732

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.

This article is published online with Open Access by I0S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA230338

Using Weighted Matching to Solve 2-Approval/Veto
Control and Bribery

Zack Fitzsimmons®* and Edith Hemaspaandra®

aDepartment of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610 USA
"Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623 USA

Abstract. Determining the complexity of election attack problems
is a major research direction in the computational study of voting
problems. The paper “Towards completing the puzzle: complexity of
control by replacing, adding, and deleting candidates or voters” by
Erdélyi et al. JAAMAS 2021) provides a comprehensive study of the
complexity of control problems. The sole open problem is construc-
tive control by replacing voters for 2-Approval. We show that this
case is in P, strengthening the recent RP (randomized polynomial-
time) upper bound due to Fitzsimmons and Hemaspaandra (IJCAI
2022). We show this by transforming 2-Approval CCRV to weighted
matching. We also use this approach to show that priced bribery
for 2-Veto elections is in P. With this result, and the accompany-
ing (unsurprising) result that priced bribery for 3-Veto elections is
NP-complete, this settles the complexity for k-Approval and k-Veto
standard control and bribery cases.

1 Introduction

Elections are the most widely-used way to aggregate the preferences
of a group of agents over a common set of alternatives. Applications
include political elections as well as multiagent systems in artificial
intelligence applications. Thus it is important to study computational
aspects of elections including problems such as winner determination
and different ways of strategically affecting the outcome, which are
referred to as election-attack problems (see, e.g., Brandt et al. [3]).

Electoral control and bribery are two important examples of
election-attack problems. Control models the actions of an election
chair who has control over the structure of the election (e.g., the set
of voters) and modifies this structure to ensure a preferred outcome
(e.g., by deleting voters) [1]. Different control actions model real-
world settings such as get-out-the-vote drives or adding “spoiler”
candidates to an election to a preferred candidate wins. The stan-
dard control cases of adding or deleting voters or candidates can be
naturally extended to replacing voters or candidates, which for ex-
ample models settings where the size of the collection of voters is
fixed to its initial amount (e.g., in a parliament) and so the control
action must work within this restriction [20]. Bribery considers how
a strategic agent can set the votes of a subcollection of the voters
to ensure a preferred outcome [9]. The computational study of con-
trol and bribery is a major research direction in computational social
choice (see Faliszewski and Rothe [11]).

Asking voters to state their most preferred candidate where can-
didates with the highest number of approvals win is one of the most

* Corresponding Author. Email: zfitzsim @holycross.edu.

natural ways to elicit preferences to reach a group decision. This is
referred to as the Plurality rule. We consider k-Approval, which gen-
eralizes this for fixed k. We additionally consider k-Veto where each
voter vetoes their k least preferred candidates, and candidates with
the fewest vetoes win.

The study of electoral control has led to many different papers
considering the complexity of different actions for important voting
rules. A recent comprehensive study on the complexity of control by
Erdélyi et al. [8] sought to settle the complexity of the open problems
that have remained for control by replacing, adding, and deleting can-
didates or voters. In the large number of cases summarized and com-
pleted in this work only the complexity of control by replacing voters
for 2-Approval remained open. In very recent work by Fitzsimmons
and Hemaspaandra [13] this problem was shown to be in RP (ran-
domized polynomial-time). We strengthen this result and show this
problem in P, thus completing the goal of the comprehensive work
by Erdélyi et al. [8].

The complexity of standard control and bribery for k-Approval
and k-Veto elections was systematically studied by Lin [18, 19],
which left only a few open cases. Several of these open cases con-
cern weighted voting and were handled by Faliszewski, Hemaspaan-
dra, and Hemaspaandra [10]. The last remaining open cases were
2-Approval and 2/3-Veto priced bribery, where setting the votes of
different voters may incur different costs. Bredereck et al. [4] state
that the 2-Approval case is in P in the summary for a Dagstuhl work-
ing group. The 2-Veto case was incorrectly claimed NP-complete by
Bredereck and Talmon [5] and their classification of the 3-Veto case
relied on the same incorrect proof. We resolve these issues in the
literature in the present paper.

We summarize the main contributions of our paper below.

e We show that (constructive) control by replacing voters for 2-
Approval, the sole remaining open case from Erdélyi et al. [8],
that was very recently shown to be in RP (randomized polyno-
mial time) by Fitzsimmons and Hemaspaandra [13], is in fact in
P (Theorem 3).

e We also settle the complexity of the last remaining cases from the
study of k-Approval and k-Veto by Lin [18, 19] by showing that
priced bribery for 2-Veto is in P (Theorem 4), while priced bribery
for 3-Veto is NP-complete (Theorem 5).

e To prove our polynomial-time results we use transformations from
voting problems to weighted matching. Weighted matching has
been seldom used in the computational study of voting problems
and our nontrivial polynomial-time results illustrate its usefulness.

Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery 733

2 Preliminaries

An election (C, V') consists of a set of candidates C' and a collection
of voters V' where each voter has a corresponding strict total order
ranking of the candidates in C', referred to as a vote. A voting rule is
a mapping from an election to a subset of the candidate set referred
to as the winners.

Our results concern the k-Approval and k-Veto voting rules. In
a k-Approval election each candidate receives one point from each
voter who ranks them among their top-k preferred candidates and
candidates with the highest score win. In a k-Veto election each can-
didate receives one veto from each voter who ranks them among their
bottom-k preferred candidates and candidates with the fewest vetoes
win.

2.1 Election-Attack Problems

As explained in the introduction, electoral control and bribery are
important and well-studied families of election-attack problems. To
solve important open questions in the literature we consider control
by replacing voters and priced bribery.

Control by replacing voters [20] models scenarios where the elec-
tion chair with control over the structure of the election replaces a
subcollection of the voters with the same number of unregistered vot-
ers to ensure a preferred candidate wins. This model ensures that the
size of the collection of voters in the election is the same after the
control action. We formally define this problem below.

Name: R-Constructive Control by Replacing Voters (CCRV) [20]

Given: Given an election (C, V'), a collection of unregistered voters
W, preferred candidate p, and integer k such that 0 < k < ||[V||.

Question: Do there exist subcollections V! C V and W' C W
such that |V’|| = ||[W’|| < k and p is a winner of the election
(C,(V — V"YU W') using voting rule R?

Bribery, introduced by Faliszewski, Hemaspaandra, and
Hemaspaandra [9], models the actions of an agent who sets
the votes of a subcollection of the voters to ensure a preferred
candidate wins [9]. We mention that bribery can be thought of as
modeling the campaign costs of an election where an agent must
determine if there is a subcollection of voters that can be convinced
to change their vote to ensure a preferred candidate wins. We
consider the problem of priced bribery, which we formally define
below.

Name: R-$Bribery [9]

Given: Given an election (C, V') where each voter v € V has (inte-
ger) price w(v) > 0, preferred candidate p, and budget k& > 0.

Question: Is there a way to change the votes of a subcollection of
voters V' C V' within the budget (i.e., 7(V') = > .\ w(v) < k)
such that p is a winner using voting rule R?

As is standard we look at the nonunique-winner model. Erdélyi
et al. [8] remark that their proofs can be modified to work for the
unique-winner model, and we remark that our proofs can be easily
modified to work for the unique-winner model as well.

2.2 Matching

For our polynomial-time algorithms, we will reduce to the following
polynomial-time computable weighted matching problems (we will
be writing Vs for sets of vertices to distinguish them from collections
V of voters).!

Name: Max-Weight Perfect b-Matching for Multigraphs

Given: An edge-weighted multigraph G = (Vi, E), where each
edge has nonnegative integer weight, a function b : Vo — N, and
integer k£ > 0.

Question: Does G have a perfect b-matching of weight at least k,
i.e., does there exist a set of edges E' C E of weight at least k such
that each vertex v € V¢ is incident to exactly b(v) edges in E'?

We define Min-Weight Perfect b-Matching for Multigraphs analo-
gously.

The analogues for simple graphs, denoted by Max-Weight Per-
fect b-Matching and Min-Weight Perfect b-Matching, are in P [7],
and it is easy to reduce Max[Min]-Weight Perfect b-Matching for
Multigraphs to Max[Min]-Weight Perfect Matching (Lemma 1) by
generalizing the reduction from (unweighted) Perfect b-Matching
for Multigraphs to Perfect Matching using the construction from
Tutte [24] (see, e.g., Berge [2, Chapter 8]). Lemma 1 shows this for
Max-Weight. The case for Min-Weight is analogous.

Lemma 1. Max-Weight Perfect b-Matching for Multigraphs reduces
to Max-Weight Perfect Matching.

Proof. 1t is straightforward to reduce Perfect b-Matching for Multi-
graphs to Perfect Matching using the construction from Tutte [24]
(see, for example, Berge [2, Chapter 8]). Given multigraph G and ca-
pacity function b, replace each vertex v by a complete bipartite graph
(Py, {v1,...,50)}), where P, is a set of (v) — b(v) padding ver-
tices (we assume wlog that §(v) > b(v), otherwise there is no match-
ing). We number the edges incident with v and for each edge e in G,
if this edge is the ith v edge and the jth w edge in G, we have an
edge (vs, w;).

The same reduction works for the weighted version. We set the
weight of (v;, w;) to the weight of e and we set the weight of the
padding edges to 0. Call the resulting graph G’. It is easy to see that
a perfect b-matching of G of weight k will give a perfect match-
ing of G’ with weight k: Simply take all the edges corresponding
to the matching of GG and add padding edges to make this a perfect
matching. Since padding edges have weight 0, the obtained perfect
matching of G’ has weight k. For the converse, note that any per-
fect matching of G’ consists of padding edges plus a set of edges
corresponding to a perfect b-matching of G. O

From the above lemma we have the following.

Theorem 2. Max-Weight and Min-Weight Perfect b-Matching for
Multigraphs are in P.

1 Though many matching problems are in P (see, e.g., [15], Section 7), one
has to be careful since minor-seeming variations can make these problems
hard. In the context of voting problems, the weighted version of control by
adding voters for 2-Approval where we limit the number of voters to add
can be viewed as a variation of a weighted matching problem [18]. Since
weighted control by adding voters for 2-Approval is NP-complete [10], so
is the corresponding matching problem. We also mention here that Exact
Perfect Matching (which asks if a graph where a subset of the edges is col-
ored red has a perfect matching with exactly a given number of red edges)
introduced by Papadimitriou and Yannakakis [23] and shown to be in RP
by Mulmuley, Vazirani, and Vazirani [22] is not known to be in P.

734 Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery

3 2-Approval-CCRV is in P

In the paper “Towards Completing the Puzzle: Complexity of Con-
trol by Replacing, Adding, and Deleting Candidates or Voters” [8],
the sole open problem is the complexity of constructive control by re-
placing voters for 2-Approval. Very recently, this problem was shown
to be in RP (randomized polynomial time) [13]. We now strengthen
this upper bound to show the problem in P.

Theorem 3. 2-Approval-CCRV is in P.

Proof. We will reduce constructive control by replacing voters for 2-
Approval to Max-Weight Perfect b-Matching for Multigraphs, which
is defined in the preliminaries.

Since Max-Weight Perfect b-Matching for Multigraphs is in P
(Theorem 2), this immediately implies that control by replacing vot-
ers for 2-Approval is in P.

Consider an instance of 2-Approval-CCRV with candidates C,
registered voters V', unregistered voters W, preferred candidate p,
and an integer £ > 0. Let n be the size of V. We ask if it is possible
to make p a winner by replacing at most k voters from V' by a subcol-
lection of W of the same size. We rephrase our question as follows:
Does there exist a subcollection V' of VU W of size n such that p is
a winner and such that V' contains at least n — k voters from V'?

Note that we can assume that we will put as many voters approving
pin V as possible. Let V,, be the subcollection of V approving p and
let W), be the subcollection of W approving p. We put all of V;, in
V' and as many voters of W), as possible, keeping in mind that V'
should contain at most k voters from W and exactly n voters total.
This fixes fs,, the final score of p.2

fsp = Vol + min(k, n — [[Vp[], [Wl])

And we re-rephrase our question as follows: Does there exist a sub-
collection V of VU W such that

e for each candidate c, the score of c is at most fsp,
° XZ contains n voters,

e V contains at least n — k voters from V,

o the score of pis fs,,.

Example 1. Consider the instance of 2-Approval-CCRV with candi-
dates {a,b, c, p}, preferred candidate p, k = 3, and registered and
unregistered voters V and W, respectively.

V' consists of n = 5 voters: W consists of four voters:

e One approving b and c.
e Two approving a and b.
e Two approving p and b.

e Two approving a and c.
e One approving b and c.
e One approving p and a.

Initially the scores of p, a, b, and c are 2, 2, 5, and 1, respectively.
Note that

fsp = VoIl + min(k, n — [V [, [[Wol])
=2+ min(3,3,1)
=3.

V' consists of the following n = 5 voters.

2 We are not claiming that fsp, is the final score of p for every successful
control action; however, if there is a successful control action, then there is
a successful control action in which the final score of p is fs,, and so we
can restrict ourselves to control actions where the final score of p is fsp.

o The two voters from V approving p and b (note that 2 > n — k).
o Three voters from W : two approving a and c; one approving p
and a.

Notice that for the election after control, with voters V, the score
of each candidate is at most fs,, = 3 and p is a winner with score

fs, = 3.

In our reduction, a voter in VU W approving a and b will cor-
respond to an (undirected) edge (a, b). We will call such an edge a
“voter-edge.” (We will also have padding edges to make everything
work.) N

In the graph corresponding to the election, V' will correspond to a
matching (which will be padded to a perfect matching with padding
edges) and the score of a candidate ¢ in V' will be the number of edges
corresponding to V" incident with vertex c. We set b(c) to fs,, which

will ensure that the number of edges corresponding to V' incident
with ¢ is at most b(c).
We still need to ensure the following in our graph.

e There are exactly n voter-edges in the matching.

e There are at least n — k voter-edges corresponding to voters in V'
in the matching.

o There are exactly fs, voter-edges in the matching that are incident
with p (this ensures that the final score of p is fs, as advertised).

Recall from Footnote 1 that for example Exact Perfect Bipartite
Matching is not known to be in P (and in fact the weighted version
is even NP-complete since Subset Sum straightforwardly reduces to
it [23]), and so care needs to be taken with handling “exactness”
restrictions in a matching. This is where we will be using that we
are reducing to a perfect matching problem. We will add an extra
vertex x that will take up the slack, i.e., it will ensure that the perfect
matching contains exactly n voter-edges. Note that since for every
candidate ¢, b(c) = fs,, and we want exactly n voter-edges in the
matching, we have a total of ||C'[| fs,, — 2n amount of vertex capacity
left to cover.

We now formally define our graph G:

Vertices V(G) = C U {z}.

e Foreachc € C, b(c) = fsp.

e b(x) = ||C|| fs,, —2n. If this is negative, control is not possible.
Edges

e For each voter in VUW that approves a and b, add a voter-edge
(a,b).

e Foreach candidate ¢ € C'—{p}, add b(c) = fs, padding edges
(c,x).

Weights A perfect matching will saturate x (i.e., contain b(x) =
IC|l fs, — 2n edges incident with x) and will contain exactly n
voter-edges. We want to maximize the number of voter-edges cor-
responding to voters in V, and so we set the weight of those voter-
edges to 1 and the weight of all other edges (i.e., the voter-edges
corresponding to W and the padding edges) to 0.

‘We now prove that our reduction is correct:

We will show that p can be made a winner by replacing at most k
voters if and only if G has a matching of weight at least n — k. See
Figure 1 for an example of this reduction applied to the instance of
2-Approval-CCRV from Example 1.

Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery 735

V' consists of W consists of

ehb>c>--- ea>c>---
ea>b>--- ea>c>---
ca>b>- sb>c> -
op>b>... 'p>a>...

op>b>...

Figure 1. Example of the construction from the proof of Theorem 3 applied to the instance of 2-Approval-CCRV from Example 1 (left) and the perfect

b-matching of weight > n — k = 2 corresponding to \% (right). The collections of voters V' and W are given with the voters in V in bold. In the graph solid
edges have weight 1, dashed edges have weight 0, and each vertex is labeled with its b-value.

If p can be made a winner by replacing at most k voters, then there
exists a subcollection V' of V' U W of size n such that p is a winner
in V, p’s score is fsp, and such that V' contains at least n — k voters

from V. Then the edges corresponding to V are a matching of G,
since the number of edges incident with a candidate c is the score of
cin V, which is at most fs,, = b(c). And the weight of this matching
is at least n — k. Since there are fs, = b(p) edges incident with p
in the matching, we can add b(z) edges between x and vertices in
C — {p} to the matching, to obtain a perfect matching of weight at
least n — k.

For the converse, suppose G has a perfect matching of weight at
least n — k. Since the matching is perfect, it contains exactly n voter-
edges and at least n — k of these correspond to voters in V. Since the
matching is perfect, vertex p is incident to exactly fs, edges in the

matching and all of these are voter-edges. Let V be the collection of
voters corresponding to voter-edges in the matching. It is immediate
that V' is of size n, that V" contains at least n — k voters from V', and
that p is a winner with score fs,,. O

4 2-Veto-$Bribery

We now turn to 2-Veto-$Bribery and show that this problem is in P.
Lin [19, Proof of Theorem 3.8.2] showed that Min-Weight b-Cover
for Multigraphs easily reduces to 2-Veto-$Bribery, which implies
that 2-Veto-$Bribery is unlikely to have a simple polynomial-time
algorithm.

In fact, 2-Veto-$Bribery was incorrectly claimed to be NP-
complete by Bredereck and Talmon [5]. See the full version of our
paper [14] for details on why their proof is incorrect.

Theorem 4. 2-Veto-$Bribery is in P.

Proof. Consider an instance of 2-Veto-$Bribery with candidates C,
voters V/, preferred candidate p, and budget £k > 0. For v a voter,
we denote the price of v by 7(v). If there are at most two candi-
dates the problem is trivial and so we assume we have at least three

candidates. We will be using that Min-Weight Perfect b-matching for
Multigraphs is in P (Theorem 2). In our reduction we will let a voter
v who vetoes a and b correspond to an edge (a, b) of weight 7(v),
the price of v. We will call such an edge a voter-edge. We will ar-
gue about 2-Veto elections in terms of the number of vetoes each
candidate gets (this way each voter affects only two candidates and
these numbers are nonnegative). Our bribery instance is positive if
and only if there is a bribery within budget k such that after bribery
the number of vetoes for p is at most the number of vetoes for ¢ for
every other candidate c.

Let V}, be the collection of voters in V' that veto p and let V, be
the collection of voters in V' that do not veto p, i.e., V, = V — V.
For each £, £;, such that 0 < ¢, < |V;|l and 0 < £, < ||V, || we
determine whether there exists a successful bribery where ¢, voters
in V,, and ¢, voters in V, are bribed. Note there are polynomially
many such pairs £, ¢;,. Let fv,, be the final number of vetoes for
p (i.e., after bribery). Without loss of generality, we assume that we
never bribe a voter to veto p. So fv, = v, — £p, where vy, is the
number of vetoes for p in V. After bribery, we want each candidate
¢ # p to have at least fv, vetoes. We already mentioned that each
voter v that vetoes a and b will correspond to an edge (a, b) of weight
m(v). We want the collection of voters we bribe to correspond to a
matching, so if an edge (a, b) is in the matching, that corresponds to
the corresponding voter—who vetoes a and b—being bribed, and so
the number of vetoes for a and b decreases by 1. The obvious thing
to do would be to set b(c) to the number of vetoes for ¢ that can be
deleted, i.e., b(c) = ve — Jv,, where v, is the number of vetoes
for ¢ in V. However, things are much more complicated here, since
we need to ensure that our matching contains exactly ¢, voter-edges
corresponding to voters in V}, and exactly £, voter-edges correspond-
ing to voters in V,, and that the £, + ¢}, bribed voters each veto two
candidates.

At first glance it may seem that we should just simply bribe only
voters that veto p and so £}, would be unnecessary. However, since
our voters have prices this is not the case. The most obvious example

736 Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery

would be when all voters vetoing p have a price greater than the
budget and p is not initially a winner. Additionally, it is not difficult to
construct scenarios where bribery is possible when voters not vetoing
p are bribed and it is not possible for p to be made a winner by bribing
only voters vetoing p (and the prices are each within the budget). See
Example 2 below, which we will also use in Figure 2 to demonstrate
our reduction?.

Example 2. Consider the instance of 2-Veto-$Bribery with candi-
dates {a, b, c, p}, preferred candidate p, budget k = 3, and V con-
sists of the following voters.

o One voter vetoing a and b with price 1.

o Two voters vetoing b and c with price 1.
o Tiwo voters vetoing b and p with price 1.
e Four voters vetoing c and p with price 2.

From the voters inV, vqa = 1, vy = 5, v. = 6, and v, = 6.

There is a bribery where p wins where £, = 2 and ¢, = 1 (i.e.,
that bribes two voters that veto p and one that does not). This sets
fv, = 6 — 2 = 4. Bribe the two voters vetoing b and p and one of
the voters vetoing b and c to each veto a and b. After bribery a and p
have 4 vetoes, b and c have 5 vetoes, and so p is a winner.

We rephrase our problem until we are in a matching-friendly form.
Bribery is possible if and only if there exists a subcollection of voters
V' C V (the collection of voters we bribe) such that:

. \:/ contains exactly ¢, voters of V,, (voters vetoing p),

.V contains exactly £;, voters of V, (voters not vetoing p),

. 7(V) <k, and

. there exists a collection of £, + £, votes (the votes of the bribed
voters after bribery) such that for all ¢, the number of vetoes for ¢
after bribery is at least fv,,.

EaOST \S I)

Writing v, for the number of vetoes for ¢ in V' and ¥, for the
number of vetoes for ¢ in V, we can rewrite the fourth requirement
above as follows.

4. There exist integers bv. for each ¢ € C' — {p} (these will be the
number of vetoes that the bribery gives to c), such that

® vc—Us+buc (the number of vetoes for c after bribery) > fv,,,

o 0 < bu. < {, + £, (each bribed voter can give only one veto
to ¢), and

® > coqpy Ve = 2(¢p + £,) (the bribery gives 2(¢, + £,)
vetoes total to candidates C' — {p}).

Note that the maximum number of vetoes for candidate c after
bribery is ve + £, + £;, (this happens when we do not bribe voters
that veto ¢ and all bribed voters are bribed to veto c). If this quantity
is less than fv,, for some c, bribery is not possible for this choice of
£, and £},. Otherwise, b(c) = ve + £p + £, — fv,, is the number of
vetoes c can lose from the maximum number of possible vetoes for c.

We now define our graph G:

Recall that we are reducing to Min-Weight Perfect b-Matching for
Multigraphs and that we have at least three candidates. An example
of this construction applied to the instance of 2-Veto-$Bribery from
Example 2 is presented in Figure 2. Note that in order for G to have
a b-matching, all b-values must be nonnegative.

e V(G) = C U {z,y}. (x will ensure that the perfect matching
contains exactly ¢;, edges from V},; this is similar to the role of
in the construction for 2-Approval-CCRV. y will handle the vetoes
given by the bribery.)

e For each voter in v € V vetoing a and b, add a voter-edge (a, b)
with weight 7 (v).

e b(p) = £p. This will ensure that a perfect matching contains ex-
actly ¢, voter-edges corresponding to voters that veto p.

e Foreachc e C — {p}, b(c) = ve + £, + £, — fu,,.

e For each ¢ € C — {p}, add (¢, + ;) bribe-edges (c,y) with
weight 0. This is the maximum number of vetoes that c can receive
from the bribery. The bribe-edges not in the perfect matching will
correspond to the vetoes that the bribery gives to ¢.® Since the
bribery gives a total of 2(¢, + £,,) vetoes and we have a total of
IC = {p}||(£p + £,) bribe-edges, we set

b(y) = (IC1l = 3) (b + &)

e For each ¢ € C' — {p}, add b(c) padding edges (c,) of weight
0. We want to ensure that a perfect matching contains exactly é’p
voter-edges corresponding to voters that do not veto p. The excess
of b-values is

© Zcecf{p} b(c)
o minus ¢, (one for each of the ¢, voter-edges incident with p;
note that each such edge is incident with one ¢ € C' — {p})

o minus 2¢;, (two for each of the £;, voter-edges not incident
with p)

o minus b(y) (the number of bribe-edges in the perfect matching;
note that each such edge is incident with one ¢ € C' — {p}).

We set b(x) to this value.

‘We now prove that our reduction is correct:

We need to show that there is a successful bribery that bribes ¢, vot-
ers from Vj, and £}, voters from V,, of cost < k if and only if G has
perfect b-matching of weight < k. Note that G is independent of k,
and so it suffices to prove the following.

For all k there is a successful bribery that bribes £,, voters from
Vp and £;, voters from V, of cost k if and only if G has a perfect
b-matching of weight k.

If there is a successful bribery of cost k that bribes ¢, voters from
Vp and £}, voters from V,,, let V be the collection of bribed voters,
and let fv,, vc, and 9 be as defined above. For ¢ € C — {p}, let
bu. be the number of vetoes the bribery gives to c. Without loss of
generality, assume that the bribery does not give vetoes to p. Recall
that we have at least three candidates.

We will show that the following set of edges E’ is a perfect b-
matching of G of weight k.

e the voter-edges corresponding to v (since these are the only
nonzero weight edges, the matching will have total weight
(V) =k),

e foreach ¢ € C' — {p}, (¢, + £;,) — bu. bribe-edges (c,y) repre-
senting the vetoes not given to c by the bribery,

3 At this point one might wonder why we are having the complement of the
matching correspond to the final election rather than the matching itself.
The reason is that we would then be arguing about covers (instead of match-
ings) which would have to be padded to perfect covers. Padding covers is
a little harder than padding matchings; with matchings we just add edges,
but with covers we also need to update the b-values.

Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery 737

Figure 2. Example of the construction from the proof of Theorem 4 applied to the instance of 2-Veto-$Bribery from Example 2 (left) and the perfect
b-matching of weight < k = 3 corresponding to 1% (right). In the graph solid edges are labeled with their corresponding weight, dashed edges have weight 0,
and each vertex is labeled with its b-value. Recall that a perfect matching corresponds to the complement of the final bribed election. The “grayed out” edges on
the right show the final bribed election, which has four voters vetoing p and ¢, one voter vetoing a and b, one voter vetoing b and ¢, and three bribe vetoes for a
and three bribes vetoes for b (corresponding to the three (a, y) edges and the three (b, y) edges).

e for each ¢ € C — {p}, padding edges (c,x) to meet the cor-
responding b-value. Since c is incident with . voter-edges and
(€p+1£,) — bu bribe-edges, we need b(c) — v — ((€p +£;,) — bve)
padding edges.

We now show that E’ is a perfect b-matching of G. Part of showing
this is making sure that all the numbers of edges are nonnegative.

e The edges in E' incident with p are exactly the £, voter-edges in
V that veto p and b(p) = £, > 0.

e For c € C' — {p}, the definition ensures that the number of voter-
edges + bribe-edges + padding edges in E’ incident with ¢ add
up to b(c). But we have to ensure that these numbers are all non-
negative. This is immediate for the number of voter-edges inci-
dent with ¢ and for the number of bribe-edges incident with c,
and so it remains to show that the number of padding edges in-
cident with ¢, b(c) — 9. — ((€p + £,) — bv.), is nonnegative.
Since b(c) = ve + £, + £, — fv,, we are looking at the quantity
vet+Lp+0, — fu, =P —((bp +0,)—bve) = ve — fv, —bc+bvc.
The number of vetoes for c after bribery is v. — 0. 4 bv., and this
number is > fvp, since p is a winner. It follows that the number
of padding edges incident with ¢ in E’ is nonnegative.

e The number of edges in E’ incident with y is

> (U +4,) = bve) S o+)— D> bue

ceC—{p} ceC—{p} ceC—{p}
= |C = {p}I(p + £,) — 2(bp + 1)
= b(y).

This is nonnegative, since we have at least three candidates.

e The number of edges in E’ incident with x is the number of
padding edges in E’, which is nonnegative by the argument for
¢ € C — {p} above. This quantity is

S (ble) e

((6p + £,) = bve)) =

ceC—{p}
S b Y wem Y () - bu).
ceC—{p} ceC—{p} ceC—{p}

Since
> e =10, +20,
ceC—{p}
and
D (4 £6,) = bve) = b(y),

ceC—{p}

this is exactly b(z).

For the converse, suppose G has a perfect matching of weight k.
Let V be the collection of voters corresponding to the voter-edges in
the matching. We will show that we can make p a winner by bribing
the voters in V. Note that the cost of this bribery is k. For c € C' —
{p}, let bu. be the number of bribe-edges incident with ¢ that are not
in the perfect matching. We will show that

1. If the bribery gives bu. vetoes to each candidate ¢ € C — {p} and
no vetoes to p, then p is a winner, and

2. there are £, + £;, votes that give bu. vetoes to each candidate ¢ €

C — {p} and no vetoes to p.

The second item follows immediately from the fact that
Y cec—qpy Ve = 2(€p + £;,) (since there are exactly 2(4, + £;)
edges incident with y that are not in the matching), and for each
c € C—{p},bvc < €, + £, (since there are £, + £, bribe-edges
incident with ¢ in G).

For the first item, we need to show that for each candidate ¢ €
C — {p}, ve — D¢ + bu. (the number of vetoes for c after bribery) is
at least fu,,.

From the matching, we have that for each candidate ¢ € C —
{p}, ¥ (the number of voter-edges incident with ¢ in the matching)
+(€p + £, — buc) (the number of bribe-edges incident with ¢ in the
matching) < b(c) = ve + £, + £, — fv,,. This implies that

Ve — bve < Ve — fvp,
which immediately implies that
fv, <ve — De + bu,

and so p is a winner. O

738 Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery

5 3-Veto-$Bribery is NP-complete

It should come as no surprise that 3-Veto-$Bribery is NP-complete.
This was claimed in Bredereck and Talmon [5], but with an incorrect
proof (a simple modification of their incorrect NP-hardness proof for
2-Veto-$Bribery).

Theorem 5. 3-Veto-$Bribery is NP-complete.

Proof. We give a straightforward reduction from Restricted Ex-
act Cover by 3-Sets to our bribery problem. The well-known NP-
complete problem of Exact Cover by 3-Sets (X3C) asks, given a fi-
nite collection of 3-element subsets of some finite set B, whether the
collection has an exact cover, i.e., whether there exists a subcollec-
tion such that each element of B occurs exactly once [17]. We reduce
from Restricted Exact Cover by 3-Sets (RX3C), which is the restric-
tion of X3C where each element of B occurs in exactly three subsets.
This restricted problem is still NP-complete [16].

Name: Restricted Exact Cover by 3-Sets (RX3C)

Given: Given a set B = {b1,...,bsx} and a collection S =
{S1,...,5n} of 3-element subsets of B where each b € B occurs
in exactly three subsets S; (so n = 3k).

Question: Does there exist a subcollection S’ of S that forms an
exact cover of B?

Given an instance of RX3C, B = {b1,...,bsx} and S =
{S1,..., 5}, we construct an instance of 3-Veto-$Bribery in the
following way.

The set of candidates consists of B, p, two padding candidates p;
and p2, and 3k dummy candidates d1, . . . , d3x. The preferred candi-
date is p and the budget is k. The voters are defined as follows.

e For each set S € S with S = {z,y, z} we have one voter that
vetoes x, y, and z, with price 1.

e We have two voters vetoing p1, p2, and p, each with price k + 1.

e We have k voters, each with price k + 1, with votes that ensure
each of the d; candidates receive one veto.

Note that each dummy candidate has one veto, p and the two padding
candidates have two vetoes, and each candidate in B has three vetoes.

If p can be made a winner by bribing a subcollection of voters
with total price at most k£ we will show that there is an exact cover
S’ of 8. Only the voters with votes corresponding to sets in S can be
bribed, since all other voters have prices greater than the budget. This
means that p will have at least two vetoes in any bribed election, and
a successful bribery would need each of the 3k dummy candidates
d; to gain a veto and each b; candidate can lose at most one veto.
Therefore voters corresponding to sets in S will correspond to an
exact cover.

For the converse, suppose there exists an exact cover S’ of S.
Since each b € B occurs exactly three times in S we know ||S’|| =
k. We can construct a successful bribery by bribing the k voters cor-
responding to S’ to veto the 3k dummy candidates d;. Since S’ is an
exact cover, each b; candidate will lose exactly one veto, and so p is
a winner. O

6 Pushing the Boundary

As we’ve seen in the previous section, weighted matching turned out
to be a useful tool to solve some open control and bribery problems.
These problems inherit their complicated algorithms from weighted

matching. In this section we discuss how far we can push this tech-
nique; can we provide polynomial-time algorithms for more general
problems?

It turns out that we can. For the sake of such an example we will
show that even after adding prices to the registered and unregistered
voters in control by replacing voters for 2-Approval, this problem
will remain in P.* Priced control was introduced by Miasko and Fali-
szewski [21] for control by adding and deleting voters and candi-
dates. In priced control, each control action has a price and the ques-
tion is whether it is possible to obtain the desired result by control
within a budget. We can extend this notion to control by replacing
voters, by having each registered voter v € V have a price 7 (v),
each unregistered voter w € W have price 7(w), and letting k be
the budget.

We will now explain how to modify the proof of Theorem 3 us-
ing some of the ideas from the proof of Theorem 4 to also work for
priced control by replacing voters for 2-Approval. Unlike in the un-
priced case, we do not know what fs,, will be. And so, similarly as in
the proof of Theorem 4, we will brute-force over all (polynomially
many) possible values of fs,,. For each value of fs,,0 < fs, < [|[V]],
we look at the graph defined in the proof of Theorem 3. The only dif-
ference will be the weights. All we have to do is to set the weight of
each voter-edge that corresponds to a voter v € V to m(v) instead of
1 and each voter-edge that corresponds to a voter w € W to —7(w)
instead of 0. The same argument as in the proof of Theorem 3 shows
that there is a successful control action within budget & if and only if
G has a perfect matching of weight (V') — k.

An immediate corollary of the above is that this implies that 2-
Approval-$Bribery is in P (as Bredereck et al. [4] state). We can solve
2-Approval-$Bribery using the result just stated for priced control
by replacing voters: The registered voters (including price) will be
the n voters from the 2-Approval-$Bribery instance that we want
to solve, the budget will be same, and the unregistered voters will
consist of “all possible votes” that we can bribe to, each with price
0, i.e., for each pair of candidates a, b, the collection of unregistered
voters contains n voters approving a and b, each with price 0.

7 Conclusion

We showed that by using weighted matching we were able to solve
the sole open problem from the comprehensive study of control by
Erdélyi et al. [8]. We also used weighted matching to solve the
remaining standard bribery cases for k-Veto. Overall this settles
the complexity for k-Approval and k-Veto for standard control and
bribery cases. Unlike unweighted matching, weighted matching is
not often used to solve voting problems (though it was, e.g., recently
used in a multiwinner election setting [6] and for bipartite graphs
to compute the distance between elections [12]), but as our results
show, it is a powerful technique whose potential deserves to be fur-
ther explored.

Acknowledgements

This work was supported in part by NSF-DUE-1819546. We thank
Robert Bredereck for helpful discussions and the anonymous review-
ers for their comments and suggestions.

4 Though it may seem from our results that control problems for 2-Approval
will all be in P this is not the case. Control by adding and control by deleting
candidates are each NP-complete [18, 19], and weighted control by deleting
voters is NP-complete [10].

Z. Fitzsimmons and E. Hemaspaandra / Using Weighted Matching to Solve 2-Approval/Veto Control and Bribery

References

(1]

(2]
[3]
[4]

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

J. Bartholdi, III, C. Tovey, and M. Trick, ‘How hard is it to control
an election?’, Mathematical and Computer Modelling, 16(8/9), 27-40,
(1992).

C. Berge, Graphs and Hypergraphs, North-Holland Publishing Com-
pany, 1973.

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia, Handbook
of Computational Social Choice, Cambridge University Press, 2016.
R. Bredereck, J. Goldsmith, and G. Woeginger, “Working group: (con-
trol and) bribery in k-approval voting—open problems’, Dagsthul Re-
ports, 5, 24, (2016).

R. Bredereck and N. Talmon, ‘NP-hardness of two edge cover gener-
alizations with applications to control and bribery for approval voting’,
Information Processing Letters, 147-152, (2016).

L. Celis, L. Huang, and N. Vishnoi, ‘Multiwinner voting with fairness
constraints’, in Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pp. 144—151, (July 2018).

J. Edmonds and E. Johnson, ‘Matching: a well-solved class of integer
linear programs’, in Combinatorial structures and their applications
(Gordon and Breach), pp. 89-92, (1970).

G. Erdélyi, M. Neveling, C. Reger, J. Rothe, Y. Yang, and R. Zorn,
‘Towards completing the puzzle: Complexity of control by replacing,
adding, and deleting candidates or voters’, Autonomous Agents and
Multi-Agent Systems, 35(41), 1-48, (2021).

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra, ‘How hard is
bribery in elections?’, Journal of Artificial Intelligence Research, 35,
485-532, (2009).

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra, ‘Weighted
electoral control’, Journal of Artificial Intelligence Research, 52, 507—
542, (2015).

P. Faliszewski and J. Rothe, ‘Control and bribery in voting’, in Hand-
book of Computational Social Choice, 146—168, Cambridge University
Press, (2016).

P. Faliszewski, P. Skowron, A. Slinko, S. Szufa, and N. Talmon, ‘How
similar are two elections?’, in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, pp. 1909-1916, (January 2019).

Z. Fitzsimmons and E. Hemaspaandra, ‘Insight into voting problem
complexity using randomized classes’, in Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, pp. 293-299, (July
2022).

Z. Fitzsimmons and E. Hemaspaandra, ‘Using weighted match-
ing to solve 2-Approval/Veto control and bribery’, Tech. Rep.
arXiv:2305.16889 [cs.GT], arXiv.org, (May 2023).

A. Gerards, ‘Matching’, in Handbooks in OR and MS Vol. 7, eds.,
M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, chapter 3, 135—
224, Cambridge University Press, (1995).

T. Gonzalez, ‘Clustering to minimize the maximum intercluster dis-
tance’, Theoretical Computer Science, 38, 293-306, (1985).

R. Karp, ‘Reducibility among combinatorial problems’, in Proc. of
Symposium on Complexity of Computer Computations, pp. 85-103,
(1972).

A. Lin, ‘The complexity of manipulating k-approval elections’, in Pro-
ceedings of the 3rd International Conference on Agents and Artificial
Intelligence, pp. 212-218, (January 2011).

A. Lin, Solving Hard Problems in Election Systems, Ph.D. dissertation,
Rochester Institute of Technology, Rochester, NY, 2012.

A. Loreggia, N. Narodytska, F. Rossi, K. Venable, and T. Walsh, ‘Con-
trolling elections by replacing candidates or votes’, in Proceedings of
the 14th International Conference on Autonomous Agents and Multia-
gent Systems, pp. 1737-1738, (May 2015).

T. Miasko and P. Faliszewski, “The complexity of priced control in elec-
tions’, Annals of Mathematics and Artificial Intelligence, 1-26, (2014).
K. Mulmuley, U. Vazirani, and V. Vazirani, ‘Matching is as easy as
matrix inversion’, Combinatorica, 7(1), 105-113, (1987).

C. Papadimitriou and M. Yannakakis, ‘The complexity of restricted
spanning tree problems’, Journal of the ACM, 29(2), 285-309, (1982).
W. Tutte, ‘A short proof of the factor theorem for finite graphs’, Cana-
dian Journal of Mathematics, 6, 347-352, (1954).

739

