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Abstract. Electric Vehicle (EV) charging recommendation that both
accommodates user preference and adapts to the ever-changing external
environment arises as a cost-effective strategy to alleviate the range anxi-
ety of private EV drivers. Previous studies focus on centralized strategies
to achieve optimized resource allocation, particularly useful for privacy-
indifferent taxi fleets and fixed-route public transits. However, private
EV driver seeks a more personalized and resource-aware charging rec-
ommendation that is tailor-made to accommodate the user preference
(when and where to charge) yet sufficiently adaptive to the spatiotem-
poral mismatch between charging supply and demand. Here we propose
a novel Regularized Actor-Critic (RAC) charging recommendation ap-
proach that would allow each EV driver to strike an optimal balance
between the user preference (historical charging pattern) and the exter-
nal reward (driving distance and wait time). Experimental results on
two real-world datasets demonstrate the unique features and superior
performance of our approach to the competing methods.

Keywords: Actor critic · Charging recommendation · Electric vehicle
(EV) · User preference · External reward.

1 Introduction

Electric Vehicles (EVs) are becoming popular due to their decreased carbon
footprint and intelligent driving experience over conventional internal combus-
tion vehicles [1] in personal transportation tools. Meanwhile, the miles per charge
of an EV is limited by its battery capacity, together with sparse allocations of
charging stations (CSs) and excessive wait/charge time, which are major driving
factors for the so-called range anxiety, especially for private EV drivers. Recently,
developing intelligent driver-centered charging recommendation algorithms are
emerging as a cost-effective strategy to ensure sufficient utilization of the existing
charging infrastructure and satisfactory user experience [2, 3].

Existing charging recommendation studies mainly focus on public EVs (e.g.,
electric taxis and buses) [3,4]. With relatively fixed schedule routines, and no pri-
vacy or user preference consideration, the public EV charging recommendation
for public transits can be made completely to optimize CS resource utilization.
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Fig. 1. Driver-centered and resource-aware charging recommendation. (A) Centralized
charging recommendation enables optimized resource allocation, where bi-directional
information sharing between the sever and EVs is assumed. (B) Driver-centered charg-
ing recommendation considers user preference and external reward, where only monodi-
rectional information (e.g., the occupancy information of all CSs) sharing from the sever
to each EV is required (green dotted line). Therefore, private information of an EV,
like GPS location, is not uploaded to the server (pink dotted line).

In general, these algorithms often leverage a global server, which monitors all
the CSs in a city (Fig. 1A). Charging recommendation can be fulfilled upon re-
quests for public EVs by sending their GPS locations and state of charge (SOC).
This kind of recommendation gives each EV an optimal driving and wait time
before charging. Instead of using one single global server, many servers can be
distributed across a city [4, 5] to reduce the recommendation latency for public
EVs.

Although server-centralized methods have an excellent resource-aware prop-
erty for the availability of charging for CSs, for private EVs, they rarely ac-
commodate individual user preferences of charging and even have the risk of
private data leakage (e.g., GPS location). Thus, the centralized strategy would
also impair the trustworthiness [6–8] of the charging recommendation. A driver-
centered instead of a server-centralized charging recommendation strategy would
be preferred for a private EV to follow its user preference without leaking pri-
vate information. In this situation (Fig. 1B), there would be a sequence of on-EV
charging events records (when and which CS) that reflect the personal preference
of charging patterns for a private EV driver. To enable the resource-aware prop-
erty for a driver-centered charging recommendation, creating a public platform
for sharing availability of CSs is needed.

Motivated by the success of recent research on the next POI (Point Of Inter-
est) recommendation centered on each user, these studies can also be adapted to
solve the charging recommendation problem for private EVs when viewing each
CS as a POI. Different from collaborative filtering, based on the general recom-
mendation that learns similarities between users and items [9], the following POI
recommendation algorithms attempt to predict the most likely next POI that a
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user will visit based on the historical trajectory [10–14]. Although these methods
indeed model user preferences, they are neither resource-aware nor adapted to
the ever-changing external environment.

As such, a desirable charging recommender for a private EV requires: (1)
learning the user preference from its historical charging patterns for achieving
driver-centered recommendation, and (2) having a good external reward (op-
timal driving and wait time before charging) to achieve resource-aware recom-
mendation (Fig. 1 B). By treating the private EV charging recommendation as
the next POI recommendation problem, maximizing external rewards (with a
shorter time of driving and wait before charging) by exploring possible CSs for
each recommendation, reinforcement learning can be utilized. To leverage user
preference and external reward, we propose a novel charging recommendation
framework, Regularized Actor-Critic (RAC), for private EVs. The critic is based
on a resource-saving over all CSs to give a evaluation value over the prediction
of actor representing external reward, and the actor is reinforced by the reward
and simultaneously regularized by the driver’s user preference. Both actor and
critic are based on deep neural networks (DNNs).

We summarize the main contributions of this work as follows: (1) we design
and develop a novel framework RAC to give driver-centered and resource-aware
charging recommendations on-EV recommendation; (2) RAC is tailor-made for
each driver, allowing each to accommodate inherent user preference and also
adapt to ever-changing external reward; and (3) we propose a warm-up training
technique to solve the cold-start recommendation problem for new EV drivers.

2 Related Work

Next POI recommendation has attracted much attention recently in location-
based analysis. There are two lines of POI recommendation methods: (1) follow-
ing user preference from sequential visiting POIs regularities, and (2) exploiting
external incentive via maximizing the utility (reward) of recommendations.

For the first line of research, the earlier works primarily attempt to solve
the sequential next-item recommendation problem using temporal features. For
example, [11] introduces Factorizing Personalized Markov Chain (FPMC) that
captures sequential dependency between the recent and next items as well as the
general taste of a user using a combination of matrix factorization and Markov
chains for next-basket recommendation. [12] proposes a time-related Long-Short
Term Memory (LSTM) network to capture both long- and short-term sequential
influence for next item recommendation. [15] attempts to model user’ preference
drift over time to achieve a better user experience in next item recommendation.
These next-item recommendation approaches only use temporal features whereas
next POI recommendation would need to use both temporal and geospatial
features.

More recent studies of next POI recommendation not only model temporal
relations but also consider geospatial context, such as ST-RNN [16] and ATST-
LSTM [17]. [13] proposes a hierarchical extension of LSTM to code spatial and
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temporal contexts into the LSTM for general location recommendation. [14] in-
troduces a spatiotemporal gated network model where they leverage time gate
and distance gate to control the effect of the last visited POI on next POI recom-
mendation. [10] extends the gates with a power-law attention mechanism with
more attention on the nearby POIs and explores the subsequence patterns for
next POI recommendation. [18] develops a long and short-term preference learn-
ing model considering sequential and context information for next POI recom-
mendation. User preference-based methods can achieve significant performance
for the following users’ previous experience; however, they are restricted from
making novel recommendations beyond users’ previous experience.

Although few studies exploit external incentive, these methods can help ex-
plore new possibilities for next POI recommendation. Charging Recommenda-
tion with multi-agent reinforcement learning is applied for public EVs [19, 20],
in which private information from each EV is inevitably required. [21] proposes
an inverse reinforcement learning method for next visit action recommendation
by maximizing the reward that the user gains when discovering new, relevant,
and non-popular POIs. This study utilizes the optimal POI selection policy (the
POI visit trajectory of a similar group users) as the guidance. As such, it is only
applicable for the centralized charging recommendation for privacy-indifferent
public transit fleets where charging events are aggregated to the central server
to learn the user group. However, this approach is not applicable to the driver-
centered EV charging recommendation problem that we are tackling since the
individual charging pattern is learned without data sharing across drivers. Be-
sides the inverse reinforcement learning approach, [22] introduces deep reinforce-
ment learning for news recommendation, and [23] proposes supervised reinforce-
ment learning for treatment recommendation. These methods are also based on
learning similar user groups thus not directly applicable to the driver-centered
EV charging recommendation task, the latter is further subject to resource and
geospatial constraints.

Despite the existing approaches utilized spatiotemporal, social network, and/or
contextual information for effective next POI recommendations, they do not pos-
sess the desirable features for CS recommendation, which are (1) driver-centered:
the trade-off between the driver’s charging preference and the external reward is
tuned for each driver, particularly for new drivers, and (2) resource-aware: there
is usually capacity constraint on a CS but not on a social check-in POI.

3 Problem Formulation

Each EV driver is considered as an agent, and the trustworthy server that col-
lects occupancy information of all the CSs represent the external ever-changing
environment. We considered our charging recommendation as a finite-horizon
MDP problem where a stochastic policy consists of a state space S, an action
space A, and a reward function r: S×A → R. At each time point t, an EV driver
with the current state st ∈ S, chooses an action at, i.e., the one-hot encoding of
a CS, based on a stochastic policy πθ(a|s) where θ is the set of parameters, and
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receives a reward rt from the spatiotemporal environment. Our objective is to
learn such a stochastic policy πθ(a|s) to select an action at ∼ πθ(a|s) by maxi-
mizing the sum of discounted rewards (return R) from the time point t, which is

defined as Rt =
∑T

i=t γ
(i−t)r(si, ai), and simultaneously minimizing the differ-

ence from the EV driver’s decision ât. γ ∈ [0, 1], e.g., 0.99, is a discount factor to
balance the importance of immediate and future rewards. T is the furthermost
time point we use.

The charging recommendation task is a process to learn a good policy for next
CS recommendation for an EV driver. By modeling user behaviors with situation
awareness, two types of methods can be designed to learn the policy: value based
Reinforcement Learning (RL) to maintain a greedy policy, and policy gradient
based RL to learn a parameterized stochastic policy πθ(a|s) or a deterministic
policy µθ(s), where θ represents the set of parameters of the policy. For the
discrete property of CSs, we focus on learning a personalized stochastic policy
πθ(a|s) for each EV driver using DNNs.

4 Our Approach

4.1 Background

Q-learning [24] is an off-policy learning strategy for solving RL problems that
finds a greedy policy µ(s) = argmaxa Q

µ(s, a), where Qµ(s, a) is Q value or
action-value, and it is usually used for a small discrete action space. For any
finite Markov decision process, Q-learning finds an optimal policy in the sense
of maximizing the expected value of the total reward over any successive steps,
starting from the current state. The value of Qµ(s, a) can be calculated with dy-
namic programming. With the introduction of DNNs, a deep Q network (DQN)
is used to learn such Q function Qw(s, a) with parameter w, and DNN is inca-
pable of handling a high dimension action space. During training, a replay buffer
is introduced for sampling, and DQN asynchronously updates a target network
Qtar

w (s, a) to minimize the expectation of square loss.
Policy gradient [25] is another approach to solve RL problems and can be

employed to handle continuous or high-dimensional discrete actions, and it tar-
gets modeling and optimizing the policy directly. The policy is usually modeled
with a parameterized function respect to θ, π(s, a). The value of the reward
(objective) function depends on this policy and then various algorithms can be
applied to optimize θ for the best reward. To learn the parameter θ of πθ(a|s), we
maximize the expectation of state-value function V πθ (s) =

∑
a πθ(a|s)Q

πθ (s, a),
where Qπθ (s, a) is the state-value function. Then we need to maximize J(πθ) =
Es∼ρπθ [V πθ (s1)], where ρπθ represents the discounted state distribution. Policy
gradient learns the parameter θ by the gradient ∇θJ(πθ), which is calculated
with the policy gradient theorem: ∇θJ(πθ) = Es∼ρπθ ,a[∇θ log πθ(a|s)Q

πθ (s, a)].
These calculations are guaranteed by the policy gradient theorem.

Actor-critic [26] method combines the advantages of Q-learning and policy
gradient to accelerate and stabilize the learning process in solving RL problems.
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Fig. 2. Our regularized actor-critic architecture. (A) A general framework. (B) Actor
network decides which action (CS) to take (charge). (C) Critic network tells the actor
how good the action is and how it should be adjusted. (D) Reward network estimates
wait time estimation at each CS.

It has two components: a) an actor to learn the parameter θ of πθ in the direc-
tion of the gradient ∇J(πθ) to maximize J(πθ), and b) a critic to estimate the
parameter w in an action-value function Qw(s, a).

In this paper, we use an off-policy actor-critic [23,26], where the actor updates
the policy weights. The critic learns an off-policy estimate of the value function
for the current actor policy, different from the (fixed) behavior policy. The actor
then uses this estimate to update the policy. Actor-critic methods consist of
two models, which may optionally share parameters. Critic updates the value
function parameters w for state action-value Qw(s, a). Actor updates the policy
parameters θ for πθ(a|s), in the direction suggested by the critic. πθ(a|s) is
obtained by averaging the state distribution of behavior policy β(a|s). β(a|s) for
collecting samples is a known policy (predefined just like a hyperparameter). The
objective function sums up the reward over the state distribution defined by this
behavior policy: J(πθ) = Es∼ρπβ [Qπ(s, a)πθ(a|s)], where πβ is the stationary
distribution of the behavior policy β(a|s); and Qπ is the action-value function
estimated with regard to the target policy π.
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4.2 The Regularized Actor-Critic (RAC) Method

To find an optimal policy for the MDP problem also with following user pref-
erence, we use the regularized RL method, specifically with a regularized actor-
critic model [23], which combines the advantages of Q-learning and policy gra-
dient. Since the computation cost becomes intractable with many states and ac-
tions when using policy iteration and value iteration, we introduce a DNN-based
actor-critic model to reduce the computation cost and stabilize the learning.
While the traditional actor-critic model aims to maximize the reward without
considering a driver’s preference, we also use regularization to learn the user’s
historical charging behavior as a representation of user preference. Our proposed
general regularized actor-critic framework is shown in Fig. 2A.

The actor network learns a policy πθ(a|s) with a set of parameters θ to
render charging recommendation for each EV driver, where the input is st and
the output is the probabilities of all actions in A of transitioning to a CS at.
By optimizing the two learning tasks simultaneously, we maximize the following
objective function:

J(θ) = (1− ϵ)JRL(θ) + ϵ(−JR(θ)),

where ϵ is tuning parameter to weigh between inherent user preference and exter-
nal reward (return) when making recommendation. The RL objective JRL aims
to maximize the expected return via learning the policy πθ(a|s) by maximizing
the state value of an action that is averaged over the state distribution of the
CS selection for each EV driver, i.e.,

JRL(θ) = Es∼ρπθ ,a πθ(a|s)[Qw(s, a)].

The regularization objective JR aims to minimize the discrepancy between the
recommended CS and preferred CS for each user via minimizing the difference
between CS recommended by πθ(a|s) and CS given by each EV driver’s previous
selection, in terms of the cross entropy loss, i.e.,

JR(θ) = Es∼ρµ̂(s) [−
1

K

K∑

k=1

ât,k log π
k
θ (a|s)− (1− ât,k) log(1− πk

θ (a|s))].

Using DNNs, θ can be learned with stochastic gradient decedent (SGD) algo-
rithms.

The critic network is jointly learned with the actor network, where the in-
puts are the current and previous states (i.e., CSs) of each EV driver, actions,
and rewards. The critic network uses a DNN to learn the action-value function
Qw(s, a), which is used to update the parameters of the actor in the direction
of reward improvement. The critic network is only needed for guiding the actor
during training whereas only actor network is required at test stage. We update
the parameter w via minimizing

J(w) = Ert,st∼ρµ̂(s) [(Qw(st, at)− yt)2],
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in which yt = r(st, at) + γQtar
w (st+1, at+1), at+1 ∼ πθ(st+1) is the charging

action recommended by the actor network, and δ = (Qw(st, at)−yt) is Temporal
Difference (TD) error, which is used for learning the Q-function.

4.3 The RAC Framework for EV Charging Recommendation

In the previous formulation, we assume the state of an EV driver is fully observ-
able. However, we are often unable to observe the full states of an EV driver.
Here we reformulate the environment of RAC as Partially Observable Markov
Decision Process (POMDP). In POMDP, O is used to denote the observation set,
and we obtain each observation o ∈ O directly from p(ot|st). For simplicity, we
use a stacked LSTM together with the previous Fully Connected (FC) layers for
each input step (Fig. 2B), to summarize previous observations to substitute the
partially observable state st with ct = fϕ1

(ot−k, ..., ot−2, ot−1). Each o = (l, e, τ)
represents a observation in different time points, and ϕ1 is the set of parameters
of f . l denotes the CS location context information, e presents charging event
related features (e.g., SOC), and τ represents the time point (e.g., day of a week
and hour of a day). l is a combination context with the geodesic distance from
previous CS (calculated by the latitudes and longitudes), one-hot encoding of
this CS and the POI distribution around this CS. o is a concatenation of l , e
and τ vectors. The samples for training the actor model is generated from the
behavior actor β(s|a) (i.e., from the real world charging trajectories) via a buffer
in an off-policy setting.

Our RAC consists of three main DNN modules for estimating the actor,
the critic, and the reward, as shown in Fig. 2. Actor DNN (Fig. 2B) captures
each driver’s charging preference. We take a subsequence of the most recent
CSs as input to extract the hidden state ct through a stacked-LSTM. With
the following fully connected layers, we recommend the CS to go next for an
EV driver. During training, the actor is supervised with the TD from the critic
network to maximize the expected reward and the actual CS selection from this
driver with cross-entropy loss to minimize the difference (Fig. 2A) . Since the
actor is on each EV and takes private charging information as input, it is a
driver-centered charging recommendation model.

To enable resource-awareness, we use a one-way information transmission
scheme, shown in Fig. 1. We train a resource-aware actor for each EV driver via
estimating Q value from the critic DNN with addition of the immediate reward
r estimated with a reward DNN. Fig. 2C shows the prediction of Qw value of
state s and action a, and the state here would be substituted with c in POMDP
setting. Fig. 2D describes how to estimate the wait time ẑ in all CSs. We can
calculate the immediate reward for each pair of (s, a) by combining with the
estimated drive time. To tackle the cold start problem for new EV drivers, we
introduce a warm-up training technique to update the model and will illustrate
the details in the experiment section.
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4.4 Timely Estimation of Reward

In stead of using traditional static reward, we dynamically estimate the reward
from external environment. Since the drive time to and wait time at the CS
play a key role for private EV driver’s satisfaction, we estimate rewards based
on these two factors. Specifically, we directly use the geodesic distance from
map to represent the drive time and use a DNN (Fig. 2D) to timely estimate
the wait time for each charging. Therefore, a timely estimation of reward for

choosing each CS can be given by a simple equation: r̂t = −100( ẑt
z̃
+ ζ d̂t

d̃
) where

ẑt = gϕ2
(lt, τt, zt−k, . . . , zt−1) is the predicted wait time through reward network,

in which ϕ2 is the parameters of the reward DNN (LSTM).zt−k is the wait time
in k steps before the current time step, and it is directly summarized from the
dataset we used. d̂t is the estimated driving distance to the corresponding CS.
Further, d̃ and z̃ represent statistically averaged driving distance and wait time
in each CS, and they are constant values for a specific CS. ζ is a coefficient,
which usually has an inverse relationship with an EV driver’s familiarity with
the routes (visiting frequency of each CS). For simplicity, we set ζ as 0.8 for the
most visited CS, and 1 for other situations. To make the predicted wait time and
predicted driving distance to be additive, we do normalization for the predicted
values by the averaged wait time ẑ and d̂ respectively for each CS. Since the
wait time and drive time are estimated by each CS, our RAC framework is
resource-aware to make CS recommendation for each EV driver.

Putting all the components as mentioned above together, the training algo-
rithm of RAC is shown in Algorithm 1.

4.5 Geospatial Feature Learning

The POI distribution within the neighborhood of each CS is what we used to
learn the geospatial features from each CS. With this information, we can infer
the semantic relationships among the CSs to assist in recommending CSs for each
driver. Google Map defines 76 types (e.g., schools, restaurants, and hospitals)
of POIs. Specifically, for each CS, we use its latitude and longitude information
together with a geodesic radius of 600 meters to pull the surrounding POIs. We
count the number of POIs for each type to obtain a 76-dimension vector (e.g.,
POI ∈ R

76) as the POI distribution. We concatenate this vector with other
information, i.e., geodesic distances to CSs and one-hot encoding of the CS.
With the charging event features and the timestamp-related features, we learn
a unified embedding through an MLP for each input step of the stacked-LSTM.

5 Experiments

5.1 Experimental Setup

All the experiments are implemented on two real world charging events datasets
from Dundee city 1 and Glasgow city 2. The POI distribution for each CS is

1 https://data.dundeecity.gov.uk/dataset/
2 http://ubdc.gla.ac.uk/dataset/
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Algorithm 1 The RAC training algorithm
Input: Actions A, observations O, reward function r, # of CSs M , historical wait time at each

hour (zj
1, ..., z

j
T
), and coordinates (latitudej , longitudej) in j-th CS

Hyper-parameters: Learning rate α = 0.001, ϵ = 0.5, the finite-horizon step T = 10, number of
episodes I, and γ = 0.99
Output: θ, ϕ1, ϕ2, w

1: Store sequences (o1, a1, r1, ..., oT , aT , rT ) by behavior policy β(a|s) in buffer D, each o =
(l, e, τ), and # of epochs N ;

2: Random initialize actor πθ, critic Qw, target critic Qtar
w , TD error δ = 0, and reward network

fφ;
3: for n = 1 to N do

4: Sample (oi1, a
i
1, r

i
1, ..., o

i
T , ai

T , riT ) ⊂ D, i = 1, ..., I

5: cit ← fφ1
(oit−k, o

i
t−k, ..., o

i
t−1)

6: ai
t, a

i+1
t ← sampled by πθ

7: ẑi
t ← gφ2

(lt, τt, zt−k, ..., zt−1)

8: r̂it ← −100(
ẑit

z̃i
+ ζ

d̂it

d̃i
)

9: yi
t ← r̂it + γQtar

w (ci+1
t , ai+1

t )

10: âi
t ← given by the EV driver’s selection

11: δit ← Qw(ciT , âi
t)− yi

t

12: w ← w − α 1
IT

∑
i

∑
t δ

i
t∇wQw(cit, a

i
t)

13: ϕ1 ← ϕ1 − α 1
IT

∑
i

∑
t δ

i
t∇φ1

fφ1

14: ϕ2 ← ϕ2 − α 1
IT

∑
i

∑
t δ

i
t∇φ2

gφ2

15: ∇wQw(cit, a
i
t)← given by Qw(cit, a

i
t)

16: ηi
t = 1

M

∑M
k=1

âi
t,k

−ai
t,k

(1−ai
t,k

)ai
t,k

17: θ ← θ + α 1
IT

∑
i

∑
t[(1− ϵ)∇wQw(cit, a

i
t) + ϵηi

t]

18: end for

obtained from Google Place API3. The code of our method is publicly available
on this link: https://github.com/cyli2019/RAC-for-EV-Charging-Rec.

Datasets and Limitations For Dundee city, we select the charging events
from the time range of 6/6/2018-9/6/2018, in which there are 800 unique EV
drivers, 44 CSs and 19, 115 charging events. For Glasgow city, in the time range
of 9/1/2013-2/14/2014, we have 47 unique EV drivers, 8 CSs and 507 charging
events. For each charging event, the following variables are available: CS ID,
charging event ID, EV charging date, time, and duration, user ID, and consumed
energy (in kWh) for each transaction. For each user ID, we observe a sequence
of charging events in chronological order to obtain the observations O. For each
CS ID, we learn the geospatial feature to determine their semantic similarity
according to POI types.

To model an EV driver preference, we train a model using the CS at each
time point as the outcome and the previous charging event sequence as the input.
To enable situation awareness, for a specific CS, there is a chronically ordered
sequence of wait time, and we use the wait time corresponding to each time point
as the outcome and that of previous time points as inputs in our reward network
to forecast hourly wait time for all CS’s. Combined with the estimated drive

3 https://developers.google.com/maps/documentation/places/web-service
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time that are inverse proportional to familiarity adjusted geodesic distance, we
determine the timely reward for each EV driver’s charging event.

To our knowledge, these two datasets are the only publicly available driver-
level charging event data for our driver-centered charging recommendation task,
though with relatively small size and unavailability of certain information. Due
to the privacy constraints, the global positioning system (GPS) information of
each driver and the corresponding timestamp are not publicly available as well
as traffic information in these two cities during the time frame. As such, we
have no choice but having to assume the EV driver transits from CS to CS and
using driving distance between CSs combined with estimated wait time at each
CS to calculate the external reward. Another assumption we made is using the
time interval of each charging event to approximate the SOC of the EV since
all EVs in the data sets are of the same model. The method developed in this
paper is general that does not rely on the aforementioned assumption; when
GPS, timestamp and SOC information become available, our method is ready
to work without change.

Evaluation Metrics Similar to POI recommendation, we treat the earlier 80%
sequences of each driver as a training set, the middle 10% as a validation set,
and the latter 10% as a test set. Two standard metrics are adopted to evaluate
methods’ performance, namely, Precision (P@K) and Recall (R@K) on the test
set. To quantify the external reward for making a charging recommendation, we
also use a Mean Average Reward (MAR) as an evaluation metric. Each reward
is calculated based on familiarity-adjusted geodesic distance and projected wait
time at the recommended CS, and MAR is the average value over all users across
all time points in the test set. To solve the cold-start problem for EV drivers
who have few charging events, we use 5% of data in the earlier sequences from
all users (with more than 10 charging events) to train a model as warm-up, the
rest 95% following the same data splitting strategy described above followed by
training with each driver’s private data. We assume that for the earliest 5% of
data can be shared without privacy issues when the user related information is
eliminated.

Baselines We compare RAC with the following baseline methods, including
two classic methods (i.e., MC, and FPMC [11]), three DNN-based state-of-the-
art methods (i.e., Time-LSTM [12] , ST-RNN [16], and ATST-LSTM [17]). We
select these methods as the baselines for method comparison, instead of other
general POI recommendation methods (e.g., multi-step or sequential POI rec-
ommendation problem), because they directly address the next POI recommen-
dation problem. One variant of our RAC (i.e., RAC-zero) is trained from scratch
without warm-up training. The description of the baselines are: (1) MC: first-
order Markov Chain utilizes sequential data to predict a driver’s next action
based on the last actions via learning a transition matrix. (2) FPMC: Matrix
factorization method learns the general taste of a driver by factorizing the ma-
trix over observed driver-item preferences. Factorization Personalized Markov
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Table 1. Performance comparison with different learning methods. Results of the best-
performing RAC model are boldfaced; the runner-up is labeled with ’*’; ‘Improvement’
refers to the percentage of improvement that RAC achieves relative to the runner-up
results.

Dataset Metrics MC FPMC Time-LSTM ST-RNN ATST-LSTM RAC-zero RAC Improvement

Dundee

P@1 0.204 0.242 0.313 0.326 0.368* 0.385 0.424 15.2%
P@3 0.256 0.321 0.367 0.402 0.435* 0.463 0.509 17.0%
P@5 0.321 0.363 0.436 0.437 0.484* 0.528 0.577 19.2%
R@1 0.146 0.195 0.203 0.216 0.247* 0.285 0.292 18.2%
R@3 0.153 0.226 0.236 0.278 0.298* 0.344 0.368 23.5%
R@5 0.192 0.237 0.245 0.325 0.375* 0.427 0.479 27.7%
MAR -327.8 -265.9 -210.4 -195.4 -164.5* -133.2 -114.6 30.3%

Glasgow

P@1 0.163 0.207 0.264 0.252 0.294* 0.313 0.364 23.8%
P@3 0.226 0.262 0.325 0.356 0.375* 0.40.9 0.458 22.1%
P@5 0.285 0.301 0.398 0.405 0.428* 0.482 0.497 16.1%
R@1 0.108 0.093 0.122 0.128 0.133* 0.13.1 0.164 23.3%
R@3 0.126 0.135 0.174 0.182 0.216* 0.224 0.253 17.1%
R@5 0.173 0.167 0.263 0.323 0.334* 0.395 0.406 21.5%
MAR -456.3 -305.4 -232.2 -210.9 -196.4* -164.2 -154.3 21.4%

Chains model is a combination of MC and MF approaches for the next-basket
recommendation. (3) Time-LSTM: Time-LSTM is a state-of-the-art variant of
LSTM model used in recommender systems. Time-LSTM improves the model-
ing of sequential patterns by explicitly capturing the multiple time structures
in the check-in sequence. We used the best-performing version reported in their
paper. (4) ST-RNN : It is a RNN-based method that incorporates spatiotem-
poral contexts for next location prediction. (5) ATST-LSTM: It utilizes POIs
and spatiotemporal contexts in a multi-modal manner for next POI prediction.
In addition, to evaluate the effect of warm-up training on solving the cold-start
problem, we compare our RAC with its a variant, RAC-zero, which is trained
from scratch.

5.2 Performance Comparison

The parameter tuning information during the training are described above,
and after that we make comparison for our approach with the baselines meth-
ods.Table 1 presents the performance (R@K, P@K, and MAR) of all methods
across the two datasets. We test K with 1, 3, and 5, and based on the parameter
tuning results, we use the setting of two-layer stacked-LSTM for both actor and
reward networks, embedding/hidden sizes of (100, 100), ϵ of 0.5, and learning
rate of 0.001. The feeding steps for LSTMs in actor and reward networks are set
to 5 and 10 respectively. In terms of charging recommendation task, the RNN
based methods (Time-LSTM, ST-RNN, ATST-LSTM, and RAC) generally out-
performs non-RNN based competitors (MC, and FPMC) owing to the leverage
of spatiotemporal features. For the former, ATST-LSTM is better than ST-RNN
possibly due to the effective use of attention mechanism. ST-RNN has slightly
better performance over Time-LSTM due to the incorporation of spatial features.
Overall, our proposed RAC consistently achieves the best performance not only
on precision/recall but also over MAR, in which the improvement column are
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Fig. 3. The tension between maximizing (a) inherent user preference and (b) external
reward on the averaged user.
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Fig. 4. A case study of five individual EV drivers (a) inherent user preference, and (b)
external reward.

the comparisons between RAC and the runner-up model (ATST-LSTM). This
is translated into the fact that overall RAC is capable of accommodating inher-
ent user preference and ensuring the external rewards to a maximum extent in
rendering charging recommendations.

To demonstrate the influence of warm-up training in RAC, we compare it
with the training-from-scratch-approach RAC-zero. From Table 1, RAC demon-
strates a better overall performance on the Dundee dataset for the relative abun-
dance of samples for warm-up training; in the meanwhile, due to the limited
number of warm-up training samples in the Glasgow dataset, this improvement
is relatively slight. Conventionally, the Glasgow dataset with fewer charging sta-
tions might have better recommendation accuracy than the Dundee dataset.
However, we should know that most (over 80%) EVs are revisiting no more than
eight charging stations for both datasets. Therefore, for driver-centered charging
pattern, the number of possible CSs is similar for these two datasets, resulting
in even worse performance for the Glasgow dataset than the Dundee dataset.
Overall, our proposed RAC consistently achieves the best performance not only
on precision/recall but also over MAR.
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Fig. 5. Examples of explanations for the recommendations. We use the mean value of
the normalized wait time and driving distance to make the comparison fair.

5.3 Driver-centered CS Recommendation

Fig. 3 illustrates the effect of personalization tuning parameter ϵ on preci-
sion/recall and reward of the recommendation. Since RAC is a driver-centered
recommendation method, each driver can experiment with the parameter ϵ to
weigh more on inherent user preference or on external award when seeking driver-
centered charging recommendations. In Fig. 3A, the P@1 and R@1 of RAC climb
up as ϵ increases, and becomes stable at around 0.5, indicating a larger value
would not further improve the performance. In Fig. 3(b), MAR first decreases
slightly before 0.5 and then drops quickly afterwards. Collectively, it appears an
average driver can get the best of both worlds when ϵ is around 0.5.

Fig. 4 shows that drivers 1-3 follow a very similar pattern to the average
driver in Fig. 3 where ϵ is around 0.5, representing a good trade-off to balance
between the inherent user preference and the external reward. Driver 4 represents
a special case where the driver preference aligns well with the external reward; in
this case the charging recommendation is invariant to the choice of ϵ. Hence the
recommendation can be made either based on user preference or external reward
since they are consistent to each other. Driver 5 represents a new driver with
low precision and recall due to the lack of historical charging data. As such, the
recommendation can simply be made based mostly on the external reward via
setting ϵ to a low value, e.g., 0.2. In sum, tuning ϵ indeed enables an individual
driver to be more attentive to his/her preference or to the external reward when
seeking EV charging recommendation.

Fig. 5 demonstrates the award (e.g., wait time and driving distance) for three
representative EV drivers, User 3, User 4, and User 5, under two different values
of ϵ, i.e., 0.2 and 0.8. Recall the latter denotes the weight on an EV driver to
follow historical charging pattern. Therefore, an increase of the ϵ value from 0.2
to 0.8 indicates that the charging recommendation is rendered based more on the
driver’s previous charging pattern than the reward from external environment.
In Fig. 5, we describe three types of drivers demonstrated by different trade-
offs: (1) For User 3, the wait time and driving distance are both increasing,
resulting in a smaller reward, whereas a better prediction accuracy. (2) For User
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4, the wait time and driving distance remains shorter yet stable across the two
values of ϵ, demonstrating both a larger reward and higher prediction accuracy.
(3) For User 5 who is a newer driver, the reward increases similarly to User
3. However, the prediction accuracy stays low regardless of the choice of ϵ due
to the limited information on historical charging pattern of the new driver. In
summary, for drivers such as User 3 whose charging patterns are vastly deviated
from what would be recommended by the external award, tuning ϵ would allow
the drivers to be more attentive to either historical charging patterns or the
external award. For drivers such as User 4 whose historical charging pattern is
consistent with the more rewarding charging option as determined by shorter
wait time and driving distance, the choice of ϵ does not matter, representing an
optimal charging recommendation scenario. For new drivers such as User 5, a
charging recommendation that is largely based on the external reward may be
more appropriate.

6 Conclusion

In this paper, we propose a resource-aware and driver-centered charging recom-
mendation method for private EVs. We devise a flexible regularized actor-critic
framework, i.e., using RL to maximize external reward as the regularization to
model inherent user preference for each driver. Our approach is sufficiently flex-
ible for a wide range of EV drivers including new drivers with limited charging
pattern data. Experimental results on real-world datasets demonstrate the supe-
rior performance of our approach over the state-of-the-arts in the driver-centered
EV charging recommendation task.
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