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Abstract—In this work, we study probably approximately cor-
rect (PAC) learning under general perturbation-based adversarial
attacks. In the most basic setting, referred to as an evasion attack,
the adversary’s goal is to misclassify an honestly sampled point
z by adversarially perturbing it into 7, i.e., h(Z) # c(T), where
c is the ground truth concept and h is the learned hypothesis.
The only limitation on the adversary is that = is not “too far”
from z, controlled by a metric measure.

We first prove that for many theoretically natural input spaces
of high dimension n (e.g., isotropic Gaussian in dimension n
under /> perturbations), if the adversary is allowed to apply up
to a sublinear amount of perturbations in the expected norm,
PAC learning requires sample complexity that is exponential in
the data dimension n. We then formalize hybrid attacks in which
the evasion attack is preceded by a poisoning attack in which a
poisoning phase is followed by specific evasion attacks. Special
forms of hybrid attacks include so-called ‘“backdoor attacks”
but here we focus on the general setting in which adversary’s
evasion attack is only controlled by a pre-specified amount of
perturbation based on data dimension and aim to misclassifying
the perturbed instances. We show that PAC learning is sometimes
impossible under such hybrid attacks, while it is possible without
the attack (e.g., due to the bounded VC dimension).

I. INTRODUCTION

Learning predictors is the task of outputting a hypothesis h
using a training set S in such a way that h can predict the
correct label ¢(x) of unseen instances with high probability. A
successful learner, however, could be vulnerable to adversarial
perturbations. In particular, it was shown (Szegedy et al.,
2014) that deep neural nets (DNNs) are vulnerable to so-
called adversarial examples that are the result of small (even
imperceptible to human eyes) perturbations on the original
input z. Since the introduction of such attacks, many works
have studied defenses as well as newer attacks (Biggio et al.,
2013; Goodfellow et al., 2015; Papernot et al., 2016a; Carlini
and Wagner, 2017; Xu et al., 2017; Madry et al., 2017).

A fundamental question in robust learning is whether one
can design learning algorithms that achieve “uniform convere-
gence” even under such adversarial perturbations. Namely, we
want to know when we can learn a robust classifier A that
still correctly classifies its inputs even if they are adversarially
perturbed in a limited way. Indeed, one can ask when (e, )
PAC (probably approximately correct) learning (Valiant, 1984)
is possible in adversarial settings. More formally, the goal
here is to learn a robust & from the data set S consisting of
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m independently sampled labeled (non-adversarial) instances
in such a way that, with probability 1 — § over the learning
process, the produced h has error at most € even under
“limited” adversarial perturbations of the input. This limitation
is carefully defined by some metric d defined over the input
space X and some upper bound “budget” b on the amount
of perturbations that the adversary can introduce. That is, we
would like to minimize “adversarial” risk defined as follows

AdvRisk(h) = <P:rD[EI T:d(z,T) < b h(T) #c(@)] <e

where c(+) is the ground truth (i.e., the concept function).

Error-region adversarial risk. The above notion of adver-
sarial risk has been used implicitly or explicitly in previous
work (Gilmer et al., 2018; Diochnos et al., 2018; Degwekar
and Vaikuntanathan, 2019; Ford et al., 2019) and here we use
the version as formalized by Diochnos et al. (2018) known
as the “error-region” adversarial risk, because the adversary’s
goal here is to push 7 into the error region

£ = {x | hx) # c(x)}

regardless of whether or not the ground truth c¢(x) is robust
under b perturbations or not. In other words, the above notion
captures the vulnerability of a classifier against adversaries of
budget b for all values of b.
Hence we can define the PAC Learning counterpart of this
definition. This leads us to our central question:
What problems are PAC learnable under evasion
attacks that perturb instances into the error region?
If PAC learnable, what is their sample complexity?

Hybrid attacks. Another attack model are Hybrid attacks
that we formalize in this work. Hybrid attacks are closely
related to the notion of poisoning attacks where adversary
interferes the training phase with the goal of hurting the
performance of the resulting classifier. Hybrid attacks consist
of two adversaries that work together. A poisoning adversary
that adds a few training examples to the training set and
an evasion adversary who perturbs the instances fed to the
resulting classifier. This type of attacks that are also known as
backdoor attacks , could potentially be more devastating and
increase the required sample complexity for PAC Learning.
We ask the following question in presence of Hybrid attacks.

How much data is required to PAC learn a classifier
that is robust to adversarial hybrid attacks?



A. Our Contribution

In this work, we initiate a formal study of PAC learning
under adversarial perturbations, where the goal of the adver-
sary is to increase the error-region adversarial risk using small
(sublinear o||z||)) perturbations of the inputs x. Therefore,
in what follows, whenever we refer to adversarial risk, by
default it means the error-region variant (In next section we
discuss another mainstream definiton of adversarial risk called
corrupted input definition). Bellow, we will shortly describe
our two lower bound on PAC learning using error-region risk.
Before we proceed, so that we can better put our work into
perspective, we first give a short description explaining our
main contributions in previous work that we have done that is
related to the work of this paper.

Result 1: exponential lower bound on sample complexity.
Suppose the instances of a learning problem come from a
metric probability space (X, D,d) where D is a distribution
and d is a metric defining some norm ||-||. Suppose the input
instances have norms ||z|| = n where n is a parameter related
(or is in fact equal) to the data dimension. One natural setting
of study for PAC learning is to study attackers that can only
perturb = by a sublinear amount o(||z||) = o(n) (e.g., v/n).

Our first result is to prove that for many theoretically natural
input spaces of high dimension n (e.g., isotropic Gaussian in
dimension n under ¢ perturbations), PAC learning of certain
problems under sublinear perturbations of the test instances
requires exponentially many samples in n, even though the
problem in the no-attack setting is PAC learnable using
polynomially many samples. This holds e.g., when we want
to learn half spaces in dimension n under such distributions
(which is possible in the no-attack setting).

We note that even though PAC learning is defined for all
distributions, proving such lower bound for a specific input
distribution D over X only makes the negative result stronger.
Our lower bound is in contrast with previously proved results
(Attias et al., 2018; Bubeck et al., 2018; Montasser et al., 2019;
Cullina et al., 2018) in which the gap between the sample com-
plexity of the normal and robust learning is only polynomial.
However, as mentioned before, all these previous results are
proved using the corrupted-input variant of adversarial risk.

Our result extends to any learning problem where input
space X, the metric d and the distribution D, and the class of
concept functions C have the following two conditions.

1) The inputs X under the distribution D and small per-
turbations measured by the metric d forms a concen-
trated metric probability space (Ledoux, 2001; Milman
and Schechtman, 1986). A concentrated space has the
property that relatively small events (e.g., of measure 0.1)
under small (e.g., smaller than the diameter of the space)
perturbations expand to cover ~ 1 measure of inputs.

2) The set of concept functions C is complex enough to
allow proving lower bounds for the sample complex-
ity for (distribution-dependent) PAC learners in the no-
attack setting under the same distribution D. Distribution-
dependent sample complexity lower bounds are known

for certain settings (Long, 1995; Balcan and Long, 2013;
Sabato et al., 2013), however, we use a more relaxed
condition that can be applied to broader settings. In
particular, we require that for a sufficiently small ¢, there
are two concept functions ¢y, ¢y that are equal for 1 — ¢
fraction of inputs sampled from D (see Definition IV.3).
Having the above two conditions, our proof proceeds as
follows (I) We show that the (normal) risk Risk(h) of a
hypothesis produced by any learning algorithm with sub-
exponential sample complexity cannot be as large as an inverse
polynomial over the dimension. (II) We then use ideas from
(Mahloujifar et al., 2018a) to show that such sufficiently large
risk will expand into a large adversarial risk of almost all
inputs, due to the measure concentration the input space.
Remark: realizablity under the error-region definition: If
a learning problem is realizable in the no-attack setting, i.e.,
there is a hypothesis h that has risk zero over the test instances,
it means that the same hypothesis h will have adversarial
(true) risk zero over the test instances as well, because any
perturbed point is still going to be correctly classified. This
is in contrast with corrupted-input notion of adversarial risk
that even in realizable problems, the smallest corrupted-input
(true) adversarial risk could still be large, and even at odds
with correctness (Tsipras et al., 2018). This means that our
results rule out (efficient) PAC learning even in the agnostic
setting as well, because in the realizable setting there is at
least one hypothesis with error-region adversarial risk zero
while (as we prove), in some settings learning a model with
adversarial risk (under sublinear perturbations) close to zero
requires exponentially many samples.

Result 2: ruling out PAC learning under hybrid attacks.
We then study PAC learning under adversarial perturbations
that happen during both training and testing phases. We
formalize hybrid attacks in which the final evasion attack is
preceded by a poisoning attack (Biggio et al., 2012; Papernot
et al., 2016b). This attack model bears similarities to “trapdoor
attacks” (Gu et al., 2017) in which a poisoning phase is
involved before the evasion attack, and here we give a formal
definition for PAC learning under such attacks. Our definition
of hybrid attacks is general and can incorporate any notion
of adversarial risk, but our results for hybrid attacks use the
error-region adversarial risk.

Under hybrid attacks, we show that PAC learning is some-
times impossible all together, even though it is possible without
such attacks. For example, even if the VC dimension of the
concept class is bounded by n, if the adversary is allowed to
poison only 1/n!? fraction of the m training examples, then it
can do so in such a way that a subsequent evasion attack could
then increase the adversarial risk to ~ 1. This means that PAC
learning is in fact impossible under such hybrid attacks.

We also note that classical results about malicious noise
(Valiant, 1985; Kearns and Li, 1993) and nasty noise (Bshouty
et al., 2002) could be interpreted as ruling out PAC learning
under poisoning attacks. However, there are two differences:
(I) The adversary in these previous works needs to change a
constant fraction of the training examples, while our attacker



changes only an arbitrarily small inverse polynomial fraction
of them. (IT) Our poisoning attacker only removes a fraction
of the training set, and hence it does not add any misclassified
examples to the pool. Thus this poisoning attack uses clean
labels only (Mahloujifar et al., 2018b; Shafahi et al., 2018).

II. COMPARISON WITH OTHER DEFINITIONS OF
ADVERSARIAL RISK AND RELATED WORK

Corrupted-input adversarial risk. Another notion of ad-
versarial risk (that is similar, but still different from the error-
region adversarial risk explained above) has been used in many
works such as (Feige et al., 2015; Madry et al., 2017; Bubeck
et al.,, 2018) in which the perturbed z is interpreted as a
“corrupted input”. Namely, here the goal of the learner is
to find the label of the original untampered point x by only
having its corrupted version z, and thus adversary’s success
criterion is to reach d(z, %) < b, h(x) # ¢(x). Hence, in that
setting, the goal of the learner is to find an A that minimizes

Pr [3z: d(z,Z) < b, h(T) # c(x)].

z<—D
It is easy to see that, if the ground truth c¢(z) does not
change under b-perturbations, c(xz) = ¢(Z), the two notions
of error-region and corrupted-input adversarial risk will be
equal. In particular, this is the case for practical distributions
of interest, such as images or voice, where sufficiently-small
perturbations do not change human’s judgment about the true
label. However, if b-perturbations can change the ground truth,
¢(x) # (), the two definitions are incomparable.

Several works have already studied PAC learning under
adversarial perturbations (Bubeck et al., 2018; Cullina et al.,
2018; Feige et al., 2018; Attias et al., 2018; Khim and Loh,
2018; Yin et al., 2018; Montasser et al., 2019). However,
all these works use the corrupted-input notion of adversarial
risk. In particular, it is proved by Attias et al. (2018) that
robust learning might require more data, but it was also
shown by Attias et al. (2018); Bubeck et al. (2018) that
in natural settings, if robust classification is feasible, robust
classifiers could be found with a sample complexity that is
only polynomially larger than that of normal learning.

Comparison of the error-region definition and corrupted in-
put definition has been the focus of multiple studies. Diochnos
et al. (2018) compares different definitions and picks the error-
region definition as the right notion as it guarantees misclassifi-
cation of the adversarial examples. Gourdeau et al. (2019) also
study these two definitions from a PAC learning perspective,
for multiple problems. They show that in many interesting
scenarios, the behavior of the corrupted input definition is not
as expected. For instance, even if a learning algorithm manages
to learn the exact same classifier, the corrupted input risk will
not be 0 and there are other classifiers with lower corrupted
input risk. It was also shown in Chen et al. (2020) that the
corrupted input definition can have surprising behaviors when
more data is provided to the learning algorithm. In particular,
when training a half-space to separate a mixture of Gaussian

using the corrupted input risk, the error of the resulting half-
space would drop at first and then start increasing, and poten-
tially start to drop again, for some adversarial budgets. This is
an evidence of why corrupted instance might not be the right
definition for certain learning problems. There are also other
results that show trade-off between accuracy and robustness
when working with the corrupted-input definition (Tsipras
et al., 2018). However, for the case of error-region adversarial
risk, these types of trade-off do not exist and the ground-
truth is the most robust classifier. As argued by Suggala et al.
(2019), this is another evidence that studying PAC learning
with the error-region definition is more meaningful.

Note that previous positive (or negative) results about PAC
learning under the corrupted-input definition do not answer
our question above, as we study general arbitrary perturbation
budgets allowed to the adversary. Also, when the ground truth
can also change under that amount of perturbation we have to
use the error-region definition. More technically, we note that
positive results about adversarial PAC learning (cited above)
do not answer our question for the following reason. When
the allowed perturbation is limited to keep the ground truth
c robust, then the two definitions are equivalent, yet, when
the budget gets larger, then a positive result proved using the
corrupted-input definition would simply mean that there is a
way to learn a hypothesis h that has only € adversarial risk
more than the “best possible” h*. However, this could be just
a side-effect that any h* under the corrupted-input definition
(and certain amount of allowed perturbations) could have very
large (even 1 — ¢) adversarial risk, making the job of agnostic
learning trivial (to output anything). That is why, when we
work with arbitrary perturbation budget, we need to employ
the error-region definition, which still allows ¢ = h to have
small adversarial risk, which is the intuitive decision as well.

III. ADVERSARIALLY ROBUST PAC LEARNING

Notation. By O(f(n)) we refer to the set of all functions of
the form O(f(n)log(f(n))°™)). We use capital calligraphic
letters (e.g., D) for sets and capital non-calligraphic letters
(e.g., D) for distributions.  <— D denotes sampling = from
D. For an event S, we let D(S) = Pry. p[z € S].

A classification problem P = (X,),C,D,H) is specified
by the following components. The set X is the set of possible
instances, ) is the set of possible labels, D is a class
of distributions over instances AX’. In the standard setting
of PAC learning, D includes all distributions, but since we
deal with negative results, we sometimes work with fixed
D = {D} distributions, and show that even distribution-
dependent robust PAC learning is sometimes hard. In that
case, we represent the problem as P = (X,Y,C,D,H).
The set C C Y7 is the concept class and H C Y is the
hypothesis class. In general, we can allow randomized concept
and hypothesis functions to model, in order, label uncertainly
(usually modeled by a joint distribution over instances and
labels) and randomized predictions. All of our results extend to
randomized learners and randomized hypothesis functions, but
for simplicity of presentation, we treat them as deterministic



mappings. By default, we consider 0-1 loss functions where
loss(y',y) = L[y’ # y]. For a given distribution D € D
and a concept function ¢ € C, the risk of a hypothesis
h € H is the expected loss of h with respect to D, namely
Risk(D, ¢, h) = Pr,plloss(h(x),c(x))]. An example z is a
pair z = (z,y) where © € X and y € ). An example is
usually sampled by first sampling x <— D for some D € D
followed by letting y = c¢(z) for some ¢ € C. A sample
S = (21,...,2m) is a sequence of m examples; sometimes
we may refer to such a sample sequence as the training set.
By S < (D,c¢(D))™ we denote the process of obtaining S
by sampling m iid samples from D and labeling them by c.

Our learning problems P,, = (X, V»,Cn, Dy, H,,) are usu-
ally parameterized by n where n denotes the “data dimension”
or (closely) capture the bit length of the instances. Thus, the
“efficiency” of the algorithms could depend on n. Even in
this case, for simplicity of notation, we might simply write
P = (X,),C,D,H). By default, we will have C C H, in
which case we call P realizable. This means that for any
training set for ¢ € C, D € D, there is a hypothesis h € H
that has empirical and true risk zero.

Evasion attacks. An evasion attacker A changes the test
instance x, denoted as T < A(z). The behavior and actions
taken by A could, in general, depend on the choices of
D € D,c € C, and h € H. As a result, in our notation,
we provide A with access to D, ¢, h by giving them as special
inputs to A,! denoting the process as T < A[D, ¢, h](x). We
use calligraphic font A to denote a class/set of attacks; A
could contain all attackers who could change test instance x
by at most b perturbations under a metric defined over X.

Poisoning attacks. A poisoning attacker A is one that
changes the training sequence as S « A(S). Such attacks,
in general, might add examples to S, remove examples from
S, or do both. The behavior and actions taken by A could,
in general, depend on the choices of D € D, ¢ € C (but not
on h € H, as it is not produced by the learner at the time of
the poisoning attack)?. As a result, we provide implicit access
to D, c by giving them as special inputs to A, denoting the
process as S <+ A[D, ](S). We use calligraphic font A to
denote a class/set of attacks. For example, 4 could contain
attacks that change 1/n fraction of S only using clean labels
(Mahloujifar et al., 2018a; Shafahi et al., 2018).

Hybrid attacks. A hybrid attack A = (A1,Az) is a two
phase attack in which A; is a poisoning attacker and As is
an evasion attacker. One subtle point is that Ao is also aware
of the internal state of A;, as they are a pair of coordinating
attacks. More formally, A; outputs an extra “state” information
st which will be given as an extra input to Ay. As discussed
above, A; can depend on D, ¢, and Ay can depend on D, ¢, h
as defined for evasion and poisoning attacks.

!'This dependence is information theoretic, and for example, A might want
to find Z that is misclassified, in which case its success is defined as h(T) #
c(z) which depends on both h, c.

For example, an attack model might require A to choose its perturbed
instances still using correct/clean labels, in which case the attack is restricted
based on the choice of c)

We now define PAC learning under adversarial perturbation
attacks. To do so, we need to first define our notion of
adversarial risk. We will do so by employing the error-region
notion adversarial risk as formalized in Diochnos et al. (2018)
adversary aims to misclassify the perturbed instance z.

Definition II1.1 (Error-region (adversarial) risk). Suppose A is
an evasion adversary and let D, c, h be fixed. The error-region
(adversarial) risk is defined as follows.

AdvRiska(D, ¢, h) = () # c(@)].

For randomized h, the above probability is also over the
randomness of h chosen after x is selected.

r
z<D,T+A[D,c,h](x)

Why PAC learning under perturbation is meaningful.
We emphasize that, even if the b-perturbation could change the
ground truth’s judgement, asking whether a learning problem
is PAC learnable or not is very meaningful. In fact, the
problem is still “realizable” under the error region definition
of adversarial risk (this is not correct for the other mainstream
definition of adversarial risk that we discuss in next section)
because if one happens to learn the concept class ¢ exactly
and output the hypothesis i = ¢, then h will have adversarial
risk zero under the error-region definition. In other words, the
ground truth can still be predicted robustly. Thus, it is natural
to ask whether one can learn a hypothesis i that has small
adversarial risk even under perturbations that are still small in
magnitude compared to the size of the original sample x.

We now define PAC learning under hybrid attacks, from
which one can derive also the definition of PAC learning under
evasion attacks and under poisoning attacks.

Definition II1.2 (PAC learning under hybrid attacks). Suppose
Pn = (X0, Yn,Cn,Dp,Hy) is a realizable classification
problem, and suppose A is a class of hybrid attacks for
Pn. Py is PAC learnable with sample complexity m(e,d,n)
under hybrid attacks of A , if there is a learning algorithm
L such that for every n, 0 < ¢, < 1,¢c € C,D € D, and
(A1,A2) € A if m =m(e,d,n), then
Se(Dl,DcI(‘D))"", [AdVRiSkAz[D,c,h,st](ha C,D) > E] <.
(S:st)+A1[D,c](S),
h«L(S)

PAC learning under (pure) poisoning attacks or evasion at-
tacks could be derived from Definition II1.2 by letting either
of Ay or As be a trivial attack that does no tampering at all.

We also note that one can obtain other definitions of PAC
learning under evasion or hybrid attacks in Definition III1.2
by using other forms of adversarial risk, e.g., corrupted-input
adversarial risk (Feige et al., 2015, 2018; Madry et al., 2017;
Schmidt et al., 2018; Attias et al., 2018)

IV. LOWER BOUNDS FOR PAC LEARNING UNDER
EVASION AND HYBRID ATTACKS

Before proving our main results, we need to recall the
notion of Normal Lévy families, and define a desired and



common property of set of concept functions with respect to
the distribution of inputs.

Notation. Let (X, d) be a metric space. For S C X, by
d(z,8) = inf {d(z,y) | y € S} we denote the distance of a
point x from S. We also let S, = {y | d(z,y) < b,z € S}
be the b-expansion of S. When there is also a measure
D defined over the metric space (X,d), the concentra-
tion function is defined and denoted as «(b) = 1 —
inf {Prp[&) | Prpl[&] > 1/2}.

Definition IV.1 (Normal Lévy families). A family of metric
probability spaces (X,,,dy, Dy)ien with concentration func-
tion &, () is called a normal Lévy family if there are ky, ko,
such that® o, (b) < k; e hab?/n

The following lemma was proved in Mahloujifar et al.
(2018a) for Normal Lévy input spaces.

Lemma IV.2. Let the input space of a hypothesis classifier
h be a Normal Lévy family (X,,,d,, Dy, )ien. If the risk of h
with respect to the ground truth concept function c is bigger
than o, Risk(D,,, ¢, h) > «, and if an adversary A can perturb
instances by up to b in metric d,, for

b=/n/ks- (v/In(kr/a) + /In(k1 /),
then the adversarial risk is AdvRiska (D, h,c) > 1 —p.

Definition IV.3 (a-close function families). Suppose D is a
distribution over X, and let C be a set of functions from X to
some set Y. We call C a-close with respect to D, if there are
1,2 € C such that Pryplei(z) # ca2(x)] = a.

We now state our main results. Theorem IV.4 is stated in
the asymptotic form considering attack families that attack the
problem for sufficiently large index n € N of the problem. We
describe a quantitative variant afterwards (Lemma IV.5).

Theorem IV.4 (Limits of adversarially robust PAC learning).
Suppose P,, = (X,¥,C,D,H) is a realizable classification
problem and that X is a Normal Lévy Family (Definition 1V.1)
over D and a metric d, and that C is ©(«)-close with respect
to D for all o € [27°) 1). Then, the following hold even
for PAC learning with parameters € = 0.9, = 0.49.

1) Sample complexity under evasion attacks:

a) Exponential lower bound: Any PAC learning algo-
rithm that is robust against tampering attacks of budget
b= o(n) requires m > 2*"") many samples.

b) Super-polynomial lower bound: Any PAC learning
algorithm that is robust against tampering attacks of
budget b = O(y/n) requires m > n*") many samples.

2) Ruling out PAC learning robust to hybrid attacks:

Suppose the tampering budget of the evasion adversary

can be any b = O(\/n), and let By be any class of

poisoning attacks that can remove A = A(n) fraction
of the training examples for an (arbitrary small) inverse

3 Another common formulation of Normal Lévy families uses o, (b) <

) : © =
k1 - e*2'57 7 but here we scale the distances up by n to achieve “typical
norms” to be ~ n, which is the dimension.

polynomial \(n) > 1/poly(n). Let R be the class of
hybrid attacks that first do a poisoning by some B € B)
and then an evasion by some adversary of budget b =
O(y/n). Then, P,, is not PAC learnable (regardless of
sample complexity) under hybrid attacks in R.

In fact, Part 1a and Part 1b of Theorem IV.4 are special
cases of the more quantitative lower of the lemma below.

Lemma IV.5. For the setting of Theorem 1V.4, if the tampering
budget is b = p-n, for a fixed function p = p(n) = o(1), then
any PAC learning algorithm for P, under evasion attacks of
tampering budget b = b(n), even for parameters € = 0.9, =
0.49 requires sample complexity at least m(n) > 2% m),

V. CONCLUSION

We examined evasion attacks, where the adversary can
perturb instances during test time, as well as hybrid attacks
where the adversary can perturb instances during both training
and test time. For evasion attacks we gave an exponential lower
bound on the sample complexity even when the adversary
can perturb instances by an amount of o(n), where n is
capturing the “typical” norm of an input. For hybrid attacks,
PAC learning is ruled out altogether when the adversary can
poison a small fraction of the training examples and still
perturb the test instance by a sublinear amount o(n).

Our result shows a different behavior when it comes to
PAC learning for error-region adversarial risk compared to
previously used notions of adversarial robustness based on
corrupted inputs. In particular, in the error-region variant
of adversarial risk, realizable problems stay realizable, as
normal risk zero for a hypothesis h also implies (error-region)
adversarial risk zero for the same h. This makes our results
more striking, as they apply to agnostic learning as well.

One natural question is if similar results could be proved
for corrupted-input adversarial risk. Note that previous
work studying learning under corrupted-input adversarial risk
(Bubeck et al., 2018; Cullina et al., 2018; Feige et al., 2018;
Attias et al., 2018; Khim and Loh, 2018; Yin et al., 2018;
Montasser et al., 2019) focus on agnostic learning, by aiming
to get close to the “best” robust classifier. However, it is not
clear how good the best classifier is. It remains open to find
out when we can learn robust classifiers (under corrupted-input
risk) in which the rotal adversarial risk is small.
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