v with a new vertex w such that w is adjacent to all remaining neighbors
N(u) ∪ N(v).

An (F, H)-good coloring of a graph G is a red/blue coloring of E(G) where
the red subgraph is F -free, and the blue subgraph is H-free. We say that G
is (F, H)-good if it has at least one (F, H)-good coloring. When the context is
clear, we will omit (F, H) and refer to the coloring as a good coloring.

Formally, a coloring for G is defined as function c : E(G) → {red, blue} that
maps edges to the colors red and blue. For an edge (u, v) and coloring c, we
denote its color as c(u, v).

3 Polynomial-Time Cases

In this section, we prove the P cases from Theorem 1. Particularly, we describe
polynomial-time algorithms for (P2, P�)-Arrowing and (P3, P3)-Arrowing (Theo-
rem 2) and provide a polynomial-time reduction from (P3, P4)-Arrowing to 2SAT
(Theorem 3).

Theorem 2. (Pk, P�)-Arrowing is in P when k = 2 and when k = � = 3.

Proof. Let G be the input graph. Without loss of generality, assume that G is
connected (for disconnected graphs, we run the algorithm on each connected
component).
Case 1 (k = 2). Coloring any edge in G red will form a red P2. Thereby, the
entire graph must be colored blue. Thus, a blue P� is avoided if and only if G is
P�-free, which can be checked by brute force, since � is constant.
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Case 2 (k = � = 3). Note that in any (P3, P3)-good coloring of G, edges of the
same color cannot be adjacent; otherwise, a red or blue P3 is formed. Thus, we
can check if G is (P3, P3)-good similarly to how we check if a graph is 2-colorable:
arbitrarily color an edge red and color all of its adjacent edges blue. For each
blue edge, color its neighbors red and for each red edge, color its neighbors blue.
Repeat this process until all edges are colored or a red or blue P3 is formed. This
algorithm is clearly polynomial-time. ��

The proof that (P3, P4)-Arrowing is in P consists of two parts. A preprocess-
ing step to simplify the graph (using Lemmas 1 and 2), followed by a reduction
to 2SAT, which was proven to be in P by Krom in 1967 [13].

Problem 3 (2SAT). Let φ be a CNF formula where each clause has at most two
literals. Does there exist a satisfying assignment of φ?

Lemma 1. Suppose G is a graph and v ∈ V (G) is a vertex such that d(v) = 1
and v’s only neighbor has degree at most two. Then, G is (P3, P4)-good if and
only if G − v is (P3, P4)-good.

Proof. Let u be the neighbor of v. If d(u) = 1, the connected component of v is
a K2 and the statement is trivially true. If d(u) = 2, let w be the other neighbor
of u, i.e., the neighbor that is not v. Clearly, if G is (P3, P4)-good, then G − v is
(P3, P4)-good. We now prove the other direction. Suppose we have good coloring
of G − v. It is immediate that we can extend this to a good coloring of G by
coloring (v, u) (the only edge adjacent to v) red if (u, w) is colored blue, and
blue if (u,w) is colored red. ��
Lemma 2. Suppose G is a graph and there is a P4 in G with edges
(v1, v2), (v2, v3), and (v3, v4) such that d(v1) = d(v2) = d(v3) = d(v4) = 2.
Then, G is (P3, P4)-good if and only if G − v2 is (P3, P4)-good.

Proof. If (v1, v4) is an edge, then the connected component of v2 is a C4 and
the statement is trivially true. If not, let v0, v5 	∈ {v1, v2, v3, v4} be such that
(v0, v1) and (v4, v5) are edges. Note that it is possible that v0 = v5. Clearly, if G
is (P3, P4)-good then G − v2 is (P3, P4)-good. For the other direction, suppose
c is a (P3, P4)-good coloring of G − v2. We now construct a coloring c′ of G.
We color all edges other than (v1, v2), (v2, v3), and (v3, v4) the same as c. The
colors of the remaining three edges are determined by the coloring of (v0, v1)
and (v4, v5) as follows.

– If c(v0, v1) = c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = blue, red,
blue.

– If c(v0, v1) = c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = red, blue,
red.

– If c(v0, v1) = red and c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
blue, blue, red.

– If c(v0, v1) = blue and c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
red, blue, blue.
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Since the cases above are mutually exhaustive, this completes the proof. ��
Theorem 3. (P3, P4)-Arrowing is in P.

Proof. Let G be the input graph. Let G′ be the graph obtained by repeatedly
removing vertices v described in Lemma 1 and vertices v2 described in Lemma 2
until no more such vertices exist. As implied by said lemmas, G′ → (P3, P4) if
and only if G → (P3, P4). Thus, it suffices to construct a 2SAT formula φ such
that φ is satisfiable if and only if G′ is (P3, P4)-good.

Let re be a variable corresponding to the edge e ∈ E(G′), denoting that e is
colored red. We construct a formula φ, where a solution to φ corresponds to a
coloring of G′. For each P3 in G′, with edges (v1, v2) and (v2, v3), add the clause(
r(v1,v2) ∨ r(v2,v3)

)
. Note that this expresses “no red P3’s.” For each P4 in G′,

with edges (v1, v2), (v2, v3), and (v3, v4):

1. If (v2, v4) ∈ E(G′), add the clause
(
r(v1,v2) ∨ r(v3,v4)

)
.

2. If (v2, v4) 	∈ E(G′) and d(v2) > 2, then add the clause
(
r(v2,v3) ∨ r(v3,v4)

)
.

It is easy to see that the conditions specified above must be satisfied by
each good coloring of G′, and thus G′ being (P3, P4)-good implies that φ is
satisfiable. We now prove the other direction by contradiction. Suppose φ is
satisfied, but the corresponding coloring c is not (P3, P4)-good. It is immediate
that red P3’s cannot occur in c, so we assume that there exists a blue P4, with
edges e = (v1, v2), f = (v2, v3), and g = (v3, v4) such that re = rf = rg =
false in the satisfying assignment of φ. Without loss of generality, assume that
d(v2) ≥ d(v3).

– If d(v2) > 2, φ would contain clause re ∨ rg or rf ∨ rg. It follows that d(v2) =
d(v3) = 2.

– If d(v1) = 1, v1 would have been deleted by applying Lemma 1. It follows that
d(v1) > 1. Similarly, d(v4) > 1.

– If d(v1) > 2, then there exists a vertex v0 such that (v0, v1), (v1, v2), (v2, v3) are
a P4 in G′, d(v1) > 2 and (v1, v3) 	∈ E(G′) (since d(v3) = 2). This implies that
φ contains clause re ∨ rf , which is a contradiction. It follows that d(v1) = 2.
Similarly, d(v4) = 2.

– So, we are in the situation that d(v1) = d(v2) = d(v3) = d(v4) = 2. But then
v2 would have been deleted by Lemma 2.

Since the cases above are mutually exhaustive, this completes the proof. ��

4 coNP-Complete Cases

In this section, we discuss the coNP-complete cases in Theorem 1. In Sect. 4.1, we
describe how NP-complete SAT variants can be reduced to (Pk, P�)-Nonarrowing
(the complement of (Pk, P�)-Arrowing: does there exist a (Pk, P�)-good coloring
of G?). The NP-complete SAT variants are defined below.
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Fig. 1. The variable gadget for (Pk, P�)-Nonarrowing when 4 ≤ k < � is shown on the
left. The output vertices are filled in. Red jagged lines and blue spring lines represent
(k, �, x)-red- and (k, �, x)-blue-transmitters, respectively, where the value of x is shown
on the top, and the vertex the lines are connected to are the strict endpoints of the
monochromatic paths. Observe that when (a, b) is red, other edges adjacent to b must
be blue to avoid a red Pk. This, in turn, causes neighbors p and q to have incoming
blue P�−1’s, and vertices marked U are now strict endpoints of red Pk−1’s. Moreover,
edges adjacent to d (except (b, d)) must be red to avoid blue P�’s. Thus, r and s are
strict endpoints of red Pk−1’s, causing the vertices marked N to be strict endpoints of
blue P3’s. A similar pattern is observed when (a, b) is blue. Note that for k ≤ 4, the
(k, �, k−3)-red-transmitter can be ignored. On the right, the two kinds of (Pk, P�)-good
colorings of the gadget are shown. (Color figure online)

Problem 4 ((2, 2)-3SAT [3]). Let φ be a CNF formula where each clause contains
exactly three distinct variables, and each variable appears only four times: twice
unnegated and twice negated. Does there exist a satisfying assignment of φ?

Problem 5 (Positive NAE E3SAT-4 [2]). Let φ be a CNF formula where each
clause is an NAE-clause (a clause that is satisfied when its literals are not all
true or all false) containing exactly three (not necessarily distinct) variables,
and each variable appears at most four times, only unnegated. Does there exist
a satisfying assignment for φ?

Our proofs depend on the existence of graphs we refer to as “transmitters,”
defined below. These graphs enforce behavior on special vertices which are strict
endpoints of red or blue paths. For a graph G and coloring c, we say that v is
a strict endpoint of a red (resp., blue) Pk in c if k is the length of the longest
red (resp., blue) path that v is the endpoint of. We prove the existence of these
graphs in Sect. 4.2.
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Fig. 2. The clause gadget for (Pk, P�)-Nonarrowing when 4 ≤ k < � is shown on top.
The input vertices are filled in. Below it, we show the eight possible combinations of
inputs that can be given to the gadget. Observe that a (Pk, P�)-good coloring is always
possible unless the input is three red Pk−1’s (top left). As in Fig. 1, jagged and spring
lines represent transmitters. We use this representation of transmitters to depict the
two forms of input to the gadget. For � ≤ 5, the (k, �, � − 4)-blue-transmitter can be
ignored. (Color figure online)

Definition 1. Let 3 ≤ k < �. For an integer x ∈ {2, 3, . . . , k − 1} (resp., x ∈
{2, 3, . . . , � − 1}) a (k, �, x)-red-transmitter (resp., (k, �, x)-blue-transmitter) is a
(Pk, P�)-good graph G with a vertex v ∈ V (G) such that in every (Pk, P�)-good
coloring of G, v is the strict endpoint of a red (resp., blue) Px, and is not adjacent
to any blue (resp., red) edge.

Definition 2. Let k ≥ 3 and x ∈ {2, 3, . . . , k − 1}. A (k, x)-transmitter is a
(Pk, Pk)-good graph G with a vertex v ∈ V (G) such that in every (Pk, Pk)-good
coloring of G, v is either (1) the strict endpoint of a red Px and not adjacent to
any blue edge, or (2) the strict endpoint of a blue Px and not adjacent to any
red edge.

4.1 Reductions

We present three theorems that describe gadgets to reduce NP-complete variants
of SAT to (Pk, P�)-Nonarrowing.

Theorem 4. (Pk, P�)-Arrowing is coNP-complete for all 4 ≤ k < �.

Proof. We reduce (2, 2)-3SAT to (Pk, P�)-Nonarrowing. Let φ be the input to
(2, 2)-3SAT. We construct Gφ such that Gφ is (Pk, P�)-good if and only if φ is
satisfiable. Let V G and CG be the variable and clause gadgets shown in Figs. 1
and 2. V G has four output vertices that emulate the role of sending a truth
signal from a variable to a clause. We first look at Fig. 1. The vertices labeled
U (resp., N) correspond to unnegated (resp., negated) signals. Being the strict
endpoint of a blue P3 corresponds to a true signal while being the strict endpoint
of a red Pk−1 corresponds to a false signal. We now look at Fig. 2. When three
red Pk−1 signals are sent to the clause gadget, it forces the entire graph to be
blue, forming a blue P�. When at least one blue P3 is present, a good coloring
of CG is possible.
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Fig. 3. The variable gadget for (P3, P�)-Nonarrowing where � ≥ 6 (top) and its two
good colorings (bottom). The variable gadget is a combination of two H’s, whose
properties we discuss in the proof of Theorem 5. Note that when (a, b) is red in H,
then (a′, b′) is blue in H’s copy, and vice versa; if both copies have the same coloring of
(a, b), then a red P3 is formed at y, or a blue P� is formed from the path from x to x′

and the (3, �, �−6)-blue-transmitter that x′ is connected to. When � = 5, the edge (a, d)
is added in H, in lieu of the � − 5 vertices connected to (3, �, 2)-red-transmitters. Note
that for � ≤ 8, the (3, �, � − 6)-blue-transmitter can be ignored. (Color figure online)

We construct Gφ like so. For each variable (resp., clause) in φ, we add a
copy of V G (resp., CG) to Gφ. If a variable appears unnegated (resp., negated)
in a clause, a U-vertex (resp., N-vertex) from the corresponding V G is con-
tracted with a previously uncontracted input vertex of the CG corresponding to
said clause. The correspondence between satisfying assignments of φ and good
colorings of Gφ is easy to see. ��

Theorem 5. (P3, P�)-Arrowing is coNP-complete for all � ≥ 5.

Proof. We proceed as in the proof of Theorem 4. The variable gadget is shown
in Fig. 3. Blue (resp., red) P2’s incident to vertices marked U and N correspond
to true (resp., false) signals. The clause gadget is the same as Theorem 4’s, but
the good colorings are different since the inputs are red/blue P2’s instead. These
colorings are illustrated in the full version of this paper [10].

Suppose � ≥ 6. Let H be the graph circled with a dotted line in Fig. 3. We
first discuss the properties of H. Note that any edge adjacent to a red P2 must
be colored blue to avoid a red P3. Let v1, v2, . . . , v�−5 be the vertices connected
to (3, �, 2)-red-transmitters such that v1 is adjacent to a. Observe that (a, b) and
(c, d) must always be the same color; if, without loss of generality, (a, b) is red
and (c, d) is blue, a blue P� is formed via the sequence a, v1, . . . , v�−5, d, c, b, x.
In the coloring where (a, b) and (c, d) are blue, the vertices a, v1, . . . , v�−5, d, c, b
form a blue C�−1, and all edges going out from the cycle must be colored red to
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Fig. 4. The clause gadget for (Pk, Pk)-Nonarrowing. The format is similar to Fig. 2.
(Color figure online)

Fig. 5. The variable gadget for (Pk, Pk)-Nonarrowing. Observe that the transmitters
connected to v must have different colors; otherwise, a red or blue Pk−1+k−2−1 is
formed, which is forbidden when k ≥ 4. When the (k, k − 1)-transmitter is red, v’s
other neighboring edges must be blue. Thus, vertices a, b, c, and d are strict endpoints
of blue Pk−1’s, causing the output vertices (filled) to be strict endpoints of red Pk−1’s.
A similar situation occurs when the (k, k − 1)-transmitter is blue. Both (Pk, Pk)-good
colorings are shown on the right. (Color figure online)

avoid blue P�’s. This forces the vertices marked U to be strict endpoints of blue
P2’s. If (a, b) and (c, d) are red, w, a, v1, . . . , v�−5, d, z forms a blue P�−1, forcing
the vertices marked U to be strict endpoints of red P2’s. Moreover, (x, b) and
(y, c) must also be blue.

With these properties of H in mind, the functionality of the variable gadget
described in Fig. 3’s caption is easy to follow. The � = 5 case uses a slightly
different H, also described in the caption. ��
Theorem 6. (Pk, Pk)-Arrowing is coNP-complete for all k ≥ 4.

Proof. For k = 4, Rutenburg showed that the problem is coNP-complete by
providing gadgets that reduce from an NAE SAT variant [18]. For k ≥ 5, we take
a similar approach and reduce Positive NAE E3SAT-4 to (Pk, Pk)-Nonarrowing
using the clause and variable gadgets described in Figs. 4 and 5. The variable
gadget has four output vertices, all of which are unnegated. Without loss of
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Fig. 6. Illustrations of (Pk, P�)-good colorings of KR(Pk,P�)−1. (Color figure online)

generality, we assume that blue Pk−1’s correspond to true signals. The graph Gφ

is constructed as in the proofs of Theorems 4 and 5. Our variable gadget is still
valid when k = 4, but the clause gadget does not admit a (P4, P4)-good coloring
for all the required inputs. In the full version of this paper, we show a different
clause gadget that can be used to show the hardness of (P4, P4)-Arrowing using
our reduction. ��

4.2 Existence of Transmitters

Our proofs for the existence of transmitters are corollaries of the following.

Lemma 3. For integers k, �, where 3 ≤ k < �, (k, �, k−1)-red-transmitters exist.

Lemma 4. For all k ≥ 3, (k, k − 1)-transmitters exist.

Below, we will prove Lemma 3 for the case where k is even. The odd case and
the proof for Lemma 4 are discussed in the full version of this paper [10]. We
construct these transmitters by carefully combining copies of complete graphs.
The Ramsey number R(Pk, P�) is defined as the smallest number n such that
Kn → (Pk, P�). We know that R(Pk, P�) = �+ �k/2
− 1, where 2 ≤ k ≤ � [9]. In
2015, Hook characterized the (Pk, P�)-good colorings of all “critical” complete
graphs: KR(Pk,P�)−1. We summarize Hook’s results below.2

Theorem 7 (Hook [12]). Let 4 ≤ k < � and r = R(Pk, P�) − 1. The possible
(Pk, P�)-good colorings of Kr can be categorized into three types. In each case,
V (G) is partitioned into sets A and B. The types are defined as follows:

– Type 1. Let |A| = �k/2
− 1 and |B| = �− 1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

– Type 2. Let |A| = �k/2
 − 1 and |B| = � − 1, and let b ∈ E(B). Each edge
in E(B) \ {b} must be blue, and each edge in E(A, B) ∪ {b} must be red. Any
coloring of E(A) is allowed.

2 We note that Hook’s ordering convention differs from ours, i.e., they look at (P�, Pk)-
good colorings. Moreover, they use m and n in lieu of k and �.
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Fig. 7. An (H, u, m)-thread as described in Definition 3.

– Type 3. Let |A| = ��/2
− 1 and |B| = k − 1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

Moreover, the types of colorings allowed vary according to the parity of k. If k
is even, then Kr can only have Type 1 colorings. If k is odd and � > k + 1, then
Kr can only have Type 1 and 2 colorings. If k is odd and � = k +1, then Kr can
have all types of colorings.

For the case where k = �, Kr can have Type 1 and 2 colorings as described
in the theorem above. Due to symmetry, the colors in these can be swapped and
are referred to as Type 1a, 1b, 2a, and 2b colorings. The colorings described
have been illustrated in Fig. 6. We note the following useful observation.

Observation 1 Suppose � > k ≥ 4 and r = R(Pk, P�) − 1.

– In Type 1 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a blue P�−1, (2) when k is even (resp., odd), each vertex in B is a
strict endpoint of a red Pk−1 (resp., Pk−2), and (3) when k is even (resp.,
odd), each vertex in A is a strict endpoint of a red Pk−2 (resp., Pk−3).

– In Type 2 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a blue P�−1, (2) each vertex in B is a strict endpoint of a red Pk−1,
and (3) each vertex in A is a strict endpoint of a red Pk−2.

– In Type 3 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a red Pk−1, (2) each vertex in B is a strict endpoint of a blue P�−1,
and (3) each vertex in A is a strict endpoint of a blue P�−2.

We justify these claims in the full version of this paper [10], wherein we also
formally define the colorings Kr when k = � and justify a similar observation.
Finally, we define a special graph that we will use throughout our proofs.

Definition 3 ((H, u, m)-thread). Let H be a graph, u ∈ V (H), and m ≥ 1 be
an integer. An (H, u, m)-thread G, is a graph on m|V (H)|+1 vertices constructed
as follows. Add m copies of H to G. Let Ui ⊂ V (G) be the vertex set of the ith

copy of H, and ui be the vertex u in H’s ith copy. Connect each ui to ui+1 for
each i ∈ {1, 2, . . . , m − 1}. Finally, add a vertex v to G and connect it to um.
We refer to v as the thread-end of G. This graph is illustrated in Fig. 7.

Using Theorem 7, Observation 1, and Definition 3 we are ready to prove the
existence of (k, �, k−1)-red-transmitters and (k, k−1)-transmitters via construc-
tion. Transmitters for various cases are shown in Figs. 8 and 9.
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Fig. 8. (k, �, k − 1)-red-transmitters for even k with � > k, odd k with � > k + 1, and
odd k with � = k+1 are shown on the top-left, bottom-left, and top-right, respectively.
The latter construction does not work for the case where k = 5, so an alternative
construction for a (5, 6, 4)-red-transmitter is shown on the bottom-right. The graphs
(H and F ) described in each case are circled so that the proofs are easier to follow. A
good coloring is shown for each transmitter. (Color figure online)

Proof of Lemma 3 when k is even. Let k ≥ 4 be an even integer and r =
R(Pk, P�) − 1. In this case, by Theorem 7, only Type 1 colorings are allowed for
Kr. The term A1-vertex (resp., B1-vertex) is used to refer to vertices belonging
to set A (resp., B) in a Kr with a Type 1 coloring, as defined in Theorem 7. We
first make an observation about the graph H, constructed by adding an edge
(u, v) between two disjoint Kr’s. Note that u must be an A1-vertex, otherwise
the edge (u, v) would form a red Pk−1 or blue P�−1 when colored red or blue,
respectively (Observation 1). Similarly, v must also be an A1-vertex. Note that
(u, v) must be blue; otherwise, by Observation 1, a red Pk−2+k−2 is formed,
which cannot exist in a good coloring when k ≥ 4.

We define the (k, �, k − 1)-red-transmitter, G, as the (Kr, u, � − 1)-thread
graph, where u is an arbitrary vertex in V (Kr). The thread-end v of G is a
strict endpoint of a red Pk−1. Let Ui and ui be the sets and vertices of G as
described in Definition 3. From our observation about H, we know that each
edge (ui, ui+1) must be blue. Thus, u�−1 must be the strict endpoint of a blue
P�−1, implying that (u�−1, v) must be red. Since u�−1 is also a strict endpoint
of a red Pk−2 (Observation 1), v must be the strict endpoint of a red Pk−1.

For completeness, we must also show that G is (Pk, P�)-good. Let Ai and Bi

be the sets A and B as defined in Theorem 7 for each Ui. Note that the only
edges whose coloring we have not discussed are the edges in each E(Ai). It is
easy to see that if each edge in each E(Ai) is colored red, the resulting coloring
is (Pk, P�)-good. This is because introducing a red edge in E(Ai) cannot form
a longer red path than is already present in the graph, i.e., any path going
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Fig. 9. (k, k −1)-transmitters for even k (left) and odd k (right). (Color figure online)

through an edge (p, q) ∈ E(Ai) can be increased in length by selecting a vertex
from r ∈ E(Bi) using the edges (p, r) and (r, q) instead. This is always possible
since |E(Bi)| is sufficiently larger than |E(Ai)|. ��

Finally, we show how constructing (red-)transmitters where x = k − 1 is
sufficient to show the existence of all defined transmitters.

Corollary 1. For valid k, �, and x, (k, �, x)-blue-transmitters and (k, �, x)-red-
transmitters exist.

Proof. Let H be a (k, �, k − 1)-red-transmitter where u ∈ V (H) is the strict
endpoint of a red Pk−1 in all of H’s good colorings. For valid x, the (H, u, x−1)-
thread graph G is a (k, �, x)-blue-transmitter, where the thread-end v is the strict
endpoint of a blue Px in all good colorings of G; to avoid constructing red Pk’s
each edge along the path of ui’s is forced to be blue by the red Pk−1 from H,
where ui is the vertex u in the ith copy of H as defined in Definition 3.

To construct a (k, �, x)-red-transmitter, we use a similar construction. Let H
be a (k, �, � − 1)-blue-transmitter where u ∈ V (H) is the strict endpoint of a
blue P�−1 in all good colorings of H. For valid x, the (H, u, x)-thread graph G
is a (k, �, x− 1)-red-transmitter, where the thread-end v is the strict endpoint of
a red Px in all good colorings of G. ��
Corollary 2. For valid k and x, (k, x)-transmitters exist.

Proof. Let H be a (k, k−1)-transmitter where u ∈ V (H) is the strict endpoint of
a red/blue Pk−1 in all of H’s good colorings. For valid x, the (k, u, x− 1)-thread
graph G is a (k, x)-transmitter, where the thread-end v is the strict endpoint of
a red or blue Px in all good colorings of G. Let ui be the vertex as defined in
Definition 3. Each ui is the strict endpoint of Pk−1 of the same color; otherwise,
the edge between two u’s cannot be colored without forming a red or blue Pk.
Thus, each such edge must be colored red (resp., blue) by the blue (resp., red)
Pk−1 coming from H. ��

5 Conclusion and Future Work

A major and difficult goal is to classify the complexity for (F, H)-Arrowing for all
fixed F and H. We conjecture that in this much more general case a dichotomy
theorem still holds, with these problems being either in P or coNP-complete. This
seems exceptionally difficult to prove. To our knowledge, all known dichotomy
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theorems for graphs classify the problem according to one fixed graph, and the
polynomial-time characterizations are much simpler than in our case. We see
this paper as an important first step in accomplishing this goal.

Acknowledgments. This work was supported in part by grant NSF-DUE-1819546.
We would like to thank the anonymous reviewers for their valuable comments.

References

1. Achlioptas, D.: The complexity of G-free colorability. Discrete Math. 165–166,
21–30 (1997)

2. Antunes Filho, I.T.F.: Characterizing Boolean Satisfiability Variants. Ph.D. thesis,
Massachusetts Institute of Technology (2019)

3. Berman, P., Karpinski, M., Scott, A.: Approximation Hardness of Short Symmetric
Instances of MAX-3SAT. ECCC (2003)

4. Bikov, A.: Computation and Bounding of Folkman Numbers. Ph.D. thesis, Sofia
University ”St. Kliment Ohridski” (2018)

5. Burr, S.A.: On the computational complexity of Ramsey-type problems. Math.
Ramsey Theory, Algorithms Comb. 5, 46–52 (1990)
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