
UMS: Live Migration of Containerized Services

across Autonomous Computing Systems

Thanawat Chanikaphon

HPCC Lab, School of Computing and Informatics

University of Louisiana at Lafayette, LA, USA

thanawat.chanikaphon1@louisiana.edu

Mohsen Amini Salehi

HPCC Lab, Computer Science and Engineering Department

University of North Texas

mohsen.aminisalehi@unt.edu

AbstractÐContainerized services deployed within various com-
puting systems, such as edge and cloud, desire live migration
support to enable user mobility, elasticity, and load balancing. To
enable such a ubiquitous and efficient service migration, a live
migration solution needs to handle circumstances where users
have various authority levels (full control, limited control, or
no control) over the underlying computing systems. Supporting
the live migration at these levels serves as the cornerstone of
interoperability, and can unlock several use cases across various
forms of distributed systems. As such, in this study, we develop
a ubiquitous migration solution (called UMS) that, for a given
containerized service, can automatically identify the feasible
migration approach, and then seamlessly perform the migration
across autonomous computing systems. UMS does not interfere
with the way the orchestrator handles containers and can
coordinate the migration without the orchestrator involvement.
Moreover, UMS is orchestrator-agnostic, i.e., it can be plugged
into any underlying orchestrator platform. UMS is equipped with
novel methods that can coordinate and perform the live migration
at the orchestrator, container, and service levels. Experimental
results show that for single-process containers, the service-level
approach, and for multi-process containers with small (< 128
MiB) memory footprint, the container-level migration approach
lead to the lowest migration overhead and service downtime. To
demonstrate the potential of UMS in realizing interoperability
and multi-cloud scenarios, we examined it to perform live ser-
vice migration across heterogeneous orchestrators, and between
Microsoft Azure and Google Cloud.

Index TermsÐContainerized Services, Live Migration, Au-
tonomous Computing Systems, Heterogeneous Orchestrators

I. INTRODUCTION

Applications in smart IoT-based systems, such as those in

assistive technologies and autonomous vehicles, often have

low-latency constraints to serve their goals. That is why edge

computing has emerged to bypass the network bottleneck and

bring the computing to the user (data) proximity, thereby,

fulfilling the latency constraints. The inherent resource short-

age and lack of elasticity on the edge, however, has given

birth to a new distributed computing paradigm operating based

on a continuum of tiers that can include the edge, fog, and

cloud systems. To overcome the shortage of edge elasticity,

the ability of live service relocation (i.e., service migration)

across the edge-to-cloud continuum is crucial. In addition,

enabling service migration can be instrumental in overcoming

other longstanding challenges of modern distributed systems,

such as user mobility, vendor lock-in, energy efficiency, load

balancing, and realizing multi-cloud.

As an exemplar use case, consider a pair of smartglasses

that is used along with the edge-cloud continuum to provide

ambient perception for the blind and visually impaired people

via real-time services for identification of obstacles and de-

tecting of approaching objects. In a hypothetical scenario that

is suggestive of the future we hope to create, a blind person

enters a coffee shop where people are utilizing the resource-

limited on-premise edge server to play an online game. To

procure resources for the assistive services of the blind person,

the gaming service has to be migrated to the cloud without

any significant interruption for the gamers. Migration in the

opposite direction can occur when the disabled person leaves

the place. In analogy, this is much like a priority seat reserved

for disabled people in the public transport systems. Another

motivational use case for the live service migration is to avoid

vendor lock-in via seamless migration of services across multi-

clouds, i.e., from one cloud provider to another.

Provided that modern software engineering methodologies,

such as DevOps and CI/CD, predominantly exploit containers

[1] and container orchestrators (e.g., Kubernetes) for service

deployments, the key to achieve service migration is to enable

the live migration of the containerized services across com-

puting systems. To migrate a containerized service, one may

argue that we only need to checkpoint, transfer, and restore

the service container. Indeed, at the high level, this is a valid

argument and a container can be transparently checkpointed

at the source and transferred to the destination. However, the

problem is that, upon container restoration, the destination

orchestrator does not recognize and adopt it to offer any

management facilities (e.g., scaling). The current remedy to

this problem (e.g., [4], [8]) is to make invasive changes to the

platform of the underlying computing systems. Although the

invasive approaches are generally efficient in the sense that

they impose a low (lightweight) migration overhead, different

computing systems are often controlled autonomously and

system administrators do not have the authority to modify

both source and destination systems. Moreover, the systems

potentially employ distinct orchestrators (e.g., Kubernetes and

Mesos), whereas, the existing works only perform migration

across homogeneous ones that curbs the usability of migration

and has vendor lock-in implications. To our knowledge, there

is no live service migration solution that can offer the best

of both worlds: (i) operating ubiquitously across autonomous

systems and heterogeneous orchestrators; and (ii) maintaining

the migration efficiency.

To enable such a ubiquitous and efficient service migration,

in this paper, we develop Ubiquitous Migration Solution



(UMS) that provides migration for different levels of authority

the users may have over the underlying computing systems:

full control: allowing for changes at the platform level of

the source and destination systems; limited control: allowing

changes only to the service image in both systems; and no

control: that disallows any changes to the underlying systems.

UMS acts as an umbrella solution encompassing the three

following migration approaches that correspond to the afore-

mentioned authority levels: (A) orchestrator-level migration

approach that requires full control over both source and desti-

nation systems to be able to make changes in their orchestrator;

(B) service-level migration approach that demands a limited

control only to change the service container image; and (C)

container-level migration approach that does not demand any

control over the underlying systems or services.

Supporting multiple migration approaches raises a chal-

lenge within UMS to transparently detect the structure of

the underlying container and engage the appropriate migration

approach. In addition, to support heterogeneous orchestrators,

UMS has to be able to coordinate the migration across

source and destination systems, irrespective of their underlying

platforms. Beyond these, UMS has to choose the appropriate

container(s) for migration. To handle all these complications,

we design UMS to be a multi-layered such that it can abstract

the decision making aspect, from the migration coordination

challenges, and from the core migration process.

In summary, this paper makes the following contributions:

• Developing UMS, a framework that enables seamless

and lightweight live migration of containerized services

across autonomous computing systems with potentially

heterogeneous orchestrators1.

• Developing live container migration approaches operating

at the orchestrator, container, and service levels.

• Demonstrating the feasibility of live migration of con-

tainerized services across heterogeneous orchestrators

(Kubernetes, Mesos, K3S, and Minishift) and between

Microsoft Azure and Google Clouds. We also analyse

the imposed overhead of different migration approaches.

The rest of this paper is organized as follows: Section

II provides a background for the live container migration

and its related studies. Section III presents the design and

implementation of UMS. Section IV describes the evaluation

and the result. Finally, Section V concludes our work.

II. RELATED WORKS

Even though the container design principle is often inter-

preted that containers is ephemeral and migrating persistent

storage data [2] suffices container migration, many developers

and researchers disagree, and several research works have been

undertaken to enable the checkpoint/restore of containerized

services. At the orchestrator level, there have been attempts

to integrate the checkpoint/restore ability into Kubernetes.

Even though the discussion for this began in 2015 on the

1UMS and the experimental data are all available at:
https://github.com/hpcclab/NIMS

Kubernetes GitHub repository , there was no tangible outcome

until 2020, when Schrettenbrunner presented the proof-of-

concept of Kubernetes pod migration in his Ph.D. dissertation

[4]. The work requires modifying the source code of the

Kubelet and the container runtime interface (CRI) to support

the checkpoint/restore operation. Tran et al., [8] extended

the work and implemented the API server to enable the live

migration across two Kubernetes clusters. Souza et al., [6]

presented MyceDrive, a solution to migrate containers within

a Kubernetes cluster based on the service-level migration

approach. To the best of our knowledge, there has been no

prior attempt to carry out migration at the orchestrator level

based on the container-level migration approach.

III. LIVE MIGRATION OF SERVICES ACROSS

AUTONOMOUS PLATFORMS

A. Architectural Overview of UMS

Inter-system
coordination

Intra-system
coordination

Core
migration

Migration Interface

3. coordination

7. data-transfer

8. instruct4. instruct

Coordinator Coordinator

2. request for migration

Service

Service

5. engage

Service

9. engage

Migration Interface

Source Destination

Inter-system
decision

Decision Maker Decision Maker1. communication

C/R
Module
C/R

Module
C/R

Module

6. checkpoint

Sync.
Module
Sync.

Module C/R
Module
C/R

Module
C/R

Module

10. restore

Sync.
Module
Sync.

Module

Fig. 1: Layered view of the UMS architecture. The live migration
is performed within the top four layers of the architecture. Red
components represent the contributions of this paper.

At the high level, the live container migration consists of

five layers, shown in Figure 1, namely the inter-system deci-

sion, inter-system coordination, the intra-system coordination,

the core migration and the service. UMS encompasses the first

four layers and the last layer only includes the containerized

service, which is incognizant of the migration process.

The Inter-system decision layer is responsible for deter-

mining the essentials of the live migration process: What

containerized service(s) is/are the appropriate one(s) for the

migration? Where should they be migrated to? and When is the

appropriate time for the migration? After a decision is made,

a request is sent to the Coordinator that is accountable for

arranging the migration process between the two computing

systems. This component determines ªhowº to perform the

live migration via transparently identifying the feasible mi-

gration approach for the service in question. Then, it instructs

the Migration Interface to engage (call) the modules required

to carry out the determined container migration approach. In

fact, Migration Interface abstracts the migration coordination

from the supported migration approaches. The Core migration

layer comprises the modules needed to perform the migration

procedure, including the Checkpoint/Restore (C/R) module and



the Synchronization module that transfers the checkpoint files

to the destination system.

Although we have implemented the entirety of UMS, this

work concentrates on the live migration mechanism of

it (i.e., Inter-and Intra-system coordination layers, and the

Core migration layer) to enable seamless and lightweight live

service migration across autonomous systems with potentially

heterogeneous platforms. At this point, we have placeholders

for the Decision Maker, such that the migrating container and

the destination system are provided as inputs. In the future,

we will extend UMS to automatically make such decisions.

B. Mechanics of the Live Migration Coordination

Our designed live migration mechanism constitutes three

phases that are controlled by the source Coordinator. Figure 2

elaborates on the sequence of actions in each phase.

Pre-migration Phase: The migration process begins with the

source Coordinator receiving the migration request consisting

of two main pieces of information: the containerized service

to be migrated; and the destination system to be migrated to.

In Step 1, the source Coordinator determines the migration ap-

proach in consultation with the orchestrator. In response from

the orchestrator, the Coordinator receives the Specification of

the container in question, including its structure.

In Step 2, a request is sent to verify that the destination

Coordinator is available. This step is designed to perform

authentication and authorization across systems in the future.

Upon confirming the availability, in Step 3, the destination

Coordinator is sent the Specification to create a container iden-

tical to the one at the source system. Even though, in theory,

the destination container creation overhead can be waived via

overlapping it with the source container checkpointing step,

creating it from early on in the migration process has two

benefits: (A) it guarantees the availability and allocation of

resources at the destination system for the migration; thus,

the migration can be performed safely; and (B) creating the

destination container provides the endpoint for the peer-to-peer

data-transfer between the source and destination containers

in the next phase. As such, in Steps 4Ð6, the destination

Coordinator creates the new container via its orchestrator and

then informs the source Coordinator in Step 7.

Migration Phase: To avoid inconsistency in the state of the mi-

grating container that can be caused by the arriving messages

from the orchestrator, at the beginning of Step 8, the source

Coordinator blocks the container from receiving any control

messages (e.g., deleting). To handle the messages received

from the user or other services (i.e., data plane), a temporary

delegate container, called Frontman, is deployed to inform

the requester(s) about the temporary service unavailability and

asks them to retry. Next, the source Coordinator instructs the

migrating container to be checkpointed into the storage. It is

noteworthy that the reason we use stop-and-copy approach

for the migration is that the current container runtimes (e.g.,

Docker) and orchestrators do not support per-copy and post-

copy [4] approaches. Although the source container can be

terminated after the checkpointing step, to be able to cope with

the failures that can occur during the migration, we maintain

the source container in an inactive state that is not running and

has no dirty pages in the memory until the source Coordinator

confirms the safe restoration of the service at the destination.

In Step 9, the Synchronization module begins to transfer the

checkpoint files to the destination container in a peer-to-peer

manner. The checkpoint files comprise service memory pages

and necessary metadata. The data in persistent storage are

transferred concurrently as needed. Finally, upon successful

checkpointing, in Step 11, the source Coordinator informs its

peer to restore the container from the destination storage.

Post-migration Phase: After confirming that the service at the

destination system started successfully, the source Coordinator

informs the migration requester of the new endpoint. Then, in

Step 15, the source Coordinator requests the source orches-

trator to delete the migrated container. To handle the requests

(data plane) received after the migration completion (Step 14),

the Frontman container starts redirecting the requests to the

new service location. After the DNS is updated with the new

endpoint information, the Frontman container is disposed.

C. Establishing Service Migration Approaches Operating at

Different Levels

Once the coordination mechanism is performed, as shown

in Figure 1, the Migration Interface is instructed to conduct

the core migration via engaging the appropriate approach.

For that purpose, Coordinator detects the architecture of the

containerized service that itself is dictated by the level of

changes we can force to the underlying systems. Depending

on how widely the service is designed to be migrated and

the level of authority we have to configure the source and

destination systems, as shown in Figure 3, the following live

migration approaches are needed: orchestrator level, service

level, and container level.

a) Orchestrator-level migration approach: To enable

this approach, we need to configure the orchestrator of the

source and destination systems to be fully compatible. More

specifically, the orchestrator should be configured to call the

same Checkpoint/Restore and Synchronization modules used

by the underlying container runtime. Although this approach

is invasive, it enables containers to be efficiently migrated

without requiring any modifications. Tran et al., [8] developed

a live migration solution across two Kubernetes clusters using

this approach. They achieved checkpoint/restore via modifying

the Kubernetes source code and utilizing Network File System

(NFS), a shared storage solution, to transfer the checkpoint

files. However, it is not viable across autonomous systems,

such as those in the edge-cloud and multi-cloud scenarios.

To enable migration of containerized services without any

shared storage, we developed a new synchronization module

for [8] to receive the destination address within the migration

request, and transfer the checkpoint files to that address. To

mitigate the migration overhead, we furnished the synchro-

nization module to overlap the container checkpointing and

file transfer steps (see Steps 8 and 9 in Figure 2), i.e., the file

transfer step starts without waiting for the checkpointing step



Source
coordinator

Source
container

Destination
container

Destination
orchestrator

2. check availability

3. request for 4. create a

7. container

11. restore
14. new service

15. delete
migration
result

Restore
12. restore

Phase I:
Pre-

migration

Phase II:
Migration

Phase III:
Post-mig.

10. reply

Source
orchestrator

Destination
coordinator

mig. approach

5. create a
6. new container

Checkpoint
8. block msg.,

16. delete

9. data-transfer

13. reply

Down
time

endpoint

1. determine

container

migration
request

resource allocation new container
new container

information
endpoint information

ckpt. and transfer

Fig. 2: Three phases of live container migration. The bidirectional arrows represent request and reply between entities. The green vertical
boxes represent the containerized service in the active state, and the gray ones show them in the inactive state.

3

Outer Container

Sync.
Module

C/R
Module

Container
Runtime (DinD)

checkpoint
/restore

Nested
Container

Service

2

Container

C/R
Module

checkpoint
/restore

Sync.
Module

Service

C/R
Module

checkpoint
/restore

1

Sync.
Module

Container

Service

Migration Interface

Fig. 3: Three migration approaches: 1⃝ orchestrator level, 2⃝ service
level, and 3⃝ container level.

to finish. This is accomplished via monitoring write events

in the file system and copying the changed to the checkpoint

file.

b) Service-level migration approach: The orchestrator-

level approach demands full control over the underlying or-

chestrators, however, often our authority is limited and we

cannot make changes beyond service images and their de-

ployments. To enable migration under these circumstances, we

require a non-invasive migration approach that can function at

the service level without any cooperation from the orchestrator.

To make the service-level migration happen, the Check-

point/Restore and Synchronization modules must be embedded

within the container. As a result, only the service memory

footprint should be checkpointed and restored within another

container at the destination without the need to migrate the

entire container. However, we note that, this approach desires

developers to build a migratable container image in both

source and destination systems. Moreover, this approach en-

tails developer involvement in the details of the live migration.

In this study, we adopted an existing service-level migration

solution, known as FastFreeze container [9], and extended it

to work with the orchestrator.

c) Container-level migration approach: The service-

level migration approach is not applicable in circumstances

where the user does not have the authority to change the ser-

vice image. As such, we develop the container-level migration

as a non-invasive approach that can perform the live migration

in a self-sufficient manner.

For that purpose, we leverage the ability of container

runtimes to perform container checkpoint/restore independent

from the orchestrator. However, this ability alone cannot

resolve service migration problem, because upon migration,

the destination orchestrator does not recognize and evades

from managing the migrated service container. To overcome

this problem, our solution is to nest the migratable container

within an outer one. On one end, the outer container maintains

the binding with the destination orchestrator, and on the other

end, it hosts the migrated service as its nested container.

As shown in part 3⃝ of Figure 3, the outer container

encompasses a container runtime (e.g., Docker engine), a

Checkpoint/Restore module (e.g., CRIU), and a Synchroniza-

tion module. This arrangement at the source enables the outer

container to migrate its nested one as a nested container of a

peer outer container in the destination without any orchestra-

tors’ involvement. It is noteworthy that the nested container is

just a regular container without any specific adjustments that

is managed (e.g., in terms of resource usage tracking) by the

outer container. To implement the idea of container nesting, we

adopt Docker-in-Docker, which is a Docker engine, and deploy

it inside the outer container. To synchronize the checkpoint

files without any shared storage across systems, we employ

the same method explained in the orchestrator-level approach.

D. UMS Implementation

We develop the Coordinator and the Migration Interface as

web services. Except in the container-level approach, we pack

the Migration Interface into the Docker-in-Docker container.

Recall that, in the orchestrator-level approach, the service

is a regular container, and in service-level approaches, the

service is containerized in FastFreeze-enabled container. We

use Rsync over SSH, packed into the Migration Interface, for

the data-transfer in the container-level and orchestrator-level



approaches. FastFreeze has a built-in data transfer tool called

CRIU Image Streamer that can stream the checkpoint files to

the destination without buffering them in the local storage.

The destination container is configured with MinIO, an s3

compatible object storage, to receive the checkpoint files.

IV. EVALUATION

Our evaluations encompass three different aspects of the

system: (A) We examine the factors contribute to the latency

overhead of each migration approach while varying the sizes of

container memory footprints; (B) While the other evaluations

utilize a benchmarking application with configurable (static)

memory footprint, in this part, we inspect the migration per-

formance for a real-world application with a dynamic memory

footprint; and (C) We study the feasibility of the live migration

across heterogeneous orchestrators and multi-clouds.

We created two VMs to simulate cloud-based computing

systems, each one in a different physical machine connected by

a 1 Gbps link. Each VM includes 8 vCPUs, 16 GiB memory,

50 GiB storage, and a Kubernetes orchestrator. Lastly, UMS

is deployed for each orchestrator on each VM.

In most of the experiments, we deployed a popular bench-

marking application called memhog [7]. The reason we use

memhog is that it can be configured with a static memory foot-

print, which is a decisive factor in the migration performance.

We instruct memhog to allocate a certain amount of memory

(in the range of ≈0Ð1,024 MiB), write random data to the

allocated memory, and print a counter number at every second.

For FastFreeze, we assume that the FastFreeze container image

is available at both source and destination systems.

0 4 16 64 128 256 512 1024
Container memory footprint (MiB)

0

10

20

30

40

50

60

70

80

M
ig

ra
tio

n 
tim

e 
(s

ec
on

ds
) Service-level approach

Orchestrator-level approach
Container-level approach
Creating dest. container
Checkpointing
Ckpt. files transfer
RW layers transfer
Restoration

Fig. 4: Detailed live migration time for different approaches across
computing systems. The 90% confidence interval is negligible.

A. Analyzing the Overhead of Live Container Migration

In this experiment, our goal is to measure the overhead

of live migration across two homogeneous Kubernetes-based

systems upon varying the memory footprint of a single-process

container, as shown in Figure 4. The overhead measurement

metric is the migration turnaround time from the migration

request at the source until the container runs at the destination.

We conducted the experiment 30 times and reported the break-

down time of each contributing step to the overall overhead.

Unsurprisingly, the chart shows that the service-level ap-

proach imposes the lowest overhead as the overhead of check-

point, transfer, and restore operations for the entirety of the

container is more than doing so only for the service process.

We observe that the orchestrator-level approach outperforms

the container-level approach; however, recall that this is an

invasive approach that implies changes in the underlying

orchestrator, whereas the other two approaches do not. The

overhead difference between the orchestrator-level approach

and the container-level approach is ≈37% for small services,

i.e., containers with less than 128 MiB memory footprint. This

is an important finding knowing that, in practice, the size of

a majority of containerized services is less than 128 MiB. In

addition, all migration times are considerably high; however,

this is common for using cold migration technique [5].

Takeaway: For single-process containers, the service-

level migration outperforms other approaches. Moreover,

the migration time of container-level approach is tolerable

for small-size (<128 MiB) containers.

0 25 50 75 100 125 150 175
Container memory footprint (MB)

10

20

30

40

50

M
ig

ra
tio

n 
tim

e 
(s

ec
on

ds
)

Service-level
Container-level
Orchestrator-level

Service-level (downtime)
Container-level (downtime)
Orchestrator-level (downtime)

Fig. 5: Migration overhead time and service downtime of
YOLOv3-tiny for orchestrator-level, container-level, and service-level
approaches across Kubernetes orchestrators.

1 2 3 4 5 6 7 8
Number of processes

100

101

102

M
ig

ra
tio

n 
tim

e 
(s

ec
on

ds
) Service-level approach

Orchestrator-level approach
Container-level approach

Fig. 6: Live container migration time comprises multiple concurrent
processes. The 90% confidence interval is ≈±1.0, ±0.1, and ±0.1.

B. Impact of Dynamic Memory Footprint on the Migration

In this experiment, we aim to study the migration perfor-

mance of a service with a dynamic memory footprint. We

configured YOLOv3-tiny [3], a popular object detection appli-

cation, within a container and fed it with an input image (160

KB) from their repository. The reason we chose YOLOv3-tiny

is its predictable (linearly increased) memory footprint behav-

ior upon progress in processing the input image.

To measure the downtime, we conducted the experiment

30 times for each migration approach. At each iteration, we

randomly chose a time during the inference process and per-

formed the migration. The service downtime was measured by

adding a helper process to output a number every second. The

downtime is the time interval between the first number printed

after the migration and the last number printed before the

migration, minus the one-second interval we had by default.



Figure 5 demonstrates that the service downtime depends

on the migration approach. We notice that the downtime using

the service-level approach is higher than memhog counterparts

in Figure 4. Our hypothesis is that the reason for the higher

downtime is one more process restoration that has to be

performed for the helper process. To verify this, we conducted

an experiment by configuring memhog to spawn 1Ð8 child

processes with negligible (≈0 MiB) memory footprint, and

performed the migration similar to Section IV-A.

Figure 6 shows that the service-level approach incurs a sig-

nificantly higher migration overhead when there is more than

one process. Our analysis shows that this overhead is due to

FastFreeze internal mechanics. Specifically, it desires to spawn

its child process with a predefined PID, which requires access

to the kernel file. Without privileges, FastFreeze workaround is

to keep spawning processes until it reaches the PID it desires,

and this process imposes a constant overhead time at the

restoration step. This derives the conclusion that the service

complexity (i.e., the number of processes running within a

container) and privileges are decisive on the downtime of the

service-level approach. For such services, even the container-

level approach offers a significantly lower migration time.

Takeaway: In practice, container downtime of the service-

level approach predominantly depends on the privileges and

number of processes running in the container, rather than

the container memory footprint at the migration time.

Approach K8s Mesos K3s Minishift

Orchestrator 6.94 infeasible infeasible infeasible

Service 5.94 5.74 5.97 5.96

Nothing 14.71 15.03 14.63 14.85

Required

changing

Orchestrator-

level
Service-

level
Container-

level

TABLE I: The migration time for a service with 128 MiB memory
footprint. The 90% confidence interval is ≈±0.15.

C. Live Migration across Heterogeneous Orchestrators

One interesting use case for the live migration of container-

ized services is to enable heterogeneous orchestrators and

multi-cloud scenarios. This enables enterprises to seamlessly

migrate their deployed services to other cloud providers,

hence, unlocking the longstanding vendor lock-in problem of

the cloud environments, in addition to enabling room for more

cost efficiency and service reliability. The service-level and

container-level approaches, particularly, fit the public cloud

use cases where neither live service migration is supported, nor

users are allowed to modify the underlying cloud platforms. As

such, the orchestrator-level approach that implies orchestrator-

level changes and requires compatibility between systems is

evidently not applicable. To implement this use case and

evaluate it, we developed UMS on Mesos, K3s, and Minishift,

and had them migrate the containerized single-process service

to Kubernetes. For the sake of better comparison, we also

include the case of Section IV-A2.

2migrating AKS to GKE demo video is at: https://youtu.be/SIfIpPWZuls

Table I shows the mean migration time for each case after

30 live migration attempts. Even though the orchestrator-level

approach requires changing in the underlying orchestrator, it

cannot migrate (shown as infeasible) across autonomous sys-

tems, e.g., multi-cloud, with heterogeneous orchestrators. Nev-

ertheless, the container-level and the service-level approaches

can cover all the cases. The former comes with the benefit

of nothing to change in the underlying platforms, whereas the

latter entails intervention in the service deployment.

Takeaway: Live and seamless migration of containerized

services is a viable solution to realize the notion of multi-

cloud and resolve the problem of vendor lock-in.

V. CONCLUSION

In this research, we developed UMS to support seam-

less and lightweight live migration of containerized services

across autonomous systems with potentially heterogeneous

orchestrators. UMS is equipped with a spectrum of migra-

tion approaches (namely, orchestrator-level, service-level, and

container-level) that differ in their imposed overhead, and

how liberally they can migrate containers across systems.

The results demonstrate that UMS can perform low-overhead

service migration across any two computing systems. We

concluded that, although the service-level approach is the most

lightweight, its performance is downgraded for multi-process

containers with insufficient privileges. We also demonstrated a

use case for UMS to perform container migration across het-

erogeneous orchestrators to realize the idea of multi-clouds.

ACKNOWLEDGEMENT

This material is supported by National Science Foundation

(NSF) under awards# CNS-2007209 and CNS-2047144.

REFERENCES

[1] Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi.
Efficiency in the serverless cloud paradigm: A survey on the reusing and
approximation aspects. Software: Practice and Experience.

[2] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. Object as
a service (oaas): Enabling object abstraction in serverless clouds. In
Proceedings of the 16th IEEE Cloud Conference, Jul. 2023.

[3] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[4] Jakob Schrettenbrunner. Migrating Pods in Kubernetes. PhD thesis, 12
2020.

[5] Gursharan Singh, Parminder Singh, Mustapha Hedabou, Mehedi Masud,
and Sultan S Alshamrani. A predictive checkpoint technique for iterative
phase of container migration. Sustainability, 14(11):6538, 2022.

[6] Paulo Souza Junior, Daniele Miorandi, and Guillaume Pierre. Good
shepherds care for their cattle: Seamless pod migration in geo-distributed
kubernetes. In Proceedings of the 6th IEEE International Conference on

Fog and Edge Computing (ICFEC), pages 26±33. IEEE, 2022.
[7] Radostin Stoyanov and Martin J Kollingbaum. Efficient Live Migration

of Linux Containers. In Proceedings of the International Conference on

High Performance Computing, pages 184±193, 2018.
[8] Minh-Ngoc Tran, Xuan Tuong Vu, and Younghan Kim. Proactive Stateful

Fault-Tolerant System for Kubernetes Containerized Services. IEEE

Access, 10:102181±102194, 2022.
[9] Nicolas Viennot. FastFreeze: Unprivileged checkpoint/restore for con-

tainerized applications. https://lpc.events/event/7/contributions/642/. On-
line; Accessed on 7 May 2022.


