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Abstract—Containerized services deployed within various com-
puting systems, such as edge and cloud, desire live migration
support to enable user mobility, elasticity, and load balancing. To
enable such a ubiquitous and efficient service migration, a live
migration solution needs to handle circumstances where users
have various authority levels (full control, limited control, or
no control) over the underlying computing systems. Supporting
the live migration at these levels serves as the cornerstone of
interoperability, and can unlock several use cases across various
forms of distributed systems. As such, in this study, we develop
a ubiquitous migration solution (called UMS) that, for a given
containerized service, can automatically identify the feasible
migration approach, and then seamlessly perform the migration
across autonomous computing systems. UMS does not interfere
with the way the orchestrator handles containers and can
coordinate the migration without the orchestrator involvement.
Moreover, UMS is orchestrator-agnostic, i.e., it can be plugged
into any underlying orchestrator platform. UMS is equipped with
novel methods that can coordinate and perform the live migration
at the orchestrator, container, and service levels. Experimental
results show that for single-process containers, the service-level
approach, and for multi-process containers with small (< 128
MiB) memory footprint, the container-level migration approach
lead to the lowest migration overhead and service downtime. To
demonstrate the potential of UMS in realizing interoperability
and multi-cloud scenarios, we examined it to perform live ser-
vice migration across heterogeneous orchestrators, and between
Microsoft Azure and Google Cloud.

Index Terms—Containerized Services, Live Migration, Au-
tonomous Computing Systems, Heterogeneous Orchestrators

I. INTRODUCTION

Applications in smart IoT-based systems, such as those in
assistive technologies and autonomous vehicles, often have
low-latency constraints to serve their goals. That is why edge
computing has emerged to bypass the network bottleneck and
bring the computing to the user (data) proximity, thereby,
fulfilling the latency constraints. The inherent resource short-
age and lack of elasticity on the edge, however, has given
birth to a new distributed computing paradigm operating based
on a continuum of tiers that can include the edge, fog, and
cloud systems. To overcome the shortage of edge elasticity,
the ability of live service relocation (i.e., service migration)
across the edge-to-cloud continuum is crucial. In addition,
enabling service migration can be instrumental in overcoming
other longstanding challenges of modern distributed systems,
such as user mobility, vendor lock-in, energy efficiency, load
balancing, and realizing multi-cloud.

As an exemplar use case, consider a pair of smartglasses
that is used along with the edge-cloud continuum to provide
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ambient perception for the blind and visually impaired people
via real-time services for identification of obstacles and de-
tecting of approaching objects. In a hypothetical scenario that
is suggestive of the future we hope to create, a blind person
enters a coffee shop where people are utilizing the resource-
limited on-premise edge server to play an online game. To
procure resources for the assistive services of the blind person,
the gaming service has to be migrated to the cloud without
any significant interruption for the gamers. Migration in the
opposite direction can occur when the disabled person leaves
the place. In analogy, this is much like a priority seat reserved
for disabled people in the public transport systems. Another
motivational use case for the live service migration is to avoid
vendor lock-in via seamless migration of services across multi-
clouds, i.e., from one cloud provider to another.

Provided that modern software engineering methodologies,
such as DevOps and CI/CD, predominantly exploit containers
[1] and container orchestrators (e.g., Kubernetes) for service
deployments, the key to achieve service migration is to enable
the live migration of the containerized services across com-
puting systems. To migrate a containerized service, one may
argue that we only need to checkpoint, transfer, and restore
the service container. Indeed, at the high level, this is a valid
argument and a container can be transparently checkpointed
at the source and transferred to the destination. However, the
problem is that, upon container restoration, the destination
orchestrator does not recognize and adopt it to offer any
management facilities (e.g., scaling). The current remedy to
this problem (e.g., [4], [8]) is to make invasive changes to the
platform of the underlying computing systems. Although the
invasive approaches are generally efficient in the sense that
they impose a low (lightweight) migration overhead, different
computing systems are often controlled autonomously and
system administrators do not have the authority to modify
both source and destination systems. Moreover, the systems
potentially employ distinct orchestrators (e.g., Kubernetes and
Mesos), whereas, the existing works only perform migration
across homogeneous ones that curbs the usability of migration
and has vendor lock-in implications. To our knowledge, there
is no live service migration solution that can offer the best
of both worlds: (i) operating ubiquitously across autonomous
systems and heterogeneous orchestrators; and (ii) maintaining
the migration efficiency.

To enable such a ubiquitous and efficient service migration,
in this paper, we develop Ubiquitous Migration Solution



(UMS) that provides migration for different levels of authority
the users may have over the underlying computing systems:
full control: allowing for changes at the platform level of
the source and destination systems; limited control: allowing
changes only to the service image in both systems; and no
control: that disallows any changes to the underlying systems.

UMS acts as an umbrella solution encompassing the three
following migration approaches that correspond to the afore-
mentioned authority levels: (A) orchestrator-level migration
approach that requires full control over both source and desti-
nation systems to be able to make changes in their orchestrator;
(B) service-level migration approach that demands a limited
control only to change the service container image; and (C)
container-level migration approach that does not demand any
control over the underlying systems or services.

Supporting multiple migration approaches raises a chal-
lenge within UMS to transparently detect the structure of
the underlying container and engage the appropriate migration
approach. In addition, to support heterogeneous orchestrators,
UMS has to be able to coordinate the migration across
source and destination systems, irrespective of their underlying
platforms. Beyond these, UMS has to choose the appropriate
container(s) for migration. To handle all these complications,
we design UMS to be a multi-layered such that it can abstract
the decision making aspect, from the migration coordination
challenges, and from the core migration process.

In summary, this paper makes the following contributions:

o Developing UMS, a framework that enables seamless
and lightweight live migration of containerized services
across autonomous computing systems with potentially
heterogeneous orchestrators'.

« Developing live container migration approaches operating
at the orchestrator, container, and service levels.

« Demonstrating the feasibility of live migration of con-
tainerized services across heterogeneous orchestrators
(Kubernetes, Mesos, K3S, and Minishift) and between
Microsoft Azure and Google Clouds. We also analyse
the imposed overhead of different migration approaches.

The rest of this paper is organized as follows: Section
IT provides a background for the live container migration
and its related studies. Section III presents the design and
implementation of UMS. Section IV describes the evaluation
and the result. Finally, Section V concludes our work.

II. RELATED WORKS

Even though the container design principle is often inter-
preted that containers is ephemeral and migrating persistent
storage data [2] suffices container migration, many developers
and researchers disagree, and several research works have been
undertaken to enable the checkpoint/restore of containerized
services. At the orchestrator level, there have been attempts
to integrate the checkpoint/restore ability into Kubernetes.
Even though the discussion for this began in 2015 on the

'"UMS and the experimental data are all available at:
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Kubernetes GitHub repository , there was no tangible outcome
until 2020, when Schrettenbrunner presented the proof-of-
concept of Kubernetes pod migration in his Ph.D. dissertation
[4]. The work requires modifying the source code of the
Kubelet and the container runtime interface (CRI) to support
the checkpoint/restore operation. Tran et al, [8] extended
the work and implemented the API server to enable the live
migration across two Kubernetes clusters. Souza et al., [6]
presented MyceDrive, a solution to migrate containers within
a Kubernetes cluster based on the service-level migration
approach. To the best of our knowledge, there has been no
prior attempt to carry out migration at the orchestrator level
based on the container-level migration approach.

III. LIVE MIGRATION OF SERVICES ACROSS
AUTONOMOUS PLATFORMS

A. Architectural Overview of UMS
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At the high level, the live container migration consists of
five layers, shown in Figure 1, namely the inter-system deci-
sion, inter-system coordination, the intra-system coordination,
the core migration and the service. UMS encompasses the first
four layers and the last layer only includes the containerized
service, which is incognizant of the migration process.

The Inter-system decision layer is responsible for deter-
mining the essentials of the live migration process: What
containerized service(s) is/are the appropriate one(s) for the
migration? Where should they be migrated to? and When is the
appropriate time for the migration? After a decision is made,
a request is sent to the Coordinator that is accountable for
arranging the migration process between the two computing
systems. This component determines “how” to perform the
live migration via transparently identifying the feasible mi-
gration approach for the service in question. Then, it instructs
the Migration Interface to engage (call) the modules required
to carry out the determined container migration approach. In
fact, Migration Interface abstracts the migration coordination
from the supported migration approaches. The Core migration
layer comprises the modules needed to perform the migration
procedure, including the Checkpoint/Restore (C/R) module and



the Synchronization module that transfers the checkpoint files
to the destination system.

Although we have implemented the entirety of UMS, this
work concentrates on the live migration mechanism of
it (i.e, Inter-and Intra-system coordination layers, and the
Core migration layer) to enable seamless and lightweight live
service migration across autonomous systems with potentially
heterogeneous platforms. At this point, we have placeholders
for the Decision Maker, such that the migrating container and
the destination system are provided as inputs. In the future,
we will extend UMS to automatically make such decisions.

B. Mechanics of the Live Migration Coordination

Our designed live migration mechanism constitutes three
phases that are controlled by the source Coordinator. Figure 2
elaborates on the sequence of actions in each phase.
Pre-migration Phase: The migration process begins with the
source Coordinator receiving the migration request consisting
of two main pieces of information: the containerized service
to be migrated; and the destination system to be migrated to.
In Step 1, the source Coordinator determines the migration ap-
proach in consultation with the orchestrator. In response from
the orchestrator, the Coordinator receives the Specification of
the container in question, including its structure.

In Step 2, a request is sent to verify that the destination
Coordinator is available. This step is designed to perform
authentication and authorization across systems in the future.
Upon confirming the availability, in Step 3, the destination
Coordinator is sent the Specification to create a container iden-
tical to the one at the source system. Even though, in theory,
the destination container creation overhead can be waived via
overlapping it with the source container checkpointing step,
creating it from early on in the migration process has two
benefits: (A) it guarantees the availability and allocation of
resources at the destination system for the migration; thus,
the migration can be performed safely; and (B) creating the
destination container provides the endpoint for the peer-to-peer
data-transfer between the source and destination containers
in the next phase. As such, in Steps 4—©6, the destination
Coordinator creates the new container via its orchestrator and
then informs the source Coordinator in Step 7.

Migration Phase: To avoid inconsistency in the state of the mi-
grating container that can be caused by the arriving messages
from the orchestrator, at the beginning of Step 8, the source
Coordinator blocks the container from receiving any control
messages (e.g., deleting). To handle the messages received
from the user or other services (i.e., data plane), a temporary
delegate container, called Frontman, is deployed to inform
the requester(s) about the temporary service unavailability and
asks them to retry. Next, the source Coordinator instructs the
migrating container to be checkpointed into the storage. It is
noteworthy that the reason we use stop-and-copy approach
for the migration is that the current container runtimes (e.g.,
Docker) and orchestrators do not support per-copy and post-
copy [4] approaches. Although the source container can be
terminated after the checkpointing step, to be able to cope with

the failures that can occur during the migration, we maintain
the source container in an inactive state that is not running and
has no dirty pages in the memory until the source Coordinator
confirms the safe restoration of the service at the destination.
In Step 9, the Synchronization module begins to transfer the
checkpoint files to the destination container in a peer-to-peer
manner. The checkpoint files comprise service memory pages
and necessary metadata. The data in persistent storage are
transferred concurrently as needed. Finally, upon successful
checkpointing, in Step 11, the source Coordinator informs its
peer to restore the container from the destination storage.
Post-migration Phase: After confirming that the service at the
destination system started successfully, the source Coordinator
informs the migration requester of the new endpoint. Then, in
Step 15, the source Coordinator requests the source orches-
trator to delete the migrated container. To handle the requests
(data plane) received after the migration completion (Step 14),
the Frontman container starts redirecting the requests to the
new service location. After the DNS is updated with the new
endpoint information, the Frontman container is disposed.

C. Establishing Service Migration Approaches Operating at
Different Levels

Once the coordination mechanism is performed, as shown
in Figure 1, the Migration Interface is instructed to conduct
the core migration via engaging the appropriate approach.
For that purpose, Coordinator detects the architecture of the
containerized service that itself is dictated by the level of
changes we can force to the underlying systems. Depending
on how widely the service is designed to be migrated and
the level of authority we have to configure the source and
destination systems, as shown in Figure 3, the following live
migration approaches are needed: orchestrator level, service
level, and container level.

a) Orchestrator-level migration approach: To enable
this approach, we need to configure the orchestrator of the
source and destination systems to be fully compatible. More
specifically, the orchestrator should be configured to call the
same Checkpoint/Restore and Synchronization modules used
by the underlying container runtime. Although this approach
is invasive, it enables containers to be efficiently migrated
without requiring any modifications. Tran et al., [8] developed
a live migration solution across two Kubernetes clusters using
this approach. They achieved checkpoint/restore via modifying
the Kubernetes source code and utilizing Network File System
(NFS), a shared storage solution, to transfer the checkpoint
files. However, it is not viable across autonomous systems,
such as those in the edge-cloud and multi-cloud scenarios.

To enable migration of containerized services without any
shared storage, we developed a new synchronization module
for [8] to receive the destination address within the migration
request, and transfer the checkpoint files to that address. To
mitigate the migration overhead, we furnished the synchro-
nization module to overlap the container checkpointing and
file transfer steps (see Steps 8 and 9 in Figure 2), i.e., the file
transfer step starts without waiting for the checkpointing step
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to finish. This is accomplished via monitoring write events
in the file system and copying the changed to the checkpoint
file.

b) Service-level migration approach: The orchestrator-
level approach demands full control over the underlying or-
chestrators, however, often our authority is limited and we
cannot make changes beyond service images and their de-
ployments. To enable migration under these circumstances, we
require a non-invasive migration approach that can function at
the service level without any cooperation from the orchestrator.

To make the service-level migration happen, the Check-
point/Restore and Synchronization modules must be embedded
within the container. As a result, only the service memory
footprint should be checkpointed and restored within another
container at the destination without the need to migrate the
entire container. However, we note that, this approach desires
developers to build a migratable container image in both
source and destination systems. Moreover, this approach en-
tails developer involvement in the details of the live migration.
In this study, we adopted an existing service-level migration
solution, known as FastFreeze container [9], and extended it
to work with the orchestrator.

c) Container-level migration approach: The service-
level migration approach is not applicable in circumstances

where the user does not have the authority to change the ser-
vice image. As such, we develop the container-level migration
as a non-invasive approach that can perform the live migration
in a self-sufficient manner.

For that purpose, we leverage the ability of container
runtimes to perform container checkpoint/restore independent
from the orchestrator. However, this ability alone cannot
resolve service migration problem, because upon migration,
the destination orchestrator does not recognize and evades
from managing the migrated service container. To overcome
this problem, our solution is to nest the migratable container
within an outer one. On one end, the outer container maintains
the binding with the destination orchestrator, and on the other
end, it hosts the migrated service as its nested container.

As shown in part 3 of Figure 3, the outer container
encompasses a container runtime (e.g., Docker engine), a
Checkpoint/Restore module (e.g., CRIU), and a Synchroniza-
tion module. This arrangement at the source enables the outer
container to migrate its nested one as a nested container of a
peer outer container in the destination without any orchestra-
tors’ involvement. It is noteworthy that the nested container is
just a regular container without any specific adjustments that
is managed (e.g., in terms of resource usage tracking) by the
outer container. To implement the idea of container nesting, we
adopt Docker-in-Docker, which is a Docker engine, and deploy
it inside the outer container. To synchronize the checkpoint
files without any shared storage across systems, we employ
the same method explained in the orchestrator-level approach.

D. UMS Implementation

We develop the Coordinator and the Migration Interface as
web services. Except in the container-level approach, we pack
the Migration Interface into the Docker-in-Docker container.
Recall that, in the orchestrator-level approach, the service
is a regular container, and in service-level approaches, the
service is containerized in FastFreeze-enabled container. We
use Rsync over SSH, packed into the Migration Interface, for
the data-transfer in the container-level and orchestrator-level



approaches. FastFreeze has a built-in data transfer tool called
CRIU Image Streamer that can stream the checkpoint files to
the destination without buffering them in the local storage.
The destination container is configured with MinlO, an s3
compatible object storage, to receive the checkpoint files.

IV. EVALUATION

Our evaluations encompass three different aspects of the
system: (A) We examine the factors contribute to the latency
overhead of each migration approach while varying the sizes of
container memory footprints; (B) While the other evaluations
utilize a benchmarking application with configurable (static)
memory footprint, in this part, we inspect the migration per-
formance for a real-world application with a dynamic memory
footprint; and (C) We study the feasibility of the live migration
across heterogeneous orchestrators and multi-clouds.

We created two VMs to simulate cloud-based computing
systems, each one in a different physical machine connected by
a 1 Gbps link. Each VM includes 8 vCPUs, 16 GiB memory,
50 GiB storage, and a Kubernetes orchestrator. Lastly, UMS
is deployed for each orchestrator on each VM.

In most of the experiments, we deployed a popular bench-
marking application called memhog [7]. The reason we use
memhog is that it can be configured with a static memory foot-
print, which is a decisive factor in the migration performance.
We instruct memhog to allocate a certain amount of memory
(in the range of ~0—1,024 MiB), write random data to the
allocated memory, and print a counter number at every second.
For FastFreeze, we assume that the FastFreeze container image
is available at both source and destination systems.
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Fig. 4: Detailed live migration time for different approaches across
computing systems. The 90% confidence interval is negligible.

A. Analyzing the Overhead of Live Container Migration

In this experiment, our goal is to measure the overhead
of live migration across two homogeneous Kubernetes-based
systems upon varying the memory footprint of a single-process
container, as shown in Figure 4. The overhead measurement
metric is the migration turnaround time from the migration
request at the source until the container runs at the destination.
We conducted the experiment 30 times and reported the break-
down time of each contributing step to the overall overhead.

Unsurprisingly, the chart shows that the service-level ap-
proach imposes the lowest overhead as the overhead of check-
point, transfer, and restore operations for the entirety of the
container is more than doing so only for the service process.
We observe that the orchestrator-level approach outperforms
the container-level approach; however, recall that this is an

invasive approach that implies changes in the underlying
orchestrator, whereas the other two approaches do not. The
overhead difference between the orchestrator-level approach
and the container-level approach is ~37% for small services,
i.e., containers with less than 128 MiB memory footprint. This
is an important finding knowing that, in practice, the size of
a majority of containerized services is less than 128 MiB. In
addition, all migration times are considerably high; however,
this is common for using cold migration technique [5].

Takeaway: For single-process containers, the service-
level migration outperforms other approaches. Moreover,
the migration time of container-level approach is tolerable
for small-size (<128 MiB) containers.
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Fig. 5: Migration overhead time and service downtime of
YOLOv3-tiny for orchestrator-level, container-level, and service-level
approaches across Kubernetes orchestrators.
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B. Impact of Dynamic Memory Footprint on the Migration

In this experiment, we aim to study the migration perfor-
mance of a service with a dynamic memory footprint. We
configured YOLOv3-tiny [3], a popular object detection appli-
cation, within a container and fed it with an input image (160
KB) from their repository. The reason we chose YOLOv3-tiny
is its predictable (linearly increased) memory footprint behav-
ior upon progress in processing the input image.

To measure the downtime, we conducted the experiment
30 times for each migration approach. At each iteration, we
randomly chose a time during the inference process and per-
formed the migration. The service downtime was measured by
adding a helper process to output a number every second. The
downtime is the time interval between the first number printed
after the migration and the last number printed before the
migration, minus the one-second interval we had by default.



Figure 5 demonstrates that the service downtime depends
on the migration approach. We notice that the downtime using
the service-level approach is higher than memhog counterparts
in Figure 4. Our hypothesis is that the reason for the higher
downtime is one more process restoration that has to be
performed for the helper process. To verify this, we conducted
an experiment by configuring memhog to spawn 1—8 child
processes with negligible (=0 MiB) memory footprint, and
performed the migration similar to Section IV-A.

Figure 6 shows that the service-level approach incurs a sig-
nificantly higher migration overhead when there is more than
one process. Our analysis shows that this overhead is due to
FastFreeze internal mechanics. Specifically, it desires to spawn
its child process with a predefined PID, which requires access
to the kernel file. Without privileges, FastFreeze workaround is
to keep spawning processes until it reaches the PID it desires,
and this process imposes a constant overhead time at the
restoration step. This derives the conclusion that the service
complexity (i.e., the number of processes running within a
container) and privileges are decisive on the downtime of the
service-level approach. For such services, even the container-
level approach offers a significantly lower migration time.

Takeaway: In practice, container downtime of the service-
level approach predominantly depends on the privileges and
number of processes running in the container, rather than
the container memory footprint at the migration time.

Required

Approach . K8s Mesos K3s Minishift
changing
Orchestrator- . R . . . R
lovel Orchestrator | 6.94 | infeasible | infeasible | infeasible
Service- Service 5.94 5.74 5.97 5.96
- level
ontarner- Nothing | 14.71 | 15.03 14.63 14.85
level

TABLE I: The migration time for a service with 128 MiB memory
footprint. The 90% confidence interval is ~=0.15.

C. Live Migration across Heterogeneous Orchestrators

One interesting use case for the live migration of container-
ized services is to enable heterogeneous orchestrators and
multi-cloud scenarios. This enables enterprises to seamlessly
migrate their deployed services to other cloud providers,
hence, unlocking the longstanding vendor lock-in problem of
the cloud environments, in addition to enabling room for more
cost efficiency and service reliability. The service-level and
container-level approaches, particularly, fit the public cloud
use cases where neither live service migration is supported, nor
users are allowed to modify the underlying cloud platforms. As
such, the orchestrator-level approach that implies orchestrator-
level changes and requires compatibility between systems is
evidently not applicable. To implement this use case and
evaluate it, we developed UMS on Mesos, K3s, and Minishift,
and had them migrate the containerized single-process service
to Kubernetes. For the sake of better comparison, we also
include the case of Section TV-AZ.

’migrating AKS to GKE demo video is at: https://youtu.be/SIfipPWZuls

Table I shows the mean migration time for each case after
30 live migration attempts. Even though the orchestrator-level
approach requires changing in the underlying orchestrator, it
cannot migrate (shown as infeasible) across autonomous sys-
tems, e.g., multi-cloud, with heterogeneous orchestrators. Nev-
ertheless, the container-level and the service-level approaches
can cover all the cases. The former comes with the benefit
of nothing to change in the underlying platforms, whereas the
latter entails intervention in the service deployment.

Takeaway: Live and seamless migration of containerized
services is a viable solution to realize the notion of multi-
cloud and resolve the problem of vendor lock-in.

V. CONCLUSION

In this research, we developed UMS to support seam-
less and lightweight live migration of containerized services
across autonomous systems with potentially heterogeneous
orchestrators. UMS is equipped with a spectrum of migra-
tion approaches (namely, orchestrator-level, service-level, and
container-level) that differ in their imposed overhead, and
how liberally they can migrate containers across systems.
The results demonstrate that UMS can perform low-overhead
service migration across any two computing systems. We
concluded that, although the service-level approach is the most
lightweight, its performance is downgraded for multi-process
containers with insufficient privileges. We also demonstrated a
use case for UMS to perform container migration across het-
erogeneous orchestrators to realize the idea of multi-clouds.
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