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Abstract—A private machine learning algorithm hides as much as
possible about its training data while still preserving accuracy. In
this work, we study whether a non-private learning algorithm can
be made private by relying on an instance-encoding mechanism
that modifies the training inputs before feeding them to a normal
learner. We formalize both the notion of instance encoding and
its privacy by providing two attack models. We first prove
impossibility results for achieving a (stronger) model. Next, we
demonstrate practical attacks in the second (weaker) attack
model on InstaHide, a recent proposal by Huang, Song, Li and
Arora [ICML’20] that aims to use instance encoding for privacy.

[. INTRODUCTION

Neural networks are increasingly trained on sensitive user
data, for example building classifiers to diagnose diseases from
medical images [1], [2] or help users compose emails or text
messages by training on actual user data [3].

Protecting the privacy of users’ data while training such models
currently requires either a trusted central party with all users’
data, or applying cryptographic techniques such as multiparty
computation [4], [5], [6] that introduce large computation and
communication overheads. In turn, preventing the trained model
itself from leaking private information, e.g., with differential
privacy [7], [8], [9], typically comes at a high cost in accuracy.
This raises the question: Are there other ways to perform
private learning without sacrificing performance or accuracy?

An alternate method for privately training a neural network is
to first convert users’ data to an encoded (private) version, and
then train a non-private model on this encoded dataset [10],
[11]. Since the training data has been privately encoded, the
model training gets privacy “for free.” We formalize this private
instance encoding setup, and investigate fundamental limits on
how well such an approach can work in theory.

We show that training a model on encoded data cannot offer
privacy guarantees as strong as cryptographic techniques.
Specifically, we prove that no useful encoding can resist
distinguishing attacks of two forms. Our first attack distin-
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guishes with non-negligible probability whether dataset S;
or dataset S; was used to generate an encoded dataset. Our
second attack distinguishes encodings of instances alone with a
higher probability by relying on further assumptions about the
encoding function and its utility. We formalize these definitions
in Section II, and theorems in Section IIL

We next study practical private instance encoding schemes.
While our distinguishing attacks apply to any instantiation
of instance encoding, we now attempt the stronger goal of
reconstruction for specific instance encoding schemes. Given
the encoded dataset, a reconstruction attack recovers (nearly
identical) copies of individual training examples used. This
privacy goal is weaker than indistinguishability, and arguably
the weakest form of privacy that could be expected.

We design a reconstruction attack that breaks InstaHide [10], the
state-of-the-art privacy-preserving encoding-based technique
which was awarded a Bell Labs Prize [12]. InstaHide applies
to image classification. Its encoding function mixes together
multiple images [13] (with a linear pixel blend), and then
it randomly flips the signs of the pixels. Our reconstruction
attack (Section IV) recovers high-quality reconstructions—for
example we solve the challenge released by the authors [14]
and recover a nearly visually identical reconstruction of all the
private encoded images. Our attack demonstrates that InstaHide
fails to satisfy meaningful privacy notions.

Our attack leverages the fact that InstaHide encodings are
distinguishable, as our theoretical results predict. Given multiple
encoded images (produced by training for multiple epochs),
we cluster encodings that correspond to the same source image.
We then merge these encodings to recover the original image
by solving a noisy linear system. Our attack sidesteps the
encoding’s sign flipping (which provides no privacy in itself)
by simply taking the absolute value before all operations.

We further show (Section IV-H) that extensions of InstaHide
offer no more privacy. Mixing more images into each encoding
strengthens our attack. Even given a single encoding of an
image, an attacker with precise knowledge of InstaHide’s public
parameters can reconstruct the encoded image near-perfectly.



A. The Instance Encoding Problem

In the instance encoding problem setup, the defender encodes
a (sensitive) training dataset S = {(z1,v1),---(Tn,yn)} by
processing it with an encoding function E. The encoded version
S « E(S) is released publicly.

Any learning algorithm L can then train on the encoded set
S to learn the concept function ¢ that was used to construct
the training dataset (i.e., it was used to construct the labels
¢(z;) = y;). The encoding is useful if get both of the following.

« Utility-preserving. A model trained on the encoded datset
S should be (approximately) as accurate as a model trained
on the original dataset S.

o Privacy-preserving. Given access to the encoded dataset
S, it should be difficult to learn sensitive properties about
the original training dataset S.

Forms of encoding. An encoding function is an arbitrary
function operating over a training dataset .S, allowing for a
wide range of techniques. At one extreme, a valid encoding
function could take the entire training dataset S, run the learning
algorithm L on all of it, and output the trained model i < L(.S)
as the output of the encoding. This “encoding” may (or may not)
be useful or private. At the other extreme, an encoding scheme
might be completely “local” and operate independently on each
training example to produce S = {e(z;,v;) : (zi,y:) € S}.

Another natural class of encoding schemes are those that
are based on “mix-up”-type operations [13] that apply a
simple linear operation on a small number of instances to
produce an encoded instance. Such encoding schemes usually
have a nice property: they can be “decomposed” into two
encoding algorithms that operate separately on instances and
on labels. This class of encoding schemes includes the mix-
up encoding function used in the recent InstaHide protocol
[10]. Since decomposable encodings apply to instances and
labels separately, in such cases we indeed deal with an instance
encoding together with a label encoding that work in tandem.

Adversary capabilities. We assume the adversary is given
access to the encoded dataset S. The adversary does not have
any access to the original dataset S In some algorithms, the
encoding scheme might receive as input some public data P;
for these schemes we assume the adversary has access to P.
(The InstaHide algorithm, for example, takes a “private” and
“public” dataset as input.)

Adversary objective. The adversary aims to learn as much
information as possible about S given all available informa-
tion. The most powerful attacks we consider are complete
reconstruction attacks that recover training examples x; where
T} Ry, 1; according to some similarity metric m (e.g.,
Euclidean distance).

We also consider more restrictive distinguishing (inference)
attacks where the adversary aims only to determine if a
particular x; was used as training data or not.

Main question. This paper studies the following question

For a dataset S with instances labeled by a nontrivial
concept function, is it possible to design an encoding
function E(S) = S so that given S a learning algorithm
L can produce an accurate model but so that the original
data S remains hidden from an adversary?

Note that we assume that the adversary has direct access to
S + E(S), before the learning algorithm L is run on S.

It is easy to achieve privacy alone if E hides everything about
S (e.g., define E(z) =0 as a constant function), but then no
meaningful learning is possible. Alternatively, if the concept
function is trivial (e.g., all examples have the same label)
then trivial encoding functions exist. We are interested only
in encoding functions that operate over nontrivial concept
functions. Our goal is to understand the barriers and trade-
offs that arise between the privacy provided by the encoding
function vs. the wtility/accuracy of the learning algorithm.

B. Results

We provide negative results in the form of theoretical barriers
that prevent any encoding function from protecting some forms
of privacy. Moreover, we demonstrate practical attacks on
specific encoding functions from the literature [10].

1) Theoretical Impossibility Results.

We prove that for the case of distinguishing attacks, it is not
possible to construct nontrivial encoding functions that preserve
both utility and a weak form of distinguishing privacy.

Limits of privacy with dataset encoding. We first study
distinguishing attacks whose goal is to find out with probability
(non-negligibly) more than 1/2 which dataset out of two
(different) sets .S7, 55 has been encoded. In fact, we will show
how to achieve this even if the datasets share many similarities
and only differ in one example pair (with the same label).

Theorem 1 (Informally stated — limits of privacy based on
dataset encoding). Let (E, L) be an arbitrary encoding and
learning scheme with at least 51% accuracy on the original
data (not the encoded data). Then for any “nontrivial” concept
class C (e.g., sufficient to be closed under complement and to
contain at least two distinct concepts), there is an adversary
who can pick a concept ¢ +— C and two datasets Sy, S, and
distinguish their encodings with probability 1/2 + (1/n),
while the sets satisfy the following restrictions:
1) 81 ={e1}US, Sy = {ea} U S differ in one sample only.
2) All instances in S1, Sy are cleanly labeled (by c). This
includes also the differing examples ei,ez (ie., e1 =
(z1,y), €2 = (z2,y) for y = c(zx1) = c(x2)).
Limits of privacy with instance encoding. We now describe
our next result which states the limits of what instance encoding
(as a special form of general dataset encoding) can offer for

(our minimal and natural indistinguishability-based notion of)
data privacy. In this setting, we deal with a decomposable



Fig. 1: Our reconstruction attack on the InstaHide Challenge,
for 10 randomly selected images [14]. Upper row: ground
truth obtained from a cryptanalytic attack [15] on the PRNG
in InstaHide’s implementation (Appendix B). Lower row: our
reconstruction attack yields high fidelity image reconstructions.
A complete set of the 100 recovered images are in Appendix C.

encoding, which encodes instances and their labels separately.
Such decomposable encodings can cover, e.g., the mix-up
operation [13] used in InstaHide [10]. For encoding © and
instance z, we write © € E~1(Z) if x is one of the instances
that are used for generating the encoding .

In our next result we show barriers for achieving privacy
based on instance encoding, when two conditions hold: (1)
The goal of the adversary is to distinguish encodings & where
x € E~1(%) from those where ' € E~1(%) for = # 7. (2)
The learning algorithm (E, L) allows some nontrivial accuracy
on encoded strings as defined above.

Theorem 2 (Informally stated — limits of privacy based on
instance encoding). Suppose the goal is to learn instances that
are distributed according to distribution D and the concept
class is rich enough to contain m concept functions ci,. .., cm
that are each balanced under D (i.e., Pr[c;(D) =1] =1/2)
and are also independent from each other. (For example, this
would be the case when the concepts contain m orthogonal
half spaces and D is the isotropic Gaussian, all in dimension
m). Also, suppose the protocol (E,L) has encoded accuracy
1/2 + 6 for a constant § > 0 (that can depend on the locality
of E, e.g., § = 27"). Then, the adversary can distinguish the
encodings of two randomly selected instances =, ' < D with
advantage (1) (over the trivial bound of 1/2).

We also prove a variant of Theorem 2 that does not rely on the
richness of the concept class. This result states that if instance
encoding works on a single concept function ¢, then one of
the following happens: either (1) we obtain a distinguishing
attack on the instance encoding, or (2) the learning error on ¢
can be arbitrarily close to 0. This barrier applies to any setting
where classifiers on ¢ achieve accuracy bounded away (by
some constant) from 1 (e.g., image classification).

2) Concrete Attack Results.

We further demonstrate that InstaHide [10], a practical instance
encoding scheme, is not private. Figure 1 shows the result
of our attack on the InstaHide Challenge. This challenge
contains |S| = 5,000 encoded images from |:S| = 100 original
encoded images—thus, each original image has been encoded
50 different times. We are able to completely reconstruct a
nearly-identical version S given access to S.

Our attack directly leverages the fact that InstaHide encodings
are distinguishable. Given the encoded dataset, we construct a
similarity function that allows us to detect when two examples
z,y € S are derived from the same original image in S.
Theorem 2 explains why such similarity function should exist
as we can use a rich concept class to map encoding to a
embedding space and use clustering to identify encoding that
encode the same image. However our actual attack takes a
different approach and leaves the computation of this similarity
metric to a neural network. Specifically, we train a neural
network that distinguishes whether a pair of encodings share the
same input image which generalizes to unseen examples with
high accuracy. This construction already consists of a privacy
leak according to the definition in the prior section. However,
we are able to extend the attack to complete reconstruction.
Given our similarity function, we can group together multiple
encoded images T C S so that all images in the encoded subset
T correspond to the same original image. and then develop a
recovery function r so that r(T) = = € 5.

We further introduce a second attack that works in linear
time and that succeeds even when given a single encoding
of an image z;. This attack assumes knowledge of the public
images used in the InstaHide algorithm. (While we assume an
adversary would have access to the “public” images, we can
not use this attack on the InstaHide Challenge as it does not
release these images.) This attack similarly produces nearly
perfect image reconstructions when it succeeds, but does fail
with a small constant probability in our experiments.

C. Related Work

Theorem 1 can be seen as a (dimension-independent) lower
bound on the sample complexity of private PAC learning. Prior
work has studied similar lower bounds on sample complexity
of learning algorithms in various contexts. For example, the
work of [16], [17], [18] use packing arguments to give sharp
bounds for parameter/probability estimation goals, and [19]
proves lower bounds on the sample complexity of differentially
private algorithms that accurately answer large sets of counting
queries. In addition, lower bounds on the sample complexity
of differentially private (general) PAC learning were proved
in [20], [21]. It might be possible to improve Theorem 1 by
incorporating the data dimension, however not depending on
the dimension is a postive, and we emphasize that our result
comes with specific guarantees that are important: the two sets
are consistent with a concept function and have the same set
of labels. This makes our lower bound more amenable to real
world setting, where we want to distinguish two data sets with
say, the same number of cat and dog images in them.

Our attacks on data privacy of ML models are related to
“membership inference™ attacks [22], [23], [24], [25] as well
as model inversion attacks [26], [27], [28], and our attack on
InstaHide is a form of reconstruction attack [29], [30], [31],
[321, [33], [34].



ITI. PRIVACY WITH INSTANCE ENCODING: DEFINITIONS

A. Formal Definitions For Learning with Instance Encoding

Notation. Let X be an instance space and Y be a label
space. We specify a learning problem with a tuple (D,C, H)
where C C YX (resp. H C Y¥) is a class of concept (resp.
hypothesis) functions from X to Y and D is a distributions
over X.! For a concept function ¢ € C, we use D, to specify
the joint distribution of labels and instances (x,c(r))zeD
where we sample = < D first, and then label = according
to c. For a hypothesis h € H, a concept class ¢ € C and
h with respect to ¢ under the distribution D is defined as
Risk(h,c) = Py plh(z) # c(zx)].

The following definition formalizes a general notion of encod-
ing that allows instance encodings to depend on the dataset.
This, e.g., can capture encoding through data augmentation.

Definition 1 (Dataset encoding mechanism). A dataset en-
coding mechanism for a learning problem (D,C,H) is a
potentially randomized algorithm E: (X x Y)* = (X xY)*
that takes a dataset S as input and outputs an encoded dataset

S. We define two properties for such encodings:

1) Decomposablity: The encoding is decomposable if it
performs on instances and labels separately; namely, it
could be expressed using a pair of potentially randomized
algorithms Ex: X* — X* and Ey:Y* — Y* that
share randomness. To encode a labeled dataset using
such mechanism, one would apply Ex to instances to
get I1,...,Tm and Ey to labels to get 41, ...,9m and
then output {(Z1,71),- -, (Zn,Un)}- Since such dataset
encoding mechanism works on instances and labels
separately, we refer to it as instance encoding as well.

2) Locality: And encoding scheme is r-local if all T € E(S)
would depend only on the randomness of E and at most
r examples in S. If Z is an encoding that might depend
on example z, we denote it by z € E~1(Z). Additionally,
for i € [m], by E*(z1,...,2n) we denote the process
of encoding S using E and then outputting one of the
encoded examples z where z; € E~1(z) uniformly at
random. For decomposable encodings, we define notations
E%. E}, for i € [m] U {—1} similarly.

Examples. We recall three natural examples: (i) Identity
mechanism: In this case, we let E' be the identity function.
This trivial encoding mechanism fully preserves the utility
of learning on the original data set, but it does not offer
any privacy gains. (ii) Null mechanism: Here, we let E be
the constant 1 function. In this case, the encoding hides
everything about the original data, but the generated encodings
are useless for nontrivial training. (iii) Local DP mechanism:
Here, E(S) generates a deferentially private noisy version of
S. In this case, we can train using the encoded dataset with

!Since we aim to prove impossibility results, focusing on the distribution-
specific learning setting only makes our results stronger.

some possible degradation in accuracy. Note that in all these
examples, encodings can be made decomposable and 1-local

Discussion. Definition 1 captures a broad range of techniques
to achieve privacy. For example, it captures local (by choosing
r = 1) and central (by choosing r = n) encodings that
might offer respectively local or central notions of differential
(or another form of) privacy.? Importantly, this encoding
mechanism also captures InstaHide as it is allowed to be
randomized and we put no limitation on the complexity of the
encoding mechanism. Indeed, the InstaHide scheme is allowed
to use randomness and also have access to a public dataset. To
incorporate InstaHide into our setting, the encoding algorithm
could have the full public dataset hard-coded in its description
and then use randomness to sample points from that dataset.
In fact, InstaHide comes with decomposaibility and locality
properties and is a special case of our definition.

We now formalize several accuracy and privacy notions of
encoding-based learning protocols. One can define accuracy
on both encoded and original examples. Here we first define
the accuracy on the original examples.

Definition 2 (Accuracy on plain (non-encoded) data). The
protocol (E, L) is (e, d)-accurate, if for all ce C,n € N,

Pr

) _[Riskp(h, ¢) > £(n)] < 8(n).
S+ DI, S+ E(S),h+L(S)

One natural property that an instance encoding mechanism can
provide is to enable the trained model to have some (perhaps
weak) form of accuracy for predicting labels on the encoded
examples. For example, suppose we use an r-local instance
encoding mechanism, and that # is an encoded instance that
depends on r distinct training samples, one of which is z. Then
we could ask the trained model h to predict the true concept
c(z) of z when it is given the encoded sample & as input.
Indeed, we define (see Definition 3) the notion of encoded
accuracy for the model h to be the probability of satisfying
h(#) = ¢(z)) when z is a random instance and = € E'(%). Of
course this notion of accuracy may only be satisfiable in a weak
sense, as each locally encoded instance encoding = depends on
r different instances which may have different labels. However,
we argue that natural instance encoding schemes could still
allow the error to be bounded away from (and smaller than) 1/2.
For example, using a 2-local encoding on all pairs (z,z’) of
instances in a set S potentially allows getting (weak) accuracy
on encoded instances of = 0.75, because when the labels of
(z,z") are the same, the prediction of the model h on the
encoded string T could be close to 1, and in other cases it
could be close to 0.5.

Definition 3 (Accuracy on encoded instances). We say the

2A more general notion of locality refers to the setting where the data S is
partitioned into r subsets, and then each of these subsets are independently
encoded. Our 1-locality definition covers this case when each of the sets
includes one example only, but the definition could be generalized easily.



protocol (E, L) is (g, d)-accurate on encoded instances if:

Pr l Pr  [h(Z) # c(z)] > E(n)l < é(n).
_54—1): x«—D"b_l
SeE(S) - TH
heL(8) T+ Ey (x,x)

Additionally we say the protocol has balanced (e, §)-accuracy
if for all possible labels y we have

Pr
S+D7

S+ E(S)
heL(5)

Pr | [h(@) #cla)] > s(n)] < 5(n).
z:§|c(D)=y
F+EY% (z,x)

Note that if the decomposable encoding E combines inputs
with different labels, we might not expect the labeling error
€ on encoded instances to be too close to 0. Indeed, if an
encoded instance £ combines two samples of different labels,
the learned model necessarily assigns an “incorrect” label with
respect to one of the instances. Nevertheless, if the encoder
samples the r inputs to combine uniformly at random, these r
inputs will have consistent labels with probability 2"+ and
thus non-trivial accuracy is possible whenever r is constant.

B. Threat Model Formalization

We now formalize our threat model introduced in Section I-A.

Attacking in polynomial time. There is an asymmetry
between the “efficiency” requirements for algorithms that are
used frequently by hon parties in a system, versus for algorithms
that might rarely be used by malicious parties. When designing
a learning scheme, one goal is to minimize its running time as
much as possible. Even shaving a logarithmic factor might be
important when the algorithm is run frequently and on large
inputs. Attacks, on the other hand, are run rarely and in extreme
cases (possibly only once). Thus, the system designer’s goal
is to achieve security against adversaries who might spend
an unspecified, yet feasible, amount of resources. The reason
is that we do not want to base its security on the hope that
an adversary’s running time cannot be improved further in
the future. Indeed, modeling adversaries a polynomial-time
entities is commonplace in cryptography. Here we employ the
same approach for adversaries and the threat threat. Hence,
we consider an attack efficient if it runs in polynomial time.
Yet, we emphasize that our attacks do have small (absolute)
running times, even though we do not optimize them.

Distinguishing vs. reconstruction attacks. Just like in en-
cryption, our ultimate goal in private learning is to hide
examples from the parties who are not supposed to know
them. In both contexts, one can imagine weaker forms of
attackers who can only distinguish the target piece of data
(e.g., plaintext in cryptography or private data in the context of
learning) from irrelevant (e.g., random) pieces of information.
This types of attacks, e.g., are the standard attacks against
pseudorandom generators in cryptography as well as attacks
on differential privacy (e.g., membership inference attacks)
in learning. A stronger, and more devastating form of attack

consists of adversaries who completely recover the sensitive
information. E.g., one-way functions are design with respect to
such attackers (and not surprisingly inverting functions breaks
their pseudo-randomness as well). Such attacks also exist in
the context of learning and, more generally, releasing public
information about private. In this work we use both types of
distinguishing and reconstruction attacks. We prove general
barriers against distinguishing adversaries in the context of
private-learning using instance encodings, and for the concrete
case of InstaHide scheme, we present the (stronger) form of
adversaries, namely a reconstruction attack.

What does it mean to keep examples private? In full
generality, a multi-party learning protocol consists of a set of
parties P, ..., P,. Each P; has access to a dataset S; that they
use for training. We refer to the transcript of communication
between the parties as T" and the output of the protocol as M.
The parties can also have some secret randomness Ry, ..., Ry.
Within this setting, we can define two types of privacy that
are both important and complementary.

Physical privacy (MPC). In this setting, there is a set of
indices of honest parties I, that act based on the rules
of the protocol. There is a set of indices Iz, = [n] \ Ihon
that indicates the set of parties that are dishonest. The privacy
of the scheme requires that no polynomial-time adversarial
algorithm A who completely controls the parties in I4, cannot
extract any information about Sy, other that what one can
infer by only looking at the output of the protocol (which is
the final model in case of multi-party learning).

Note that in this setting, the privacy requirement does not
capture leakage from the actual outcome of the protocol.
For example, one can imagine a protocol that outputs the
training data of all the parties, while still satisfying physical
privacy trivially. Therefore, ultimately, physical privacy shall
be accompanied also by a leakage analysis of the final output.

Functional privacy. Here, again the goal of the adversary is to
infer some sensitive information about Sy, ., but mainly by
looking at the at the output M. Note that here adversary’s goal
is not to gain some extra knowledge about Sy, . beyond what
T entails, but rather to find out something about Sy, based
on M compared to when M is not known. Indeed, notions such
as differential privacy or k-anonymity are invented to allow us
quantify the functional form of privacy. To achieve functional
privacy in contexts such as searchable encryption, sometimes a
leakage function Leakage(M, Ry, , S1,, ) is defined to model
what is considered acceptable to be leaked to the adversary.

We emphasize that the above two types of privacy are
incomparable and complementary.

Can instance encoding provide physical privacy? Private
learning with 1-local instance encoding can be seen as a
protocol where each party sends only one message non-
interactively. Then, using these messages, the protocol outputs
a model M. Now, one can try to prove both physical and
functional privacy for such a protocol.



We first observe that no dataset encoding algorithm E achieves
the physical privacy required by an MPC protocol, unless the
learning task is trivial (i.e., does not depend on the data) or the
learning algorithm is run by a trusted party. This follows from a
folklore claim (proven in [35]) that it is impossible to construct
an MPC protocol where parties send only one message each—
represented by the encoded dataset sent by each of the parties.
We now give an intuition of this claim, tailored to the two-
party case of our dataset encoding framework. In the two-party
case, computation proceeds as follows: Each party encodes
its dataset S; to E(S;) and sends it to an aggregator. Next,
the aggregator performs the training directly on the encoded
datasets E(S51), E(S2), yielding the trained model h. However,
a malicious aggregator could also (i) sample a fresh dataset S7,
(i) encode it obtaining F(.S}), and (iii) use it along with E'(.S;)
to obtain another model on the underlying dataset S7 and S%.
In fact, a malicious aggregator could learn arbitrarily many
different new models on S7. While a bit innocuous looking,
such a simple attack can be quite problematic in general and is
prevented by the standard notion of physical privacy for MPC
protocols. But protocols that achieve this very strong notion of
privacy inherently require more than one round of interaction.

This means that, to analyze the privacy of an instance encoding
mechanism, we cannot follow the path of first proving physical
privacy and then analyzing functional privacy. Instead, in order
to understand the privacy of instance encoding protocols we
must analyze the leakage of each message sent by each party
individually. On the positive side, if we can show that this
leakage is small, then we do not need to worry about anything
else as this encoding is the only information that each party
reveals about their data. Also, presence of malicious parties
will not change the leakage as each party performs locally
and independent of all other parties. In the next subsection we
propose leakage measurement approaches for instance encoding
and then in the next section, we aim at understanding the
minimum possible leakage of an instance encoding based on
our proposed leakage formulation.

1) Privacy Definitions for Instance Encoding

Private learning through instance encoding. We now de-
fine a minimal privacy notion for (encoding-based) learning
protocols (E, L) for a learning problem (D, H, C) where E
is a dataset encoding scheme and L is a learning algorithm
that works on encoded datasets. The definition is of the
“cryptographic” indistinguishability flavor.

For privacy, we define two attack models both of which are
privacy notions for the encoding itself — meaning that the
privacy requires the encoding to hide the sensitive information.
If the encoding can hide the input so that it is hard to distinguish
from other inputs, or at least hard to recover, then the model
trained on encoded instances would also be private by standard
post-processing arguments. We stress that both notions below
can be studied for dataset encodings and the special case of
instance encodings (where E is an instance encoding).

Definition 4 (Instance distinguishing attacks for dataset encod-

ing mechanisms). The adversary A selects a concept function
¢, and instances {xg,T1,-..,Tn} such that c(zg) = c(zy)
and sends them to the challenger. The challenger shapes sets
S = {(zie(z;) | 2< i <m), Sy = {(z0,c(z0))} U S and
S1 = {(z1,c(z1)) }US. Then the challenger samples a random
bit b + {0, 1}, encodes Sy to get S < E(S,), and sends S
to the adversary. Given S the adversary announces its guess
b’ (about b). The advantage of the adversary (against c) is
defined as p — 1/2 where p is the probability that b=1b'.

Note that this definition captures a weaker notion compared
to differential privacy, as the sets are both consistent with the
same concept function, and even where they differ the two
points still have the same label. In fact, when we prove limits
of privacy under Definition 4, the adversary only states the
distribution of the instances in the set .S wothout picking them!

Next, we consider a slightly weaker distinguishing game for
the special case of instance encodings where the attacker is
given an encoding of just one sample. This makes the task of
distinguishing potentially easier for the attacker. This setting
is inspired by the InstaHide framework, but it is more general.

Definition 5 (Instance distinguishing attacks for instance
encoding mechanisms). This security game is defined for an
instance encoding mechanisms E = (Ex , Ey). The adversary
A selects a distribution D, a concept function ¢, and two
instances o and r1 such that c(zo) = c(x1). Then the
encoder samples S = (z3,13,...,2,) + D" ! and a bit
b « {0,1} and encodes E% (xp, T2, ...,Ty) to get i. Given
T the adversary must decide whether b = 0 or b = 1 by
outputting b'. The advantage of the adversary (against c) is
defined as p — 1/2 where p is the probability that b=1b'.

Finally, we consider a weak form of privacy that prevents an
adversary from recovering parts of an input given its encoding.

Definition 6 (Instance recovering attacks). A dataset S =
{(z1,91);---,(Zn,yn)} is encoded to (X,Y) < E(S) and
given to the adversary. The goal of the adversary is to find
a z* such that d(z*,z;) < ~, for some i € [n| under some
(context-dependent) metric d(-, -).

Distinguishing attacks are harder to defend against. In the
following section, we give a barrier against achieving privacy
against distinguishing attacks. Note that our result does not
rule out the possibility of privacy against instance-recovering
attacks. Indeed, to rule out such attacks, one has to first choose
a natural metric (e.g., based on some £, norm), which is context
dependent. In contrast, our results in Section III are general.

ITI. BARRIERS FOR PRIVACY WITH INSTANCE ENCODING

In this section, we present distinguishing attacks against
learning protocols equipped with an instance/dataset encoder.
We first prove a theorem in the most general setting. Namely,
we consider general dataset encoding mechanisms and show
the existence of dataset distinguishing attacks.



Due to space limitations, all proofs are moved to Appendix A.

Theorem 3 (Formal statement of Theorem 1). Let c; and ca
be two distinct® and non-constant concept functions for inputs
X and labels {0,1}. Let D be a distribution over X such
that Blez(D)] = 0.5 and E[cy(D)] = 0.5. If a protocol (E, L)
can achieve (0.51, §)-accuracy on plain data over both of D,,
and D1_.,, then there is an dataset distinguishing adversary
for (E, L) against either c1, 1 — ¢ or ¢y with advantage at
least (0.99 — 24(n))/3n (according to Definition 4), where n
is the size of the dataset. Moreover, the running time of this
adversary is essentially the running time of L.

Discussion. Theorem 3 gives a distinguishing attack of
advantage €2(1/n). Since the two datasets used by the adversary
in the proof are neighbors (i.e., differ in one point), this
also implies a lower bound on the sample complexity of
differentially private learners (based on the level ¢ of differential
privacy). This result further shows that none of the restrictions
on the adversary (as stated in Theorem 3) can limit the
adversary’s distinguishing advantage (or the corresponding
€ in a candidate differentially private scheme) to o(1/n). In
fact, the proof of Theorem 3 shows something stronger: the
adversary will not pick the core set .S that is shared between
Sp, S1, but rather that set is sampled from a distribution chosen
by the adversary. Finally, we note that the complexity of the
concept functions in Theorem 3 cannot be reduced to having
only one concept function. That is because, if C = {c}, the
learner can basically ignore the data and just output a canonical
representation of ¢, leading to a perfectly private scheme.

The impossibility result above does not consider the scenario
where the encoding mechanism can get some auxiliary infor-
mation about the concept function. Specifically, we assume
that the only information that the encoder obtains from the
underlying concept is through the dataset. In fact, if the concept
function ¢ was directly known to the encoding mechanism, it
could simply output a description of ¢ and hide the input data.

Next, we consider the setting of local instance encodings that
are applied independently to each training sample (i.e., a 1-
local encoding). Our first result applies to learning tasks with
a rich class of concepts, as formalized hereafter.

Definition 7 (Rich concept class). For concept class C and
given parameters m € N,y € RY, we say that the concept
class C is (m,~)-rich with respect to distribution D, if there
exists a vector F = (c1,...,cm), ¢; € C with the following
property: For any configuration f € {0,1}/F!

|F(z) — f|

P <L 7 <1 >099
oD [”’— 7] ] =

It is easy to see if that if the concepts c1,...,cm € D are
all balanced and orthogonal (the probability of every output
f €40,1}™ to be produced by them over a random z < D is
2—™), then by standard Chernoff-type arguments, the (m,y)-

3By distinct we mean c2 is not identical to ¢1 or 1 — 1.

richness property holds for any constant v > 0 and sufficiently
large m. (The balanced and orthogonal setting was used as a
special case when stating Theorem 4 informally in Section I-B).
We now state the formal version of our result.

Theorem 4 (Formal statement of Theorem 2: Barrier for
privacy with instance encoding on a rich concept class).
Consider a learning problem (D, C, H) where C, H C {0, l}x
and where C' is (m,~y)-rich according to Definition 7. If a
learning protocol with encoding (E, L) has encoded accuracy
(e,8) on this problem. Then, for any ¢ € C there is an
instance distinguishing attack (according to Definition 5)
ALCLEC)FC)D that has oracle access to E(-), L,F and
a sampler for D and gets advantage 0.99 — @ against
E according to Definition 5. The expected running time of
this adversary is O(15q,y)- Moreover, the attacker’s samples
(zg,x1) are sampled jointly from the same distribution D
conditioned on labels being the same.

Discussion. The idea behind the proof of Theorem 4 is that
if the learned model has non-trivial encoded accuracy (i.e., we
can predict the label of an instance from its encoding), then this
leakage already implies a (possibly weak) distinguishing attack
between encodings. To amplify the attack’s distinguishing
power, we leverage the fact that we can learn multiple concept
functions from the class C using the same encodings.

Theorem 4 shows a barrier against achieving both indistin-
guishability privacy and encoding accuracy on a rich class of
concept functions. Theorem 5 below shows a barrier for the
orthogonal case where the encoding can depend on the concept
function itself (e.g., if there is just one concept to learn). In
particular, for the following theorem, we do not require the
protocol to work for multiple concept functions and it can be
tailored to a specific concept function. The same argument we
use to prove Theorem 4 above will not work anymore, as the
protocol might use an entirely different encoding for different
tasks and a classifier trained for one task will not be a good
distinguisher for the encodings of other tasks.

Note that, in the extreme case, the encoding could completely
depend on the concept function ¢ € C'. For example, imagine an
encoding algorithm that maps each instance to its correct label.
This encoding is perfectly secure against the distinguishing
attacks of Definition 5. This encoding can also achieve 100%
accuracy if an identity classifier is applied to it. Therefore,
there is no privacy versus accuracy trade-off for this case.
However, we can still prove some barriers against privacy if
we assume that learning a perfectly correct classifier is hard.
Bellow, we show that if an encoding achieves both reasonable
privacy and accuracy, then it is possible to efficiently extract
an almost-perfect classifier from it.

Theorem 5 (Barriers for privacy with instance encoding on
a single concept). Consider a learning problem (D,C,H)
where H,C C {0,1}. Also assume that for a concept c € C,
Pr[c(D) = 1] = 0.5. Consider an efficient learning protocol
with decomposable instance encoding (E, L) that has balanced



(e, 8) accuracy on encoding for c and according to distribution
D. Then, for any T € [0,1], one of the following is correct:

o Lack of privacy: There is an efficient attack with oracle
access to L,E and D, that runs in expected time
O(™/s(m) +™/+*) and has average advantage (according
to Definition 5) at least % — €(m) — 7 in winning in the
instance distinguishing game (Definition 5).

o Very high accuracy: There is an efficient learning protocol
(L', E') that learns this problem (privately) using m
samples and outputs a classifier h' (with running time
O(m/73)) that has accuracy at least 1 — .

This theorem shows that if an encoding function makes all
examples of a class indistinguishable from each other, then that
encoding must contain almost all the information that a perfect
classifier has (and this information can be extracted efficiently).
This shows a barrier against privately learning tasks that have
a lower bound on their sample complexity. For example, if we
know that a problem (D, H, C) is not learnable with accuracy
more that 95%, then it is not possible to learn it privately with
accuracy more than around 50% on the encoded data.

IV. AN ATTACK ON INSTAHIDE

The above formal analysis applies to any encoding-based
scheme. To make our analysis concrete, we now introduce
a reconstruction attack on InstaHide [10], an instance-encoding
scheme published at ICML 2020 and awarded the 2nd place
2020 Bell Labs Prize. Given access to a set of encoded images,
this attack recovers the original images that were used to
generate the encoding.

A. Background

InstaHide proceeds as follows. First, gather a large public
dataset p € P, e.g., of arbitrary images from the Internet.
Then, generate the encoded dataset (e, z) € E (representing
encoded images e with encoded labels z) by assigning

E «+ {(XME::B({IE':I_?}JP: )‘)JYMix(yi:yj:)\)
: ((Iﬁyi): (Ijuyj)) € X:p C P:! |p| =k— 2}

The core algorithms in InstaHide, X Miz and Y Mix, are
defined as follows.

2 k
XMiz(z,p,A\) =0co (Z Tihi + Zpi_g,\i)
i=1 i=3
with A chosen uniformly at random such that >, A; = 1; the
mask o chosen uniformly at random from o € {—1,1}9, and
where a o b denotes element-wise multiplication. The function
Y Miz is much simpler and given by

YMéI(yi: Yis )\) = yi)\]. + yj')\'z

with addition taken component-wise across one-hot labels. The
size of the encoded dataset is determined by the encoding
multiple N = |E|/|X]|, with each instance being encoded N

R E
Cluster 5 [ ' . ! .] Recover
similar n E H E originals
i

Fig. 2: Our attack process on InstaHide encodings. Given the
encoded dataset, we cluster together images generated from the
same original source image and then from these sets “decrypt”
them to the original sources.
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times. In practice, this multiple is equal to the number of
training epochs (e.g., 50 or 100). The authors argue InstaHide
is secure for k > 4, with the strongest version at k =6 (e.g.,
the InstaHide Challenge released by the authors uses k = 6).

We make use of some additional notation. Let ¢ : E —
(JX| x | X|) represent the mapping from the encoded images
to original private images. By ¢(e;) = (j,k) we mean that
encoded image e; is built out of the original images x; and
. Similarly, let ¢~ be the inverse so that ¢! : X — 2/l
for example ¢ € ¢~'(z;) and i € ¢~(z;). Note that while ¢
maps one = € X to exactly two ey, e € E, the inverse ¢!
maps one = € X to approximately 2N encoded images e € E.

B. Antack Overview

We break InstaHide’s privacy through an attack that consists
of three stages:

1) Remove instance hiding: Replace the encoded dataset by
E + {abs(e) : e€ E}

which nullifies the sign flipping step in X Miz.

2) Cluster encoded dataset: Given these absolute-value
images, we recover the mapping ¢ that determines which
original images were used to generate each encoded image.
We achieve this by training a neural network to detect when
two encodings were generated from the same original image.
This lets us build a graph of pairwise similarity between
encodings, from which we can extract one clique per
original image with the vertices in this clique corresponding
to the encodings generated from that original image.

3) Recover original images: Then, given the encoded images

and the mapping ¢, we recover (an approximation of) the
original labeled images X.
This step involves solving an under-determined (nonlinear)
system of equations via gradient descent. Because the
system is under-determined, it is provably impossible to
recover the original images pixel-perfect, however this does
not prevent reconstructions that have high similarity to the
original images both qualitatively and quantitatively.

We release the source code of our attack as a utility that can be
used to break the privacy of arbitrary InstaHide encoded images.



As we will show, our attack is hyperparameter free (except for
the sizes of the images) and the one configuration we release
breaks the privacy of InstaHide on CIFAR-10, CIFAR-100, and
the InstaHide challenge [14].

C. Clustering

The purpose of the clustering stage is to recover ¢, the function
that maps original source images to encoded images. Because
each encoded image has two original images that were used
to generate it, our goal is to recover |X| sets S; of encoded
images, where each set has size about |S5;| =~ 2N. At the end of
this step, we will know which encoded images were generated
using each original image ;.

This stage follows five steps.

1) Create a pairwise similarity function sim(e;, e;) — [0, 1]
so that sim is high if e; and e; share at least one source
image and low otherwise.

2) Construct the complete weighted similarity graph G that
represents the all-pairs similarity.

3) Find sets {Sj}“!ril by finding densely connected cliques.

4) Construct a new bipartite graph that maps the similarity
between each encoded e; and the nearest set Sj.

5) Assign each encoded image e; to two sets S, and assign
each set |N| encoded images, minimizing total cost.

1) Learning a Similarity Function

Our first step of the attack constructs a similarity function sim
that determines if two images e; and e; were generated using

at least one shared original image.
Inputs: The public dataset P.

Outputs: The function sim, so that sim(e;, e;) is (usually)
1if ¢(e;) N @(e;) # @ and O otherwise.

Method: We train a neural network to approximate this
similarity function sim. We create a large training dataset

with examples of pairs of images encoded together and not.

This neural network receives the two inputs e; and e; stacked
on the channel dimension (so, concretely, for 32 x 32 x 3 color
images the input to the neural network is 32 x 32 x 6). The
neural network outputs a single scalar y € R and we assign
a standard sigmoid loss so that y > 0 when the two images
share an original image and y < 0 otherwise.

We train a single neural network to be used for all attacks in
this paper. We use a Wide ResNet-28 trained with Adam with
a learning rate of 0.1 and a weight decay factor of 5-10—4
for 10° steps. We use a 32x32 downsampling of ImageNet as
the public dataset following the process described in [10], and
the CIFAR-10, CIFAR-100, and STL-10 training images as the
private images. We augment the training process with standard
flips and shifts. The final trained model reaches 91% accuracy
on a held-out validation set.

2) Constructing the Similarity Graph

Inputs: The encoded images F, and the similarity function
sim from the prior subsection.

Outputs: A complete weighted similarity graph G that has
an edge between each encoded image e; and e; with weight
equal to sim(e;, e;).

Method: This step is trivial. We evaluate the neural network
on all | E|? pairs of images. For modestly sized encoded datasets
this process is efficient, for example on the 5,000 image contest
dataset this step finishes in 10 minutes.

3) Identifying Densely Connected Cliques

Inputs: The weighted graph G from the prior subsection.

Outputs: A coloring of the vertices into | X'| non-overlapping

subsets & = {S(‘)}Lﬂ that approximately maximizes

Z Z weight(e;, ;).

SeSe;€8,e;€8
In an ideal reconstruction, we would have that
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#0) = o

That is, each subset contains encodings that share exactly one
source image (the representative of this subset). Moreover, no
two subsets have the same representative.

Method: The purpose of this algorithm is to create |X|
clusters, one for each original image in the dataset. Note that
each encoded image is actually created from 2 different original
images; however, for now, we will simply assign each encoded
image to just one original image. That allows this step to be
a simpler problem of “coloring” this graph with |X| different
colors minimizing cost.

We develop a greedy algorithm to approximately solve this
problem. The core of our algorithm is a recursive loop that
iteratively selects the next best encoded image to add to an
existing set using the update rule

insert(S) =5U { arg max Z weight(e, u)}.
ecE

ueS®

That is, we greedily add the closest example that has the highest
weight when considering those examples that are already in
the set. Then we define

create(S, M) = insert(insert(. .. (insert(S))...)

-~
repeated M times

This lets us compute the sets 7" = create({e; }, M) for each
encoding e; € E. To choose the integer M we select a constant
M < N/2 (we found that setting M = N /4 works in practice).
At this point, we should expect that there are |X| distinct sets

among the collection of sets {T(‘)}L‘Ell.



Justification: If each step up until this point was perfect (i.e.,
if the similarity neural network returned 1 if and only if two
encoded images were generated from the same source image)
then with probability almost 1 we would expect exactly |X|
distinct sets: one for each original image. That is, formally,
we can inductively prove that |(),cr ¢(s)| > 0 (and with
overwhelming probability this intersection contains exactly
one element). To see that this is the case, when we start with
a set containing a single element {e;} and call {e;,e;}
insert({e;}) we are guaranteed to have that e; and e; share
at least one original image z (formally, |¢(e;) N @(e;)| > 0).
With probability ﬁ we should expect |¢p(e;) N@(ej)| =1
because each encoded image is constructed by pairing together
two original images at random, and so the probability that two
encoded images share both original images given that at least
one is identical is ]%[ The inductive case is identical.

Importantly, if ¢(e;) = (zq,xzp), then both of the original
images z, and z; have equal probability of also being part of
some other encoding e;. Thus, consider each encoded image
e that is generated using the image . The probability that

né¢ |J AKE)

e€p—1(xy) \ xEcreate(e)

is exactly 1/2V, as this happens only if each call to create(e)
creates a set based around the other private image used to
generate that encoding e. Thus, with N = 100 as we have in
our experiments, we can discount this ever happening. This
allows us to conclude that we will have | X| sets.

Unfortunately the prior steps are not perfect. As a result, it
is possible to have ¢ < [T() NTW)| < N for € an integer
greater than zero. We can still solve this problem approximately,
however. Given the |E| sets, we want to cluster them into | X|
clusters-of-sets where we maximize the similarity of the sets in
individual clusters. To do this, we perform k-means clustering
on these sets (with & = | X|), where the distance between sets
is defined as d(s,t) = |§8:I We run this to cluster the sets
into | X| different clusters and then choose one representative
(arbitrarily) from each cluster to form the sets S().

4) Computing Similarity Between Encodings and Cliques

Inputs: The encoded images E, the | X| (near-)cliques S.

Outputs: A new graph G’ that computes the distance from
any encoded image e € E to each of the other sets S.

Method: The simplest strategy just computes the average
> veg Weight(e, v) for each S € S.

We can do better, though. This similarity graph was constructed
with a neural network that receives two encoded images and
tests whether they share an original image. Our problem is now
easier: we have |S(!)| encoded images, all of which (probably)
belong to the same original image z, and we want to test if an
encoded image e also belongs to the same original image z.

We thus train a new similarity neural network to return 1 if
an encoded image e shares the same original image as a set

of examples {e1, €z, €3, - .. }. We find experimentally that we
reach diminishing returns once we provide the neural network
with more than 4 examples. This new task is easier for the
network to solve. By having 4 examples of what the original
image looks like, it is easier for the model to learn to predict
if a 5th image uses a similar base image. In practice, this new
neural network increases the prediction accuracy from 91% to
96% (reducing the error rate by a factor of 2).

To construct the similarity graph G’ we choose four images
in each set S’ at random. Then, we compute the distance from
each e € F to the four representatives from each set, giving us
a bipartite graph connecting the |X| sets to the |E| examples.

D. Assigning an Encoded Image to an Original Image

Inputs: The new similarity graph G'.

Outputs:
images. Ideally, we will have that ¢’

A mapping ¢’ that maps encoded images to original
0.

Method: We can solve the final assignment problem with a
single call to min cost max flow [36]. We construct a source
node with a supply of 2|X|, and a sink node with a supply
of —2|X|. Then, we connect the source to each set S with
capacity |N|, each set S to each example e; with capacity 1,
and each example e to the sink with capacity 2. The min cost
max flow assignment will therefore assign each example e; to
exactly two sets S, and assign each set to exactly |NV| distinct
examples e;, exactly satisfying the constraints specified for ¢.
This gives us the mapping function ¢’.

The fact that each encoded image correspond to exactly two
original images, and each set contains exactly N encoded
images, is built into the design of the InstaHide algorithm:
instead of randomly choosing two images to pair together to
form each encoded image, InstaHide generates two random
permutations of the original images p(*), p(2) and then pairs
together the elements in this sequence, so e; is generated from
pgl) and pgz)ﬂ through to ex generated from phi) and pg). A
new permutation is then generated, and the process repeats.

If InstaHide instead randomly selected sets of size approxi-
mately (but not exactly) | V| our attacks would remain effective;
it would require a slightly modified scheme but preliminary
experiments suggest that attack success rate remains unchanged.

E. Recovery of the Original Images

Given the resulting images pairings ¢’, we must now reconstruct
the actual values of the original images.

1) A Simple Proof of Concept

At this stage, we can gather all encoded images {e,,} that
include the same original image = by inverting the recovered
mapping ¢'. Then, by computing the pixel-wise mean after
taking the absolute value ©; = mean,c () abs(e) we obtain an
approximation of the absolute value of the original images.

Why does this work? By taking the absolute value, we remove
the pixel-flipping information-hiding induced by multiplication



with o. Then, by taking the pixel-wise mean we “average out”
the noise from all of the other images that are mixed up with
this one image, which gives us just the signal.

This recovers visually recognizable images, but (a) we have lost
the sign information, and more importantly (b) we introduce a
large amount of visual noise to the resulting images.

2) Recovering the Mix-Up Values A

In order to do better, we will first need to recover not only o
but also the mix-up values of A used. Fortunately, this step is
(almost) trivial. The unordered values of A are provided to the
adversary by the InstaHide algorithm in the form of the labels
z—each label in InstaHide is also mixed up directly.

As a result, we can (almost directly) read off the coefficients
of A with one exception: if InstaHide mixes up two images
of the same class, then we obtain a single label with value
[ = A; + ;. Because it is impossible to disentangle these
values, we simply guess A\; = \; =1/2.

3) Recovering Original Images Assuming no Sign Flipping

Given this additional information of A we show how to improve
the recovery of the original images. To simplify exposition,
we begin by assuming that InstaHide does not perform any
pixel-flipping by multiplying images with {—1,1}4.

Inputs: The encoded images E (without pixel flipping), the
mapping ¢’, and the values of A.

Outputs: The (near) original images X.

Method: This attack is straightforward least squares. Let A
be a |X| x d unknown matrix (if solved for correctly, with
rows corresponding to images z). Let B be a |E| x d known
matrix with rows corresponding to images e.

T

B=[e e es

Then finally let let M be a sparse |E| x | X | dimensional matrix
that is zero almost everywhere except when ¢(z) = (7, k) where

Mi,j = )\gi,]_ and M‘j‘lk = )\gi,z.

Therefore if A was correct then we would have that
M-A=B+o.

where o is the noise component for the public images (factored
out). Therefore we can “just” solve for the equation

A=M'B+o)=M'B+M'ox~M'-B

assuming that ¢ is distributed normally. The reason this holds
true is that if ¢ is symmetric about zero, then the expected
mean value of M 1o = 0.

Put differently, what we’re effectively doing is minimizing the
“unexplained variance” by minimizing

ar g min ||B— M - A3
A:E[_111]|X|xd

(1

because the true solution to this equation would give
IB—M - A3 = (M- A+0)—M-Alz = |lo]|3.

and so this approach is well justified as long as minimizing o2

is the correct objective—and it is for isotropic Gaussian noise.

4) Recovering Original Images on Full InstaHide

It is more difficult to solve the above equation if we mask
the images by multiplying with a random {—1,1}¢ vector.
However, we can still rely on the same intuition as before.

Solving Equation 1 is the same as solving the formulation

arg min  ||o||3 (2)
A:El_l‘ll]lxlxd

such that M - A’ + o0 = B.

This modified formulation is identical, but while Equation 1
will not generalize to the full InstaHide Equation 2 will. To
do this, we modify the minimization to instead solve

arg min

o3
Arg[—1,1]1XIxd
such that M - abs(A’) + o = abs(B)

3)

where abs is taken component-wise on the matrix.

We search for A’ via gradient descent. Given an attempted
solution A’ we can use the constraint M -abs(A’)+o = abs(B)
to solve for ¢, which then lets us compute the objective
|le||3. There is one complication here: given a matrix A’,
there are multiple values o which satisfy the above constraint.
Fortunately, because we know that it is our objective to
minimize ||o||? we can greedily choose each entry o;; as
the smaller of the two candidates. Along with being much
more computationally efficient, this approach has the benefit
that we can solve the £5 norm minimization as well.

E Adjusting Color Saturation Levels

Given the recovered original images, we repair their saturation
levels to better reflect the distribution of natural images.

Inputs: The reconstructed images X.

Outputs: The color-adjusted images X fized.

Method: We find that while the reconstructions are of high
quality, saturation curves are misaligned between the original
and the reconstructed inputs. Manual adjustment of these curves
is effective, but we can develop an automated approach.

We train a tiny (73 total parameter) neural network for this task.
The network receives as input a single pixel (3 RGB colors),
has a 10-neuron hidden state, and then outputs a single pixel
with the new color values. To train this model, we create a
new challenge using our own images, run the full attack up to
this point, and record the reconstructed images along with the
original images. Then, we create a training dataset mapping the
reconstructed pixel values onto the original pixel values. We
train this model for one epoch on 100,000 training examples,
and then apply it on the final images for each of our attacks.
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Fig. 3: Our reconstruction attack on InstaHide evaluated on
CIFAR-10 (a) and CIFAR-100 (b). The top row of each

subfigure contains 10 original images that were encoded, and
the bottom row our reconstruction of that image.

G. Results

We evaluate our attack on the two datasets considered in the
original paper: CIFAR-10 and CIFAR-100. We further evaluate
our attack on an unknown dataset challenge released by the
authors consisting of 5,000 encoded images from an unknown
distribution generated from 100 original source images.

Because our attack is hyperparameter free and independent
of any particular dataset (as long as the images are the same
size—fortunately, all datasets considered are 32 x 32) we do
not need to change any details to perform the attack below.

We implement our attacks in JAX [37], a numerically acceler-
ated version of NumPy with built in automatic differentiation.
We train our neural networks using Objax.’*.

1) CIFAR-10 and CIFAR-100 Results

Constructing the encoded dataset. We construct our own
dataset by using the authors existing open source code.’

We take the first 100 images in the test set, and then encode
this to a dataset of 5,000 total encoded images using the k = 6
InstaHide scheme described above.

Our attack is extremely effective across both of these datasets.
Figure 3 shows the first 10 images of the 100 total images in
the dataset. The full 100 examples are given in Appendix C.

Our attack is computationally efficient. Computing the initial
all-pairs distance takes two hours on one GPU, finding the | X|
cliques takes 2 CPU-hours, computing the | X | x |E| all-pairs
graph takes 19 minutes, and the final recovery step takes 1
minute. In total, the attack took 2 GPU hours and 2 CPU hours.

2) InstaHide Challenge Results

The InstaHide Challenge [14] was released by the InstaHide
authors as a public challenge to break InstaHide. The authors
use the strongest version of InstaHide and release 5,000
encoded images corresponding to 100 private images. Because
only the encoded images are released, we do not have ground

“https://github.com/google/objax
Shitps://github.com/Hazelsuko07/InstaHide
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Fig. 4: Reconstruction attack on InstaHide evaluated on CIFAR-
10 with a single encoding per private image. Our attack first
trains a GAN to invert (i.e., “re-color”) the absolute value of
the mixed image (top). When the re-coloring succeeds, the
private image is extracted near-perfectly by subtracting the

public images with highest similarity to the mixture (bottom).

"

€V

truth available and so can not visually compare our results with
the actual images. Our attack takes under an hour to complete.

Figure 1 shows ten of the original images that we recovered.
The complete 100 recovered images are given in Appendix C.

H. Analysis of InstaHide’s Security Parameters

The above reconstruction attack is fully general and breaks
InstaHide under the defense settings described by the authors
and the released InstaHide challenge. However, InstaHide has
two “security parameters” that are claimed to increase the
security if set appropriately. Specifically,

« The total number of released images |E| as controlled by
the number of times the dataset is replicated N. A larger
N is necessary for accurate models (e.g., the InstaHide
challenge sets N = 50, but the security is claimed to
increase with saller V.

The MixUp-k value controls the number (k) of original
images used to form a single encoded image. The authors
show that increasing k decreases accuracy, but claim that
increasing k improves security.

We now introduce two attacks that show neither of these
security parameters significantly increase the actual security of
InstaHide. Even if & > 100, InstaHide remains broken under
the same attack as above, and a new attack we develop can
break InstaHide when N =1 epoch of data is released.

1) Attacking InstaHide With a Single Encoding

Two core components of our attack on InstaHide, the clustering
step and final image recovery step, exploit the fact that we have
access to multiple random encodings of every private image.
We now propose an alternative attack strategy that recovers
private data given a single encoding of each image.

To achieve this stronger form of attack, we consider a stronger
adversary (which lies within InstaHide’s threat model). First,
we assume that the adversary has knowledge of the distributions
of the private data X and public data P. With this knowledge
alone, our attack succeeds in recovering the mask o, thereby
leaking visually-identifiable content of mixed images. Second,
to recover mixed images from a single encoding, we further
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assume that the adversary has full knowledge of the public
dataset P. While this latter assumption is strong, the success of
our attack illustrates that if InstaHide is to provide any security
even when releasing a single encoding, then this security must
partially rely on the secrecy of the “public” mixing data P.

Our attack proceeds in two steps (with details deferred to
below). First, we train a Generative Adversarial Network [38]
to learn to “re-colorize” [39] encoded images. That is, we learn
the mapping abs(z) + = where z is a mixture of k images.
Learning this mapping requires some prior on the distribution
of private data X and mixing images P. Then, we simply
compute the image similarity of the mixed image with all
public images and recover the mixed public images via this
simple process (the complexity of this step is linear in |P|).

Evaluation. We evaluate this attack on CIFAR-10 for an
InstaHide scheme with k& = 4. Since a single encoding is
released per private image, we mix each private image (from
the first 100 examples in the CIFAR-10 test set), with 3 images
from a public set P containing the remaining 9,900 test samples.
The outputs of our two-stage attack are shown in Figure 4.

We first train a GAN to learn the mapping abs(x) — x where
x is a mixture of k& = 4 images from the CIFAR-10 training
set. Our approach borrows from the use of GANs to colorize
grayscale images.® Given the absolute value of a mixed image
abs(zx), the generator is trained to output a mask & € [—1, 1]
so that abs(x) o & is indistinguishable (to the discriminator)
from unmasked mixed images. In a majority of cases, the GAN
re-coloring successfully recovers most of the random mask o.

In the second step, given a re-colored mixed image =, we
iterate over the public dataset P and compute, for each public
image p, the Structural Similarity Index, SSIM(z, p) [40]. We
select the public image with highest similarity, subtract it from
the mixture (we simply “guess” that the mixing weight is
A= %), and recurse. That is, we recompute the structural
similarity with the remaining public images and repeat until
we have subtracted 3 public images. This step could potentially
be improved by learning a similarity function, as we did in
Section IV-C for our attack on the InstaHide challenge.

The success of the second step is contingent on the first. Given
an accurate re-colorization, subtracting the public images with
highest similarity to the mixture recovers a near-perfect copy
of the private image. For the 100 encodings we generated, our
attack recovers the 3 public mixing images in 69% of cases,
and at least 2/3 in 85% of cases.

2) Attacking InstaHide with a Larger MixUp-k

Recall that the parameter k in InstaHide controls the number
of total images mixed to form one encoded image. The authors
argue that larger values of k result in stronger versions of
the scheme. Specifically the authors claim breaking InstaHide
requires O(|P|*) work. Our attack above breaks InstaHide for
the setting £ = 6, however as this is a security parameter it

Shttps://github.com/karoly-har/ GAN_image_colorizing.

is reasonable to ask if larger values of k£ would prevent our
proposed attack.

We find it would not. Surprisingly, we find that as k gets larger
our reconstruction attack becomes better. In Equation 2 we
treat the noise o, which is only present because of the public
images, as pointwise Gaussian noise. When & = 6 this is
already an acceptable approximation and the attack succeeds.
But as k£ grows larger, this approximation gets better and better.
In fact, for £ — oo we should expect that the average over all
public images will result in no noise.

V. CONCLUSION

Training neural networks while preserving data privacy is of
clear importance in many settings [22], [41]. In principle,
training models with provable privacy guarantees is possible:
secure multiparty computation [42], [4], [43] or fully homomor-
phic encryption [44], [45] can provide provable cryptographic
guarantees on the confidentiality of user data during training,
and differential privacy [46], [47], [9] can bound the statistical
leakage of training data for the final model.

As these provable guarantees can come at a high cost in
performance and accuracy, recent work has proposed alternative
instance-encoding schemes that aim to offer strong privacy
guarantees with little overhead. Instantiations of these proposals,
such as InstaHide [10], often lack rigorous notions of privacy
and rely on ad-hoc security arguments.

We have formalized natural (cryptographic) privacy notions for
instance encoding schemes, and have proven strong barriers
against achieving these. Specifically, we have shown that any
encoding scheme that allows for training accurate models
cannot provide similar indistinguishability guarantees as MPC.

We have thus further asked whether existing instance-encoding
schemes satisfy weaker privacy notions, in particular a very
weak notion of security against reconstruction attacks. We have
shown successful reconstruction attacks on InstaHide [10],
and in particular we have succeeded in fully breaking the
challenge posted by the authors. Our attacks directly contradict
the heuristic privacy arguments that underlie the InstaHide
construction. As similar constructions underlie other recent
proposals for private training [11] and inference [48], these
heuristic schemes can likely be defeated by similar attacks.

The goal of privately training neural networks without sacrific-
ing performance is notable, and we hope it will be achievable
in the future. Yet, to enable meaningful progress, proposed
schemes should strive to provide precise and falsifiable privacy
claims, in place of ad-hoc security arguments.
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APPENDIX A
PROOFS

A. Proof of Theorem 3

Proof. We first show that the encodings of datasets sampled
from D., and D;_., are distinguishable with advantage 0.99—
26(n), by a distinguishing algorithm g. The algorithm ¢ gets
S which is either the encoding of a dataset sampled from D,
or D;_.,. Then it trains a model h by applying L on S. Then
it queries the model h on the test set on 1000 samples from
D.,. Since the training accuracy of h should be better than
0.51 with respect to either ¢; or 1 — ¢; with probability at
least 1 —§(n), the algorithm ¢ can distinguish the two cases by
looking at the predictions of the trained model on the examples
In particular, if the predictions were mostly agreeing with ¢;
the adversary outputs 1 otherwise it outputs 0. Specifically,
conditioned on the model trained being 0.51 correct on both
datasets sampled from ¢; and ¢3, the algorithm would be able
to distinguish correctly with probability at least 0.99 using a
Chernoff bound. Then applying a union bound we can bound
the success of the algorithm by 0.99 — 24(n).

| Prlg(E(DZ,)) = 1] — Prlg(E(DT_.,)) = 1]| > 0.99 — 24(n) (4)

So far, we have shown that an algorithm can distinguish
between the encoding of D and DT_, . But note that we still
do not have a real attack as the datasets sampled from these
distributions are not labeled according to the same concept
function. In the rest of the proof we see how we can use
Inequality 4 to prove that there are at least two distributions
that are labeled according to the same concept function and
that their encodings are still distinguishable.

To prove this, we use three hybrid arguments. We construct two
distributions D, and Dy as follows. Let D, be a distribution
consisting of two parts Dy = %Dal + %Daz where

Da, = (D,0) | e1(D) = c3(D) =0
Do, = (D,1) | e1(D) = ca(D) =1.

We also construct Dy = 1D, + 2D, such that

Dy, = (D,0) | c1(D) =1Aca(D) =0
Dy, = (D,1) | c1(D) =0Acy(D)=1.

Note that D, is constructed in a way that its labels are
consistent with both ¢; and ¢y, while Dy is constructed in
a way that its labels are consistent with both ¢ and 1 — ¢;

Now consider an adversary A., that wants to distinguish
between encodings of datasets sampled from D., and D,,
using the algorithm ¢ described above. We define:

Adv(A.,,n) = |Prlg(E(Dy)) = 1] - Pr[g(E(DZ,)) = 1]| (5)

Consider an adversary A, that tries to distinguish encodings of
two distribution Dy, and D, using the algorithm ¢q. We define:

Adv(Ac,,n) = |Prlg(E(Dy)) = 1] — Prlg(E(Dy)) = 1]| (6)

Similarly, we define A;_., and its advantage as follows:

Adv(A1—,,n) = | Prlg(E(Dp)) = 1] - Prlg(E(Df_,,)) =1]| (7)

Putting these together, applying triangle inequality on Equations
(5),(6) and (7) we have:

Adv(A., ,n) + Adv(A,,,n) + Adv(A4;_,.n)
> | Prlg(E(D},)) = 1] - Prlg(E(DY_.,)) = 1]|
> 0.99 — 24. (By Inequality (4))

Therefore by an averaging argument at least one of the
advantages must be at least 0.99-24(n)/3,

Without loss of generality, assume Adv(A,,) > 0.99-26(n)/3,
Now consider a series of n + 1 distributions Ty, ..., T, where
Ty =D, and T, = D, and for 1 < ¢ < n we have T; =
% - Dy + (ﬂ';i) D, . Using n hybrid arguments we can show
that there exist 7 € n such that ¢ would be able to distinguish
the encoding of one T; from T; ;. Namely,

0.99 — 24(n)
3 .
Now, we construct the adversary that proves the theorem.
Adversary A tries to break ¢; and outputs T; as the distribution
of samples. Then, for the two challenge points, the adversary
sample (xo, yo) and (x1,y1) jointly by first selecting a random

bit b for the label and setting yp = y1 = b and then sampling
(zg,z1) from (Dlc (D) = b, D|eg(D) =bAc (D) =b).

This way of sampling ensures that the label of the two challenge
samples are labeled the same according to ¢;. O

| Prlg(B(T})) = 1] - Prla(B(T]y)) = 1]| 2

B. Proof of Theorem 4

Proof. The adversary first learns a vector of classifiers G =
(h1,...,hm) where each h; is trained by sampling n examples
from D and labeling them according to ¢;. The adversary
would make sure that each h; has encoded accuracy at least
1 — e(n) by repeating the process an expected Wl(ﬂ) number
of times. Therefore the expected running time of acquiring



such classifiers is O(m - n/(1 — é(n)). Now by linearity of
expectation we have

Therefore, using the Markov inequality, for any 7 > 0 we have

[IF (z) — G(2)|

||
Which means if we set 7 = — e(n) we get

[IF(I) -

G(2)| ] e(n)
< >1———.
L B
On the other hand, by the (m,~y)-richness, for any Z we have
[IF(I ) —G@I

|F|
Now for generating the distinguishing samples the adversary
A samples two points (zg, 1) jointly from D conditioned on
both of them having the same label according to c¢. And then
when distinguishing, it decides based on |F(xp) — G(z)|. If
|F(zo)—G(x)| > - output 1 otherwise output 0. The advantage
of this adversary is equal to

!

[IF(I{)) — G(@)|
Pr > 7] 2

|E|
(z0,21)«D? |:

x+D" 1
This finishes the proof.

|F'(z) - G(2)|

E
||

D
x+ D"t
F+EX (z,x)

] < €(n).

T

Pr e’

< e(n) —|—’r] >

x+Dprt
F4+EY (z,x)

Pr

x4+ D1
FE¥ (z,x)

Pr

'+ D

7] > 0.99.

Pr
(zo,21)+D?
x+ D"
E4+EX (zo,x)

>

|F(z0) — G(2)]
||

e EX (z1.X)

C. Proof of Theorem 5

Proof. In the proof of the theorem, we leverage a learning
algorithm L' defined as follows:

« Training: Given a dataset S, train a model & < L(E(S)).

« Inference: output a model k' that given an instance x,
constructs multiple encodings e1,...,ex using = and
then returns the majority vote over all of them h'(z) =

maj{h(e1),...,h(ex)}

Having defined this algorithm, we continue designing the attack.
The attack algorithm is as follows:

1) The adversary first trains a model h using m labeled
samples from D, using the protocol (E, L), and it keeps
doing this until the balanced error of the classifier is at
most e(m).

2) Given a model h, construct a classifier A’ that given an
input , first constructs k = —20In(7) /72 fresh encodings
€1,...,ex and then returns the majority vote h'(z) =
maj {h(e1), ..., h(ex)}-

3) The adversary jointly samples (zg,z1) + (D,D) |
¢(xo) = e(z1), until it finds a pair (zg,xz1) such that

) E:t‘“_l [R(Z0) # e(x0)] > 1/2 —7/2.
:Em—E}(:l:o %)
and
P [h(E) = o)) 21— e(m) —7/2

:En—EE,L((zl,x)

4) The adversary outputs = and 1, and receives a fresh
encoding u of x; for a random b. Then adversary outputs
1if h(u) = ¢(xo) and 0 otherwise.

First lets see what is the advantage of the adversary if it can
successfully find the pair (zg, z1). The advantage is equal to

Pr - [h(Zo) = c(x0)] [h(Z1) = ¢(z0)]

x‘_?m—l
To+Ex (To,x)

— Pr
x+D™m 1
F1+EX (z1,%)

1
< 5~ e(m) — 7.

Now we prove that either we have that the error of A’ is
less than 7 or the adversary can successfully find (zp,z1) in
polynomial time. We do this by assuming that h’ has error
larger than 7 and then proving that adversary can find (xg, 1).
Define an event Z(z) for = € X such that Z(z) = 1 if we
have
Pr  [h(E) #c(z)] <1/2—71/2.

x+ D™t

F+EX (z,x)
If for some = we have Z(z) = 1 then using the Chernoff-
Hoeffding bound we have Pr[h'(x) # c(z)] < 7/4. Hence,
since the error of h’ is larger than 7, we have Pr,, p[Z(z) =
0] > 7/2. Therefore, there exists a label y € {0,1} such that
Pr::«—D|c(x)=y[Z($) = 0] > T/Q'
Also define an event W(z) for = € & such that W(z) =1 ift

Pr [h(%) =c(z)] < 1—€(m)—7/2.
x+D
:E(—E;( (xx)

Since the balanced error of h on encodings is less than e(m)
we have Pry. pje(py=y[W(z) = 0] > 7/2. Therefore, the
probability that Pr(y, 5.y« pz2[Z(z0) = 0 AW (z1) = 0 A
c(zo) = ¢(x1) = y] > 72 /8. Thus, the adversary can find a pair
(o, 1) by sampling 8/72 number of samples in expectation.

Putting things together, we have shown that either the advantage
or the adversary or the accuracy of k' is high. To finish the
proof, we need to calculate the running time of the adversary.
The first step of the attack requires O(m/d(m)) time. The
second step of the attack just requires writing the description
of k' which takes constant time. The third step of the attack
requires O(1/72) samples and for each samples we need O(m)



time to calculate the events Z and W which makes the running
time of the third step O(m/72) in expectation. Therefore the
adversary’s running time is O(m/72+m/§(m)) in expectation.

We should also describe the efficiency of the learning algorithm
generating h’ and also the efficiency of h’ itself. Note that
although A’ is a randomized algorithm as described, we can use
standard de-randomization techniques to make it deterministic
without losing its accuracy. Then, to run h’, one needs to spend
O(1/73) time to calculate the encodings and take the majority.
Each encoding takes O(m) time, so overall, the running time
of h’ with oracle access to h is O(m/73).

|

APPENDIX B
PIXEL-PERFECT BREAK INSTAHIDE DUE TO
IMPLEMENTATION FLAWS

The attacks in Section IV and IV-H break the algorithmic
foundation of InstaHide, and any implementation of InstaHide
would be vulnerable to these attacks. We additionally discov-
ered several weaknesses in the implementation of InstaHide
that allow us to achieve a pixel perfect reconstruction of the
original dataset. These implementation weaknesses are not
fundamental to InstaHide, and can be easily be corrected;
nevertheless, we describe this attack for completeness.

As the authors of InstaHide did not release the ground
truth images for their challenge, this attack also serves as
a comparison point for our other (implementation-independent)
attacks. To ensure that this attack does not taint the results of
the attacks we developed in prior sections, we developed this
attack only after completing all other aspects of this paper.

At a high level, this attack exploits two weaknesses in the
implementation of InstaHide (and of the InstaHide Challenge):

« InstaHide masks each encoded image with a random
mask o. However, instead of using a cryptograhpically
secure random number generator the implementation calls
torch. random, and numpy. random, which uses a
Mersenne Twister [49].

The InstaHide Challenge releases the encoded dataset
where each pixel is represented as a 32-bit floating point
number, 4x more precision than typical 8-bit integers
used to represent images.

A. PRNG State Extraction

Pseudo random number generators (PRNG), work by maintain-
ing a state vector v. When calling the generator, a deterministic
function is applied to the current state to yield a new number
to output, and an updated state. Critically, if initialized with the
same state, a PRNG will generate the same output sequence.

The InstaHide implementation uses a Mersenne Twister [49]
PRNG, the default random number generator in NumPy, in
most of its computations. This includes the randomness in
the encoding, including selecting which original images will

be used to generate each encoded image, generating the A
values, choosing which public images to mix into the private
images, and generating the random masks o. This PRNG is
not intended for security-sensitive purposes.

We extract the PRNG state via brute force search of the 232
possible initial seeds.” To do this we implement an efficient test
that, given a potential PRNG seed, allows us to determine if
the seed was correct. This allows us to check if any particular
seed is correct in roughly 0.1 milliseconds. We then repeat
this check for each of the 232 possible seeds. This takes 120
CPU hours, which we parallelize across 100 cores to obtain
the solution in a little over an hour.

Once we extract the PRNG seed, we can use it to compute the
exact mapping ¢, the exact values of A, and, most impotantly,
allows us to undo the encryption operation of multiplication
by o. Note that if InstaHide only released abs(e) for each
encoded image e, this attack would not be possible because
the information would be truly destroyed.

However, because the authors insist on making an analogy to
encryption (and instance hiding) by multiplying by a random
{—1,1}9 vector, it is possible to “decrypt” the original images
and recover the encoded images without sign information
missing. This demonstrates that even two mathematically
identical techniques can have very different failure modes
in practical implementations.

1) High-Fidelity Image Reconstruction

Given all of this information (¢, A, and E without sign flipping),
the reconstruction attack from Section IV-E3 applies directly.
Figure 1 shows the result of this attack on the InstaHide
challenge compared to the images we extract using the prior
attack. All 100 reconstructed images are given in Figure 8.

2) Pixel-Perfect Refinement

We are able to make one final improvement that allows us to
recover a pixel perfect reconstruction when given access to the
public dataset. Because we have reverse engineered the PRNG
seed, it turns out that not only do we get access to the function
¢ but we can even determine which public images were used
in each encoded image—because these values are determined
using the same PRNG. As a result of this, we now have an
over-determined system of equations. By replacing the noise
value ¢ from Equation 2 with the actual public images, this
reduces the number of free variables to just M - d when there
are M original images of dimension d. Because the number
of encoded images is greater than the number of original
images (and in practice 50x as many for the Challenge) we
can perfectly solve for the reconstruction.

Unfortunately we are unable to mount this attack on the actual
InstaHide Challenge: the authors do not release the public
dataset of the challenge dataset. However, we have confirmed
this attack on CIFAR-10 and it works as expected.

7If this was computationally intractable then stronger mathematical analysis
would allow us to recover the complete state [15].



APPENDIX C
ADDITIONAL FIGURES
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Fig. 7. Reconstruction of each of the 100 images in the

InstaHide Challenge using the fully general attack.
Fig. 5: Reconstruction of the first 50 images in the CIFAR-10

encoded dataset. In each pair of rows, the upper image is the
original and the lower image is the reconstruction.

Fig. 6: Reconstruction of the first 50 images in the CIFAR-100 -
encoded dataset. In each pair of rows, the upper image is the Fjg. 8: Reconstruction of each of the 100 images in the
original and the lower image is the reconstruction. InstaHide Challenge, using the improved PRNG cryptanalytic

attack that exploits implementation weaknesses in InstaHide.
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