
Scaled Population Division for Approximate
Computing

Kunal Bharathi∗, Sunil P. Khatri† and Jiang Hu‡
Department of ECE, Texas A&M University

College Station, TX, USA
Email: ∗kunal-bharathi@tamu.edu, †sunilkhatri@tamu.edu, ‡jianghu@tamu.edu

Abstract—In this paper we present an approximate division
scheme for Scaled Population (SP) arithmetic, a technique that
improves on the limitations of stochastic computing (SC). SP
arithmetic circuits are designed (a) to perform all operations
with a constant delay, and (b) they use scaling operations to help
reduce errors compared to SC circuits. As part of this work,
we also present a method to correlate two SP numbers with a
constant delay. We compare our SP divider with SC dividers, as
well as fixed-point dividers (in terms of area, power and delay).
Our 512-bit SP divider has a delay (power) that is 0.08× (0.06×)
that of the equivalent fixed-point binary divider. Compared to a
equivalent SC divider, our power-delay-product is 13× better.

Index Terms—Approximate Arithmetic, Stochastic Computing,
Computer Arithmetic, Approximate Division, Fast Division

I. INTRODUCTION

Applications in signal processing [1], machine learning [2]
and real-time systems [3] require fast arithmetic circuits and
can tolerate small errors. Approximate computing techniques
take advantage of this tolerance to errors, trading computa-
tional accuracy for more power-efficient operations. A pop-
ular approximate arithmetic scheme is Stochastic Computing
(SC) [4] [5]. SC has seen uses in high-throughput decoding of
LDPC codes [6], low area/power Deep Neural Networks [7].

Stochastic computing (SC) uses simple logic circuits for
arithmetic operations. However, SC has several limitations. SC
has a runtime complexity of O(Π) (Π is the length of the
SC bit stream). SC accuracy also depends on the number and
distribution of ‘1’s and ‘0’s in the input bit streams. The range
of values that the bit streams are able to represent is limited
to [0, 1]. The authors of [8] address these limitations of SC
in a scheme called Scaled Population (SP) arithmetic. SP is a
low area/power overhead scheme that has a constant delay (in
terms of gates), wider range of values and smaller errors than
SC. SP addition and multiplication schemes were presented
in [8], and an SP subtraction scheme was presented in [9].
However, no technique for SP division has been reported to
date. The key contributions of our work are:
• We exploit the correlation of the bits in the SP-based in-

put operands to perform division with logarithmic delay.
As part of this work, we also present a novel approach to
correlate two SP bit vectors with a constant delay (using

This work is partially supported by the RTML program of the National
Science Foundation, project CCF-1937396.

the notion of “strong correlation” which means maximum
overlap of the ‘1’ bits of the two SP numbers).

• We also compare our SP division method to fixed-point
dividers and SC dividers with respect to the 4 metrics.
Our 512-bit SP divider has a delay (power) that is 0.08×
(0.06×) times that of the equivalent (same numerical
precision) fixed-point binary divider, and compared to a
equivalent SC divider, our power-delay-product is 13×
better.

• We evaluate the error performance of approximate di-
viders using a novel metric called ENOB (Estimated
Number of Bits)

II. BACKGROUND AND PREVIOUS WORK

SP supports a wider range of numbers and mathematical
operations are designed to have a constant delay. A scaling
term (exponent) is used by SP to represent a wider ranger of
numbers. SP numbers are expressed as a 2-term tuple: {σ, π},
where σ is a Σ-bit term (σ is a binary number) and π is a Π-bit
vector [8]. Next, we present an overview of existing division
techniques in SC.

A. Division in Stochastic Computing

The authors of [10] proposed the first scheme for dividing
two SC numbers. Their method exploited the logic of a JK
Flip-Flop to perform division. The accuracy of the method
is dependant on the operands (better results are obtained
when the dividend is significantly smaller than the divisor).
The design was improved by introducing a feedback element,
resulting in more accurate results. However, they still require
significantly long bit streams, resulting in a large delay. The
authors of [11] present CORDIV, a scheme that relies on
the correlation of bits in the inputs to perform division.
Compared to previous approaches, CORDIV achieves better
accuracy but the delay is still proportional to the length of the
operand bit streams. DFSM-DIV [12] and CBDIV [13] are
improvements to the CORDIV technique. However, in addition
to having a delay that is proportional to the length of the
input bit streams, another drawback of these schemes is that
CORDIV, DFSM-DIV and CBDIV require binary inputs, and
the result for DFSM-DIV and CBDIV are also in binary. These
dividers, therefore, cannot be directly cascaded with other SC
operators. Next, we will look at CORDIV in more detail, and
subsequently present our idea.979-8-3503-1175-4/23/$31.00 ©2023 IEEE

(a) (b)

Fig. 1: CORDIV [11]
1) CORDIV: CORDIV [11] relies on strong correlation

between two SC bit streams (the divisor (Y2) and dividend
(Y1)) to perform division. Since we are dealing with SC
numbers, a number is simply a bit stream. As shown in
Figure 1a, the CORDIV unit reads one bit every clock cycle.
Let P (yi) be the probability of observing a ‘1’ at a given
clock cycle in the SC bit stream Yi. P (y1, y2) is the joint
probability of observing a ‘1’ in both bit streams in the
same clock cycle. From probability theory [14] we know that:
P (y1|y2) = P (y1,y2)

P (y2)
. When Y1 < Y2 and both SC numbers

are strongly correlated, the probability relation simplifies to
P (y1|y2) = P (y1)

P (y2)
. CORDIV achieves division by constructing

a new SC bit stream Z, whose value is equal to P (y1|y2),
and therefore also equal to P (y1)

P (y2)
. In Figure 1b illustrates

the construction of output Z. From Y1, we select only those
bits whose corresponding bit in Y2 is a ‘1’ (the shaded
columns represent Z, whose value is y1

y2
). There are three

major drawbacks that prevent CORDIV from being used in
SP arithmetic:

1) The construction of Z violates the constant delay re-
quirement of SP arithmetic.

2) Strong correlation negatively affects the error of addition
and multiplication for SC or SP.

3) The output is of variable size (as shown in Figure 1a).
The size of the output Z is determined by the number
of ‘1’s in Y2.

In the next section, we present our SP design that builds on
CORDIV, and overcomes these drawbacks.

III. AN OVERVIEW OF SP DIVISION

In this section we will describe our SP divider. Figure 2
gives an overview of the SP division technique. Our method
is divided into 4 stages. Each stage is designed to eliminate
the drawbacks of CORDIV:

Fig. 2: SP Division

1) Stage 0: The SP Scaling Unit is used to modify
the exponent of the input SP operands to ensure that
the mantissa of the dividend πdividend ≤ πdivisor, the
mantissa of the divisor.

2) Stage 1: The SP Correlation Unit is used to take the
dividend and divisor SP bit streams as input, and output
D′, a SP bit vector which has the same value as the

original dividend, but is now strongly correlated with
the divisor.

3) Stage 2: The SP Division Unit takes as input D′ and
the divisor, and outputs Z, the variable length result.

4) Stage 3: SP Padding Unit. SP arithmetic requires the
result to be of a fixed length. The SP Padding Unit takes
the variable length Z and outputs a division result that
has the same number of bits as the divisor and dividend.

In the next sections, we will study the design of each of the
stages in more detail.

A. Stage 0: SP Scaling Unit

Fig. 3: Stage 0: SP Scaling Unit

CORDIV requires πdividend ≤ πdivisor. However, because
SP has an exponent term, it is possible to have dividend ≤
divisor, but πdividend ≥ πdivisor. We use stage 0 to adjust the
π and σ of the 2 operands to ensure πdividend ≤ πdivisor. The
logic of Stage 0 is described in Figure 3. SP arithmetic [8]
has units that can compare numbers to fixed constants. We
use these to implement Stage 0. If πdividend ≥ 0.5, we halve
the value of the mantissa. This is easily achieved in constant
time by using bit-wise logical AND as shown in Figure 3.
To ensure that the value of the dividend is unchanged, the
exponent is incremented by one if dividend ≥ 0.5. Next, we
want to modify the πdivisor so that πdivisor ≥ 0.5. To achieve
this, we use SP population vector doublers from [9]. This unit
doubles the numbers of ones in the π of its input. Therefore,
we subtract one from the exponent, to keep the value of
the divisor unchanged. The divisor needs to be doubled until
πdivisor ≥ 0.5. In the worst case, this process can take
(log2(Π)−1) cycles. While all other stages are constant delay,
this scaling of the divisor results in a logarithmic delay for our
SP divider.

B. Stage 1: SP Correlation Unit

Given two SP numbers Y1 and Y2, where Y1 < Y2, we need
to transform Y1 such that its ‘1’s are maximally overlapped
(correlated) with the ‘1’s in Y2. The SP Correlation Unit is
described in Algorithm 1. We next describe its steps.

1) Step 1 (r = Y1 ∧ Y2): If we perform a bit-wise
logical AND operation between the SP numbers Y1 and Y2,
then the result r will be strongly correlated to Y2. However,
numerically, Y1 ≥ r. The further r is from Y1, the greater will
be the error in our computation. For example, if Y1 = 11000
and Y2 = 10011, then r = 10000.

2) Step 2 (Fixing the Error): In the above example, the
reason r ≤ Y1 is because Y1 can have ‘1’s in positions that
Y2 does not. We need to ”collect” these ones and ”insert”
them back into to r. We achieve this with the help of the bit-
wise difference operator (‘\’) or bit-wise AND-NOT operation
(a \ b ⇒ a ∧ (¬b)). Let t1 = Y1 \ r. Continuing our example,

t1 = 01000. t1 represents the ‘1’s in Y1 that were ”left behind”
in step 1. Next, we shuffle (using hardwired connections to
randomly transpose the bits) the bits of t1 to obtain t′1. We
want to shuffle the bits in order to try and align the ”left
behind” ‘1’s with ‘1’s in Y2. We obtain t2 using: t2 = Y2∧ t′1.
The ‘1’s in t2 will always overlap with the ‘1’s in Y2. We now
insert the ‘1’s of t2 back to r using the operation: r = r ∨ t2.
We repeat Step 2 a certain number of times (Rounds) until
r ≈ Y1. When Rounds = 1, we perform only Step 1. For
Rounds = 2, we perform Step 1 once, and Step 2 once. The
loop represents Step 2. In the circuit implementation, we unroll
this loop to improve the circuit delay.

Algorithm 1 SP Correlation Unit
Require: Y2 ≥ Y1, {Y1, Y2} ∈ SP Numbers
r ← bit vector of all 0s ▷ Output, Initially 0
Rounds← From Circuit Designer
r ← Y1 ∧ Y2 ▷ Step 1
for i ∈ [2....Rounds] do ▷ Step 2

t1 = Y1 \ r
t′1 = shuffle(t1)
t2 = Y2 ∧ t′1
r = r ∨ t2

end for

C. Stage 2: SP Division Unit

Stage 1 provides us two operands that are now strongly
correlated. In Stage 2 we perform our CORDIV-based division
but with a key improvement over [11]: we will construct the
same output, but with a constant delay. The logic for Stage 2
is depicted in Figure 4. In Figure 4 the SP bit vectors are of
length 10 (Π = 10). The divisor (Y2) has a numerical value of
8
10 , while the dividend (Y1) has a numerical value of 4

10 . Since
the numbers are strongly correlated, we can find the result of
division by selecting the bits Y i

1 , whose corresponding ith

bit in Y2, Y i
2 is a ‘1’. We accomplish this using a set of Π

MUXes. As shown in the figure, the select line for the ith

MUX is the Y i
2 bit (indicted by the blue connections), and the

input selected when the select line is high is the Y i
1 (indicated

by the red connections). The connection of the other input of
the MUX will be discussed in the next section. The output
of each MUX forms the Zi bits. In Figure 4, the 8 bits of
Z, corresponding to the 8 ‘1’ bits in Y2, are assigned the bit
value from Y1 via the MUXes. If we consider just these 8
bits, then the result of division is as expected (4/108/10 = 4

8 =
1
2). However, in SP, we cannot have variable length outputs,
and the remaining bits need to be ”padded” or filled in, with
minimal affect to the number represented by Z. We present
our scheme of doing this in the next section.

Fig. 4: Stage 2 - Unrolled CORDIV

D. Stage 3: SP Padding Unit

Fig. 5: Stage 2 + Stage 3 (Padding Circuit)

The easiest way to pad Z, is to fill the yellow entries of
Figure 4 randomly with ‘1’ bits or ‘0’ bits. But, doing so will
alter the value represented by the SP number Z. We want to fill
the yellow entries of Figure 4 with a bit that has a probability
Y1

Y2
of being a 1. If we sample a bit from an SP bit vector at

random, the probability of sampling a ‘1’ bit is equal to the
value represented by the SP number. We use this property to
pad the missing (yellow) bits of Z in Figure 4. In Figure 5, the
previously unused MUX connections are randomly hard-wired
using the dashed black lines. Now, if a bit is missing (yellow)
from Z (the corresponding bit in Y2 is a ‘0’), then this circuit
randomly (with a probability ≈ Y1

Y2
of being 1) selects a bit

from a different part of Z. This way, we pad the result of
stage 2, without affecting the value of the final padded result
appreciably. In Figure 5, the ”padded” bits are indicated using
a yellow color. Therefore, the padded result Z (final result)
now has a value 5

10 = 1
2 . We construct the hardwired feedback

connections in a manner that guarantees the absence of cyclic
dependencies whenever at most Π

2 divisor bits are ‘0’. Since
the logic of Stage 0 ensures that πdivisor ≥ 0.5, we avoid any
cyclical dependencies in Stage 3. In the next sections we will
study the performance of our divider using different metrics
obtained via experimental simulations.

IV. SIMULATION EXPERIMENTS AND RESULTS

A. Experimental Methodology

In Section IV-A1 we discuss our method of computing error,
while Section IV-A2 describes our circuit implementation
approach.

1) ENOB: The Effective-Number-of-Bits (ENOB) is used
in analog circuits like ADCs or DACs [15], and represents
the precision of any analog circuit scheme in terms of binary
bits. We adopt this metric in the context of SP. Every Π-bit
SP number has a precision that is at most log2 Π binary bits.
Therefore, the maximum ENOB for a Π bit SP number is
log2 Π. The approximate nature of SP computations introduce
errors in the output. If the RMSE (Root-Mean-Square Error)
of the SP arithmetic operation is ϵ, then the number of SP
bits affected by the error is ϵ ∗ Π. Therefore, the effective
number of accurate SP bits available after the SP arithmetic
operation is Γ = Π − ϵ ∗ Π. The new ENOB is therefore:
log2 Γ = log2(Π− ϵ ∗Π). In the discussion that follows, we

use the ENOB as one of the metrics to quantify the errors due
to the approximate nature of our divider. The total number
of whole bits of accuracy after accounting for approximation
errors is ENOB′ = ⌊(ENOB)⌋.

2) Hardware Implementation: In order to find the circuit
area, power, delay and energy of our SP divider design, we
expressed the logic of our divider in Verilog [16]. The logic
for all 4 stages consists of only combinational circuits (no
flip-flops/latches). The design was then synthesized using Syn-
opsys DC using the ASAP7 [17] technology library. Prior to
synthesis, we allow Synopsys DC to optimize the logic of the
top-module if it can. We used “compile ultra” since we have
tight timing constraints (we want fast circuits, since speed is a
key driving philosophy of SP arithmetic). The area reported by
DC is the cell area. The ASAP7 technology library has a well
known 4x scale factor [18] and we apply this correction for all
designs before reporting all our results. In order to compute the
power numbers, we first create a switching activity file using
Synopsys VCS for every design using 10000 test vectors. The
activity file is then used by Synopsys DC to report the final
power numbers. The delay is obtained from the timing report
generated by Synopsys DC. The power report provides us with
the total power consumption data.

B. Experimental Results

1) SP Divider Error and Hardware Implementation: In this
section we will study the error performance of the entire SP
divider and the hardware implementation of the SP divider
logic.

Error Simulations: In order to study the error of the
entire SP divider, we implemented the logic in python, and
performed 100,000 simulations. For each simulation we pick
a dividend randomly from a uniform distribution with range
(0, 1) and a divisor randomly from a uniform distribution with
range (dividend, 1).

ENOB ROUNDS Ideal
ENOB1 2 3 4 5

Π

8 2.52 2.62 2.68 2.71 2.71 3
16 3.59 3.69 3.75 3.79 3.80 4
32 4.63 4.72 4.79 4.83 4.84 5
64 5.65 5.74 5.81 5.85 5.86 6
128 6.66 6.75 6.81 6.86 6.88 7
256 7.66 7.75 7.82 7.86 7.88 8
512 8.66 8.75 8.82 8.87 8.89 9

TABLE I: ENOB for SP Divider
We perform these simulations for Π =

{8, 16, 32, 64, 128, 256, 512}. For each Π, we simulated
division for Rounds ∈ {1, 2, 3, 4, 5}. We omit the plots for
Rounds = 2 for brevity.

Figure 6 plots the RMSE v/s Exact result for different Πs
and Rounds values. The Exact Result here refers to the result
assuming 0 errors, in other words, it is the division result
calculated using an exact (not approximate) method. We use
IEEE-754 floating point arithmetic for our exact results. In
each of the figures, for a given population size, we plot 9
data points. Consider the last black diamond (Π = 512) in
Figure 6a. This data point indicates that in our experiments,
for the exact values in the range (0.9, 1], we obtained an

average RMSE of 0.38. The behavior of these figures is as
expected. The error performance improves with more Rounds
(due to more accurate correlation) and also improves with Π
(due to more mantissa bits). The only outliers are the plots
of Π = 8, which we attribute to noise due to a very short
mantissa. Observe that for Π = 8 the error is 0 when the
exact result is close to 0 (which is much better than the
error of larger Π). This is because the smallest value that
can be represented by an SP number with Π = 8 is 0.125.
Therefore, any division that is expected to result in a value less
than 0.125 will always result in 0. For the same reason, any
error in the range [0, 0.125), results in 0 error. An important
point to note is that we are reporting average RMSE values,
and approximate computations will always have certain inputs
for which the errors will be significantly greater. However,
in applications like ML, with millions of computations, the
average error is more important than a few outliers.

For each Π and Rounds value, we use the average RMSE
across the entire simulation to compute the ENOB values,
using the formulas discussed in Section IV-A1. Table I sum-
marizes the ENOB for all our simulations. We note that a
reasonable value of Rounds beyond which the ENOB doesn’t
appreciably increase is 2 or 3.

Circuit Implementation: In the previous section we de-
scribed the error performance for different configurations of
the SP divider. Now we will study the area, power and delay
of our SP divider’s circuit implementation. Figure 7a plots
the area performance of our SP divider. The graph behaves
as expected, where the designs with larger Π and/or larger
Rounds have a larger area footprint. The user can use the data
of Figures 6 and 7 to choose a design based on the area-error
trade-off. The circuits with larger area have a smaller error,
as indicated by the corresponding ENOB value (↑ ENOB ⇒
↓ Error) in Table I. The delay performance of the circuit is
shown in Figure 7b. Our SP divider has a logarithmic delay
due to Stage 0. In Figure 7b, we report the delay assuming that
the scaling of the divisor requires a single iteration. With this
assumption, the delay numbers should be independent of Π,
and only depend on the Rounds. In Figure 7b we see that this
holds true for Rounds = {1, 2, 3}. For Rounds = {4, 5} this
property is no longer precisely valid. This can be explained
based on our implementation methodology. Since we allow
Synopsys DC to optimize the overall Verilog of our design, it
finds optimizations and chooses slightly different cells for the
designs in question, leading to slightly different delays. There-
fore, we observe some variations. Figure 7c reports the delay
assuming the worst case scenario of requiring (log2(Π) − 1)
cycles to scale the divisor (we call this Delay Max). Observe
that the plots for different Π no longer overlap due to the
logarithmic dependency of the delay on Π. Again, based on
these plots and the ENOB values (Table I), a user can choose
the best design based on the delay-error (or Delay Max-error)
trade-offs.

Figure 7d plots the power performance of our SP divider.
The total power consumption of the circuit is shown. This
graph behaves as expected, where the designs with larger

(a) (b) (c) (d)

Fig. 6: RMSE v/s Exact Result

(a) (b) (c) (d)

Fig. 7: Circuit Implementation of SP Divider

Π and/or larger Rounds have a larger power consumption.
The user can use this data along with the data in Figure 6,
to choose a design based on the power-error trade-off. The
circuits with larger power have a smaller error, as indicated
by the corresponding ENOB value (Table I).

Note that the incremental ENOB gains beyond Rounds =
2 or 3 is small (Table I), and the area and power increase
linearly with Rounds. This suggests that a practical value of
Rounds is 2 or 3.

In the next section, we will see how our SP divider com-
pares with other approximate and non-approximate dividers,
reported in the literature.

2) Comparisons with Alternate Methods: In this section
we will study how our SP divider performs relative to other
approximate and non-approximate (precise) dividers. First, we
will benchmark the area, power and delay of the SP divider
against a fixed-point precise divider. Next, we compare the SP
divider against dividers in the SC domain.

CFPD (Combinational-Fixed-Point-Divider)
Bit Width Delay(ps) Area(µm2) Total Power(mW)

2 76.43 0.73 0.42
3 201.73 2.08 1.06
4 505.10 3.66 2.11
5 749.43 5.92 3.53
6 1012.58 9.20 5.46
7 1348.88 12.16 7.56
8 1785.82 17.50 10.81
9 2099.32 21.51 13.17

TABLE II: CFPD Circuit Implementation
Fixed-Point Divider: In order to compare our divider

against a “precise” divider, we chose a fixed point divider
design from the Synopsys DesignWare Library. The division
logic used in these precise dividers relies on the Newton-
Raphson [19] approximation technique. As a result, a purely
combinational divider design will require cascaded CPAs

(Carry-Propagation-Adders) and the area, power and delay
numbers increase super-linearly with operand bit-width. Syn-
opsys therefore provides both combinational and sequential
dividers, and recommends the use of sequential dividers for
operand bit-width ≥ 16.

For a fair comparison, we compare dividers of equal preci-
sion. The precision of an SP divider in terms of binary bits is
determined by ENOB’, and the precision of a precise divider
is determined by its bit-width. The highest ENOB value
across our designs is 8.89 (referring to the values in Table I).
Therefore, we synthesize fixed-point dividers with operand bit-
widths of ≤ 9, and use the Combinational-Fixed-Point-Divider
(CFPD) component in the Synopsys DesignWare library, to
compare our work with.

Table II reports the delay, area and total power for the CFPD
for input operand bit-widths in the range [2, 9]. Table III
presents the ratio the area, power and delay for SP dividers
with an ENOB’ of 8, with the corresponding CFPD design
(with a bit-width 8). Each row in the table corresponds to a
SP divider design (with a different Round value). The values
reported are ratios of the quantity for the SP divider to the
corresponding quantity for the CFPD. The SP divider is clearly
much faster than the CFPD, on average having a delay (delay
max) that is just 0.08× (0.36×) that of the CFPD delay. The
CFPD has a large delay because of a long critical path through
the CPAs in the design. This speed-up is at the cost of higher
area than the CFPD, with the SP divider being on average 25×
larger. A key reason for this increase is that the SP design is
required to have an O(1) delay (in terms of gates) per round.
The power for the SP divider is again much better (0.06×
on average) than the power for the CFPD. The main reason
for such a large power difference is the large dynamic power
component required in the CFPD.

SP Divider / CFPD Performance Ratios (Equivalent ENOB)

Π ENOB’ Rounds Delay
Ratio

Delay Max
Ratio

Area
Ratio

Power
Ratio

512 8 1 0.05 0.33 18.37 0.04
512 8 2 0.07 0.35 21.36 0.04
512 8 3 0.09 0.37 24.79 0.06
512 8 4 0.10 0.38 29.00 0.07
512 8 5 0.10 0.39 31.30 0.08

Average: 0.08 0.36 24.97 0.06

TABLE III: SP Divider v/s CFPD (for ENOB′ = 8)
CBDIV

Binary Input Size Area(um2) Delay(ps) Latency(ps) Total Power (mW)
4 4.58 74.83 1.20E+03 0.15
8 11.39 87.38 2.24E+04 0.25

16 20.76 104.83 6.87E+06 0.31
32 44.89 127.60 5.48E+11 0.49
64 92.22 154.69 2.85E+21 0.79

TABLE IV: CBDIV Circuit Implementation

SC Dividers: Next, we compare the performance of our SP
divider against an approximate divider from the SC domain.
We chose CBDIV [13], a very recent work that builds on
CORDIV in the SC domain, as our benchmark circuit. Using
the same methodology as before, we implemented the circuits
for CBDIV, in order to get the area, delay and power numbers.
The result of our synthesis is shown in Table IV. The inputs to
CBDIV are binary numbers (they convert from binary to SC
as part of the design). Therefore, the first column in the table
refers to the size of input operands in the binary number sys-
tem. The corresponding SP divider is one with an ENOB’ that
matches the binary input size. CBDIV is a sequential circuit
that uses an FSM to perform the correlation that is required for
the underlying CORDIV logic. Latency here refers to the total
amount of time required to generate the result of division.
Latency is calculated using the formula: Delay ∗ Cycles.
The number of cycles required by the sequential circuit of
CBDIV is 2N , where N is the number of binary bits. Table V
compares our SP divider with CBDIV (for ENOB′ = 8).
Comparing equivalent CBDIV and SP division circuits we see
that SP division has much better delay max and power-delay-
max-product numbers, and CBDIV has better area and power
numbers. This is expected, as CBDIV is designed to be a serial
circuit that achieves small area (and power) at the cost of long
computation time. Note that the CBDIV design includes the
circuitry to convert binary numbers to SC numbers and back.
Chaining together successive division operations in CBDIV
incurs expensive conversions to-and-from the binary number
system.

V. CONCLUSION

In this paper we presented an approximate division tech-
nique called SP division. Prior to this work, there was no
division scheme in SP arithmetic. We provide the user/designer
different SP division design variants, allowing the designer
to chose based on the specific area-power-delay-error trade-
offs of the target application. We have shown that on average,
and SP divider with ENOB’ of 8, is 12× faster, and con-
sumes 16× less power, than the corresponding Fixed-Point-
Combinational-Divider. We also developed a constant delay
method to correlate two SP numbers.

SP Divider / CBDIV Performance Ratios (Equivalent ENOB)

Π ENOB’ Rounds Delay
Ratio

Delay
Max
Ratio

Area
Ratio

Power
Ratio

Power
Delay Max

Product
(PDP)
Ratio

512 8 1 <0.01 0.03 28.22 1.79 0.053
512 8 2 0.01 0.03 32.81 1.91 0.057
512 8 3 0.01 0.03 38.09 2.40 0.072
512 8 4 0.01 0.03 44.55 3.09 0.092
512 8 5 0.01 0.03 48.08 3.51 0.105

Average: 0.01 0.03 38.35 2.54 0.075

TABLE V: SP Divider v/s CBDIV (for ENOB′ = 8)

REFERENCES

[1] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 505–516, 2014.

[2] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,” in
ISCA. IEEE, 2015, pp. 554–566.

[3] Z. Wang, S. Mohajer, and K. Bazargan, “Low latency parallel imple-
mentation of traditionally-called stochastic circuits using deterministic
shuffling networks,” in ASPDAC, 2018, pp. 337–342.

[4] B. R. Gaines, “Stochastic Computing,” in Proceedings of the Joint
Computer Conference, 1967, pp. 149–156.

[5] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, may 2013. [Online].
Available: https://doi.org/10.1145/2465787.2465794

[6] S. Sharifi Tehrani, W. Gross, and S. Mannor, “Stochastic decoding of
LDPC codes,” IEEE Communications Letters, vol. 10, no. 10, pp. 716–
718, 2006.

[7] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI Implementation of Deep Neural Network Using Integral Stochas-
tic Computing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2688–2699, 2017.

[8] H. Zhou, S. P. Khatri, J. Hu, and F. Liu, “Scaled Population Arithmetic
for Efficient Stochastic Computing,” in 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2020, pp. 611–616.

[9] K. Bharathi, J. Hu, and S. P. Khatri, “Scaled Population Subtraction for
Approximate Computing,” in 2020 IEEE 38th International Conference
on Computer Design (ICCD), 2020, pp. 348–355.

[10] B. R. Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science. Springer, 1969, pp. 37–172.

[11] S.-I. Chu, “New Divider Design for Stochastic Computing,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1,
pp. 147–151, 2020.

[12] N. Temenos and P. P. Sotiriadis, “Deterministic Finite State Machines
for Stochastic Division in Unipolar Format,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[13] S. Yu, Y. Liu, and S. X.-D. Tan, “Approximate Divider Design Based
on Counting-Based Stochastic Computing Division,” in 2021 ACM/IEEE
3rd Workshop on Machine Learning for CAD (MLCAD), 2021, pp. 1–6.

[14] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester, A Modern
Introduction to Probability and Statistics: Understanding Why and
How, ser. Springer Texts in Statistics. Springer, 2005. [Online].
Available: https://books.google.com/books?id=XLUMIlombgQC

[15] K. Scott and S. P. Khatri, “Flash-based Digital to Analog Conversion,” in
2022 IEEE 40th International Conference on Computer Design (ICCD),
2022.

[16] “IEEE Standard Verilog Hardware Description Language,” IEEE Std
1364-2001, pp. 1–792, 2001.

[17] L. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm FinFET predictive
process design kit,” Microelectronics, vol. 53, pp. 105–115, Jul. 2016.

[18] L. T. Clark, V. Vashishtha, D. M. Harris, S. Dietrich, and Z. Wang, “De-
sign flows and collateral for the ASAP7 7nm FinFET predictive process
design kit,” in 2017 IEEE International Conference on Microelectronic
Systems Education (MSE), 2017, pp. 1–4.

[19] Wikipedia contributors, “Newton’s method — Wikipedia, the free
encyclopedia,” 2022, [Online; accessed 19-May-2022]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Newton%27s method&
oldid=1087753056

