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Abstract. Data-driven, neural network (NN) based anomaly detection
and predictive maintenance are emerging as important research areas.
NN-based analytics of time-series data provide valuable insights and
statistical evidence for diagnosing past behaviors and predicting criti-
cal parameters like equipment’s remaining useful life (RUL), state-of-
charge (SOC) of batteries, etc. Unfortunately, input time series data can
be exposed to intentional or unintentional noise when passing through
sensors, making robust validation and verification of these NNs a cru-
cial task. Using set-based reachability analysis, this paper presents a
case study of the formal robustness verification approach for time se-
ries regression NNs (TSRegNN). It utilizes variable-length input data to
streamline input manipulation and enhance network architecture gener-
alizability. The method is applied to two data sets in the Prognostics and
Health Management (PHM) application areas: (1) SOC estimation of a
Lithium-ion battery and (2) RUL estimation of a turbine engine. Finally,
the paper introduces several performance measures to evaluate the effect
of bounded perturbations in the input on network outputs, i.e., future
outcomes. Overall, the paper offers a comprehensive case study for vali-
dating and verifying NN-based analytics of time-series data in real-world
applications, emphasizing the importance of robustness testing for accu-
rate and reliable predictions, especially considering the impact of noise
on future outcomes.
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1 Introduction

Over time, Deep Neural Networks (DNNs) have shown tremendous potential
in solving complex tasks, such as image classification, object detection, speech
recognition, natural language processing, document analysis, etc., sometimes
even outperforming humans [15–17]. This has motivated a spurt in investigating
the applicability of DNNs in numerous real-world applications, such as biometrics
authentication, face authentication for mobile locking systems, malware detec-
tion, etc. In dealing with such susceptible information in these critical areas,
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safety, security, and verification thereof have become essential design considera-
tions.

Unfortunately, it has been demonstrated that minimal perturbations in the
input can easily deceive state-of-the-art well-trained networks, leading to erro-
neous predictions [11,23,36]. The most researched domain for verification of such
networks involves image inputs, particularly safety and robustness checking of
various classification neural networks [4,7,12,22,38,41]. Previous research has an-
alyzed feed-forward neural networks (FFNN [39]), convolutional neural networks
(CNN [38]), and semantic segmentation networks (SSN [41]) using different set-
based reachability tools, such as Neural Network Verification (NNV [19,42]) and
JuliaReach [5], among others.

However, input perturbations are not only confined to image-based networks
but also have been extended to other input types, including time series data or
input signals with different noises in predictive maintenance applications [8, 43].
One such use case is in the manufacturing industry, where data from process
systems, such as IoT sensors and industrial machines, are stored for future anal-
ysis [10,31]. Data analytics in this context provide insights and statistical infor-
mation and can be used to diagnose past behavior [20, 46], and predicts future
behavior [6,18,35], maximizing industry production. This application is not only
limited to manufacturing, but is also relevant in fields like healthcare digitaliza-
tion [37, 45] and smart cities [33, 34]. Noisy input data, here, refers to data
containing errors, uncertainties, or disturbances, caused by factors like sensor
measurement errors, environmental variations, or other noise sources.

While NN applications with image data have received significant attention,
little work has been done in the domain of regression-type model verification, par-
ticularly with time series data in predictive maintenance applications. Regression-
based models with noisy data are crucial for learning data representations and
predicting future values, enabling fault prediction and anomaly detection in high-
confidence, safety-critical systems [13, 29]. This motivated us to use verification
techniques to validate the output of regression networks and ensure that the
output(s) fall within a specific safe and acceptable range.

Contributions.

1. In this paper, we primarily focus on exploring a new case study, specifically
examining time-series-based neural networks in two distinct industrial pre-
dictive maintenance application domains. We utilize the established concept
of star-set-based reachability methods to analyze whether the upper and
lower bounds of the output set adhere to industrial guidelines’ permissible
bounds. We develop our work1 as an extension of the NNV tool to formally
analyze and explore regression-based NN verification for time series data
using sound and deterministic reachability methods and experiment on dif-
ferent discrete time signals to check if the output lies within pre-defined safe
bounds.

1 The code is available at: https://github.com/verivital/nnv/tree/master/code/nnv/
examples/Submission/FMICS2023

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FMICS2023
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FMICS2023
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2. Another significant contribution of our work is the flexibility of variable-
length inputs in neural networks. This approach simplifies input manipula-
tion and enhances the generalizability of network architectures. Unlike pub-
lished literature that relied on fixed-sized windows [9,24], which necessitated
preprocessing and experimenting with window sizes, our method allows for
flexibility in utilizing any sequence length. This flexibility improves the gen-
eralizability of reachability analysis.

3. We run an extensive evaluation on two different network architectures in two
different predictive maintenance use cases. In this paper, we have introduced
a novel robustness measure called Percentage Overlap Robustness (POR).
Unlike the existing Percentage Sample Robustness (PR/PSR) [41], which
considers only instances where reachable bounds remain entirely within per-
missible bounds, the proposed POR accounts for all instances with any pos-
sible overlap.

4. Finally, we develop insights on evaluating the reachability analysis on those
networks and possible future direction.

Outline. The paper is organized as follows: Section 2 provides the necessary
context for the background; Section 3 details the adversarial noises considered;
Section 4 defines the verification properties; Section 6 explains the reachabil-
ity calculations for layers to accommodate variable-length input; Section 5 de-
fines the research problem, and Section 7 describes the methodology, including
dataset, network models, and input attacks. Section 8 presents the experimental
results, evaluation metrics, and their implications. Finally, Section 9 summarizes
the main findings and suggests future research directions.

2 Preliminaries

This section introduces some basic definitions and descriptions necessary to un-
derstand the progression of this paper and the necessary evaluations on time
series data.

2.1 Neural Network Verification Tool and Star Sets

The Neural Network Verification (NNV) tool is a framework for verifying the
safety and robustness of neural networks [19, 42]. It analyzes neural network
behavior under various input conditions, ensuring safe and correct operation in
all cases. NNV supports reachability algorithms like the over-approximate star
set approach [38, 40], calculating reachable sets for each network layer. These
sets represent all possible network states for a given input, enabling the verifica-
tion of specific safety properties. NNV is particularly valuable for safety-critical
applications, such as autonomous vehicles and medical devices, ensuring neural
networks are trustworthy and reliable under all conditions, and maintaining pub-
lic confidence. For this paper, we have implemented the work as an extension
of NNV tool and used the star [Def. 1] based reachability analysis to get the
reachable sets of the neural networks at the outputs.
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Definition 1. A generalized star set (or simply star) Θ is a tuple ⟨c, V, P ⟩
where c ∈ Rn is the center, V = {v1, v2, · · · , vm} is a set of m vectors in Rn

called basis vectors, and P : Rm → {⊤,⊥} is a predicate. The basis vectors are
arranged to form the star’s n×m basis matrix. The set of states represented by
the star is given as:

JΘK = {x | x = c+Σm
i=1(αivi) and P (α1, · · · , αm) = ⊤}. (1)

In this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) ≜ Cα ≤ d where, for p linear constraints, C ∈ Rp×m, α is the vector of
m-variables, i.e., α = [α1, · · · , αm]T , and d ∈ Rp×1.

Fig. 1: Star for Time-series Data with four Feature Values (rows) with four time-
steps (columns)

A 4 × 4 time series data with a bounded disturbance b ∈ [−2, 2] applied on
the time instance 2 of feature 1, i.e., position (1, 2) can be described as a Star
depicted in Fig. 1.

2.2 Time Series and Regression Neural Network

Signal. The definition of a ‘signal’ varies depending on the applicable fields.
In the area of signal processing, a signal S can be defined as some physical
quantity that varies with respect to (w.r.t.) some independent dimension (e.g.,
space or time) [27]. In other words, a signal can also be thought of as a function
that carries information about the behavior of a system or properties of some
physical process [28].

S = g(q) (2)

where q is space, time, etc. Depending on the nature of the spaces signals are
defined over, they can be categorized as discrete or continuous. Discrete-time
signals are also known as time series data.
We next define the specific class of signals considered in this paper, namely time
series.

Definition 2. A time series signal ST is defined as an ordered sequence of
values of a variable (or variables) at different time steps. In other words, a
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time series signal is an ordered sequence of discrete-time data of one or multiple
features2.

ST = st1 , st2 , st3 , ...

T = t1, t2, t3, ...
(3)

where, t1, t2, t3, . . . is an ordered sequence of instances in time T and ST =
st1 , st2 , st3 , . . . are the signal values at those time instances for each t = ti.

Here, sometimes we have used ‘signal’ to refer to the ‘time series signal.’

Next, we define the specific types of neural networks considered in this paper,
namely regression neural networks (specifically time series regression neural net-
works).

Definition 3. A time series regression neural network (TSRegNN) f is
a nonlinear/partially-linear function that maps each time-stamped value x(i, j)
(for ith feature and jth timestamp) of a single or multifeatured time series input
x to the output y.

f : x ∈ Rnf×ts → y ∈ Rp×q (4)

where ts, nf are the time-sequence length and the number of features of the in-
put data, respectively, (j, i) ∈ {1, . . . , ts} × {1, . . . , nf} are the time steps and
corresponding feature indices, respectively, and p is the number of values present
in the output, while q is the length of each of the output values; it can either be
equal to ts or not, depending on the network design.

Here, each row of x represents a timestamped feature variable.

2.3 Reachability of a Time Series Regression Network

In this section, we provide a description of how the reachability of a NN layer
and the NN as a whole is computed for this study.

Here, we employ an alternative approach to define a Star set for time series
data. It involves using the upper and lower bounds of the noisy input, centering
the actual input. These bounds on each input parameter, along with the predi-
cates, create the complete set of constraints the optimizer will solve to generate
the initial set of states.

Definition 4. A layer L of a TSRegNN is a function h : u ∈ Rj → v ∈ Rp,
with input u ∈ Rj and output v ∈ Rp defined as follows

v = h(u) (5)

where the function h is determined by parameters θ, typically defined as a tuple
θ = ⟨σ,W, b⟩ for fully-connected layers, where W ∈ Rj×p, b ∈ Rp, and activation
function σ : Rj → Rp. Thus, the fully connected NN layer is described as

v = h(u) = σ(W× u+ b) (6)

For convolutional NN-Layers, θ may include parameters like the filter size,
padding, or dilation factor, and the function in Eq. 6 may need alterations.
2 Each feature is a measurable piece of data that is used for analysis.
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Definition 5. Let h : u ∈ Rj → v ∈ Rp, be a NN layer as described in Eq. 5.
The reachable set Rh, with input, I ∈ Rn is defined as

Rh ≜ {v | v = h(u), u ∈ I} (7)

Reachability analysis (or shortly, reach) of a TSRegNN f on Star input
set I is similar to the reachable set calculations for CNN [38] or FFNN [39], the
only difference being both the previous works had been done for classification
networks.

Reach(f, I) : I → Rts (8)

We call Rts(I) the output reachable set of the TSRegNN corresponding to the
input set I.

For a regression type NN, the output reachable set can be calculated as a
step-by-step process of constructing the reachable sets for each network layer.

RL1
≜ {v1 | v1 = h1(x), x ∈ I},

RL2
≜ {v2 | v2 = h2(v1), v1 ∈ RL1

},
...

Rts = RLk
≜ {vk | vk = hk(vk−1), vk−1 ∈ RLk−1

},

where hk is the function represented by the kth layer Lk. The reachable set RLk

contains all outputs of the neural network corresponding to all input vectors x
in the input set I.

3 Adversarial Noise

In the case of time series samples, while the sensor transmits the sampled data,
sensor noises might get added to the original data. One example of such noise is
sensor vibration, but sometimes the actual sources are not even known by the
sensor providers [21].

Definition 6. A noise can be defined as some unintentional, usually small-
scaled signal which, when added to the primary signal, can cause malfunctioning
of the equipment in an industrial premise. Mathematically, a noisy signal snoise

can be produced by a linear parameterized function gϵ,snoise(·) that takes an input
signal and produces the corresponding noisy signal.

snoise = gϵ,snoise(s) = s+Σn
i=1ϵi · snoisei (9)

For time series data, we can also assume the noise as a set of unit vectors
associated with a coefficient vector ϵ at each time step i, where the value of the
coefficient vector ϵ is unknown but bounded within a range [ϵ, ϵ], i.e., ϵi ≤ ϵi ≤ ϵi.
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Types of Possible Noises. For an input sequence with ts number of time
instances and nf number of features, there can be four types of noises (l∞ norm)
[A.1], based on its spread on the signal. They can be categorized as below:

1. Single Feature Single-instance Noise (SFSI) i.e., perturbing a feature
value only at a particular instance (t) by a certain percentage around the
actual value.

snoise = gϵ,snoise(s) = s+ ϵt · snoiset (10)

2. Single Feature All-instances Noise (SFAI) i.e., perturbing a specific
feature throughout all the time instances by a certain percentage around the
actual values of a particular feature.

snoise = gϵ,snoise(s) = s+Σn
i=1ϵi · snoisei (11)

3. Multifeature Single-instance Noise (MFSI) i.e., perturbing all feature
values but only at a particular instance (t), following Eq. 10 for all features.

4. Multifeature All-instance Noise (MFAI) i.e., perturbing all feature val-
ues throughout all the instances, following Eq. 11 for all features.

A sample plot for all four types of noises is shown in [A.8].

4 Verification Properties

Verification properties can be categorized into two types: local properties and
global properties. A local property is defined for a specific input x at time-
instance t or a set of points X in the input space Rnf×ts . In other words, a
local property must hold for certain specific inputs. On the other hand, a global
property [44] is defined over the entire input space Rnf×ts of the network model
and must hold for all inputs without any exceptions.

Robustness. Robustness refers to the ability of a system or a model to maintain
its performance and functionality under various challenging conditions, uncer-
tainties, or perturbations. It is a desirable quality that ensures the system’s
reliability, resilience, and adaptability in the face of changing or adverse cir-
cumstances. For an input perturbation measured by δ and admissible output
deviation ϵ, the ‘delta-epsilon’ formulation for the desired robustness property
can be written as:

||x′ − x||∞ < δ =⇒ ||f(x′)− f(x)||∞ < ϵ (12)

where x is the original input belonging to the input space Rnf×ts , x′ is the noisy
input, f(x′) and f(x) are NN model outputs for, respectively, x′ and x, δ is the
max measure of the noise added, ϵ is the max deviation in the output because
of the presence of noise (δ, ϵ ∈ R > 0).
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Local Robustness. Given a TSRegNN f and an input time series signal S, the
network is called locally robust to any noise A if and only if: the estimated
output reachable bounds for a particular time-step corresponding to the noisy
input lie between predefined allowable bounds w.r.t to the actual signal.

Robustness Value (RV) of a time series signal S is a binary variable,
which indicates the local robustness of the system. RV is 1 when the estimated
output range for a particular time instance (t) lies within the allowable range,
making it locally robust at t; otherwise, RV is 0.

RV = 1 ⇐⇒ LBt
est ≥ LBt

allow∧UBt
est ≤ UBt

allow else, RV = 0
where LBt

est and UBt
est are estimated bounds and LBt

allow and UBt
allow

are allowable bounds.

Definition 7. Percentage Sample Robustness (PR) of a TSRegNN corre-
sponding to any noisy input is defined as

PR =
Nrobust

Ntotal
× 100%, (13)

where Nrobust is the total number of robust time instances, and Ntotal = the total
number of time steps in the time series signal. Percentage robustness can be used
as a measure of global robustness [44] of a TSRegNN w.r.t any noise.

In this study, we adapt the concept of Percentage Robustness (PR) previ-
ously used in image-based classification or segmentation neural networks [41]
to time-series inputs. PR in those cases assessed the network’s ability to cor-
rectly classify/segment inputs even with input perturbations for a given number
of images/pixels. We extend this concept to analyze the robustness of time-series
inputs in our research.

Definition 8. Percentage Overlap Robustness (POR) of a TSRegNN cor-
responding to any noisy input is defined as

POR =
ΣNtotal

i=1 (POi)

Ntotal
× 100%, (14)

where Ntotal = total number of time instances in the time series signal, and POi

is the percentage overlap between estimated and allowed ranges at each time step
w.r.t the estimated range

PO =
Overlapped Range

Estimated Range
(15)

Here Overlapped Range is the overlap between the estimated range and the
allowable range for a particular time step. The Allowable Range indicates the
allowable upper and lower bounds, whereas Estimated Range is the output reach-
able bounds given by the TSRegNN for that time step. Percentage overlap robust-
ness can also be used as a measure of global robustness [44] of TSRegNN.

When selecting robustness properties, it is crucial to consider the specific appli-
cation area. If the application allows for some flexibility in terms of performance,
POR can be utilized. On the other hand, if the application requires a more con-
servative approach, PR should be considered. An example showing calculations
for the robustness measures is shown in [A.1].
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Monotonicity. In PHM applications, the monotonicity property refers to the
system’s health indicator, i.e., the degradation parameter exhibiting a consistent
increase or decrease as the system approaches failure. PHM involves monitoring
a system’s health condition and predicting its Remaining Useful Life (RUL)
to enable informed maintenance decisions and prevent unforeseen failures. For
detailed mathematical modeling of the monotonicity property, please refer to [32]
and the latest report on formal methods at [9]. In general, for a TSRegNN
f : x ∈ R → y ∈ R with single-featured input and output spaces, at any time
instance t, the property for monotonically decreasing output can be written as:

∀x′∃δ : x ≤ x′ ≤ x+ δ =⇒ f(x′) ≤ f(x)

∀x′∃δ : x− δ ≤ x′ ≤ x =⇒ f(x′) ≥ f(x)
(16)

This is a local monotonicity property. If this holds true for the entire time range,
then the property can be considered as a global property [44]. In this paper, the
monotonicity property is only valid for the PHM examples for RUL estimation.

5 Robustness Verification Problem Formulation

We consider the verification of the robustness and the monotonicity properties.

Problem 1 (Local Robustness Property). Given a TSRegNN f , a time series
signal S, and a noise A, prove if the network is locally robust or non-robust
[Sec. 4] w.r.t the noise A; i.e., if the estimated bounds obtained through the
reachability calculations lie within the allowable range of the actual output for
the particular time instance.

Problem 2 (Global Robustness Property). Given a TSRegNN f , a set of N
consecutive time-series signal S = {S1, . . . , SN}, and a noise A, compute the
percentage robustness values (PR [Def. 7] and POR [Def. 8]) corresponding to
A.

Problem 3 (Local Monotonicity Property). Given a TSRegNN f , a set of N
consecutive time-series signal S = {S1, . . . , SN}, and a noise A, show that both
the estimated RUL bounds of the network [Eq. 16] corresponding to noisy input
S′
t at any time instance t are monotonically decreasing.

To get an idea of the global performance [44] of the network, local stability
properties have been formulated and verified for each point in the test dataset
for 100 consecutive time steps.

The core step in solving these problems is to solve the local properties of a
TSRegNN f w.r.t a noise A. It can be done using over-approximate reachability
analysis, computing the ‘output reachable set’ Rts = Reach(f, I) that provides
an upper and lower bound estimation corresponding to the noisy input set I.

In this paper, we propose using percentage values as robustness measures for
verifying neural networks (NN). We conduct reachability analysis on the out-
put set to ensure it stays within predefined safe bounds specified by permissible
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upper-lower bounds. The calculated overlap or sample robustness, expressed as
a percentage value, represents the NN’s robustness achieved through the ver-
ification process under different noise conditions. The proposed solution takes
a sound and incomplete approach to verify the robustness of regression neural
networks with time series data. The approach over-approximates the reachable
set, ensuring that any input point within the set will always have an output
point contained within the reachable output set (sound [Def. 9]). However, due
to the complexities of neural networks and the over-approximation nature of the
approach, certain output points within the reachable output set may not directly
correspond to specific input points (incomplete [Def. 10]). Over-approximation is
commonly used in safety verification and robustness analysis of complex systems
due to its computational efficiency and reduced time requirements compared to
exact methods.

6 Reachability of Specific Layers to Allow
Variable-Length Time Series Input

Reachability Of A Fully-connected Layer. We consider a fully-connected
layer with the following parameters: the weights Wfc ∈ Rop×ip and the bias
bfc ∈ Rop×1, where op and ip are, respectively, the output and input sizes of the
layer. The output of this fully connected layer w.r.t an input i ∈ Rip×Ts will be

o = Wfc × i+ bfc

where output o ∈ Rop×Ts

Thus, we can see that the layer functionality does not alter the output size
for a variable length of time sequence, making the functionality of this layer
independent of the time series length.
The reachability of a fully-connected layer will be given by the following lemma.

Lemma 1. The reachable set of a fully-connected layer with a Star input set
I = ⟨c, V, P ⟩ is another Star I ′ = ⟨c′, V ′, P ′⟩ where c′ = Wfc × c + bfc, the
matrix multiplication of c with Weight matrix Wfc,V

′ = {v′1, ..., v′m}, where v′i =
Wfc× vi, the matrix multiplication of the weight matrix and the ith basis vector,
and P ′ = P .

Reachability of a 1D Convolutional Layer. We consider a 1d convolution
layer with the following parameters: the weights Wconv1d ∈ Rwf×nc×fl and the
bias bconv1d ∈ R1×fl where wf , nc and fl are the filter size, number of channels
and number of filters, respectively.

The output of this 1d convolution layer w.r.t an input i ∈ Rip×Ts will be

o = W ′
conv1d · i′ + bconv1d dot product along time dimesion for each filter

where output o ∈ Rfl×T ′
s

where T ′
s = Ts +Td −Tfl is the new time series length at the output and Td, Tfl

are the time lengths contributed by the dilation factor and the 1d convolution
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function, respectively. w′
conv1d is the modified weight matrix after adding dila-

tion, and i′ is the modified input after padding. We can see when Td becomes
equal to Tfl for any convolution layer, the layer functionality becomes indepen-
dent of the length of the time series.
The reachability of a 1d convolution layer will be given by the following lemma.

Lemma 2. The reachable set of a 1d convolution layer with a Star input set I =
⟨c, V, P ⟩ is another Star I ′ = ⟨c′, V ′, P ′⟩ where c′ = Wconv1d · c, 1d convolution
applied to the basis vector c with Weight matrix Wconv1d,V

′ = {v′1, ..., v′m}, where
v′i = Wconv1d · vi, is the 1d convolution operation with zero bias applied to the
generator vectors, i.e., only using the weights of the layer, and P ′ = P .

7 Experimental Setup

7.1 Dataset Description

For evaluation, we have considered two different time series datasets for PHM
of a Li battery and a turbine.

Battery State-of-Charge Dataset (BSOC) [14]: This dataset is derived
from a new 3Ah LG HG2 cell tested in an 8 cu.ft. thermal chamber using
a 75amp, 5-volt Digatron Firing Circuits Universal Battery Tester with high
accuracy (0.1 of full scale) for voltage and current measurements. The main
focus is to determine the State of Charge (SOC) of the battery, measured as
a percentage, which indicates the charge level relative to its capacity. SOC
for a Li-ion battery depends on various features, including voltage, current,
temperature, and average voltage and current. The data is obtained from the
‘LG HG2 Prepared Dataset McMasterUniversity Jan 2020’, readily available in
the dataset folder [14]. The training data consists of a single sequence of experi-
mental data collected while the battery-powered electric vehicle during a driving
cycle at an external temperature of 25 degrees Celsius. The test dataset contains
experimental data with an external temperature of -10 degrees Celsius.

Turbofan Engine Degradation Simulation Data Set (TEDS) [2, 30]:
This dataset is widely used for predicting the Remaining Useful Life (RUL)
of turbofan jet engines [2]. Engine degradation simulations are conducted using
C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) with four
different sets, simulating various operational conditions and fault modes. Each
engine has 26 different feature values recorded at different time instances. To
streamline computation, features with low variability (similar to Principal Com-
ponent Analysis [26]) are removed to avoid negative impacts on the training
process. The remaining 17 features [A.5, A.4] are then normalized using z-score
(mean-standard deviation) for training. The training subset comprises time se-
ries data for 100 engines, but for this paper, we focus on data from only one
engine (FD001). For evaluation, we randomly selected engine 52 from the test
dataset.
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7.2 Network Description

The network architecture used for training the BSOC dataset, partially adopted
from [1], is a regression CNN (as shown in [Fig 9, A.7]). The network has five
input features which correspond to one SOC value. Therefore, the TSRegNN for
the BSOC dataset can be represented as:

f : x ∈ R5×ts → y ∈ R1×ts

ˆSOCts = f(ts)
(17)

The network architecture used for training the TEDS dataset is also a regression
CNN, adopted from [3] (shown in [Fig 9, A.7]). The input data is preprocessed to
focus on 17 features, corresponding to one RUL value for the engine. Therefore,
the TSRegNN for the TEDS dataset can be represented as:

f : x ∈ R17×ts → y ∈ R1×ts

ˆRULts+1 = f(ts)
(18)

The output’s tths value represents the desired estimation of SOC or RUL, with
the given series of past ts values for each feature variable.

8 Experimental Results and Evaluation

The actual experimental results shown in this paper are conducted in a Windows-
10 computer with the 64-bit operating system, Intel(R) Core(TM) i7-8850H
processor, and 16 GB RAM.

For all four noise scenarios [Sec. 3], local and global (for 100 consecutive time
steps) robustness properties are considered for both datasets. The local mono-
tonicity property is only considered for the turbine RUL estimation example.

Battery State-of-Charge Dataset (BSOC): In this dataset, the output
value (SOC) is supposed to be any value between 0 and 1 (or 0 and 100%).
But, for the instances where the lower bound is negative, we instead treat it as
0 because a negative SOC does not provide any meaningful implications.

For SFSI, for a random (here feature 3) input feature-signal, the noise is
added only at the last time step (t30) of the 3rd feature, whereas for SFAI, noise
is added throughout all the time instances of the input signal. The effect of four
different noise values, 1%, 2.5%, 5% and 10% of the mean(µ), are then evaluated
using over-approximate star reachability analysis [Sec. 2.3] on 100 consecutive
input signal, each with 30 time instances. We considered ±5% around the actual
SOC value as the allowable bounds. For all the noises, 2 different robustness
values, PR [Def. 7] and POR [Def. 8] are then calculated, and comparative tables
are shown below in Table 1.
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Fig. 2: Allowable (blue) and reachable (red) bounds for battery SOC dataset for
100 consecutive time steps and 2 different SFAI noise values 1% (upper), and
2.5% (lower) respectively

Table 1: Global Robustness: Percentage Robustness(PR) for noises for 100 con-
secutive time steps

noise PRSFSI PORSFSI avgRTSFSI(s) PRSFAI PORSFAI avgRTSFAI(s)

1 100 100 0.7080 100 100 20.9268
2.5 100 100 0.7080 100 100 20.9991
5 100 100 0.7116 100 100 21.0729
10 100 100 0.7027 100 100 21.0780

noise PRMFSI PORMFSI avgRTMFSI(s) PRMFAI PORMFAI avgRTMFAI(s)

1 100 100 0.7653 100 100 36.1723
2.5 0 73.87 0.8251 0 73.87 59.0588
5 0 35.95 0.9026 0 35.95 91.6481
10 0 17.89 1.1051 0 17.89 163.7568
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Fig. 3: Percentage Robustness and Runtime plots w.r.t increasing noise

Observation and Analysis: Fig. 2 shows a sample plot for gradually increasing
estimation bounds with increasing MFSI noise. We can see from the figure that
for each time instance, the system becomes locally non-robust as the noise value
increases.
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Table. 1 presents the network’s overall performance, i.e., the percentage ro-
bustness measures, PR [Def. 7], POR [Def. 8] and average verification runtime
(avgRT), with respect to each noise. The percentage robustness values start
decreasing and the average (as well as total) runtime starts increasing as the
measure of noise increases for MFAI and MFSI, but for SFSI and SFAI it re-
mains the same for these noise perturbations considered. This is because in the
first case, the noise is added to all the features, resulting in increasing the cumu-
lative effect of disturbance on the output estimation. However, in the other case,
the noise is attached only to a single feature, assuming that not all features will
get polluted by noise simultaneously; and that the reachable bounds are in the
acceptable range. A plot of robustness values and the total runtime is shown in
Fig 3.

We can also see that the decrease in POR values for MFSI and MFAI are less
compared to the PR values with increasing noise because, for PR calculation,
only those time steps are considered where the estimated range falls entirely
within the allowed range, whereas for POR calculation even if some part of the
estimated range goes outside the allowable range, their fractional contribution
is still considered.

Another interesting observation here is the robustness matrices for both SFSI
and SFAI are the same; however, the computations for SFAI take almost three
times longer than the computations for SFSI. The same analogy is observed for
MFSI and MFAI datasets but with an even higher time taken for MFAI. The
possible reason for this observation could be that, while the data is subjected
to perturbations across all time instances, the noise added to the final time step
has the most significant impact on the output.

Turbofan Engine Degradation Simulation Data Set (TEDS): In this
dataset, the acceptable RUL bounds are considered to be ±10 of the actual RUL.
For instances where the lower bound is negative, we assume those values to be
0 as well. We then calculate the percentage robustness measures, PR [Def.7],
POR [Def.8], and average verification runtime (avgRT), for an input set with
all 100 consecutive data points, each having 30 time instances. The results for
three different noise values, 0.1%, 0.5%, and 1% of the mean (µ), are presented
in Table 2. For SFSI and SFAI noises, we randomly choose a feature (feature 7,
representing sensor 2) for noise addition. The noise is added to the last time step
(t30) of each data sample for SFSI and SFAI noises. The results of the MFAI
noise have been omitted due to scalability issues, as it is computationally heavy
and time-consuming 3.

For verifying the local monotonicity of the estimated output RUL bounds at
a particular time instance, we have fitted the previous RUL bounds along with

3 The MFAI noise, i.e., adding the L∞ norm to all feature values across all time in-
stances, significantly increases the input-set size compared to other noise types. This
leads to computationally expensive calculations for layer-wise reachability, resulting
in longer run times. Moreover, noise in an industrial setting affecting all features
over an extended period is unlikely. Considering these factors, we decided to exclude
the results of the MFAI noise for the TEDS dataset from our analysis.
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the estimated one in a linear equation as shown in Fig. 4. This guarantees the
monotonically decreasing nature of the estimated RUL at any time instance.
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Fig. 4: Percentage Robustness and Runtime plots w.r.t increasing noise

Table 2: Global Robustness: Percentage Robustness(PR) for noises for 100 con-
secutive time steps

noise PRSFSI PORSFSI avgRTSFSI(s) PRSFAI PORSFAI avgRTSFAI(s)

1 13 13 1.0796 13 13.31 32.8670
2.5 13 13 1.1755 12 13.13 62.1483
5 13 13 1.2908 8 12.64 108.0736

noise PRMFSI PORMFSI avgRTMFSI(s)

1 13 13 9.6567
2.5 13 13 10.2540
5 13 13 11.2100
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Fig. 5: Percentage Robustness and Runtime plots w.r.t increasing noise

Observation and Analysis: Fig. 14 of the detailed version of this paper [25]
shows a sample plot for gradually increasing estimation bounds with increasing
SFAI noise. Here we need to notice that the network’s performance in terms
of following the actual RUL value is not well. However, Table. 2 presents the
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network’s overall performance with respect to each noise. Contrary to the other
dataset, we see that the percentage robustness measures corresponding to SFAI
and SFSI noises differ. Interestingly, while the noise value increases, the PR,
and POR for SFSI remain the same, whereas the robustness measures for SFAI
decrease. However, the performance matrices for MFSI are the same as the SFSI
except for the time. This might be because, for both SFSI and MFSI, the noise is
added only at a single time instance, whereas for SFAI, the noise is added to the
entire time instances, resulting in an increased cumulative effect of disturbance
on the output.

Our results consistently show higher POR values than PR values in Table.
[1-2]. Since we assess output reachable bounds using L∞ perturbations in the
input, we acknowledge the significance of cases where reachable sets overlap with
permissible bounds but do not entirely fall within them. In summary, PR mea-
sures adopt a more conservative approach, while POR captures the relationship
between output reachable bounds and permissible bounds more accurately.

9 Conclusion and Future Work

This paper explores formal method-based reachability analysis of variable-length
time series regression neural networks (NNs) using approximate Star methods in
the context of predictive maintenance, which is crucial with the rise of Industry
4.0 and the Internet of Things. The analysis considers sensor noise introduced in
the data. Evaluation is conducted on two datasets, employing a unified reacha-
bility analysis that handles varying features and variable time sequence lengths
while analyzing the output with acceptable upper and lower bounds. Robust-
ness and monotonicity properties are verified for the TEDS dataset. Real-world
datasets are used, but further research is needed to establish stronger connec-
tions between practical industrial problems and performance metrics. The study
opens new avenues for exploring perturbation contributions to the output and
extending reachability analysis to 3-dimensional time series data like videos. Fu-
ture work involves verifying global monotonicity properties as well, and including
more predictive maintenance and anomaly detection applications as case stud-
ies. The study focuses solely on offline data analysis and lacks considerations for
real-time stream processing and memory constraints, which present fascinating
avenues for future research.
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A Appendix

A.1 Preliminaries

Definition 9 (Soundness). Let F : Rj → Rp be a NN with an input set R0

and output reachable set Rf . The computed Rf given F and R0 is sound iff
∀x ∈ R0, |y = F(x), y ∈ Rf .

Definition 10 (Completeness). Let F : Rj → Rp be a NN with an input set
R0 and output reachable set Rf . The computed Rf given F and R0 is complete
iff ∀x ∈ R0, ∃y = F(x) | y ∈ Rf and ∀y ∈ Rf , ∃x ∈ R0 | y = F(x).

L∞ Norm: Input perturbations can be quantified using different types of
norms. Here, we have used the L∞ norm, which records the greatest pertur-
bation magnitude among all input elements.

L∞ : ||x− x′||∞ = max||xi − x′
i|| (19)

Example of Robustness Calculations: The left picture of Fig. 6 in Appendix
depicts an example plot of output estimations (red) vs. the allowable bounds
(blue). Here, we can see that the network is locally robust for time instances t1
and t5; in other instances, it is non-robust w.r.t the noise added. So the RV is 1
for both t1 and t5 and 0 for others. To better understand the concept of POR
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Fig. 6: Example: (left)Output estimation bounds (red) of a TSRegNN and Al-
lowable (blue) over five consecutive time step and (right) for a particular time
step t3

and PO, we refer to the right picture of Fig. 6. Here for a time instance t3, C
denotes the actual signal value, AB is the allowable output range, and DE is the
estimated reachable bounds. Here, Nrobust = 3 and Ntotal = 5, so the PR for
this particular example is 60%. The PO will be calculated as:

PO =
DB

DE
=

3

5
= 0.6
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To calculate POR, we calculate the PO for each of the time instances:

POR =
2
2 + 3

4 + 3
5 + 4

6 + 4
4

5
× 100% = 80.33%(approx)

A.2 Battery State-of-charge

Battery state-of-charge is a measurement of the amount of energy available in a
battery at a specific point in time, expressed as a percentage. This term is often
used in various applications involving battery-powered systems, e.g., electric
vehicles, renewable energy storage systems, portable electronics etc. Accurate
estimation of the State of Charge (SOC) of a battery is crucial for efficient
battery management and ensuring the longevity of the battery. The SOC is
expressed as a percentage of the full capacity of the battery.

A.3 Remaining Useful Life

The Remaining Useful Life (RUL) is a subjective estimate of the lifespan of any
equipment before it requires repair or replacement. This important concept is
often used in various fields, including maintenance, reliability engineering, and
prognostics and health management (PHM). RUL estimation is typically based
on the analysis of historical data, such as sensor measurements, degradation
patterns, maintenance records, and operational conditions. Various techniques
and models, including statistical methods, machine learning algorithms, and
physics-based approaches, are generally used to predict the RUL.

A.4 Sample Dataset Plots
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Fig. 7: Sample feature value plot for Battery SOC Dataset.
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Fig. 8: Sample feature value plot for Turbofan Engine Degradation Simulation
Dataset.

A.5 Prognosability

Features that remain constant for all time steps can negatively impact the train-
ing. Feature reduction is done using the ’prognosability’ MATLAB command.
Prognosability is actually a property relative to the prediction of the future
state of the system, and this term is mainly used for lifetime data. In MATLAB,
’prognosability’ is used as a function to measure the variability of the features
in a dataset at failure. The equation for the prognosability calculation is given
as below:

prognosability = Y = exp
stdj(xj(Nj))

meanj |(xj(1)− xj(Nj)|
(20)

The output has 3 different outcomes:

1. Y = 0 means the feature values are constant, i.e., no variability in the data.
2. Y = NaN indicates the prognosability could not be calculated.
3. Y = 1 means the feature values are perfectly prognosable i.e., there is vari-

ability in the data.

A.6 Feature Reduction of TEDS Dataset

Each engine has 26 different feature values, recorded at different time instances.

1. Feature 1: Unit number
2. Feature 2: Time-stamp
3. Feature 3–5: Operational settings
4. Feature 6–26: Sensor measurements 1–21

After analyzing the dataset using ’prognosability’, number of features considered
for NN training reduced to 17 from 26, and they are

1. Feature 3–4 : Operational settings 1-2
2. Feature 7–9 : Sensor measurements 2-4
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3. Feature 11–14 : Sensor measurements 6–9
4. Feature 16–20 : Sensor measurements 11–15
5. Feature 22 : Sensor measurements 17
6. Feature 25-26 : Sensor measurements 20-21
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A.7 Network Architectures: (Figure 9)
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Fig. 9: The architectures of the regression networks for both the datasets.

A.8 Noise

Fig. 10: MFAI Noise: noise added to the complete time series data, for all features.
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Fig. 11: MFSI Noise: noise added at a particular instance of the time series data,
for all features.

Fig. 12: SFAI Noise: noise added to the complete time series data, a particular
feature.
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Fig. 13: SFSI Noise: noise added at a particular instance of the time series data,
a particular feature.

A.9 TEDS dataset Sample Reachability Plot
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Fig. 14: Allowable (blue) and reachable (red) bounds for battery SOC dataset
for 100 consecutive time steps and three different SFAI noise values 1% (upper),
2.5% (middle) and 5% (lower) respectively
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